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Abstract—Traffic measurement provides critical real-world
data for service providers and network administrators to per-
form capacity planning, accounting and billing, anomaly de-
tection, and service provision. One of the greatest challenges
in designing an online measurement module is to minimize
the per-packet processing time in order to keep up with the
line speed of the modern routers. To meet this challenge, we
should minimize the number of memory accesses per packet and
implement the measurement module in the on-die SRAM. The
small size of SRAM requires extremely compact data structures
to be designed for storing per-flow information. The best existing
work, called counter braids, requires more than 4 bits per flow
and performs 6 or more memory accesses per packet. In this
paper, we design a fast and compact measurement function that
estimates the sizes of all flows. It achieves the optimal processing
speed: 2 memory accesses per packet. In addition, it provides
reasonable measurement accuracy in a tight space where the
counter braids no longer work. Our design is based on a new data
encoding/decoding scheme, called randomized counter sharing.
This scheme allows us to mix per-flow information together in
storage for compactness and, at the decoding time, separate the
information of each flow through statistical removal of the error
introduced during information mixing from other flows. The
effectiveness of our online per-flow measurement approach is
analyzed and confirmed through extensive experiments based
on real network traffic traces.

I. INTRODUCTION

A. Motivation

Traffic monitoring and measurement provide critical infor-

mation for capacity planning, accounting and billing, anomaly

detection, and service provision in modern computer networks

[1], [2], [3], [4], [5]. This paper focuses on a particularly chal-

lenging problem, the measurement of per-flow information for

a high-speed link without using per-flow data structures. The

goal is to estimate the size of each flow (in terms of number

of packets). A flow is identified by a label that can be a

source address, a destination address, or any combination of

addresses, ports, and other fields in the packet header.

Most prior work investigates how to identify the elephants

(i.e., flows with large sizes) [1], [2], [6], [7] or estimate the

flow size distribution (i.e., the number of flows that have

a certain size) [8], [9]. They do not measure the sizes of

individual flows, which are important information for many

applications. For example, if we use the addresses of the users

as flow labels, per-flow traffic measurement provides the basis

for usage-based billing and graceful service differentiation,

where a user’s service priority gracefully drops as he over-

spends his resource quota. Studying per-flow data over con-

secutive measurement periods may help us discover network

access patterns and, together with user profiling, reveal geo-

graphic/demographic traffic distributions among users. Such

information will help Internet service providers and applica-

tion developers to align network resource allocation with the

majority’s needs. In the event of a worm attack, per-source

data can be used to estimate the scanning rates of worm-

infected hosts. In the event of a botnet attack where there is

a sudden surge of small flows, a security administrator may

analyze the change in the flow size distribution and use per-

flow information to compile the list of candidate bots that

contribute to the change, helping to narrow down the scope

for further investigation.

B. Challenges and Prior Art

Per-flow traffic measurement is a very challenging problem.

In order to monitor small flows with a few packets, it is desir-

able to record information for each packet because aggressive

sampling, such as what’s used in Cisco Netflow and others

[10], [11], will not only introduce significant measurement

error but also miss some small flows altogether. DRAM cannot

keep up with today’s line speed (40 Gbps for OC-768 and 16.4

Tbps in experimental systems [12]). The recent research trend

is to implement online measurement functions in high-speed

but expensive on-die SRAM [5], [9], [13], [14].

However, the size of SRAM is limited, and it has to be

shared among many critical functions for routing, scheduling,

traffic management, and security. Even for traffic measurement

alone, there can be multiple functions running concurrently on

the same SRAM, each measuring a different type of flows.

These functions may have to take turns to access the SRAM,

and the amount of memory allocated to each measurement

function is likely to be small. Hence, it is extremely important

to make per-flow measurement and other functions in SRAM

fast and compact. In particular, to keep up with the router’s

forwarding rate (which can be as high as a couple of cycles per

packet), we should minimize the number of memory accesses

per packet performed by each measurement function to the

shared SRAM.

It has been shown in [2] that maintaining per-flow counters

cannot scale for high-speed links. Even for efficient counter

implementations [15], [16], [17], SRAM will only be able to

hold a small fraction of per-flow state (including counters and

indexing data structures such as pointers and flow identities

for locating the counters). The counter braids avoid per-flow

counters and achieve near-optimal memory efficiency [18],

[19]. This method maps each flow to three arbitrary counters;
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they are all incremented by one for every packet of the flow.

Many flows may be mapped to the same counter, which stores

the sum of the flow sizes. Essentially, the counters represent

linear equations, which can be solved for the flow sizes. Two

levels of counters are used to reduce the memory overhead.

The counter braids require slightly more than 4 bits per flow

and are able to count the exact sizes of all flows. But it

also has two limitations. First, it performs 6 or occasionally

12 memory accesses per packet. Second, when the memory

allocated to a measurement function is far less than 4 bits

per flow, our experiments show that the message passing

decoding algorithm of counter braids cannot converge to any

meaningful results. When the available memory is just 1∼2

bits per flow, the exact measurement of the flow sizes is no

longer possible. We have to resort to estimation methods. The

key is to efficiently utilize the limited space to improve the

accuracy of the estimated flow sizes, and do so with the

minimum number of memory accesses per packet. This is

what our paper tries to achieve.

A related thread of research is to collect statistical infor-

mation of the flows [8], [9], or identify the largest flows and

devote the available memory to measure their sizes while

ignoring the smaller ones [2], [6], [7], [20]. For example,

RATE [21] and ACCEL-RATE [22] measure per-flow rate by

maintaining per-flow state, but they use a two-run sampling

method to filter out small-rate flows so that only high-rate

flows are measured.

