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ABSTRACT
RFID (radio frequency identification) technologies are poised to
revolutionize retail, warehouse and supply chain management. One
of their interesting applications is to automatically detect missing
tags (and the associated objects) in a large storage space. In order
to timely catch any missing event such as theft, the detection oper-
ation may have to be performed frequently. Because RFID systems
typically work under low-rate channels, past research has focused
on reducing execution time of a detection protocol, in order to pre-
vent excessively-long protocol execution from interfering normal
inventory operations. However, when active tags are used to pro-
vide a large spatial coverage, energy efficiency becomes critical
in prolonging the lifetime of these battery-powered tags. Exist-
ing literature lacks thorough study on how to conserve energy in
the process of missing-tag detection and how to jointly optimize
energy efficiency and time efficiency. This paper makes two im-
portant contributions: First, we propose a novel protocol design
that takes both energy efficiency and time efficiency into consid-
eration. It achieves multi-fold reduction in both energy cost and
execution time when comparing with the best existing work. In
some cases, the reduction is more than an order of magnitude. Sec-
ond, we reveal a fundamental energy-time tradeoff in missing-tag
detection. Through our analytical framework, we are able to flex-
ibly control the tradeoff through a couple of system parameters in
order to achieve desirable performance.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion
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1. INTRODUCTION
RFID (radio frequency identification) technologies [1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 11] are poised to revolutionize retail, warehouse
and supply chain management. They are also having a profound
impact on our daily lives, with important applications in automatic
toll payment, access control to parking garages, object tracking,
and theft prevention. Comparing with barcodes that have to be read
from a very close range by a laser scanner, RFID tags have great
advantages: they can be read wirelessly over a distance, and they
are able to perform simple computations. Starting from August 1,
2010, Wal-Mart has begun to embed RFID tags in clothing [12].

An interesting application of RFID tags is to detect missing items
in a large storage. Consider a major warehouse that keeps thou-
sands of apparel, shoes, pallets, cases, appliances, electronics, etc.
How to find out if anything is missing? We may have someone walk
through the warehouse and count items. This is not only laborious
but also error-prone, considering that clothes may be stacked to-
gether, goods on racks may need a ladder to access, and they may
be blocked behind columns. If we attach a RFID tag to each item,1

the whole detection process can be automated with one or multi-
ple RFID readers communicating with tags to find out whether any
tags (and their associated objects) are absent.

There are two different missing-tag detection problems: exact
detection and probabilistic detection. The objective of exact detec-
tion is to identify exactly which tags are missing. The objective of
probabilistic detection is to detect a missing-tag event with a cer-
tain predefined probability. An exact detection protocol [13, 14,
15] gives much stronger results, but its overhead is far greater than
a probabilistic detection protocol [6, 16, 17, 18]. Hence, they both
have their values. In fact, they are complementary to each other,
and should be used together. For example, a probabilistic detec-
tion protocol may be scheduled to execute frequently, e.g., once
every minute, in order to timely catch any loss event such as theft.
Once it detects some tags are missing, it may invoke an exact de-
tection protocol to pinpoint which tags are missing. If one execu-
tion of a probabilistic detection protocol detects a missing-tag event
with 99% probability, five executions will detect the event with
99.99999999% probability. If that is not enough, we may schedule
an exact detection protocol [13] every five times the probabilistic
detection protocol is executed.2

This paper focuses on probabilistic detection. Because it is per-
formed frequently, its performance becomes very important. Sup-
pose a missing-tag detection protocol is scheduled to execute once

1A tag may be attached in a way that ruins the product if it is de-
tached inappropriately, such as releasing ink onto clothing.
2Another exact detection protocol [14] reports which tags are miss-
ing, but does not guarantee to report all missing ones. The protocol
in [13] guarantees 100% reporting.
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every few minutes in a warehouse. If the execution time of the
protocol is a minute, any normal operations that move goods out
are likely to trigger false alarm. To reduce the chance of inter-
fering normal operations, we want to make the protocol’s execu-
tion time as small as possible. Another performance requirement
is to minimize the protocol’s energy cost. To cover a large area,
battery-powered active tags are preferred. To prolong their lifetime,
we need to make any periodically-executed protocol as energy-
efficient as possible, particularly if one is scheduled to execute once
every few minutes for 24 hours a day, day by day. To make the
problem more challenging, energy efficiency and time efficiency
are often conflicting objectives that cannot be optimized simultane-
ously.

Despite its importance, the problem of probabilistic missing-tag
detection is relatively new and under-investigated. The basic detec-
tion method is introduced in the pioneer work [6]: A RFID reader
monitors a time frame of 𝑓 slots. Through a hash function, each
tag pseudo-randomly selects a slot in the time frame to transmit.
The reader can predict in which slot each known tag will trans-
mit. It detects a missing-tag event if no tag transmits during a slot
when there is supposed to be tag(s) transmitting. However, multi-
ple tags may select the same slot to transmit. If a tag is missing,
its slot may be kept busy by transmission from another tag. Conse-
quently, the reader cannot guarantee the detection of a missing-tag
event. The protocol in [6] only considers time efficiency, but not
energy efficiency. As a follow-up work [16] points out, even for
time efficiency, it is far from being optimal. Firner et al. [17] de-
sign a simple communication protocol, Uni-HB, to detect missing
items for fail-safe presence assurance systems and demonstrate it
can lead to longer system lifetime and higher communication reli-
ability than several popular protocols. The protocol however does
not consider time efficiency and requires all tags to participate and
transmit, which will be less efficiency than a sampling-based pro-
tocol design that requires only a small fraction of the tags to partic-
ipate. Similarly, the method in [18] also requires all tags to partici-
pate.

In this paper, we make two contributions. First, we propose a
new, more sophisticated protocol design for missing-tag detection.
It takes both energy efficiency and time efficiency into considera-
tion. By introducing multiple hash seeds, our new design provides
multiple degrees of freedom for tags to choose which slots they will
transmit in. This design drastically reduces the chance of collision,
and consequently achieves multiple-fold reduction in both energy
cost and execution time. In some cases, the reduction is more than
an order of magnitude. Second, with the new design, we reveal
a fundamental energy-time tradeoff in missing-tag detection. Our
analysis shows that better energy efficiency can be achieved at the
expense of longer execution time, and vice versa. The performance
tradeoff can be easily controlled by a couple of system parameters.
Through our analytical framework for energy-time tradeoff, we are
able to compute the optimal parameter settings that achieve the
smallest protocol execution time or the smallest energy cost. The
framework also enables us to solve the energy-constrained least-
time problem and the time-constrained least-energy problem in missing-
tag detection.

The rest of the paper is organized as follows: Section 2 gives
the system model and problem definition, as well as the prior art.
Section 3 proposes a new missing-tag detection protocol. Section 4
investigates energy-time tradeoff in protocol configuration. Sec-
tion 5 evaluates the protocol through simulations. Section 6 draws
the conclusion.

