
Scan Detection in High-Speed Networks Based on
Optimal Dynamic Bit Sharing

Tao Li Shigang Chen Wen Luo Ming Zhang
Department of Computer & Information Science & Engineering

University of Florida
{tali, sgchen, wluo, mzhang}@cise.ufl.edu

Abstract—Scan detection is one of the most important functions
in intrusion detection systems. In order to keep up with the ever-
higher line speed, recent research trend is to implement scan
detection in fast but small SRAM. This leads to a difficult technical
challenge because the amount of traffic to be monitored is huge but
the on-die memory space for performing such a monitoring task
is very limited. We propose an efficient scan detection scheme
based on dynamic bit sharing, which incorporates probabilistic
sampling and bit sharing for compact information storage. We
design a maximum likelihood estimation method to extract per-
source information from the shared bits in order to determine
the scanners. Our new scheme ensures that the false positive/false
negative ratios are bounded with high probability. Moreover, given
an arbitrary set of bounds, we develop a systematic approach
to determine the optimal system parameters that minimize the
amount of memory needed to meet the bounds. Experiments based
on a real Internet traffic trace demonstrate that the proposed scan
detection scheme reduces memory consumption by three to twenty
times when comparing with the best existing work.

I. INTRODUCTION

Many network-based attacks are preceded with a reconnais-
sance phase, in which the attacker or its zombies scan the hosts
in a network to identify vulnerability. As a result, scan detection
is one of the most fundamental functions in almost any network
intrusion detection system (IDS). Cisco has been pushing for
years to build security functions into its high-end routers. Scan
detection is increasingly performed by routers with security
modules or firewalls that inspect packets [1].

The throughput of high-speed links has been increased from
10 Mbps to 100 Mbps, multi-gigabits per second, and even
terabits per second [2]. Modern firewalls heavily rely on ASIC
chips to avoid becoming bottlenecks in the routing paths. In
such a demanding environment, it is highly desirable to assist
the fundamental IDS functions with hardware. Specifically,
because scan detection requires storing a large amount of
information extracted from the packets, DRAM can be too slow.
Recent research suggests implementing this function in SRAM
[3], [4], [5], [6].

On-die SRAM is fast but expensive. To achieve high speed,
it is desirable to make on-die memory small — the access time
for a SRAM of tens of kilobits is certainly much smaller than
the access time for a SRAM of tens of megabits. Moreover,
this high-speed memory has to be shared among other critical
functions for routing, packet scheduling, traffic management and
security purposes. The amount that will be allocated for online

scan detection is likely to be a small fraction of the available
SRAM. Therefore, it is extremely important to make scan
detection, as well as other functions implemented in SRAM,
memory-efficient.

We define a contact as a source-destination pair, for which
the source sends a packet to the destination. The source or desti-
nation can be an IP address, a port number, or a combination of
them together with other fields in the packet header. The spread
of a source is the number of distinct destinations contacted by
the source during a measurement period. A source is classified
as a scanner if its spread exceeds a certain threshold. Therefore,
scan detection is fundamentally an online traffic measurement
problem.

One of the greatest challenges for scan detection is that the
data volume to be stored can be huge. For example, the main
gateway at our campus observes more than 10 million distinct
source-destination pairs on an average day. Suppose each mea-
surement period is one day long (in order to catch stealthy low-
rate scanners). If we simply store all distinct source/destination
address pairs for scan detection, it will require more than 80MB
of SRAM, which is too much. A major thrust in the scan
detection research is to reduce the memory consumption [3],
[4], [6], [7], [8].

Reducing memory consumption does not come for free.
The prior research sacrifices detection accuracy for memory
saving. The basic idea is to compress the contact information in
limited memory space. The compressed information allows us
to estimate the spreads of the sources, instead of counting them
exactly. However, the estimated spread values may cause false
positives (in which a non-scanner is mistakenly reported as a
scanner) and false negatives (in which a scanner is not reported).
Consequently, the following questions become important for any
practical security system: How serious is the false positive/false
negative problem? Can the system be configured such that the
false positive/false negative ratios are bounded? To date, few
papers directly addressed these questions.

The prior work follows two general methods for memory
reduction: probabilistic sampling and storage sharing. The
probabilistic sampling method is to record only a certain per-
centage of randomly sampled contacts. An example is the one-
level/two-level algorithms proposed by Venkataraman et al [3].
These algorithms store the source/destination addresses of the
sampled contacts in hash tables. Their main contribution is to

This paper was presented as part of the main technical program at IEEE INFOCOM 2011

978-1-4244-9921-2/11/$26.00 ©2011 IEEE 3200

derive the optimal sampling probability that ensures with high
probability that the false positive/false negative ratios do not
exceed certain pre-defined bounds.

However, it is not memory-efficient to directly store the
addresses of the contacts made by each source. A naive solution
is to use per-source counters to record the number of packets
from each source. Near-optimal counter architectures such as
counter braids [9] require only a few bits per source. The
problem is that counters cannot remove duplicates: A thousand
packets from the same source to the same destination should
count as one contact, instead of a thousand. In order to remove
duplicates, one may use Bloom filters [3] or bitmap algorithms
[7]. They encode the contacts made by each source in a separate
bitmap, which automatically filters duplicates. However, per-
source bitmaps still take too much space. Cao et al. use a
series of Bloom filters and a hash table to reduce the number
of sources that need bitmaps [8].

Instead of using a separate bitmap for each source, an
interesting space-saving method is to allow storage sharing,
where each data structure is no longer dedicated to a single
source but shared among multiple sources. This is particularly
necessary when the number of sources is more than the number
of available bits. Zhao et al. [6] encodes each contact in three
shared bitmaps using a technique similar to Bloom filters. Yoon
et al. [4] design another storage sharing method with superior
performance. Although both methods can be used for scan
detection, none of them provides any means to ensure that the
false positive/false negative ratios are bounded. Moreover, our
experiments show that these existing methods [8], [6], [4] take
far more memory than the one proposed in this paper.