Also related is the work [14] that measures the number

of distinct destinations that each source has contacted. Per-

flow counters cannot be used to solve this problem because

they cannot remove duplicate packets. If a source sends

1,000 packets to a destination, the packets contribute only

one contact, but will count as 1,000 when we measure the

flow size. To remove duplicates, bitmaps (instead of counters)

should be used [5], [23], [24], [25]. From the technical point

of view, this represents a separate line of research, which

employs a different set of data structures and analytical tools.

Attempt has also been made to use bitmaps for estimating the

flow sizes, which is however far less efficient than counters,

as our experiments will show.

C. Our Contributions

We design a fast and compact per-flow traffic measurement

function that achieves three main objectives: i) It shares

counters among flows to save space, and does not incur

any space overhead for mapping flows to their counters.

This distinguishes our work from [15], [16], [17]. ii) It

updates exactly one counter per packet, which is optimal. This

separates our work from the counter braids that update three

or more counters per packet. Updating each counter requires

two memory accesses for read and then write. iii) It provides

estimation of the flow sizes, as well as the confidence inter-

vals that characterize the accuracy, even when the available

memory is too small such that other exact-counting methods

including [18], [19] no longer work. We believe our work is

the first one that achieves all these objectives. It complements

the existing work by providing additional flexibility for the

practitioners to choose when other methods cannot meet the

speed and space requirements.

The design of our measurement function is based on a new

data encoding/decoding scheme, called randomized counter

sharing. It splits the size of each flow among a number of

counters that are randomly selected from a counter pool. These

counters form the storage vector of the flow. For each packet

of a flow, we randomly select a counter from the flow’s storage

vector and increment the counter by one. Such a simple online

operation can be implemented very efficiently. The storage

vectors of different flows share counters uniformly at random;

the size information of one flow in a counter is the noise to

other flows that share the same counter. Fortunately, this noise

can be quantitatively measured and removed through statistical

methods, which allow us to estimate the size of a flow from the

information in its storage vector. We propose two estimation

methods whose accuracies are statistically guaranteed. They

work well even when the total number of counters in the pool

is by far smaller than the total number of flows that share the

counters. Our experimental results based on real traffic traces

demonstrate that the new methods can achieve good accuracy

in a tight space.

The randomized counter sharing scheme proposed in this

paper for per-flow traffic measurement has applications be-

yond the networking field. It may be used in the data streaming

applications to collect per-item information from a stream of

data items.

II. PERFORMANCE METRICS

We measure the number of packets in each flow during a

measurement period, which ends every time after a certain

number (e.g., 10 millions) of packets are processed. The

design of per-flow measurement functions should consider the

following three key performance metrics.

A. Processing Time

The per-packet processing time of an online measurement

function determines the maximum packet throughput that the

function can operate at. It should be made as small as possible

in order to keep up with the line speed. This is especially true

when multiple routing, security, measurement, and resource

management functions share SRAM and processing circuits.

The processing time is mainly determined by the number

of memory accesses and the number of hash computations

(which can be efficiently implemented in hardware [26]).

The counter braids [18], [19] update three counters at the

first level for each packet. When a counter at the first level

overflows, it needs to update three additional counters at

the second level. Hence, it requires 3 hashes and 6 memory

accesses to read and then write back after counter increment.

But in the worse case, it requires 6 hashes and 12 memory

accesses. The multi-resolution space-code Bloom filters [13]

probabilistically select one or more of its 9 filters and set 3∼6

bits in each of the selected ones. Each of those bits requires

one memory access and one hash computation.

Our objective is to achieve a constant per-packet processing

time of one hash computation and two memory accesses (for

updating a single counter). This is the minimum processing
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time for any method that use hash operations to identify

counters for update.

B. Storage Overhead

The need to reduce the SRAM overhead has been discussed

in the introduction section. One may argue that because

the amount of memory needed is related to the number of

packets in a measurement period, we can reduce the memory

requirement by shortening the measurement period. However,

when the measurement period is smaller, more flows will span

multiple periods and consequently the average flow size in

each period will be smaller. When we measure the flow sizes,

we also need to capture the flow labels [19], e.g., a tuple of

source address/port and destination address/port to identify a

TCP flow. The flow labels are too large to fit in SRAM. They

have to be stored in DRAM. Therefore, in a measurement

period, each flow incurs at least one DRAM access to store

its flow label. If the average flow size is large enough, the

overhead of this DRAM access will be amortized over many

packets of a flow. However, if the average flow size is too

small, the DRAM access will become the performance bottle-

neck that seriously limits the throughput of the measurement

function. This means the measurement period should not be

too small. Our experiments in Section VIII set a measurement

period such that the average flow size is about 10.

C. Estimation Accuracy

Let s be the size of a flow and ŝ be the estimated size

of the flow based on a measurement function. The estimation

accuracy of the function can be specified by a confidence

interval: the probability for s to be within [ŝ·(1−β), ŝ·(1+β)]
is at least a pre-specified value α, e.g., 95%. A smaller value

of β means that the estimated flow size is more accurate (in

a probabilistic sense).

There is a tradeoff between the estimation accuracy and

the storage overhead. If the storage space and the processing

time are unrestricted, we can accurately count each packet

to achieve perfect accuracy. However, in practice, there will

be constraints on both storage and processing speed, which

make 100% accurate measurement sometimes infeasible. In

this case, one has to settle with imperfect results that can be

produced with the available resources. Within the bounds of

the limited resources, we must explore novel measurement

methods to make the estimated flow sizes as accurate as

possible.