2. PRELIMINARIES

2.1 System Model
There are three types of RFID tags [19]. Passive tags — the kind

used by Wal-Mart — are most widely deployed today. They are
cheap, but do not have internal power sources. Passive tags rely
on radio waves emitted from a RFID reader to power their circuit
and transmit information back to the reader through backscatter-
ing. They have short operational ranges, typically a few meters
in an indoor environment, which seriously limits their applicabil-
ity. Semi-passive tags carry batteries to power their circuit, but
still rely on backscattering to transmit information. Active tags use
their own battery power to transmit, and consequently do not need
any energy supply from the reader. Active tags operate at a much
longer distance, making them particularly suitable for applications
that cover a large area, where one or a few RFID readers are in-
stalled to access all tagged objects and perform management func-
tions automatically. With richer on-board resources, active tags are
likely to gain more popularity in the future, when their prices drop
over time as manufactural technologies are improved and markets
are expanded. They are particularly attractive for high-valued ob-
jects such as luxury bags, laptops, cell phones, TVs, etc., or when
the tags are reused over and over again. In this paper, we consider
active tags.

Communication between a reader and tags is time-slotted. The
reader’s signal synchronizes the clocks of tags. There are different
types of time slots [13], among which two types are of interest in
this paper. The first type is called a tag-ID slot, whose length is
denoted as 𝑇𝑡𝑎𝑔, during which a reader is able to broadcast a tag
ID. The second type is called a short-response slot, whose length
is denoted as 𝑇𝑠ℎ𝑜𝑟𝑡, during which a tag is able to transmit one-
bit information to the reader, for instance, announcing its presence.
Based on the parameters of Philips I-Code [20], 𝑇𝑡𝑎𝑔 is about 3927
𝜇𝑠, and 𝑇𝑠ℎ𝑜𝑟𝑡 is about 321 𝜇𝑠. See Section 5 for details.

2.2 Problem
The problem is to design an efficient protocol for a RFID reader

to detect whether some tags are missing, subject to a detection
requirement: A single execution of the protocol should detect a
missing-tag event with probability 𝛼 if 𝑚 or more tags are miss-
ing, where 𝛼 and𝑚 are two system parameters. For example, a big
shoe store may carry tens of thousands of shoes. We may set the
parameters to be 𝛼 = 99% and 𝑚 = 10, so that one execution of
the protocol will detect any event of missing 10 or more shoes with
99% probability. If the protocol is periodically executed, the de-
tection probability of any missing event will approach to 100%, no
matter what the values of 𝛼 and𝑚 are. Furthermore, as we have ex-
plained in the introduction, a low-overhead probabilistic detection
protocol may be used in conjunction with a high-overhead exact de-
tection protocol (which is scheduled much less frequently) to catch
any miss.

We consider two performance metrics: execution time of the pro-
tocol and energy cost to the tags. The former is measured as the
time it takes the protocol to complete one execution. We cannot
find a well-accepted energy model for RFID tags. However, in our
design, each tag will wake up only if it will participate in a sched-
uled protocol execution, and the energy expenditure for participat-
ing tags is about the same; they receive the same amount of data,
stay active for a similar amount of time, and for most of them, trans-
mit the same amount of data. Therefore, we can use the number of
tags that participate in each protocol execution as an approximate
measurement for energy cost.

The above two performance metrics are important due to the fol-
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lowing reasons: First, RFID systems use low-rate communication
channels. In the Philips I-Code system, the rate from a reader to
a tag is about 27Kbps and the rate from a tag to a reader is about
53Kbps. Low rates, coupled with a large number of tags, often
cause long execution times for RFID protocols. To apply such pro-
tocols in a busy warehouse environment, it is desirable to reduce
protocol execution time as much as possible. Second, active tags
carry limited battery power. Replacing tags or their batteries is a
tedious, manual operation. One way to save energy is to minimize
the number of tags that are needed to participate in each protocol
execution. When a tag participates in protocol execution, it has to
power its circuit during the execution, receive request information
from the reader, and transmit back. When a tag does not partic-
ipate, it goes into the sleep mode and incurs insignificant energy
expenditure. The energy cost to the RFID reader is less of a con-
cern because the readerŠs battery can be easily replaced or it may
be powered by an external source.

We assume that the RFID reader has access to a database that
stores the IDs of all tags. This assumption is necessary [6]. Without
any prior knowledge of a tag’s existence, how can we know that it
is missing?

The above assumption can be easily satisfied if the tag IDs are
read into a database when new objects are moved into the sys-
tem, and they are removed from the database when the objects are
moved out — this is what a typical inventory management proce-
dure will do. Even if such information is lost due to a database fail-
ure, we can recover the information by executing an ID-collection
protocol [21, 22, 23, 24] that reads the IDs from the tags. In this
case, we will not detect missing-tag events that have already hap-
pened. However, now that we have the IDs of the remaining tags,
we can detect the missing-tag events after this point of time.

2.3 Prior work
We first describe the Trusted Reader Protocol (TRP) by Tan,

Sheng and Li [6]. To initiate the execution of the protocol, a RFID
reader broadcasts a detection request, asking the tags to respond in
a time frame of 𝑓 slots. The detection request has two parameters,
the frame size 𝑓 and a random number 𝑟. Each tag maps itself to a
slot in the frame by hashing its ID and 𝑟. It then transmits during
that slot.

A slot is said to be empty if no tag responds (transmits) in the
slot. It is called a singleton slot if exactly one tag responds. It
is a collision slot if more than one tag responds. A singleton or
collision slot is also called a busy slot.

The reader records which slots are busy and which are empty.
This is binary information where each slot carries either ‘1’ or ‘0’.
When a tag transmits, it does not have to send any particular infor-
mation. It only needs to make the channel busy. Because the reader
knows the IDs of all tags, it knows which tags are mapped to which
slots. More specifically, it knows which slots are expected to be
busy. If an expected busy slot turns out to be empty, the tag(s) that
is mapped to this slot must be missing. TRP is designed to mini-
mize execution time by using the smallest frame size that ensures
a detection probability 𝛼 if𝑚 or more tags are missing. Certainly,
if fewer tags are missing, the detection probability will be lower. A
follow-up work [14] essentially executes TRP iteratively to identify
which tags are missing.

A serious limitation of TRP is that it only considers time effi-
ciency. It is not energy-efficient because all tags must be active and
transmit during the time frame. B. Firner et al. [17] consider energy
cost, but their protocol requires all tags to participate and transmit,
which will be less efficient than a sampling-based solution where
only a small fraction of tags participate.

The efficient missing-tag detection protocol (EMD) [16] is sim-
ilar to TRP except that each tag is sampled with a probability 𝑝 for
participation in each protocol execution. Only a sampled tag will
select a slot to transmit. Simulations show that EMD performs bet-
ter than TRP. However, the paper does not give a way to determine
the optimal sampling probability.

In this paper, we show TRP and EMD are special cases of a much
broader protocol design space. Not only are there protocol config-
urations that perform much better than TRP and EMD in terms of
both time and energy efficiencies, but also we reveal a fundamental
energy-time tradeoff in this design space, which allows us to adapt
protocol performance to suit various needs in practical systems.