Also related is the work by Bandi et al. [10] using TCAM.
Another research branch [10], [11], [12], [13], [14], [15], [16],
[17], [18] is to find heavy hitters, i.e., sources that send a lot
of packets. A heavy hitter may have a spread value of just one
because it may send all its packets to the same destination.
Hence, heavy hitters and scanners are very different.

This paper proposes an efficient scan detection scheme based
on a new storage sharing method, called dynamic bit sharing,
which shares the available bits uniformly at random among
all sources, such that the memory space is fully utilized for
storing contact information. It employs a maximum likelihood
estimation method to extract per-source information from the
shared bits in order to determine the scanners. It also enhances
security through a private key. Our new method ensures that the
false positive/false negative ratios are bounded. Moreover, given
an arbitrary set of bounds, we show analytically how to choose
the optimal system parameters such that the amount of memory
needed to satisfy the bounds is minimized. We also perform
experiments based on a real traffic trace and demonstrate that,
using these optimal parameters, we can reduce the memory
consumption by three to twenty times when comparing with
the best existing work.

II. PROBLEM STATEMENT

The number of distinct destination addresses that an external
source has contacted is called the spread of the source. The
problem of scan detection is to configure a firewall or an
intrusion detection system to report all external sources whose
spreads exceed a certain threshold during a measurement period.
We refer to these sources as potential scanners (or scanners for
short).

If a firewall or an IDS keeps the exact count of distinct
destinations that each source has contacted, it is able to report
the scanners precisely. However, keeping track of per-source
information consumes a large amount of resources. The limited
SRAM may only allow us to estimate a rough count of dis-
tinct destinations that each source contacts [3], [4], [6]. When
precisely reporting scanners is infeasible, the function of scan
detection must be defined in a probabilistic term.

We adopt the probabilistic performance objective from [3].
Let h and l be two positive integers, h > l. Let α and β be
two probability values, 0 < α < 1 and 0 < β < 1. The
objective is to report any source whose spread is h or larger
with a probability no less than α and report any source whose
spread is l or smaller with a probability no more than β. Let k
be the spread of an arbitrary source src. The objective can be
expressed in terms of conditional probabilities:

Prob{report src as a scanner | k ≥ h} ≥ α
Prob{report src as a scanner | k ≤ l} ≤ β

(1)

We treat the report of a source whose spread is l or smaller
as a false positive, and the non-report of a source whose spread
is h or larger as a false negative. Hence, the above objective
can also be stated as bounding the false positive ratio by β and
the false negative ratio by 1− α.

Our goal is to minimize the amount of SRAM that is needed
for achieving the above objective.

The memory requirement for detecting aggressive scanners is
likely to be small. For example, suppose an aggressive scanner
makes 100 distinct contacts each second, whereas a normal host
rarely makes 100 distinct contacts in a day. To detect such
a scanner, a firewall can set the measurement period to be a
second. The number of contacts that pass the firewall in such
a small period is likely to be small. Consequently, it does not
need much memory to store them. However, the situation is
totally different for stealthy scanners that make contacts at low
rates. Consider a scanner that makes 500 distinct contacts a day.
If the measurement period is a day, we are able to set it apart
from the normal hosts. However, if the measurement period is
a second, we will not detect this scanner because it makes less
than 0.006 contact per second on average.

In order to detect different types of scanners, a firewall
may execute multiple instances of a scan detection function
simultaneously, each having a different measurement period.
For aggressive scanners, a small period will be chosen so that
they can be detected in real time. For stealthy scanners, a large
period will be chosen. In the latter case, timely detection is of
second priority because the scanners themselves operate slowly.

3201

But the memory requirement is of first priority due to the large
number of contacts that are expected to pass through the firewall
in a long measurement period. Reducing memory consumption
is the focus of this paper.

III. AN EFFICIENT SCAN DETECTION SCHEME

This section presents our efficient scan detection scheme
(ESD).

A. Probabilistic Sampling

To save resources, a firewall (or IDS) samples the contacts
made by external sources to internal destinations, and it only
stores the sampled contacts. The firewall selects contacts for
storage uniformly at random with a sampling probability p.
The sampling procedure is simple: the firewall hashes the
source/destination address pair of each packet that arrives at
the external network interface into a number in a range [0, N).
If the hash result is smaller than p × N , the contact will be
stored; otherwise, the contact will not be stored.

B. Bit-Sharing Storage

A bit array (also called bitmap) may be used to store all
sampled contacts made by a source [7]. The bits are initially
zeros. Each sampled contact is hashed to a bit in the bitmap,
and the bit is set to one. At the end of the measurement period,
we can estimate the number of contacts, i.e., the spread of the
source, based on the number of zeros remaining in the bitmap.
Using per-source bitmaps is not memory-efficient. On one hand,
the size of each bitmap has to be large enough to ensure the
accuracy in estimating the spread values of the scanners. On
the other hand, the vast majority of normal sources have small
spread values and their bitmaps are largely wasted because most
bits remain zeros. To solve this problem, we want to put those
wasted bits in good use by allowing bitmaps to share their bits.

To fully share the available bits, ESD stores contacts from
different sources in a single bit array B. Let m be the number of
bits in B. For an arbitrary source src, we use a hash function
to pseudo-randomly select a number of bits from B to store
the contacts made by src. The indices of the selected bits
are H(src ⊕ R[0]), H(src ⊕ R[1]), ..., H(src ⊕ R[s − 1]),
where H(...) is a hash function whose range is [0,m), R is an
integer array, storing randomly chosen constants whose purpose
is to arbitrarily alter the hash result, and s (� m) is a system
parameter that specifies the number of bits to be selected. The
above bits form a logical bitmap of source src, denoted as
LB(src).