III. SYSTEM DESIGN

A. Basic Idea

We use an example to illustrate the idea behind our new

measurement approach. Suppose the amount of SRAM allo-

cated to one of the measurement functions is 2Mb (2 × 220

bits), and each measurement period ends after 10 million pack-

ets, which translate into about 8 seconds for an OC-192 link

(10+ Gbps) with an average packet size of 1,000 bytes. The

types of flows that the online functions may measure include

per-source flows, per-destination flows, per-source/destination

flows, TCP flows, WWW flows (with destination port 80),

etc. Without losing generality, suppose the specific function
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Fig. 1. Traffic distribution: each point shows the number (y coordinate) of
flows that have a certain size (x coordinate).

under consideration in this example measures the sizes of TCP

flows.

Fig. 1 shows the number of TCP flows that have a certain

flow size in log scale, based on a real network trace captured

by the main gateway of our campus. If we use 10 bits for each

counter, there will be only 0.2 million counters. The number of

concurrent flows in our trace for a typical measurement period

is around 1 million. It is obvious that allocating per-flow state

is not possible and each counter has to store the information

of multiple flows. But if an “elephant” flow is mapped to a

counter, that counter will overflow and lose information. On

the other hand, if only a couple of “mouse” flows are mapped

to a counter, the counter will be under-utilized, with most of

its high-order bits left as zeros.

To solve the above problems, we not only store the infor-

mation of multiple flows in each counter, but also store the

information of each flow in a large number of counters, such

that an “elephant” is broken into many “mice” that are stored

at different counters. More specifically, we map each flow to

a set of l randomly-selected counters and split the flow size

into l roughly-equal shares, each of which is stored in one

counter. The value of a counter is the sum of the shares from

all flows that are mapped to the counter. Because flows share

counters, they introduce noise to each other’s measurement.

The key to accurately estimate the size of a flow is to measure

the noise introduced by other flows in the counters that the

flow is mapped to.

Fortunately, this can be done if the flows are mapped to the

counters uniformly at random. Any two flows will have the

same probability of sharing counters, which means that each

flow will have the same probability of introducing a certain

amount of noise to any other flow. If the number of flows and

the number of counters are very large, the combined noise

introduced by all flows will be distributed across the counter

space about uniformly. The statistically uniform distribution of

the noise can be measured and removed. The above scheme of

information storage and recovery is called randomized counter

sharing.

We stress that this design philosophy of “splitting” each

flow among a large number of counters is very different

from “replicating” each flow in three counters as the counting

Bloom filter [27] or counter braids [18] do — they add the size

of each flow as a whole to three randomly selected counters.

Most notably, our method increments one counter for each
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arrival packet, while the counting Bloom filter or counter

braids increment three counters. We store the information of

each flow in many counters (e.g., 50), while they store the

information of each flow in three counters.

B. Overall Design

Our online traffic measurement function consists of two

modules. The online data encoding module stores the infor-

mation of arrival packets in an array of counters. For each

packet, it performs one hash function to identify a counter

and then updates the counter with two memory accesses, one

for reading and the other for writing. At the end of each

measurement period, the counter array is stored to the disk

and then reset to zeros.

The offline data decoding module answers queries for flow

sizes. It is performed by a designated offline computer. We

propose two methods for separating the information about the

size of a flow from the noise in the counters. The first one

is called the counter sum estimation method (CSM), which is

very simple and easy to compute. The second one is called

the maximum likelihood estimation method (MLM), which is

more accurate but also more computationally intensive. The

two complementary methods provide flexibility in designing

a practical system, which may first use CSM for rough

estimations and then apply MLM to the ones of interest.

The problem of collecting flow labels has technically been

treated as a separate problem in the literature [18]. It can be

efficiently solved [19] and thus will not be further addressed

in this paper.

IV. ONLINE DATA ENCODING

The flow size information is stored in an array C of m
counters. The ith counter in the array is denoted as C[i], 0 ≤
i ≤ m− 1. The size of the counters should be set so that the

chance of overflow is negligible; we will discuss this issue in

details in Section VII. Each flow is mapped to l counters that

are randomly selected from C through hash functions. These

counters logically form a storage vector of the flow, denoted

as Cf , where f is the label of the flow. The ith counter of

the vector, denoted as Cf [i], 0 ≤ i ≤ l − 1, is selected from

C as follows:

Cf [i] =C[Hi(f)], (1)

where Hi(...) is a hash function whose range is [0,m). We

want to stress that Cf is not a separate array for flow f . It

is merely a logical construction from counters in C for the

purpose of simplifying the presentation. In all our formulas,

one should treat the notation Cf [i] simply as C[Hi(f)]. The

hash function Hi, 0 ≤ i ≤ l − 1, can be implemented from

a master function H(...) as follows: Hi(f) = H(f |i) or

Hi(f) = H(f⊕R[i]), where ‘|’ is the concatenation operator,

‘⊕’ is the XOR operator, and R[i] is a constant whose bits

differ randomly for different indices i.
All counters are initialized to zeros at the beginning of each

measurement period. The operation of online data encoding

is very simple: When the router receives a packet, it extracts

the flow label f from the packet header, randomly selects

a counter from Cf , and increases the counter by one. More

specifically, the router randomly picks a number i between 0

and l−1, computes the hash Hi(f), and increases the counter

C[Hi(f)], which is physically in the array C, but logically the

ith element in the vector Cf .