3. MULTI-SEED MISSING-TAG DETECTION
PROTOCOL (MSMD)

3.1 Motivation
Both TRP [6] and EMD [16] map tags to time slots using a hash

function. We derive the probability 𝜃 that an arbitrary slot 𝑡 will
become a singleton, which happens when only one tag is sampled
and mapped to slot 𝑡 while all other tags are either not sampled
or mapped to other slots. The probability for any given tag to be
sampled and mapped to 𝑡 is 𝑝

𝑓
, where 𝑓 is the number of slots and 𝑝

is the sampling probability, which is 100% for TRP. The probability
for all other tags to be either not sampled or not mapped to slot 𝑡 is
(1− 𝑝

𝑓
)𝑛−1, where 𝑛 is the number of tags. Hence, we have

𝜃 = 𝑛
𝑝

𝑓
(1− 𝑝

𝑓
)𝑛−1 ≈ 𝑛𝑝

𝑓
𝑒−

𝑛𝑝
𝑓 ≤ 1

𝑒
≈ 36.8%,

where 𝑛𝑝
𝑓
𝑒−

𝑛𝑝
𝑓 reaches its maximum value when 𝑛𝑝 = 𝑓 . This

upper bound for 𝜃 is true for both TRP and EMD.
Singletons are important. If a missing tag is sampled and mapped

to a singleton slot, since no other tag is mapped the same slot, this
expected singleton slot will turn out to be empty, which is observed
by the reader, resulting in missing-tag detection.

The problem is that the majority of all slots, 63.2% or more of
them, are either empty slots or collision slots. They are mostly
wasted. Obviously, empty slots do not contribute anything in missing-
tag detection. If a collision slot only has missing tags, detection
will be successfully made because the reader will find this expected
busy slot to be actually empty. However, when the number of miss-
ing tags is small when comparing with the total number of tags, the
chance for a collision slot to have only missing tags is also small.

Naturally, we want a protocol design that ensures a large value of
𝜃, much larger than 36.8%, because more singleton slots increase
detection power. However, the value of 𝜃 in TRP is in fact much
smaller than 36.8% because TRP minimizes its execution time by
using as fewer time slots as possible, which results in a large per-
centage of collision slots. More specifically, the detection proba-
bility of TRP is about 1− (1− 𝜃)𝑚 because each of the𝑚missing
tags has a probability of 𝜃 to map to a singleton slot and thus be
detected.3 Now, if the requirement is to detect a missing-tag event
with 99% probability when 100 tags are missing, TRP will reduce
its frame size to such a level that 𝜃 = 4.5%, just enough to ensure
99% detection probability.

This leaves a great room for improvement. We show that a new
protocol design, different from that of TRP and EMD, can reduce
the frame size to a level that is much smaller than they can do, yet
keep 𝜃 at a value much greater than 36.8%. Our idea is that if we
can find a way to turn most empty/collision slots into singletons,
3To quickly get to the point without dealing with too much details,
we ignore the small contribution of collision slots in detection.
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we shall be able to improve time/energy efficiencies significantly.
There is a compound effect of such a new design when it is coupled
with sampling: Suppose 𝛼 = 99% and 𝑚 = 100, same as in
the previous paragraph. Under sampling, the detection probability
is 1 − (1 − 𝑝 × 𝜃)𝑚 because each of the 𝑚 missing tags has a
probability of 𝑝× 𝜃 to be sampled and mapped to a singleton slot.
If our protocol design can improve 𝜃 to 90%, we will be able to
set 𝑝 = 5%. With such a sampling probability, we achieve much
better energy efficiency because only 5% of all tags participate in
each protocol execution. We also achieve far better time efficiency
because, with much fewer tags transmitting, the chance of collision
is reduced and a fewer number of time slots are needed to ensure a
certain level of singletons.

Before we present our design called Multiple-Seed Missing-tag
Detection protocol (MSMD), we first discuss how to implement a
hash function efficiently for RFID tags below.

3.2 Hash Function
There exist many efficient hash functions in the literature. In

order to keep the tag circuit simple, we build our hash function on
top of the simple scheme in [13] using a ring of pre-stored random
bits: Before a tag is deployed, an offline random number generator
uses the ID of a tag as seed to produce a string of pseudo-random
bits, which are stored in the tag. The bits form a logical ring. After
deployment, the tag generates a hash value 𝐻(𝑖𝑑, 𝑠) by returning a
certain number of bits after the 𝑠th bit in the ring, where 𝑖𝑑 is the
tag ID and 𝑠 is a given hash seed that can alter the hash output. This
hash output is predictable by a RFID reader that knows the tag ID
and the seed 𝑠.

More sophisticated hash implementations can be designed based
on a ring of pseudo-random bits. For example, we may interpret 𝑠
as a concatenation of a flag 𝑥 and two random numbers, 𝑟1 and 𝑟2.
To produce a hash output, we go clockwise along the ring if 𝑥 = 0
or counterclockwise if 𝑥 = 1. We then output the 𝑟1th bit on the
ring, and then output one more bit after every 𝑟2 bits on the ring.
If the hash output is required to be in a range [0, 𝑦), we first take a
sufficient number of hash bits as described above and then perform
modulo 𝑦.

This hash function is easy to implement in hardware and thus
suitable for tags. But it can only produce a limited number of dif-
ferent hash values, depending on the size of the ring. It is not suit-
able for a protocol whose operations require each tag to produce a
large number of different hash values, but it works well for a proto-
col that only requires each tag to produce a few independent hash
values.

3.3 Basic Idea
We know in Section 3.1 that random mapping from tags to slots

generates a limited number of singleton slots. An arbitrary slot
only has a probability of up to 36.8% to be a singleton. Now, if we
apply two independent random mappings from tags to slots, a slot
will have a probability of up to 1 − (1 − 36.8%)2 ≈ 60.1% to be
a singleton in one of the two mappings. If we apply 𝑘 independent
mappings from tags to slots, it has a probability of 1−(1−36.8%)𝑘

to be a singleton in one of the 𝑘 mappings. The value of 1− (1−
36.8%)𝑘 quickly approaches to 100% as we increase 𝑘.

It is easy to generate multiple mappings. In the detection request,
the RFID reader can broadcast 𝑘 seeds, 𝑠1, 𝑠2, ..., 𝑠𝑘, to tags. Each
seed 𝑠𝑖 corresponds to a different mapping where a tag is mapped
to a slot indexed by𝐻(𝑖𝑑, 𝑠𝑖).

A slot may be a singleton under one mapping, but a collision
slot under other mappings. Different slots may be singletons under
different mappings. To maximize the number of singletons, the
reader — with the knowledge of all tag IDs and all seeds — selects

a mapping (i.e., a seed) for each slot, such that the slot can be a
singleton. From each slot’s point of view, a specific seed is used
to map tags to it. From the whole system’s point of view, multiple
seeds are used to map different tags to different slots.

In our protocol, the reader determines system parameters, includ-
ing the sampling probability 𝑝 and the frame size 𝑓 . After select-
ing 𝑘 random seeds, the reader chooses a seed for each slot and
constructs a seed-selection vector 𝑉 (or selection vector for short),
which contains 𝑓 selectors, one for each slot in the time frame.
Each selector 𝑧 has a range of [0, 𝑘]. If 𝑧 > 0, it means that the 𝑧th
seed, i.e., 𝑠𝑧 , should be used for its corresponding slot. If 𝑧 = 0,
it means that the slot is not a singleton under any seed. Finally,
the reader broadcasts the selection vector to the tags. Based on the
selectors, each tag determines which slot it should use to respond.