Similarly, a logical bitmap can be constructed from B for
any other source. Essentially, we embed the bitmaps of all pos-
sible sources in B. The bit-sharing relationship is dynamically
determined on the fly as each new source src′ whose contacts
are sampled by the firewall will be allocated a logical bitmap
LB(src′) from B.

At the beginning of a measurement period, all bits in B are
reset to zeros. Consider an arbitrary contact 〈src, dst〉 that is
sampled for storage, where src is the source address and dst
is the destination address. The firewall sets a single bit in B

to one. Obviously, it must also be a bit in the logical bitmap
LB(src). The index of the bit to be set for this contact is given
as follows:

H(src⊕R[H(dst⊕K) mod s]).

The second hash, H(dst ⊕K), ensures that the bit is pseudo-
randomly selected from LB(src). The private key K is intro-
duced to prevent the hash collision attacks. In such an attack,
a scanner src finds a set of destination addresses, dst1, dst2,
..., that have the same hash value, H(dst1) = H(dst2) = ...
If it only contacts these destinations, the same bit in LB(src)
will be set, which allows the scanner to stay undetected. This
type of attacks can be prevented if we use a cryptographic hash
function such as MD5 or SHA1, which makes it difficult to find
destination addresses that have the same hash value. However,
if a weaker hash function is used for performance reason, then
a private key becomes necessary. Without knowing the key, the
scanners will not be able to predict which destination addresses
produce the same hash value.

To store a contact, ESD only sets a single bit and performs
two hash operations. This is more efficient than the methods
that use hash tables [3] or have features similar to Bloom filters
that require setting multiple bits for storing each contact [6].

C. Maximum Likelihood Estimation and Scanner Report

At the end of the measurement period, ESD will send the
content of B to an offline data processing center. There, the
logical bitmap of each source src is extracted and the estimated
spread k̂ of the source is computed. Only if k̂ is greater than a
threshold value T , ESD reports the source as a potential scanner.
We will discuss how to keep track of the source addresses in
Section III-D, and explain how to determine the threshold T in
Section IV. Below we derive the formula for k̂.

Let k be the true spread of source src, and n be the number of
distinct contacts made by all sources. Let Vm be the fraction of
bits in B whose values are zeros at the end of the measurement
period, Vs be the fraction of bits in LB(src) whose values are
zeros, and Us be the number of bits in LB(src) whose values
are zeros. Clearly, Vs = Us

s . Depending on the context, Vm (or
Vs, Us) is used either as a random variable or an instance value
of the random variable.

The probability for any contact to be sampled for storage is
p. Consider an arbitrary bit b in LB(src). A sampled contact
made by src has a probability of 1

s to set b to ‘1’, and a sampled
contact made by any other source has a probability of 1

m to set
b to ‘1’. Hence, the probability q(k) for b to remain ‘0’ at the
end of the measurement period is

q(k) = (1− p

m
)n−k(1− p

s
)k. (2)

Each bit in LB(src) has a probability of q(k) to remain
‘0’. The observed number of ‘0’ bits in LB(src) is Us. The
likelihood function for this observation to occur is given as
follows:

L = q(k)Us(1− q(k))s−Us . (3)

3202

In the standard process of maximum likelihood estimation, the
unknown value k is technically treated as a variable in (3).
We want to find an estimate k̂ that maximizes the likelihood
function. Namely,

k̂ = arg max{L}
k

. (4)

Since the maxima is not affected by monotone transformations,
we use logarithm to turn the right side of (3) from product to
summation:

ln(L) = Us · ln(q(k)) + (s− Us) · ln(1− q(k)).

From (2), the above equation can be written as

ln(L) =Us((n− k) ln(1− p

m
) + k ln(1− p

s
))

+ (s− Us) · ln(1− (1− p

m
)n−k(1− p

s
)k).

To find the maxima, we differentiate both sides:

∂ ln(L)

∂k
= ln(

1− p
s

1− p
m

) ·
Us − s(1− p

m)n−k(1− p
s)k

1− (1− p
m)n−k(1− p

s)k
. (5)

We then let the right side be zero. That is,

Us = s(1− p

m
)n−k(1− p

s
)k. (6)

Taking logarithm on both sides, we have

ln
Us

s
= n ln(1− p

m
) + k(ln(1− p

s
)− ln(1− p

m
)),

k =
lnVs − n ln(1− p

m)

ln(1− p
s)− ln(1− p

m)
. (7)

where Vs = Us

s . Suppose the number of sources (which equals
to the number of logical bitmaps) is sufficiently large. Because
every bit in every logical bitmap is randomly selected from
B, in this sense, each of the n contacts has about the same
probability p

m of setting any bit in B. Hence, we have

E(Vm) = (1− p

m
)n. (8)

Applying (8) to (7), we have

k =
lnVs − lnE(Vm)

ln(1− p
s)− ln(1− p

m)
. (9)

Replacing E(Vm) by the instance value Vm, we have the
following estimation for k.

k̂ =
lnVs − lnVm

ln(1− p
s)− ln(1− p

m)
, (10)

where Vs can be measured by counting the number of zeros
in LB(src), Vm can be measured by counting the number of
zeros in B, and s, p and m are pre-set parameters of ESD (see
the next section).

D. Source Addresses

ESD does not store the source address of every arrival packet.
Instead, it stores a source address only when a contact sets a
bit in B from ‘0’ to ‘1’. Hence, the frequency of storing source
addresses is much smaller than the frequency at which contacts
are sampled for setting bits in B. First, numerous packets may
be sent from a source to a destination in a TCP/UDP session.
Only the first sampled packet may cause the source address
to be stored because only the first packet sets a bit from ‘0’
to ‘1’ and the remaining packets will set the same bit (which
is already ‘1’). Second, a source may send thousands or even
millions of packets through a firewall, but the number of times
its address will be stored is bounded by s (which is the number
of bits in the source’s logical bitmap). In summary, because the
operation of storing source addresses is relatively infrequent,
these addresses can be stored in the main memory.