V. OFFLINE COUNTER SUM ESTIMATION

A. Estimation Method

At the end of a measurement period, the router stores the

counter array C to a disk for long-term storage and offline

data analysis. Let n be the combined size of all flows, which

is
∑m−1

i=0 C[i]. Let s be the true size of a flow f during

the measurement period. The estimated size, ŝ, based on our

counter sum estimation method (CSM) is

ŝ =
l−1
∑

i=0

Cf [i]− l
n

m
. (2)

The first item is the sum of the counters in the storage

vector of flow f . It can also be interpreted as the sum of the

flow size s and the noise from other flows due to counter

sharing. The second item captures the expected noise. Below

we formally derive (2).

Consider an arbitrary counter in the storage vector of flow

f . We treat the value of the counter as a random variable X .

Let Y be the portion of X contributed by the packets of flow

f , and Z be the portion of X contributed by the packets of

other flows. Obviously, X = Y + Z .

Each of the s packets in flow f has a probability of 1
l

to

increase the value of the counter by one. Hence, Y follows a

binomial distribution:

Y ∼ Bino(s,
1

l
). (3)

Each packet of another flow f ′ has a probability of 1
m

to

increase the counter by one. That is because the probability

for the counter to belong to the storage vector of flow f ′ is
l
m

, and if that happens, the counter has a probability of 1
l

to be selected for increment. Assume there is a large number

of flows, the size of each flow is negligible when comparing

with the total size of all flows, and l is large such that each

flow’s size is randomly spread among many counters. We

can approximately treat the packets independently. Hence, Z
approximately follows a binomial distribution:

Z ∼ Bino(n− s,
1

m
) ≈ Bino(n,

1

m
), because s≪ n. (4)

We must have

E(X) = E(Y + Z) = E(Y ) + E(Z) =
s

l
+
n

m
. (5)

That is,

s = l × E(X)− l
n

m
. (6)

From the observed counter values Cf [i], E(X) can be mea-

sured as

∑

l−1

i=0
Cf [i]

l
. We have the following estimation for s:

ŝ =

l−1
∑

i=0

Cf [i]− l
n

m
. (7)
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If a flow shares a counter with an “elephant” flow, its

size estimation can be skewed. However, our experiments

show that CSM works well in general because the number

of “elephants” is typically small (as shown in Fig. 1) and

thus their impact is also small, particularly when there are

a very large number of counters and flows. Moreover, our

next method based on maximum likelihood estimation can

effectively reduce the impact of an outlier in a flow’s storage

vector that is caused by an “elephant” flow. In addition, the

estimated result ŝ can be negative for some flow. In this case,

we manually set it to 1.

B. Estimation Accuracy

The mean and variance of ŝ will be given in (9) and (10),

respectively. They are derived as follows: BecauseX = Y+Z ,

we have

E(X2) = E((Y + Z)2) = E(Y 2) + 2E(Y Z) + E(Z2)

= E(Y 2) + 2E(Y )E(Z) + E(Z2)

=
s2

l2
− s

l2
+
s

l
+ 2 · s

l
· n
m

+
n2

m2
− n

m2
+
n

m
.

The following facts are used in the above mathematical

process: E(Y 2) = s2

l2
− s

l2
+ s

l
because Y ∼ Bino(s, 1/l).

E(Y Z) = E(Y )E(Z) since Y and Z are independent.

E(Z2) = n2

m2 − n
m2 + n

m
because Z ∼ Bino(n, 1/m).

V ar(X) = E(X2)− (E(X))2

=
s

l
(1− 1

l
) +

n

m
(1− 1

m
). (8)

In (7), Cf [i], 0 ≤ i ≤ l− 1, are independent samples of X .

We can interpret ŝ as a random variable in the sense that a

different set of samples of X may result in a different value

of ŝ. From (7), we have

E(ŝ) = l × E(X)− l
n

m

= l(
s

l
+
n

m
)− l

n

m
= s, (9)

which means our estimation is unbiased. The variance of ŝ
can be written as

V ar(ŝ) = l2 × V ar(X) = l2
(

s

l
(1− 1

l
) +

n

m
(1− 1

m
)

)

= s(l − 1) + l2
n

m
(1− 1

m
). (10)

C. Confidence Interval

The confidence interval for the estimation will be given in

(13), and it is derived as follows: The binomial distribution,

Z ∼ Bino(n, 1/m), can be closely approximated as a

Gaussian distribution, Norm( n
m
, n
m
(1− 1

m
)), when n is large.

Similarly, the binomial distribution, Y ∼ Bino(s, 1
l
), can

be approximated by Norm( s
l
, s
l
(1 − 1

l
)). Because the linear

combination of two independent Gaussian random variables

is also normally distributed [28], we have X ∼ Norm( s
l
+

n
m
, s
l
(1 − 1

l
) + n

m
(1 − 1

m
)). To simplify the presentation, let

µ = s
l
+ n

m
and ∆ = s

l
(1 − 1

l
) + n

m
(1− 1

m
).

X ∼ Norm(µ,∆), (11)

where the mean µ and the variance ∆ agree with (5) and (8),

respectively.