We will address the problems of how to choose the optimal sys-
tem parameters, 𝑝 and 𝑓 , and how the number 𝑘 of seeds will affect
the protocol performance in Section 4. Before we describe the op-
erations of the protocol, we introduce the concept of segmentation.
In our design, the above idea is actually applied segment by seg-
ment.

3.4 Segmentation
The seed-selection vector has 𝑓 selectors, each of which is ⌈log(𝑘+

1)⌉ bits long. 𝑓 may be too large for the whole vector to fit in a sin-
gle slot. For example, if 𝑘 = 7, each selector is 3 bits long. If we
use the same slot 𝑇𝑡𝑎𝑔 for carrying a 96-bit ID to carry the selection
vector, it can only accommodate 32 selectors. When 𝑓 is more than
that, we have to divide the selection vector into 96-bit segments, so
that they can fit in 𝑇𝑡𝑎𝑔 slots. Each segment contains 96

⌈log(𝑘+1)⌉
selectors. Let 𝑙 = 96

⌈log(𝑘+1)⌉ . The total number of seed-selection

segments are 𝑓
𝑙
, and the 𝑗th segment is denoted as 𝑉𝑗 .

Since we divide the selection vector into segments, we also di-
vide the time frame into sub-frames, each containing 𝑙 slots ac-
cordingly. The 𝑗th time sub-frame is denoted as 𝐹𝑗 . This allows
our protocol to deal with one sub-frame at a time.

Our protocol consists of two phases. In Phase one, the reader
identifies the set of sampled tags, and randomly assigns the sample
tags to the sub-frames. The subset of sampled tags that are assigned
to the 𝑗th sub-frame is denoted as 𝑁𝑗 . For each sub-frame 𝐹𝑗 ,
the reader selects a seed for each of its slots, constructs the seed-
select segment 𝑉𝑗 , and maps the tags in 𝑁𝑗 to slots in 𝐹𝑗 using the
selected seeds.

In Phase two, the reader broadcasts the seed-selection segments
one after another, each in a slot of 𝑇𝑡𝑎𝑔 . Each seed-selection seg-
ment is followed by a time sub-frame of 𝑙 slots, each of which is
𝑇𝑠ℎ𝑜𝑟𝑡 long. The tags in 𝑁𝑗 will respond in these slots. Each tag
only needs to be active during its sub-frame, which conserves en-
ergy.

Below we give details of the protocol design.

3.5 Phase One: Finding Sampled Tags
To implement a sampling probability 𝑝, the reader will broadcast

an integer 𝑥 = ⌈𝑝 × 𝑋⌉ and a prime number 𝑞, where 𝑋 is a
large, pre-configured constant (e.g., 216). During the 𝑖th round of
protocol execution, a tag is sampled if and only if the hash result
𝐻(𝑖𝑑, 𝑞 × 𝑖), which is a pseudo-random number in the range of
[0, 𝑋), is smaller than 𝑥, where 𝑖𝑑 is the tag’s ID.

After receiving 𝑥 and 𝑞, each tag can predict which rounds of
protocol execution it will participate. Since the protocol is sched-
uled to execute periodically with pre-defined intervals, each tag
knows when it should wake to participate. The reader, with the
knowledge of all tag information, can predict which tags are sam-
pled for each protocol execution.
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3.6 Phase One: Assigning Sampled Tags to Sub-
frames

When assigning sampled tags to time sub-frames, the reader se-
lects an additional random seed 𝑠, which is different from 𝑠1, ..., 𝑠𝑘.
For each sampled tag, the reader produces a hash output 𝐻(𝑖𝑑, 𝑠)
and assigns the tag to the 𝐻(𝑖𝑑, 𝑠)th sub-frame, where 𝑖𝑑 is the
tag’s ID and the range of𝐻(𝑖𝑑, 𝑠) is [0, 𝑓

𝑙
). Note that each tag will

know which sub-frame it is assigned to, after it receives 𝑠 in the
detection request broadcast by the reader at the beginning of Phase
two.

3.7 Phase One: Determining Seed-selection Seg-
ments

Each seed-selection segment is determined independently. Con-
sider the 𝑗th segment 𝑉𝑗 , the 𝑗th time sub-frame 𝐹𝑗 , and the set𝑁𝑗

of sampled tags that are assigned to 𝐹𝑗 . All selectors in 𝑉𝑗 are ini-
tialized to zeros. The reader begins by using the first seed 𝑠1 to map
tags in 𝑁𝑗 to slots in 𝐹𝑗 . For each tag in 𝑁𝑗 , the reader produces
a hash output 𝐻(𝑖𝑑, 𝑠1) and maps the tag to the 𝐻(𝑖𝑑, 𝑠1)th slot
in 𝐹𝑗 , where 𝑖𝑑 is the tag’s ID and the range of 𝐻(𝑖𝑑, 𝑠1) is [0, 𝑙).
After mapping, the reader finds singleton slots. Each singleton has
one and only one tag mapped to it. We assign the tag to the slot so
that it will transmit in the slot, free of collision, during Phase two.
The reader sets the corresponding selector in 𝑉𝑗 to be 1, meaning
that the first seed 𝑠1 should be used for this slot. The slot is now
called a used slot, and the sole tag mapped to it will be called an
assigned tag.

The reader repeats the above process with other seeds, one at
a time, for the remaining mappings. For each mapping, we only
consider the slots whose selectors have not been determined yet
and only consider the tags that have not been assigned to any slots
yet. In other words, the used slots and the assigned tags will not
be considered. For a singleton slot that is found using seed 𝑠𝑖, the
corresponding selector in 𝑉𝑗 will be set to be 𝑖.

After all 𝑘 mappings, if the value of a selector in 𝑉𝑗 remains
zero, it means that the corresponding slot in 𝐹𝑗 is not a singleton
under any seed. As a final attempt to utilize these unused slots, if
there exist unassigned tags in 𝑁𝑗 , the reader randomly assigns the
unassigned tags to unused slots. More specifically, it chooses an
additional random seed 𝑠′ and produces a hash output 𝐻(𝑖𝑑, 𝑠′) to
assign each tag that is not assigned yet to the 𝐻(𝑖𝑑, 𝑠′)th unused
slot, where 𝑖𝑑 is the tag’s ID. In case that only one tag is assigned
to an unused slot, we will have an extra singleton. Since the whole
tag-to-slot assignment is pseudo-random, the reader knows which
unused slots will become singletons. As we will see later in Phase
two, after receiving 𝑠1,..., 𝑠𝑘, each tag will know whether it is as-
signed to a slot. If not, from the received 𝑠′, it will know which
unused slot it is assigned to.