IV. OPTIMAL SYSTEM PARAMETERS AND MINIMUM
MEMORY REQUIREMENT

In this section, we first develop the constraints that the system
parameters must satisfy in order to achieve the probabilistic
performance objective. Based on the constraints, we determine
the optimal values for the size s of the logical bitmaps, the
sampling probability p, and the threshold T . We also determine
the minimum amount of memory m that should be allocated for
ESD to achieve the performance objective. Recall that on-die
SRAM may be shared by other functions.

A. Report Probability

Consider an arbitrary source src whose spread is k. Given a
set of system parameters, m, s, p and T , we derive the probabil-
ity for ESD to report src as a scanner, i.e., Prob{k̂ ≥ T}. From
(10), we know that the following inequalities are equivalent.

k̂ ≥ T
lnVs − lnVm

ln(1− p
s)− ln(1− p

m)
≥ T

Vs ≤ Vm(
1− p

s

1− p
m

)T

Let Us be the random variable for the number of ‘0’ bits in
LB(src). Us = s · Vs. The above inequality becomes

Us ≤ s · Vm · (
1− p

s

1− p
m

)T . (11)

For a set of parameters m, s, p and T , we define a constant

C = s · Vm · (
1− p

s

1− p
m

)T ,

where the instance value of Vm can be measured from B after
the measurement period. Hence, the probability for ESD to
report src is Prob{k̂ ≥ T} = Prob{Us ≤ C}.
Us follows the binomial distribution with parameters s and

q(k), where q(k) in (2) is the probability for an arbitrary bit in
LB(src) to remain zero at the end of the measurement period.

3203

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 1 2 3 4 5 6 7 8 9 10

S
td

(V
m

)/
E

(V
m

)

m (*100KB)

LF=0.5
LF=1
LF=2

Fig. 1. The relative standard deviation, Std(Vm)
E(Vm)

, approaches to zero as m
increases. The load factor (LF) is defined as n ·p/m, where n ·p is the number
of distinct contacts that are sampled by ESD for storage. In our experiments
(reported in Section V), when we use the system parameters determined by the
algorithm proposed in this section, the load factor never exceeds 2.

Hence, the probability of having exactly i zeros in LB(src) is
given by the following probability mass function:

Prob{Us = i} =

(
s

i

)
· q(k)i · (1− q(k))s−i. (12)

We must have

Prob{k̂ ≥ T} = Prob{Us ≤ C}

=

bCc∑
i=0

(
s

i

)
· q(k)i · (1− q(k))s−i. (13)

B. Constraints for the System Parameters

We derive the constraints that the system parameters must
satisfy in order to achieve the performance objective in (1).
First, we give the variance of Vm, which is derived in Appendix
A.

V ar(Vm) '
e−

np
m (1− (1 + np2

m)e−
np
m)

m
. (14)

It approaches to zero as m increases. In Figure 1, we plot
the ratio of the standard deviation Std(Vm) =

√
V ar(Vm)

to E(Vm), which can be found in (8). The figure shows that
Std(Vm)/E(Vm) is very small when m is reasonably large. In
this case, we can approximately treat Vm as a constant.

Vm ' E(Vm) ' (1− p

m
)n. (15)

The probabilistic performance objective can be stated as two
requirements. First, the probability for ESD to report a source
with k ≥ h must be at least α. That is, Prob{k̂ ≥ T} ≥
α,∀k ≥ h. From (13), this requirement can be written as the
following inequality:

bCc∑
i=0

(
s

i

)
· q(k)i · (1− q(k))s−i ≥ α,

where C = s · Vm · (
1− p

s

1− p
m

)T ' s · (1 − p
m)n · (1− p

s

1− p
m

)T . The
left side of the inequality is an increasing function in k. Hence,

to satisfy the requirement in the worst case when k = h, the
following constraint for the system parameters must be met:

bCc∑
i=0

(
s

i

)
· q(h)i · (1− q(h))s−i ≥ α. (16)

Second, the probability for ESD to report a source with k ≤ l
must be no more than β. This requirement can be similarly
converted into the following constraint:

bCc∑
i=0

(
s

i

)
· q(l)i · (1− q(l))s−i ≤ β. (17)

C. Optimal System Parameters

Our goal is to optimize the system parameters such that the
memory requirement, m, is minimized under the constraints
(16) and (17). The problem is formally defined as follows.

Minimize m (18)

Subject to
bCc∑
i=0

(
s

i

)
· q(h)i · (1− q(h))s−i ≥ α,

bCc∑
i=0

(
s

i

)
· q(l)i · (1− q(l))s−i ≤ β,

C = s · (1− p

m
)n · (

1− p
s

1− p
m

)T .

The parameters, h, l, α and β, are specified in the performance
objective. The value of n is decided based on the history data
in the past measurement periods. To be conservative, we take
the the maximum number n∗ of distinct contacts observed in a
number of previous measurement periods. More specifically, (8)
can be turned into a formula for estimating n in each previous
period if we replace E(Vm) with the instance value Vm.

n̂ = −m
p

lnVm (19)

We derive the relative bias and the relative standard deviation
of the above estimation.

Bias(
n̂

n
) = E(

n̂

n
)− 1 '

e
np
m − np2

m − 1

2np
(20)

Std(
n̂

n
) =

√
m

np
(e

np
m − np2

m
− 1)1/2 (21)

They both approach to zero as m increases. Based on the largest
n̂ value observed in a certain number of past measurement
periods, we can set the value of n∗.