Because ŝ is a linear function of Cf [i], 0 ≤ i ≤ l−1, which

are independent samples of X , ŝ must also approximately

follow a Gaussian distribution. From (7) and (11), we have

ŝ ∼ Norm(s, s(l − 1) + l2
n

m
(1− 1

m
)). (12)

Hence, the confidence interval is

ŝ± Zα

√

s(l − 1) + l2
n

m
(1− 1

m
), (13)

where α is the confidence level and Zα is the α percentile

for the standard Gaussian distribution. As an example, when

α = 95%, Zα = 1.96.

VI. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we propose the second estimation method

that is more accurate but also more computationally expensive.

A. Estimation Method

We know from the previous section that any counter in the

storage vector of flow f can be represented by a random vari-

able X , which is the sum of Y and Z , where Y ∼ Bino(s, 1
l
)

and Z ∼ Bino(n, 1/m). For any integer z ∈ [0, n), the

probability for the event Z = z to occur can be computed

as follows:

Pr{Z = z} =

(

n

z

)

(
1

m
)z(1 − 1

m
)n−z .

Because n and m are known, Pr{Z = z} is a function of

a single variable z and thus denoted as P (z).
Based on the probability distribution of Y and Z , the prob-

ability for the observed value of a counter, Cf [i], ∀i ∈ [0, l),
to occur is

Pr{X = Cf [i]}

=

Cf [i]
∑

z=0

(Pr{Z = z} · Pr{Y = Cf [i]− z})

=

Cf [i]
∑

z=0

(

s

Cf [i]− z

)

(
1

l
)Cf [i]−z(1 − 1

l
)s−(Cf [i]−z)P (z).

(14)

Let y = Cf [i]− z to simplify the formula. The probability

for all observed values in the storage vector of flow f to occur

is

L =

l−1
∏

i=0

Pr{X = Cf [i]}

=
l−1
∏

i=0

(Cf [i]
∑

z=0

(

s

y

)

(
1

l
)y(1 − 1

l
)s−yP (z)

)

. (15)

The maximum likelihood method (MLM) is to find an

estimated size ŝ of flow f that maximizes the above likelihood

function. Namely, we want to find

ŝ = arg max{L}.
s

(16)
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To find ŝ, we first apply logarithm to turn the right side of

the equation from product to summation.

ln(L) =

l−1
∑

i=0

ln

(Cf [i]
∑

z=0

(

s

y

)

(
1

l
)y(1− 1

l
)s−yP (z)

)

. (17)

Because
d(sy)
ds

=
(

s

y

)

(ψ(s+1)−ψ(s+1−y)), where ψ(...)
is the polygamma function [29], we have

d(
(

s

y

)

(1− 1
l
)s−y)

ds
=

(

s

y

)

(1− 1

l
)s−y

(

ψ(s+ 1)− ψ(s+ 1− y) + ln(1− 1

l
)

)

.

To simplify the presentation, we denote the right side of

the above equation as O(s). From (17), we can compute the

first-order derivative of ln(L) as follows:

d ln(L)

ds
=

l−1
∑

i=0

∑Cf [i]
z=0

(

O(s)(1
l
)yP (z)

)

∑Cf [i]
z=0

(

s

y

)

(1
l
)y(1− 1

l
)s−yP (z)

. (18)

Maximizing L is equivalent to maximizing ln(L). Hence,

by setting the right side of (18) to zero, we can find the

value for ŝ through numerical methods. Because
d ln(L)

ds
is

a monotone function of s, we have used the bisection search

method in all our experiments in Section VIII to find the value

ŝ that makes
d ln(L)

ds
equal to zero.

B. Estimation Accuracy

The estimation confidence interval will be given in (26),

and it is derived as follows: The estimation formula is given in

(16). According to the classical theory for MLM [30], when l
is sufficiently large, the distribution of the flow-size estimation

ŝ can be approximated by

Norm(s,
1

I(ŝ) ), (19)

where the fisher information I(ŝ) [31] of L is defined as

follows:

I(ŝ) = −E
(

d2 ln(L)

ds2

)

. (20)

In order to compute the second-order derivative, we begin

from (11) and have the following:

Pr{X = Cf [i]} =
1√
2π∆

e−
(Cf [i]−µ)2

2∆

ln(Pr{X = Cf [i]}) = − ln(
√
2π∆)− (Cf [i]− µ)2

2∆
, (21)

where 0 ≤ i ≤ l − 1. Performing the second-order differenti-

ation, we have

d2 ln(Pr{X = Cf [i]})
ds2

= − µ′

l∆
+

(12 (1− 1
l
) + µ− Cf [i])∆

′

l∆2

+
1

l∆3
(1− 1

l
)

(

(µ− Cf [i])µ
′∆− (µ− Cf [i])

2∆′

)

,

(22)

where µ′ = 1
l

and ∆′ = 1
l
(1− 1

l
). Therefore,

E(
d2 ln(Pr{X = Cf [i]})

ds2
)

= − µ′

l∆
+

1
2 (1− 1

l
)∆′

l∆2
+

1

l∆3
(1− 1

l
)E(µ− Cf [i])

2∆′

= − 1

l2∆
+

3(1− 1
l
)2

2l2∆2
, (23)

where we have used the following facts: E(µ − Cf [i]) = 0

and E(µ−Cf [i])
2 = ∆. Because L =

∏l−1
i=0 Pr{X = Cf [i]},

we have

I(ŝ) = −E
(

d2 ln(L)

ds2

)

=

l−1
∑

i=0

E(
d2 ln(Pr{X = Cf [i]})

ds2
)

= − 1

l2∆
+

3(1− 1
l
)2

2l2∆2
. (24)

From (19), the variance of ŝ is

V ar(ŝ) =
1

I(ŝ) =
2l2∆2

3(1− 1
l
)2 − 2∆

. (25)

Hence, the confidence interval is

ŝ± Zα ·
√

2l2∆2

3(1− 1
l
)2 − 2∆

, (26)

where Zα is the α percentile for the standard Gaussian

distribution.