3.8 Phase Two
At the beginning of this phase, the reader broadcasts a detec-

tion request, which is followed by a time frame for sampled tags
to respond. The detection request consists of a frame size 𝑓 and
a sequence of seeds, 𝑠, 𝑠1, ..., 𝑠𝑘, and 𝑠′. The time frame is
divided into sub-frames. Before each sub-frame 𝐹𝑗 , the reader
broadcasts the corresponding seed-selection segment 𝑉𝑗 in a sin-
gle tag-ID slot 𝑇𝑡𝑎𝑔. It is followed by 𝑙 short slots (𝑇𝑠ℎ𝑜𝑟𝑡) of the
sub-frame, during which the tags in 𝑁𝑗 can respond. Recall that
each selection segment is 96 bits long. If 𝑘 = 7, a segment has
𝑙 = 96

log2(7+1)
= 32 selectors, and thus each time sub-frame has 32

slots.
Consider an arbitrary tag 𝑡. It wakes up to participate in a sched-

uled protocol execution that it is sampled for. After 𝑡 receives the

detection request from the reader, it uses 𝐻(𝑖𝑑, 𝑠) to determine
which sub-frame it is assigned to. Without loss of generality, let
the sub-frame be 𝐹𝑗 . The tag sets a timer to wake up before 𝐹𝑗

begins. After receiving the seed-selection segment 𝑉𝑗 , tag 𝑡 uses
𝐻(𝑖𝑑, 𝑠1) to find out which time slot it is mapped by seed 𝑠1. It
then checks whether the corresponding selector in 𝑉𝑗 is 1. If the
selector is 1, according to the construction of 𝑉𝑗 in Section 3.7, 𝑡
must be the sole tag that is mapped (and assigned) to this slot under
𝑠1. If the selector is not 1, it means that 𝑠1 should not be used to
map any tag to this slot. In the latter case, 𝑡 will move on to other
seeds and repeat the same process to determine if it is assigned to
a slot. If so, it will transmit during that slot. Otherwise, if 𝑡 is not
assigned to a slot after all 𝑘 seeds, it will make a final attempt by
finding out all unused slots (whose corresponding selectors in 𝑉𝑗
are zeros) and using 𝐻(𝑖𝑑, 𝑠′) as index to identify an unused slot
to transmit.

In summary, after Phase one, the reader knows (1) which sub-
frame each sampled tag is assigned to, (2) which slot each sam-
pled tag is expected to transmit, (3) which slots are expected to be
singletons, and (4) which slots are expected to be collision slots
(due to the final attempt using 𝑠′). After Phase two, if an expected
singleton/collision slot turns out to be empty, the reader detects a
missing-tag event. Because multiple mappings reduce the number
of empty/collision slots, both energy efficiency and time efficiency
are greatly improved, as we will demonstrate analytically and by
simulations in the following sections.

4. ENERGY-TIME TRADEOFF IN PROTO-
COL CONFIGURATION

We formally derive the detection probability and the energy-time
tradeoff curve. We show how to compute system parameters and
how to solve the constrained least-time (or least-energy) problem.

4.1 Detection Probability
To find the detection probability after one protocol execution,

we need to first derive the probability for an arbitrary sampled tag
𝑡 to be assigned to a singleton slot during Phase one. There are
𝑘 mappings. Let 𝑃𝑖 be the probability that tag 𝑡 is assigned to a
singleton slot after the first 𝑖 mappings. Let 𝑛 be the total number
of tags and 𝑛′ be the number of sampled tags that are mapped to
the same sub-frame as 𝑡 does. 𝑛′ follows a binomial distribution,
𝐵𝑖𝑛𝑜(𝑛, 𝑝 𝑙

𝑓
), i.e.,

𝑃𝑟𝑜𝑏{𝑛′ = 𝑗} =

(
𝑛

𝑗

)
(𝑝
𝑙

𝑓
)𝑗(1− 𝑝 𝑙

𝑓
)𝑛−𝑗 . (1)

𝑃0 = 0. We derive a recursive formula for 𝑃𝑖, 1 ≤ 𝑖 ≤ 𝑘. After
the first 𝑖− 1 mappings, there are two cases. Case 1: tag 𝑡 has been
assigned to a slot; the probability for this to happen is 𝑃𝑖−1. Case
2: tag 𝑡 has not been assigned to a slot; the probability for this case
is 1− 𝑃𝑖−1. We focus on the second case below.

In the 𝑖th mapping, the slot that tag 𝑡 is mapped to has a proba-

bility of (1− 𝑛′𝑃𝑖−1

𝑙
) to be unused. Each of the other 𝑛′ − 1 tags

has a probability (1 − 𝑃𝑖−1) to be unassigned. If it is unassigned,
the tag has a probability of 1

𝑙
to be mapped to the same slot as 𝑡

does. Hence, the probability 𝑝′ for tag 𝑡 to be the only one that is
mapped to an unused slot is

𝑝′ = (1− (1− 𝑃𝑖−1)
1

𝑙
)𝑛

′−1 ⋅ (1− 𝑛′𝑃𝑖−1

𝑙
). (2)

Recall that we are considering Case 2 here. Combining both
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cases, we have

𝑃𝑖 = 𝑃𝑖−1 + (1− 𝑃𝑖−1) ⋅
𝑛∑

𝑗=0

𝑃𝑟𝑜𝑏{𝑛′ = 𝑗} ⋅ 𝑝′

= 𝑃𝑖−1 + (1− 𝑃𝑖−1) ⋅
𝑛∑

𝑗=0

(
𝑛

𝑗

)
(𝑝
𝑙

𝑓
)𝑗(1− 𝑝 𝑙

𝑓
)𝑛−𝑗 ⋅

(1− (1− 𝑃𝑖−1)
1

𝑙
)𝑗−1 ⋅ (1− 𝑗𝑃𝑖−1

𝑙
),

(3)

where the first item on the right side is the probability for a tag to
be assigned to a slot by the first 𝑖 − 1 mappings and the second
item is the probability for the tag to be assigned to a slot by the 𝑖th
mapping. The probability for tag 𝑡 to be assigned to a slot after all
𝑘 mappings is 𝑃𝑘.

After the 𝑘 mapping, we have a final attempt, in which an unas-
signed tag may be mapped to a singleton slot or a collision slot. If
the tag is mapped to a collision slot, it is highly unlikely that all tags
in that slot will be missing because the parameter 𝑚 is typically
set far smaller than 𝑛. Hence, the contribution of collision slots
to missing-tag detection can be ignored. When the tag is mapped
to a singleton slot, detection will be made if the tag is missing.
Therefore, the final mapping has no difference from the previous
mappings. The probability for tag 𝑡 to transmit in a singleton slot
is 𝑃𝑘+1, which can be computed recursively from (3).

Each of the 𝑚 missing tags has a probability 𝑝 to be sampled.
When the tag is sampled, it has a probability of 𝑃𝑘+1 to be assigned
a singleton slot. When that happens, since a missing tag cannot
transmit, the reader will observe an empty slot instead, resulting
in the detection. Therefore, the detection probability of MSMD,
denoted as 𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓), is

𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓) = 1− (1− 𝑝× 𝑃𝑘+1)
𝑚. (4)

The value of 𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓) not only depends on the choice of 𝑝
and 𝑓 , but also depends on 𝑛, 𝑚 and 𝑘, which are not included in
the notation for simplicity. The values of 𝑝 and 𝑓 are determined
by the reader and broadcast to tags. They control the energy-time
tradeoff as we will reveal shortly. The values of 𝑛, 𝑚 and 𝑘 are
pre-known, where 𝑛 is known because it is simply the number of
tags that the reader expects to be in the system, 𝑚 is known as a
given parameter in the detection requirement, and 𝑘 is determined
before the tags are deployed.