To solve the constrained optimization problem (18), we need
to determine the optimal values of the remaining three system
parameters, s, p and T , such that m will be minimized. We
consider the left side of (16) as a function Fh(m, s, p, T), and

3204

the left side of (17) as Fl(m, s, p, T). Namely,

Fh(m, s, p, T) =

bCc∑
i=0

(
s

i

)
· q(h)i · (1− q(h))s−i,

Fl(m, s, p, T) =

bCc∑
i=0

(
s

i

)
· q(l)i · (1− q(l))s−i.

Both of them are non-increasing functions in T , according to
the relation between C and T . In the following, we present an
iterative numerical algorithm to solve the optimization problem.
The algorithm consists of four procedures.
• First, we construct a procedure called Potential(m, s, p),

which takes a value of m, a value of s and a value of p as
input and returns the maximum value of Fh(m, s, p, T) under
the condition that Fl(m, s, p, T) ≤ β is satisfied. Because
Fh(m, s, p, T) is a non-increasing function in T , we need to
find the smallest value of T that satisfies Fl(m, s, p, T) ≤ β.
That can be done numerically through binary search: Pick
a small integer T1 such that Fl(m, s, p, T1) ≥ β and a
large integer T2 such that Fl(m, s, p, T2) ≤ β. We iteratively
shrink the difference between them by resetting one of them
to be the average T1+T2

2 , while maintaining the inequalities,
Fl(m, s, p, T1) ≥ β and Fl(m, s, p, T2) ≤ β. The process
stops when T1 = T2, which is denoted as T ∗. The procedure
Potential(m, s, p) returns Fh(m, s, p, T ∗). The pseudo code is
presented in Algorithm 1. We will omit the pseudo code for the
other three procedures to save space.

Algorithm 1 Potential(m, s, p)
INPUT: m, s, p and β
OUTPUT: The maximum value of Fh(m, s, p, T) under the condi-
tion that Fl(m, s, p, T) ≤ β
——————————————————————–
Pick a small integer T1 such that Fl(m, s, p, T1) > β and a large
integer T2 such that Fl(m, s, p, T2) ≤ β;
while T2 − T1 > 1 do
T̄ = b(T1 + T2)/2c;
if Fl(m, s, p, T̄) ≤ β then T1 = T̄ else T2 = T̄ ;

end while
T ∗ = T̄ ;
return Fh(m, s, p, T ∗);

Essentially, what Potential(m, s, p) returns is the maximum
value of the left side in (16) under the condition that (17)
is satisfied. The difference between Potential(m, s, p) and
α provides us with a quantitative indication on how con-
servative or aggressive we have chosen the value of m. If
Potential(m, s, p)−α is positive, it means that the performance
achieved by the current memory size is more than required. We
shall reduce m. On the contrary, if Potential(m, s, p) − α is
negative, we shall increase m.

Given the above semantics, when we determine the optimal
values for p and s, our goal is certainly to maximize the return
value of Potential(m, s, p).
• Second, given a value of m and a value of s, we construct

a procedure OptimalP (m, s) that determines the optimal value

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
o

te
n

ti
al

(m
,

s,
 p

)

p

p1

i1

i2

p2

..... i3

Fig. 2. (A) The curve (without the arrows) shows the value of
Potential(m, s, p) with respect to p when m = 0.45MB and s = 150.
Its non-smooth appearance is due to bCc in the formula of Fh(m, s, p, T

∗).
Fh(m, s, p, T

∗) depends on the values of bCc and q(h), which are both
functions of p. (B) The arrows illustrate the operation of OptimalP (m, s). In
the first iteration (arrow i1), p2 is set to be (p1+p2)/2. In the second iteration
(arrow i2), p1 is set to be (p1 + p2)/2. In the third iteration (arrow i3), p2 is
set to be (p1 + p2)/2.

 0.5

 0.55

 0.6

 0.65

 0.7

 0 100 200 300 400 500P
o

te
n

ti
al

(m
,

s,
 O

p
ti

m
al

P
(m

,
s)

)

s

Fig. 3. The value of Potential(m, s,OptimalP (m, s)) with respect to s
when m = 0.25MB.

p∗ such that Potential(m, s, p∗) is maximized. When the
values of m and s are fixed, Potential(m, s, p) becomes a
function of p. It is a curve as illustrated in Figure 2; see
explanation under the caption (a) and ignore the arrows in the
figure for now.

We use a binary search algorithm to find a near-optimal value
of p. Let p1 = 0 and p2 = 1. Let δ be a small positive value
(such as 0.001). Repeat the following operation: Let p̄ = (p1 +
p2)/2. If Potential(m, s, p̄) < Potential(m, s, p̄ + δ), set p1
to be p̄; otherwise, set p2 to be p̄. The above iterative operation
stops when p2 − p1 < δ. The procedure OptimalP (m, s)
returns (p1 + p2)/2, which is within ±δ/2 of the optimal. This
difference can be made arbitrarily small when we decrease δ
at the expense of increased computation overhead. We want
to stress that it is one-time overhead (not online overhead)
to determine the system parameters before deployment. The
operation of OptimalP (m, s) is illustrated by the arrows in
Figure 2; see explanation under the caption (b).
• Third, given a value of m, we construct a procedure

OptimalS (m) that determines the optimal value s∗ such
that Potential(m, s∗, OptimalP (m, s∗)) is maximized. When
the value of m is fixed, Potential(m, s,OptimalP (m, s))
becomes a function of s. It is a curve as illustrated in Fig-
ure 3. We can use a binary search algorithm similar to that of
OptimalP (m, s) to find s∗.
• Fourth, we construct a procedure OptimalM() that deter-

mines the minimum memory requirement m∗ through binary
search: Denote Potential(m,OptimalS(m), OptimalP (m,

3205

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

n
u

m
b

er
 o

f
so

u
rc

es

spread (k)

Fig. 4. Traffic distribution: each point shows the number of sources having a
certain spread value.