VII. SETTING COUNTER LENGTH AND HANDLING

OVERFLOW PROBLEM

So far, our analysis has assumed that each counter has

a sufficient number of bits such that it will not overflow.

However, in order to save space, we want to set the counter

length as short as possible. Suppose each measurement period

ends after a pre-specified number n of packets are received.

(Note that the value of n is the combined sizes of all flows

during each measurement period.) The average value of all

counters will be n
m

. We set the number of bits in each counter,

denoted as b, to be log2
n
m
+1. Due to the additional bit, each

counter can hold at least two times of the average before

overflowing. If the allocated memory has M bits, the values

of b and m can be determined from the following equations:

b×m =M, log2
n

m
+ 1 = b. (27)

Due to the randomized counter sharing design, roughly

speaking, the packets are distributed in the counters at ran-

dom. We observe in our experiments that the counter values

approximately follow a Gaussian distribution with a mean of
n
m

. In this distribution, the fraction of counters that are more

than four times of the mean is very small — less than 5.3%

in all our experiments. Consequently, the impact of counter

overflow in CSM or MLM is also very small for most flows.

To totally eliminate the impact of counter overflow, one

approach is to keep another array of counters in DRAM,

each of which has a sufficient number of bits. The counters

in DRAM are one-to-one mapped to the counters in SRAM.

When a counter in SRAM is overflowed, it is reset to zero and
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TABLE I
NUMBER OF MEMORY ACCESSES AND NUMBER OF HASH COMPUTATIONS

PER PACKET

memory hash constant?
accesses computations

CSM 2 1 Y

MLM 2 1 Y

CB ≥ 6 ≥ 3 N

MRSCBF 4.47 4.47 N

the corresponding counter in DRAM is incremented by one.

During offline data analysis, the counter values are set based

on both SRAM and DRAM data. Because overflow happens

only to a small fraction of SRAM counters and a DRAM

access is made only after an overflowed SRAM counter is

accessed 2b times, the overall overhead of DRAM access is

very small.

VIII. EXPERIMENTS

We use experiments to evaluate our estimation methods,

CSM (Counter Sum estimation Method) and MLM (Maximum

Likelihood estimation Method), which are designed based on

the randomized counter sharing scheme. We also compare our

methods with CB (Counter Braids) [18] and MRSCBF (Multi-

Resolution Space-Code Bloom Filters) [13]. Our evaluation

is based on the performance metrics outlined in Section II,

including per-packet processing time, memory overhead, and

estimation accuracy.

The experiments use a network traffic trace obtained from

the main gateway of our campus. We perform experiments

on various different types of flows, such as per-source flows,

per-destination flows, per-source/destination flows, and TCP

flows. They all lead to the same conclusions. Without losing

generality, we choose TCP flows for presentation. The trace

contains about 68 millions of TCP flows and 750 millions

of packets. In each measurement period, 10 million packets

are processed; it typically covers slightly more than 1 million

flows.

A. Processing Time

The processing time is mainly determined by the number

of memory accesses and the number of hash computations

per packet. Table I presents the comparison. CSM or MLM

performs two memory accesses and one hash computation

for each packet. CB incurs three times of the overhead. It

performs six memory accesses and three hash computations

for each packet at the first counter level, and in the worst case

makes six additional memory accesses and three additional

hash computations at the second level. MRSCBF has nine

filters. The ith filter uses ki hash functions and encodes

packets with a sampling probability pi, where k1 = 3,

k2 = 4, ki = 6, ∀i ∈ [3, 9], and pi = (14 )
i−1, ∀i ∈ [1, 9].

When encoding a packet, the ith filter performs ki hash

computations and sets ki bits. Hence, the total number of

memory accesses (or hash computations) per packet for all

filters is
∑9

i=1(pi · ki) ≈ 4.47.

B. Memory Overhead and Estimation Accuracy

We study the estimation accuracies of CSM and MLM

under different levels of memory availability. In each measure-

ment period, 10M packets are processed, i.e., n = 10M, which

translates into about 8 seconds for an OC-192 link (10+ Gbps)

or about 2 seconds for an OC-768 link (40+ Gbps) with an

average packet size of 1,000 bytes. The memory M allocated

to this particular measurement function is varied from 2Mb

(2 × 220 bits) to 8Mb. The counter length b and the number

of counters m are determined based on (27). The size of each

storage vector is 50.

When M = 2Mb, the experimental results are presented

in Fig. 2. The first plot from the left shows the estimation

results by CSM for one measurement period; the results for

other measurement periods are very similar. Each flow is

represented by a point in the plot, whose x coordinate is the

true flow size s and y coordinate is the estimated flow size

ŝ. The equality line, y = x, is also shown for reference. An

estimation is more accurate if the point is closer to the equality

line.

The second plot presents the 95% confidence intervals for

the estimations made by CSM. The width of each vertical bar

shows the size of the confidence interval at a certain flow size

(which is the x coordinate of the bar). The middle point of

each bar shows the mean estimation for all flows of that size.

Intuitively, the estimation is more accurate if the confidence

interval is smaller and the middle point is closer to the equality

line.