EDM [16] is a special case of MSMD with 𝑘 = 1 and without
the final attempt. Hence, the detection probability of EMD, denoted
as 𝑃𝑒𝑚𝑑(𝑝, 𝑓), is

𝑃𝑒𝑚𝑑(𝑝, 𝑓) = 1− (1− 𝑝× 𝑃1)
𝑚. (5)

TRP [6] is a special case of EDM with 𝑝 = 1. Namely, sampling
is turned off.

4.2 Energy-time Tradeoff Curve
The protocol’s energy cost can be characterized by the sampling

probability 𝑝 because the expected number of tags that participate
in each protocol execution is 𝑝 × 𝑛. A smaller value of 𝑝 means a
smaller number of participating tags, which in turn means a smaller
energy cost. The protocol’s execution time can be characterized by
the frame size 𝑓 . The total number of slots for tags to respond is 𝑓 ,
and the total size of the seed-selection vector is also 𝑓 . A smaller
value of 𝑓 generally means a shorter protocol execution time. The
time for the reader to broadcast the detection request is a constant,
which is negligible when comparing with the time frame and the
seed-selection vector if 𝑓 is large. The actual protocol execution
time, measured in seconds, will be studied in the next section based
on the Philips I-code specification.
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Figure 1: Detection probability𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓) with respect to the
frame size 𝑓 when 𝑛 = 50, 000, 𝑚 = 100, 𝑘 = 3, and 𝑝 = 5%.

We cannot arbitrarily pick small values for 𝑝 and 𝑓 . They must
satisfy the requirement 𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓) ≥ 𝛼. Subject to this con-
straint, we show that the values of 𝑝 and 𝑓 cannot be minimized
simultaneously. The choice of 𝑝 and 𝑓 represents an energy-time
tradeoff.

If we fix the value of 𝑝, 𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓) becomes a function of 𝑓 .
The solid line in Fig. 1 shows an example of the curve 𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓)
with respect to 𝑓 when 𝑛 = 50, 000, 𝑚 = 100, 𝑘 = 3, and 𝑝 =
5%. Because 𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓) is an increasing function, the minimum
value of 𝑓 that satisfies the requirement 𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓) ≥ 𝛼 can be
found by solving the following equation,

𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓) = 𝛼.

The solution is denoted as 𝑓∗. See Fig. 1 for illustration.
For each different sampling probability 𝑝, we can compute the

smallest usable frame size 𝑓∗ that satisfies 𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓) ≥ 𝛼.
Hence, 𝑓∗ can be considered as a function of 𝑝, denoted as 𝑓∗(𝑝).
A practical RFID system may consider a frame size beyond a cer-
tain upper bound 𝑈 to be unacceptable due to excessively long ex-
ecution time. In addition, 𝑓∗ must be an integer. Considering these
factors, we give a more accurate definition of 𝑓∗ below.

𝑓∗(𝑝) = min{𝑓 ∣𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓) ≥ 𝛼 ∧ 𝑓 ≤ 𝑈, 𝑓 ∈ 𝐼+}. (6)

The algorithm that computes 𝑓∗(𝑝) based on bi-section search is
given in Algorithm 1.

Algorithm 1 Search for 𝑓∗(𝑝)
INPUT: 𝑛,𝑚, 𝛼, 𝑘, 𝑝
OUTPUT: frame size that minimizes execution time under sam-
pling probability 𝑝

if 𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑈) < 𝛼 then exit; ∖∖requirement cannot be met
𝑓0 = 1, 𝑓1 = 𝑈 ;
while 𝑓1 − 𝑓0 > 1 do
𝑓2 = ⌈ 𝑓0+𝑓1

2
⌉;

if 𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓2) < 𝛼 then 𝑓0 = 𝑓2 else 𝑓1 = 𝑓2;
end while
return 𝑓1;

The left plot in Fig. 2 shows the curve of 𝑓∗(𝑝) when 𝑛 =
50, 000, 𝑚 = 75, 𝑘 = 3, and 𝛼 = 95%. We call it the energy-
time tradeoff curve. Each point, (𝑝, 𝑓∗(𝑝)), represents an operating
point whose energy cost is measured as 𝑛×𝑝 participating tags and
whose time frame consists of 𝑓∗(𝑝) slots. The symbols in the plot
will be explained later. The energy-time tradeoff is controlled by
the sampling probability 𝑝. If we decrease the value of 𝑝, we de-
crease the energy cost, but at the mean time the value of 𝑓∗(𝑝) may
have to increase, which increases the execution time.
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Figure 2: ∙ Left plot: Energy-time tradeoff curve, i.e., frame size 𝑓∗(𝑝) with respect to sampling probability 𝑝, when 𝑛 = 50, 000,
𝑚 = 75, 𝑘 = 3, and 𝛼 = 95%. ∙ Right plot: Energy-time tradeoff curve in the range 𝑝 ∈ [𝑝𝑜𝑝𝑡, 𝑝𝑡].
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Figure 3: ∙ Left Plot: the value of 𝑝𝑡 with respect to 𝑛. ∙ Right Plot: the value of 𝑝𝑜𝑝𝑡 with respect to 𝑛.

Algorithm 2 Search for 𝑝𝑜𝑝𝑡
INPUT: 𝑛,𝑚, 𝛼, 𝑘
OUTPUT: optimal sampling probability that minimizes energy
cost

𝑝0 = 0, 𝑝1 = 1, 𝛿 = 0.01, 𝑈 = 1,000,000; ∖∖400 seconds
while 𝑝1 − 𝑝0 > 𝛿 do
𝑝2 = ⌈ 𝑝0+𝑝1

2
⌉;

if 𝑃𝑚𝑠𝑚𝑑(𝑝2, 𝑈) < 𝛼 then 𝑝0 = 𝑝2 else 𝑝1 = 𝑝2;
end while
return 𝑝1;

Algorithm 3 Search for 𝑓𝑜𝑝𝑡
INPUT: 𝑛,𝑚, 𝛼
OUTPUT: optimal frame size and sampling probability that min-
imize execution time

𝑝0 = 𝑝𝑜𝑝𝑡, 𝑝1 = 1, 𝛿 = 0.01;
while 𝑝1 − 𝑝0 > 𝛿 do
𝑝2 = ⌈ 𝑝0+𝑝1

2
⌉;

if 𝑓∗(𝑝2) > 𝑓∗(𝑝2 + 𝛿
2
) then 𝑝0 = 𝑝2 else 𝑝1 = 𝑝2;

end while
return 𝑓∗(𝑝1) and 𝑝1;

4.3 Minimum Energy Cost
When the sampling probability 𝑝 is too small, the detection prob-

ability 𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓) will be smaller than 𝛼 for any value of 𝑓 .
Such a small sampling probability cannot be used. We design a
bi-section search method in Algorithm 2 to find the smallest value
of 𝑝, denoted as 𝑝𝑜𝑝𝑡, which can satisfy 𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓) ≥ 𝛼 with a
frame size no greater than the upper bound 𝑈 . The sampling prob-
ability returned by the algorithm is within an error of 𝛿 from the
true optimal value 𝑝𝑜𝑝𝑡, where 𝛿 is a parameter that can be set arbi-
trarily small. When 𝑝𝑜𝑝𝑡 and 𝑓∗(𝑝𝑜𝑝𝑡) are used, the energy cost is
minimized.