OptimalS(m))) as Potential(m, ...). Pick a small value m1

such that Potential(m1, ...) ≤ α, which means that the
performance objective is not met — more specifically, according
to the semantics of Potential(...), the constraint (16) cannot
be satisfied if the constraint (17) is satisfied. Pick a large value
m2 such that Potential(m2, ...) ≥ α, which means that the
performance objective is met. Repeat the following operation.
Let m̄ = b(m1 +m2)/2c. If Potential(m̄, ...) ≤ α, set m1 to
be m̄; otherwise, set m2 to be m̄. The above iterative operation
terminates when m1 = m2, which is returned by the procedure
OptimalM().

In practice, a network administrator will first define the
performance objective that is specified by α, β, h and l. He
or she sets the value of n∗ based on history data, and then sets
m = OptimalM(), s = OptimalS(m), p = OptimalP (m, s)
and T as the threshold value T ∗ before the last call to
Potential(m, s, p) is returned during the execution of Optim-
alM(). After the firewall (or IDS) is configured with these
parameters and begins to measure the network traffic, it also
monitors the value of n∗. If the maximum number of distinct
contacts in a measurement period changes significantly, the
values of m, s, p and T will be recomputed.

V. EXPERIMENTS

A. Experimental Setup

We evaluate the performance of ESD and compare it with
the existing work, including the Two-level Filtering Algorithm
(TFA) [3], the Thresholded Bitmap Algorithm (TBA) [8], and
the Compact Spread Estimator (CSE) [4]. TFA uses two filters
to reduce both the number of sources to be monitored and the
number of contacts to be stored. It is designed to satisfy the
probabilistic performance objective in (1). TBA is not designed
for meeting the probabilistic performance objective. It cannot
ensure that the false positive/false negative ratios are bounded.
CSE is designed to estimate the spreads of the external sources
in a very compact memory space. It can be used for scan
detection by reporting the sources whose estimated spreads
exceed a certain threshold. However, the design of CSE makes
it unsuitable for meeting the objective in (1).

Online Streaming Module (OSM) [6] is another related work.
We do not implement OSM in this study because Yoon et al.
show that, given the same amount of memory, CSE estimates
spread values more accurately than OSM [4]. Moreover, the
operations of OSM share certain similarity with Bloom filters.

To store each contact, it performs three hash functions and
makes three memory accesses. In comparison, ESD performs
two hash functions and makes one memory access.

The experiments use a real Internet traffic trace captured
by Cisco’s Netflow at the main gateway of our campus for
a week. For example, in one day of the week, the traffic
trace records 10,702,677 distinct contacts, 4,007,256 distinct
source IP addresses and 56,167 distinct destination addresses.
The average spread per source is 2.67, which means a source
contacts 2.67 distinct destinations on average. Figure 4 shows
the number of sources with respect to the source spread in log
scale. The number of sources decreases exponentially as the
spread value increases from 1 to 500. After that, there is zero,
one or a few sources for each spread value.

We implement ESD, TFA, TBA and CSE, and execute them
with the traffic trace as input. As part of the setup in each
experiment, the values of h and l are given to specify what
to report as scanners. For example, if h = 500 and l = 0.7h,
the sources whose spreads are 500 or more should be reported,
and the sources whose spreads are 350 or less should not be
reported. In the experiments, the source of a contact is the
IP address of the sender and the destination is the IP address
of the receiver. The measurement period is one day. A long
measurement period helps to separate low-rate scanners from
normal hosts. The experimental results are the average over the
week-long data.

One performance metric used in comparison is the amount
of memory that is required for a scan detection scheme to meet
a given probability performance objective. Remarkably, the
number of bits required by ESD is far smaller than the number
of distinct sources in the traffic trace. That is, ESD requires
much less than 1 bit per source to perform scan detection. Other
performance metrics include the false positive ratio and the false
negative ratio, which will be explained further shortly.

B. Comparison in Terms of Memory Requirement

The first set of experiments compares ESD and TFA for
the amount of memory that they need in order to satisfy a
given probabilistic performance objective, which is specified by
four parameters, α, β, h, and l. See Section II for the formal
definition of the performance objective. We do not compare
TBA and CSE here because they are not designed to meet this
objective.

The memory required by ESD is determined based on the
iterative algorithm in Section IV-C. The values of other pa-
rameters, s, T and p, are decided by the same algorithm.
Using these parameters, we perform experiments on ESD with
the traffic trace as input, and the experimental results confirm
that the performance objective is indeed achieved for each day
during the week. The amount of memory required by TFA is
determined experimentally based on the method in [3] together
with the traffic trace. The parameters of TFA are chosen based
on the original paper.

The memory requirements of ESD and TFA are presented
in Tables I-II with respect to α, β, h and l. For α = 0.9 and

3206

TABLE I
MEMORY REQUIREMENTS (IN MB) OF ESD, TFA AND ESD-1 (I.E. ESD WITH p = 1) WHEN α = 0.9 AND β = 0.1.

l = 0.1h l = 0.3h l = 0.5h l = 0.7h
h ESD TFA ESD-1 ESD TFA ESD-1 ESD TFA ESD-1 ESD TFA ESD-1

500 0.09 2.02 0.33 0.19 2.53 0.43 0.30 3.61 0.54 0.97 6.12 1.01
1000 0.07 1.10 0.27 0.09 1.29 0.33 0.15 1.85 0.42 0.47 3.11 0.86
2000 0.03 0.55 0.24 0.05 0.71 0.29 0.08 1.02 0.42 0.25 1.62 0.86
3000 0.02 0.42 0.24 0.03 0.51 0.27 0.06 0.68 0.42 0.17 1.09 0.86
4000 0.01 0.32 0.21 0.03 0.38 0.27 0.03 0.52 0.42 0.13 0.83 0.86
5000 0.01 0.24 0.21 0.02 0.31 0.27 0.03 0.43 0.42 0.11 0.66 0.86