The third plot shows the estimation results by MLM, and

the fourth plot shows the 95% confidence intervals for the

estimations made by MLM. Clearly, MLM achieves better

accuracy than CSM. The estimation accuracy shown in Fig. 2

is achieved with a memory of slightly less than 2 bits per

flow,

We can improve the estimation accuracy of CSM or MLM

by using more memory. We increase M to 4Mb and repeat the

above experiments. The results are shown in Fig. 3. We then

increase M to 8Mb and repeat the above experiments. The

results are shown in Fig. 4. The accuracy clearly improves as

the confidence intervals shrink when M becomes larger.

We repeat the same experiments on CB, whose parameters

are selected according to [18]. The results are presented in

Fig. 5. The first plot shows that CB totally fails to produce any

meaningful results when the available memory is too small:

M = 2Mb, which translates into less than 2 bits per flow.

In fact, its algorithm cannot converge, but instead produce

oscillating results. We have to artificially stop the algorithm

after a very long time. The second plot shows that CB works

well when M = 4Mb. The algorithm still cannot converge

by itself, even though it can produce very good results when

we artificially stop it after a long time without observing any

further improvement in the results. It can be seen that the

results carry a small positive bias because most points are on

one side of the equality line. The third plot shows that CB is

able to return the exact sizes for most flows when the memory

is M = 8Mb.

Combining the results in Table I, we draw the following
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Fig. 2. • First Plot: estimation results by CSM when M = 2Mb. • Second Plot: 95% confidence intervals for the estimations made by CSM when
M = 2Mb. • Third Plot: estimation results by MLM when M = 2Mb. • Fourth Plot: 95% confidence intervals for the estimations made by MLM when
M = 2Mb.
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Fig. 3. • First Plot: estimation results by CSM when M = 4Mb. • Second Plot: 95% confidence intervals for the estimations made by CSM when
M = 4Mb. • Third Plot: estimation results by MLM when M = 4Mb. • Fourth Plot: 95% confidence intervals for the estimations made by MLM when
M = 4Mb.
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Fig. 4. • First Plot: estimation results by CSM when M = 8Mb. • Second Plot: 95% confidence intervals for the estimations made by CSM when
M = 8Mb. • Third Plot: estimation results by MLM when M = 8Mb. • Fourth Plot: 95% confidence intervals for the estimations made by MLM when
M = 8Mb.
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Fig. 5. • First Plot: estimation results by CB when M = 2Mb. • Second Plot: estimation results by CB when M = 4Mb. • Third Plot: estimation results
by CB when M = 8Mb.
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Fig. 6. • First Plot: estimation results by MRSCBF when M = 8Mb. • Second Plot: estimation results by MRSCBF when M = 40Mb. • Third Plot:
estimation results by MRSCBF when M = 80Mb. • Fourth Plot: estimation results in logarithmic scale by MRSCBF when M = 80Mb.
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conclusion: (1) In practice, we should choose CSM/MLM if

the requirement is to handle high measurement throughput

(which means low per-packet processing time) or if the

available memory is too small such that CB does not work,

while relatively coarse estimation is acceptable. (2) We should

choose CB if the processing time is less of a concern,

sufficient memory is available, and the exact flow sizes are

required.

We also run MRSCBF under different levels of memory

availability. We begin with M = 8Mb. CSM or MLM works

very well with this memory size (Fig. 4). The performance

of MRSCBF is shown in the first plot of Fig. 6. There are

some very large estimated sizes. To control the scale in the

vertical axis, we artificially set any estimation beyond 2,800 to

be 2,800. The results demonstrate that MRSCBF totally fails

when M = 8Mb. The performance of MRSCBF improves

when we increase the memory. The results when M = 40Mb

are shown in the second plot.1 In the third plot, when we

further increase M to 80Mb,2 no obvious improvement is

observed when comparing the second plot. A final note is

that the original paper of MRSCBF uses log scale in their

presentation. The third plot in Fig. 6 will appear as the fourth

plot in log scale.

Clearly, the bitmap-based MRSCBF performs worse than

CB, CSM or MLM. To measure flow sizes, counters are

superior than bitmaps.

IX. CONCLUSION

Per-flow traffic measurement provides real-world data for a

variety of applications on accounting and billing, anomaly de-

tection, and traffic engineering. Current online data collection

methods cannot meet the requirements of being both fast and

compact. This paper proposes a novel data encoding/decoding

scheme, which mixes per-flow information randomly in a

tight SRAM space for compactness. Its online operation only

incurs a small overhead of one hash computation and one

counter update per packet. Two offline statistical methods

— the counter sum estimation and the maximum likelihood

estimation — are used to extract per-flow sizes from the mixed

data structures with good accuracy. Due to its fundamentally

different design philosophy, the new measurement function is

able to work in a tight space where exact measurement is no

longer possible, and it does so with the minimal number of

memory accesses per packet.

REFERENCES

[1] X. Dimitropoulos, P. Hurley, and A. Kind, “Probabilistic Lossy
Counting: An Efficient Algorithm for Finding Heavy Hitters,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 1, pp. 7–16,
2008.

[2] C. Estan and G. Varghese, “New Directions in Traffic Measurement
and Accounting,” Proc. of ACM SIGCOMM, August 2002.

[3] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-Based
Change Detection: Methods, Evaluation, and Applications,” Proc. of
ACM SIGCOMM Internet Measurement Conference, October 2003.

1At the end of each measurement period, about half of the bits in the filters
of MRSCBF are set to ones.

2At the end of each measurement period, less than half of the bits in the
filters of MRSCBF are set to ones.