4.4 Minimum Execution Time
From the energy-time tradeoff curve (the left plot in Fig. 2), we

can find the smallest value of 𝑓∗(𝑝), denoted as 𝑓𝑜𝑝𝑡, that mini-
mizes the execution time.

𝑓𝑜𝑝𝑡 = min{𝑓∗(𝑝) ∣ 𝑝𝑜𝑝𝑡 ≤ 𝑝 ≤ 1} (7)

Let 𝑝𝑡 be the corresponding sampling probability. Namely,
𝑃𝑚𝑠𝑚𝑑(𝑝𝑡, 𝑓𝑜𝑝𝑡) = 𝛼. The values of 𝑓𝑜𝑝𝑡 and 𝑝𝑡 are determined
through bi-section search in Algorithm 3, where the if statement
uses the local gradient to guide the search direction towards the
minimum. When 𝑝𝑡 and 𝑓𝑜𝑝𝑡 are used, the protocol execution time
is minimized.

We amplify the segment of the energy-time tradeoff curve be-
tween point (𝑝𝑜𝑝𝑡, 𝑓∗(𝑝𝑜𝑝𝑡)) and point (𝑝𝑡, 𝑓𝑜𝑝𝑡) in the right plot
of Fig. 2. When we increase the value of 𝑝 from 𝑝𝑜𝑝𝑡 to 𝑝𝑡, the en-
ergy cost of the protocol is linearly increased, while the execution
time of the protocol is decreased. We should not choose 𝑝 > 𝑝𝑡 be-
cause both energy cost and execution time will increase when the
sampling probability is greater than 𝑝𝑡.

4.5 Offline Computation
Because the computation of 𝑝𝑜𝑝𝑡, 𝑓∗(𝑝𝑜𝑝𝑡), 𝑝𝑡, and 𝑓𝑜𝑝𝑡 relies
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only on the values of 𝑛, 𝑚, 𝛼 and 𝑘, we can calculate them offline
in advance. The values of 𝑚 and 𝛼 are pre-configured as part of
the system requirement. The value of 𝑘 is determined before tag
deployment. Hence, we can pre-compute 𝑝𝑜𝑝𝑡, 𝑓∗(𝑝𝑜𝑝𝑡), 𝑝𝑡, and
𝑓𝑜𝑝𝑡 in a table format with respect to different values of 𝑛 (for in-
stance, from 100 to 100,000 with an increment step of 100), so that
these values can be looked up during online operations.

When performing such computation, we observe that when we
change 𝑛, the values of 𝑝𝑡 and 𝑝𝑜𝑝𝑡 remain largely constants, as
shown in Fig. 3. Hence, their values are actually determined by 𝑚,
𝛼 and 𝑘. It means that as long as the detection requirement speci-
fied by𝑚 and 𝛼 does not change, 𝑝𝑡 and 𝑝𝑜𝑝𝑡 can be approximately
viewed as constants even though the number of tags in the system
changes.

Suppose the values of 𝑚 and 𝛼 may be changed only at the be-
ginning of each hour. The reader picks a sampling probability 𝑝,
which is 𝑝𝑡, 𝑝𝑜𝑝𝑡 or a value between them. It then downloads 𝑝 to
all tags and synchronizes their clocks. For the rest of the hour, the
reader does not have to transmit the sampling probability again.

4.6 Constrained Least-time (or Least-energy)
Problem

The energy-constrained least-time problem is to minimize the
protocol’s execution time, subject to a detection requirement spec-
ified by 𝑚 and 𝛼 and an energy constraint specified by an upper
bound 𝑢 on the expected number of tags that participate in each
protocol execution. To minimize execution time, we need to re-
duce the frame size as much as possible. Our previous analysis has
already given the solution to this problem, which is simply 𝑓∗( 𝑢

𝑛
),

where 𝑢
𝑛

is the maximum sampling probability that we can use un-
der the energy constraint.

The time-constrained least-energy problem is to minimize the
number of tags that participate in protocol execution, subject to
a detection requirement specified by 𝑚 and 𝛼 and an execution
time constraint specified by an upper bound 𝑢′ on the frame size.
A solution can be designed by following a similar process as we
derive 𝑓∗(𝑝) in Section 4.2: Starting from (4), if we fix 𝑓 =
𝑢′, 𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓) becomes a function of 𝑝. We can use bi-section
search to find 𝑝 that meets 𝑃𝑚𝑠𝑚𝑑(𝑝, 𝑓) = 𝛼 ∧ 𝑝 ≤ 𝑝𝑡.

4.7 Impact of 𝑘
We study how the number 𝑘 of hash seeds will affect the pro-

tocol’s performance. Figure 4 compares the energy-time tradeoff
curves of EMD and MSMD with 𝑘 = 3, 7, 15, respectively. Recall
that EMD is a special case of MSMD with one hash seed and TRP
is a special case of EMD with 𝑝 = 1, represented by a point on the
curve of EMD as shown in the figure. For MSMD, when 𝑘 = 3,
each seed selector needs 2 bits; recall that the value zero is reserved
for non-singleton slots. When 𝑘 = 7, each selector needs 3 bits.
When 𝑘 = 15, each selector needs 4 bits.4

In Figure 4, a lower curve indicates better performance because,
for any sampling probability, its frame size is smaller, i.e., its exe-
cution time is smaller. Alternatively, it can be interpreted as, for any
frame size, its sampling probability is smaller, i.e., it needs fewer
tags to participate in each protocol execution. Clearly, MSMD sig-
nificantly outperforms EMD and TRP. As 𝑘 increases, the perfor-
mance of MSMD improves. However, the amount of improvement
shrinks rapidly, demonstrated by the small gap between 𝑘 = 7 and
𝑘 = 15. When we further increase 𝑘 to 31 using 5-bit selectors, the
improvement becomes negligible. Increasing the value of 𝑘 does

4One may ask why we do not use 𝑘 = 8 or other values. The
reason is that each selector needs 4 bits even when 𝑘 = 8. In that
case, we should certainly choose 𝑘 = 15 for better performance.
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Figure 4: Energy-time tradeoff curves of EMD and MSMD
under different 𝑘 values, when 𝑛 = 50, 000, 𝑚 = 100, and
𝑝 = 5%.

not come for free; larger selectors mean more overhead. For one,
it takes more time for the reader to broadcast the seed-selection
vector. Therefore, we believe 𝑘 = 7 is a good choice in practice
because the performance gain beyond that is very limited.

5. NUMERICAL RESULTS
We have performed extensive simulations to study the perfor-

mance of the proposed MSMD, and compare it with EMD [16] and
TRP [6]. The simulation setting is based on the Philips I-Code
specification [20]. Any two consecutive transmissions (from the
reader to tags or vice versa ) are separated by a waiting time of 302
𝜇𝑠. The transmission rate from the reader to tags is 26.5 Kb/sec; it
takes 37.76 𝜇𝑠 for the reader to transmit one bit. A 96-bit slot that
carriers a seed-selection segment is 3927 𝜇𝑠 long, which includes a
waiting time before the transmission. The transmission rate from a
tag to the reader is 53Kb/sec; it takes 18.88 𝜇𝑠 for a tag to transmit
one bit. A single-bit slot 𝑇𝑠ℎ𝑜𝑟𝑡 for a tag to respond (i.e., make the
channel busy) is 321 𝜇𝑠, also including a waiting time.