TABLE II
MEMORY REQUIREMENTS (IN MB) OF ESD, TFA AND ESD-1 (I.E. ESD WITH p = 1) WHEN α = 0.95 AND β = 0.05.

l = 0.1h l = 0.3h l = 0.5h l = 0.7h
h ESD TFA ESD-1 ESD TFA ESD-1 ESD TFA ESD-1 ESD TFA ESD-1

500 0.12 2.41 0.38 0.22 3.27 0.48 0.48 4.59 0.68 1.56 8.03 1.60
1000 0.08 1.29 0.32 0.12 1.65 0.38 0.24 2.34 0.50 0.76 4.04 1.20
2000 0.03 0.69 0.26 0.08 0.87 0.32 0.13 1.21 0.47 0.38 2.12 1.20
3000 0.02 0.46 0.26 0.06 0.60 0.32 0.09 0.83 0.47 0.26 1.42 1.20
4000 0.02 0.37 0.23 0.04 0.45 0.32 0.06 0.63 0.47 0.20 1.08 1.20
5000 0.01 0.29 0.23 0.04 0.35 0.32 0.05 0.52 0.47 0.16 0.89 1.20

β = 0.1, Table I shows that TFA requires six to twenty-four
times of the memory that ESD requires, depending on the values
of h and l (which the system administrator will select based on
the organization’s security policy). For example, when h = 500
and l = 0.5h, ESD reduces the memory consumption by an
order of magnitude when comparing with TFA.

To demonstrate the impact of probabilistic sampling, the table
also includes the memory requirement of ESD when sampling
is turned off (by setting p = 1). This version of ESD is
denoted as ESD-1. Since p is set as a constant, the iterative
algorithm in Section IV-C needs to be slightly modified: The
procedure OptimalP (m, s) will always return 1, while other
procedures remain the same. Table I shows that the memory
saved by sampling is significant when h is large. For example,
when h = 5, 000 and l = 0.3h, ESD with sampling uses less
than one thirteenth of the memory that is needed by ESD-1.
However, when h becomes smaller or l

h becomes larger, ESD
has to choose a larger sampling probability in order to limit the
error in spread estimation caused by sampling. Consequently, it
has to store more contacts and thus require more memory. For
instance, when h = 500 and l = 0.5h, ESD with sampling uses
55.6% of the memory that is needed by ESD-1.

Table II compares the memory requirements when α = 0.95
and β = 0.05. It shows similar results: (1) ESD uses signifi-
cantly less memory than TFA, and (2) the probabilistic sampling
method in ESD is critical for memory saving especially when
h is large or l

h is small. The table also demonstrates that the
memory requirement of either ESD or TFA increases when the
performance objective becomes more stringent, i.e., α is set
larger and β smaller.

TFA requires more memory because it stores the source and
destination addresses of the contacts. In [5], the authors also
indicate that Bloom Filters [19], [20] can be used to reduce
the memory consumption. However, the paper does not give
detailed design or parameter settings. Therefore, we cannot

implement the Bloom-filter version of TFA. The paper claims
that the memory requirement will be reduced by a factor of 2.5
when Bloom filters are used. Even when this factor is taken
into account in Tables I-II, memory saving by ESD will still be
significant.

C. Comparison in Terms of False Positive Ratio and False
Negative Ratio

The false positive ratio (FPR) is defined as the fraction of
all non-scanners (whose spreads are no more than l) that are
mistakenly reported as scanners. The false negative ratio (FNR)
is the fraction of all scanners (whose spreads are no less than h)
that are not reported by the system. In the previous subsection,
we have shown that, given the bounds of FPR and FNR, it
takes ESD much less memory to achieve the bounds than TFA.
Since CSE and TBA are not designed for meeting a given set
of bounds, we compare our ESD with them by a different set
of experiments that measure and compare the FPR and FNR
values under a fixed amount of SRAM.

Given a fixed memory size m, we use OptimalS(m, s)
in Section IV-C to determine the value of s in ESD, use
OptimalP (m, s) to determine the value of p, and then set the
threshold T as h+l

2 . We perform experiments using the week-
long traffic trace. For m = 0.05MB, l = 0.5h, the results are
presented in Tables III. We also perform the same experiments
for CSE and TBA, and the results are presented in the table as
well. The optimal parameters are chosen for each scheme based
on the original papers.

When the available memory is very small, such as 0.05MB
in Table III, CSE has zero FNR but its FPR is 1.0, which
means it reports all non-scanners. The reason is that, without
probabilistic sampling, CSE stores information of too many
contacts such that its data structure is fully saturated. In this
case, the spread estimation method of CSE breaks down. TBA
has a small FPR but its FNR is large. For example, when

3207

TABLE III
FALSE NEGATIVE RATIO AND FALSE POSITIVE RATIO OF ESD, CSE AND

TBA WITH m = 0.05MB.

FNR FPR
h ESD CSE TBA ESD CSE TBA

500 7.4e-2 0 2.6e-1 5.0e-2 1 9.0e-6
1000 1.0e-2 0 2.6e-1 5.5e-3 1 9.0e-6
2000 4.2e-3 0 2.5e-1 2.0e-3 1 1.1e-5
3000 5.5e-3 0 2.5e-1 2.0e-3 1 1.0e-5
4000 0 0 2.4e-1 2.0e-3 1 7.0e-6
5000 0 0 2.4e-1 2.0e-3 1 7.0e-6

h = 500, its FNR is 26%. Only ESD achieves small values
for both FNR and FPR. For example, when h = 500, its FNR
is 7.4% and its FPR is 5.0%. These values decrease quickly
as h increases. When h = 1, 000, they are 1.0% and 0.55%,
respectively, while the FNR of TBA remains to be 26%.