[4] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan, G. Iannaccone, and
A. Lakhina, “Detection and Identification of Network Anomalies Using
Sketch Subspaces,” Proc. of ACM SIGCOMM Internet Measurement
Conference, October 2006.

[5] M. Yoon, T. Li, S. Chen, and J. Peir, “Fit a Spread Estimator in Small
Memory,” Proc. of IEEE INFOCOM, April 2009.

[6] N. Kamiyama and T. Mori, “Simple and Accurate Identification of
High-rate Flows by Packet Sampling,” Proc. of IEEE INFOCOM, April
2006.

[7] R. Karp, S. Shenker, and C. Papadimitriou, “A Simple Algorithm for
Finding Frequent Elements in Streams and Bags,” ACM Transactions
on Database Systems, vol. 28, no. 1, pp. 51–55, 2003.

[8] N. Duffield, C. Lund, and M. Thorup, “Estimating Flow Distributions
from Sampled Flow Statistics,” Proc. of ACM SIGCOMM, October
2003.

[9] A. Kumar, M. Sung, J. Xu, and J. Wang, “Data Streaming Algorithms
for Efficient and Accurate Estimation of Flow Size Distribution,” Proc.
of ACM SIGMETRICS, June 2004.

[10] N. Duffield, C. Lund, and M. Thorup, “Flow Sampling under Hard
Resource Constraints,” Proc. of ACM SIGMETRICS/Performance, June
2004.

[11] N. Duffield, C. Lund, and M. Thorup, “Learn More, Sample Less:
Control of Volume and Variance in Network Measurement,” IEEE
Transactions of Information Theory, vol. 51, no. 5, pp. 1756–1775,
2005.

[12] W. David Gardner, “Researchers Transmit Optical Data At 16.4 Tbps,”
InformationWeek, February 2008.

[13] A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li, “Space-Code
Bloom Filter for Efficient Per-Flow Traffic Measurement,” Proc. of
IEEE INFOCOM, March 2004, A journal version was published in IEEE
JSAC, 24(12):2327-2339, December 2006.

[14] S. Venkatataman, D. Song, P. Gibbons, and A. Blum, “New Streaming
Algorithms for Fast Detection of Superspreaders,” Proc. of NDSS,
February 2005.

[15] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown, “Maintaining
Statistics Counters in Router Line Cards,” Proc. of IEEE Micro, vol.
22, no. 1, pp. 76–81, 2002.

[16] S. Ramabhadran and G. Varghese, “Efficient Implementation of a
Statistics Counter Architecture,” Proc. ACM SIGMETRICS, June 2003.

[17] Q. Zhao, J. Xu, and Z. Liu, “Design of a Novel Statistics Counter
Architecture with Optimal Space and Time Efficiency,” Proc. of ACM
Sigmetrics/Performance, 2006.

[18] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter Braids: A Novel Counter Architecture for Per-Flow Measure-
ment,” Proc. of ACM SIGMETRICS, June 2008.

[19] Y. Lu and B. Prabhakar, “Robust Counting Via Counter Braids: An
Error-Resilient Network Measurement Architecture,” Proc. of IEEE
INFOCOM, April 2009.

[20] E. Demaine, A. Lopez-Ortiz, and J. Munro, “Frequency Estimation of
Internet Packet Streams with Limited Space,” Proc. of 10th ESA Annual
European Symposium on Algorithms, September 2002.

[21] M. Kodialam, T. V. Lakshman, and S. Mohanty, “Runs bAsed Traffic
Estimator (RATE): A Simple, Memory Efficient Scheme for Per-Flow
Rate Estimation,” Proc. of INFOCOM, March 2004.

[22] F. Hao, M. Kodialam, and T. V. Lakshman, “ACCEL-RATE: A Faster
Mechanism for Memory Efficient Per-flow Traffic Estimation,” Proc.
of ACM SIGMETRICS/Performance, June 2004.

[23] C. Estan, G. Varghese, and M. Fish, “Bitmap Algorithms for Counting
Active Flows on High-Speed Links,” IEEE/ACM Transactions on
Networking (TON), vol. 14, no. 5, pp. 925–937, October 2006.

[24] Q. Zhao, A. Kumar, and J. Xu, “Joint Data Streaming and Sampling
Techniques for Detection of Super Sources and Destinations,” Proc. of
USENIX/ACM Internet Measurement Conference, October 2005.

[25] J. Cao, Y. Jin, A. Chen, T. Bu, and Z. Zhang, “Identifying High
Cardinality Internet Hosts,” Proc. of IEEE INFOCOM, April 2009.

[26] M. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient Hardware Hash-
ing Functions for High Performance Computers,” IEEE Transactions
on Computers, vol. 46, no. 12, pp. 1378–1381, 1997.

[27] S. Cohen and Y. Matias, “Spectral Bloom Filters,” Proc. of ACM
SIGMOD, June 2003.

[28] G. Casella and R. Berger, “Statistical Inference,” Duxbury Press, June
2001.

[29] M. Abramowitz and I. Stegun, “Handbook of Mathematical Functions:
with Formulas, Graphs, and Mathematical Tables,” Dover Publications,
June 1964.

[30] Myung Jay I. and Navarro Daniel J., “Information Matrix,”
http://faculty.psy.ohio-state.edu/myung/personal/info matrix.pdf, 2004.

[31] E. Lehmann and G. Casella, “Theory of Point Estimation,” Springer
Press, 1998.

1807