For each set of system parameters, including 𝑚, 𝛼, and 𝑛, TRP
will compute its optimal frame size. Once the frame size 𝑓 is de-
termined, the execution time is known, which is 𝑓 × 𝑇𝑠ℎ𝑜𝑟𝑡 plus
the time for broadcasting a detection request. The energy cost of
TRP is measured as 𝑛 participating tags. MSMD and EMD will
choose a sampling probability 𝑝, and compute the optimal frame
size 𝑓∗ under that sampling probability. EMD does not give a way
to compute its optimal frame size. However, since EMD is a spe-
cial case of MSMD, we use our analytical framework in the previ-
ous section to compute it. The energy cost of these two protocols is
measured as 𝑛× 𝑝 participating tags. For EMD, its execution time
is 𝑓∗ ×𝑇𝑠ℎ𝑜𝑟𝑡, plus the time for a request. For MSMD, we need to
add the time slots for the selection vector.

The design of all three protocols ensures that the detection re-
quirement specified by𝑚 and 𝛼 is always met. This is indeed what
we observe in our simulations. Our comparison below is made in
terms of energy efficiency and time efficiency, given a certain de-
tection requirement.

5.1 Energy-time Tradeoff
Let 𝑛 = 50, 000, 𝛼 = 95%, and 𝑚 = 50. Fig. 5 shows the

energy-time tradeoff curves produced by simulations. Recall that
the energy cost of MSMD or EMD is proportional to 𝑝. The point
at 𝑝 = 1 on the EMD curve represents TPR. Clearly, MSMD sig-
nificantly outperforms EMD. MSMD with 𝑘 = 7 uses three-bit
elements in the selection vector, while MSMD with 𝑘 = 3 uses
two-bit elements. Even though it incurs more overhead in the se-
lection vector, MSMD with 𝑘 = 7 slightly outperforms MSMD
with 𝑘 = 3. Further increasing 𝑘 cannot bring performance gain
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Figure 5: Protocol execution time with respect to sampling
probability, when 𝛼 = 95%, 𝑚 = 50, and 𝑛 = 50, 000.
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Figure 6: Zoom-in view of energy-time tradeoff in Figure 5 in
the sampling probability range of [0, 0.2].

due to overly large overhead for the selection vector. In Fig. 6, We
zoom in for a detailed look at the curve segment in the sampling
probability range of [0, 0.2]. When 𝑝 = 0.08, the execution time
of MSMD with 𝑘 = 7 is 11.2% of the time taken by EMD. When
we fix the execution time at 5 seconds, the number of participating
tags in MSMD with 𝑘 = 7 is 46.7% of the number in EMD. We
vary the values of 𝑛, 𝛼 and 𝑚. Similar conclusions can be drawn
from the simulation results, which are omitted due to space limita-
tion.

The tradeoff curves in Fig. 6 agree with our analytical results
in Fig. 4 in principle. We want to stress that our simulations do
not simply reproduce the analytical results. Simulations consider
system details by using a real RFID specification. Such details are
not captured by analysis. In addition, simulations consider the ex-
act impact of selection vector on execution time (measured in sec-
onds), instead of characterizing time in an indirect way using the
frame size.

In Table 1, we show the relative performance of MSMD (𝑘 = 7)
with respect to TRP, where 𝑛 = 50, 000, 𝛼 = 95%, and 𝑚 =
50, 100, or 200. MSMD is operated under sampling probability 𝑝𝑡
and 𝑝𝑜𝑝𝑡. For example, when 𝑚 = 50, 𝑝𝑡 = 0.085 and 𝑝𝑜𝑝𝑡 =
0.055. The numbers in the table are ratios of MSMD’s energy cost
(or execution time) to TRP’s energy cost (or execution time). For
example, when 𝑚 = 200, the energy cost of MSMD with 𝑝𝑡 is
2.1% of what TRP consumes, and its execution time is 4.09% of
the time TRP takes.

5.2 Performance Comparison
Next, we compare the performance of MSMD (𝑘 = 7), EMD,

and TRP under different values of 𝑚, 𝛼 and 𝑛. MSMD and EMD
are operated with their optimal sampling probabilities 𝑝𝑡. In Fig. 7-
9, we keep 𝑚 = 50 and vary the value of 𝛼. In Fig. 7, we let
𝛼 = 99.9%, meaning that each protocol execution should detect

Table 1: Relative energy cost and execution time of MSMD
(𝑘 = 7) under 𝑝𝑜𝑝𝑡 and 𝑝𝑡, when 𝛼 = 95% and 𝑛 = 50, 000

𝑝𝑡 𝑝𝑜𝑝𝑡

energy time energy time

𝑚 = 200 2.1% 4.09% 1.4% 269.1%

𝑚 = 100 3.6% 5.61% 2.5% 226.2%

𝑚 = 50 8.1% 10.84% 5.5% 82.3%

any missing-tag event with probability 99.9%. The left plot com-
pares the energy cost of three protocols with respect to 𝑛, and the
right plot compares their execution times. MSMD has a smaller
energy cost than EMD, which in turn has a much smaller energy
cost than TRP. In the meanwhile, MSMD also has a much smaller
execution time than EMD and TRP. Similar results can be drawn
from Fig. 8 where 𝛼 = 99% and Fig. 9 where 𝛼 = 90%. In the
latter case, the execution time of MSMD is less than a second.

In Fig. 10-11, we keep 𝛼 = 99% and vary the value of 𝑚. In
Fig. 10, 𝑚 = 25. In Fig. 11, 𝑚 = 100. The performance of
MSMD remains the best among all three.

6. CONCLUSION
This paper proposes a new protocol design that integrates energy

efficiency and time efficiency for missing-tag detection. It uses
multiple hash seeds to provide multiple degree of freedom for tags
to select time slots when they announce their presence to the RFID
reader in the process of missing-tag detection. The result is a multi-
fold cut in both energy cost and execution time. Such performance
improvement is critical for a protocol that needs to be executed
frequently. We also reveal a fundamental energy-time tradeoff in
the protocol design. This tradeoff gives flexibility in performance
tuning when the protocol is applied in practical environment.
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Figure 7: ∙ Left plot: The number of participating tags with
respect to the number of tags, when 𝑚 = 50 and 𝛼 = 99.9%.
∙ Right plot: The protocol execution time with respect to the
number of tags, when𝑚 = 50 and 𝛼 = 99.9%.
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Figure 8: Same as the caption of Fig. 7 except for 𝛼 = 99%.
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Figure 9: Same as the caption of Fig. 7 except for 𝛼 = 90%.
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Figure 10: ∙ Left plot: The number of participating tags with
respect to the number of tags, when 𝑚 = 25 and 𝛼 = 99%.
∙ Right plot: The protocol execution time with respect to the
number of tags, when𝑚 = 25 and 𝛼 = 99%.
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Figure 11: Same as the caption of Fig. 10 except for 𝑚 = 100.
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