VI. CONCLUSIONS

Scan detection is one of the most important functions in
intrusion detection systems. The recent research trend is to
implement such a function in the tight SRAM space to catch up
with the rapid advance in network speed. This paper proposes an
efficient scan detection scheme based on a new method called
dynamic bit sharing, which optimally combines probabilistic
sampling, bit-sharing storage, and maximum likelihood esti-
mation. We demonstrate theoretically and experimentally that
the new scheme is able to achieve a probabilistic performance
objective with arbitrarily-set bounds on worst-case false posi-
tive/negative ratios. It does so in a very tight memory space
where the number of bits available is much smaller than the
number of external sources to be monitored.

REFERENCES

[1] R. Deal, “Cisco Router Firewall Security,” Cisco Press, ISBN-10: 1-
58705-175-3, August 2004.

[2] W. David Gardner, “Researchers Transmit Optical Data At 16.4 Tbps,”
InformationWeek, February 2008.

[3] S. Venkatataman, D. Song, P. Gibbons, and A. Blum, “New Streaming
Algorithms for Fast Detection of Superspreaders,” Proc. of NDSS,
February 2005.

[4] M. Yoon, T. Li, and S. Chen, “Fit a Spread Estimator in Small Memory,”
Proc. of IEEE INFOCOM, April 2009.

[5] Q. Zhao, A. Kumar, and J. Xu, “Joint Data Streaming and Sampling
Techniques for Accurate Identification of Super Sources/Destinations,”
Proc. of USENIX/ACM Internet Measurement Conference, October 2005.

[6] Q. Zhao, J. Xu, and A. Kumar, “Detection of Super Sources and Desti-
nations in High-Speed Networks: Algorithms, Analysis and Evaluation,”
IEEE Journal on Selected Areas in Communications (JASC), vol. 24, no.
10, pp. 1840–1852, October 2006.

[7] C. Estan, G. Varghese, and M. Fish, “Bitmap Algorithms for Counting
Active Flows on High-Speed Links,” IEEE/ACM Transactions on Net-
working (TON), vol. 14, no. 5, pp. 925–937, October 2006.

[8] J. Cao, Y. Jin, A. Chen, T. Bu, and Z. Zhang, “Identifying High Cardinality
Internet Hosts,” Proc. of IEEE INFOCOM, April 2009.

[9] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter Braids: A Novel Counter Architecture for Per-Flow Measure-
ment,” Proc. of ACM SIGMETRICS, June 2008.

[10] N. Bandi, D. Agrawal, and A. Abbadi, “Fast Algorithms for Heavy
Distinct Hitters using Associative Memories,” Proc. of IEEE International
Conference on Distributed Computing Systems(ICDCS), June 2007.

[11] M. Charikar, K. Chen, and M. Farach-Colton, “Finding Frequent Items
in Data Streams,” Proc. of International Colloquium on Automata,
Languages, and Programming (ICALP), July 2002.

[12] G. Cormode and S. Muthukrishnan, “Space Efficient Mining of Multi-
graph Streams,” Proc. of ACM PODS, June 2005.

[13] E. Demaine, A. Lopez-Ortiz, and J. Ian-Munro, “Frequency Estimation of
Internet Packet Streams with Limited Space,” Proc. of Annual European
Symposium on Algorithms (ESA), September 2002.

[14] X. Dimitropoulos, P. Hurley, and A. Kind, “Probabilistic Lossy Counting:
An Efficient Algorithm for Finding Heavy Hitters,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 1, January 2008.

[15] C. Estan and G. Varghese, “New Directions in Traffic Measurement and
Accounting,” Proc. of ACM SIGCOMM, October 2002.

[16] P. Gibbons and Y. Matias, “New Sampling-based Summary Statistics for
Improving Approximate Query Answers,” Proc. of ACM SIGMOD, June
1998.

[17] G. Manku and R. Motwani, “Approximate Frequency Counts over Data
Streams,” Proc. of VLDB, August 2002.

[18] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund, “Online
Identification of Hierarchical Heavy Hitters: Algorithms, Evaluation, and
Application,” Proc. of ACM SIGCOMM IMC, October 2004.

[19] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[20] A. Broder and M. Mitzenmacher, “Network Applications of Bloom Filters:
A Survey,” Internet Mathematics, vol. 1, no. 4, June 2002.

APPENDIX A: VARIANCE OF Vm

Let Ai be the event that the ith bit in B remains ‘0’ at the
end of the measurement period and 1Ai be the corresponding
indicator random variable. Let Um be the random variable for
the number of ‘0’ bits in B. We first derive the probability for
Ai to occur and the expected value of Um. For an arbitrary bit
in B, each distinct contact has a probability of p

m to set the bit
to one. All contacts are independent of each other when setting
bits in B. Hence,

Prob{Ai} = (1− p

m
)n, ∀i ∈ [0, s).

The probability for Ai and Aj , ∀i, j ∈ [0,m), i 6= j, to happen
simultaneously is

Prob{Ai ∩Aj} = (1− 2p

m
)n.

Since Vm = Um

m and Um =
∑m

i=1 1Ai , we have

E(V 2
m) =

1

m2
E((

m∑
i=1

1Ai)
2)

=
1

m2
E(

m∑
i=1

12
Ai

) +
2

m2
E(

∑
1≤i<j≤m

1Ai1Aj)

=
1

m
(1− p

m
)n +

m− 1

m
(1− 2p

m
)n.

Based on (8) and the equation above, we have

V ar(Vm) = E(V 2
m)− E(Vm)2

=
1

m
(1− p

m
)n +

m− 1

m
(1− 2p

m
)n − (1− p

m
)2n

'
e−

np
m (1− (1 + np2

m
)e−

np
m)

m
. (22)

3208

