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Abstract—Trafficmeasurement provides critical real-world data
for service providers and network administrators to perform ca-
pacity planning, accounting and billing, anomaly detection, and
service provision. One of the greatest challenges in designing an on-
line measurement module is to minimize the per-packet processing
time in order to keep up with the line speed of the modern routers.
To meet this challenge, we should minimize the number of memory
accesses per packet and implement the measurementmodule in the
on-die SRAM. The small size of SRAM requires extremely com-
pact data structures to be designed for storing per-flow informa-
tion. The best existing work, called counter braids, requires more
than 4 bits per flow and performs six or more memory accesses
per packet. In this paper, we design a fast and compact measure-
ment function that estimates the sizes of all flows. It achieves the op-
timal processing speed: two memory accesses per packet. In addi-
tion, it provides reasonable measurement accuracy in a tight space
where the counter braids no longer work. Our design is based on
a new data encoding/decoding scheme, called randomized counter
sharing. This scheme allows us to mix per-flow information to-
gether in storage for compactness and, at the decoding time, sep-
arate the information of each flow through statistical removal of
the error introduced during information mixing from other flows.
The effectiveness of our online per-flow measurement approach is
analyzed and confirmed through extensive experiments based on
real network traffic traces. We also propose several methods to in-
crease the estimation range of flow sizes.

Index Terms—Computer networks.

I. INTRODUCTION

A. Motivation

T RAFFICmonitoring and measurement provide critical in-
formation for capacity planning, accounting and billing,

anomaly detection, and service provision in modern computer
networks [1]–[5]. This paper focuses on a particularly chal-
lenging problem, the measurement of per-flow information for
a high-speed link without using per-flow data structures. The
goal is to estimate the size of each flow (in terms of number of
packets). A flow is identified by a label that can be a source ad-
dress, a destination address, or any combination of addresses,
ports, and other fields in the packet header.
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Most prior work investigates how to identify the elephants
(i.e., flows with large sizes) [1], [2], [6], [7] or estimate the flow
size distribution (i.e., the number of flows that have a certain
size) [8], [9]. They do not measure the sizes of individual
flows, which is important information for many applications.
For example, if we use the addresses of the users as flow labels,
per-flow traffic measurement provides the basis for usage-based
billing and graceful service differentiation, where a user’s ser-
vice priority gracefully drops as he overspends his resource
quota. Studying per-flow data over consecutive measurement
periods may help us discover network access patterns and,
together with user profiling, reveal geographic/demographic
traffic distributions among users. Such information will help
Internet service providers and application developers to align
network resource allocation with the majority’s needs. In the
event of a worm attack, per-source data can be used to estimate
the scanning rates of worm-infected hosts. In the event of a
botnet attack where there is a sudden surge of small flows, a
security administrator may analyze the change in the flow size
distribution and use per-flow information to compile the list of
candidate bots that contribute to the change, helping to narrow
down the scope for further investigation.

B. Challenges and Prior Art

Per-flow traffic measurement is a very challenging problem.
In order to monitor small flows with a few packets, it is
desirable to record information for each packet because ag-
gressive sampling, such as what’s used in Cisco Netflow and
others [10], [11], will not only introduce significant measure-
ment error, but also miss some small flows altogether. DRAM
cannot keep up with today’s line speed (40 Gb/s for OC-768,
and 16.4 Tb/s in experimental systems [12]). The recent re-
search trend is to implement online measurement functions in
high-speed but expensive on-die SRAM [5], [9], [13], [14], [38].
However, the size of SRAM is limited, and it has to be shared

among many critical functions for routing, scheduling, traffic
management, and security. Even for traffic measurement alone,
there can be multiple functions running concurrently on the
same SRAM, each measuring a different type of flow. These
functions may have to take turns to access the SRAM, and the
amount of memory allocated to each measurement function is
likely to be small. Hence, it is extremely important to make
per-flow measurement and other functions in SRAM fast and
compact. In particular, to keep up with the router’s forwarding
rate (which can be as high as a couple of cycles per packet),
we should minimize the number of memory accesses per packet
performed by each measurement function to the shared SRAM.
It has been shown in [2] that maintaining per-flow counters

cannot scale for high-speed links. Even for efficient counter
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implementations [15]–[17], SRAM will only be able to hold a
small fraction of per-flow state (including counters and indexing
data structures such as pointers and flow identities for locating
the counters). The counter braids avoid per-flow counters and
achieve near-optimalmemory efficiency [18], [19]. Thismethod
maps each flow to three arbitrary counters; they are all incre-
mented by one for every packet of the flow. Many flows may
be mapped to the same counter, which stores the sum of the
flow sizes. Essentially, the counters represent linear equations,
which can be solved for the flow sizes. Two levels of counters
are used to reduce the memory overhead. The counter braids re-
quire slightly more than 4 bits per flow and are able to count the
exact sizes of all flows. However, it also has two limitations.
First, it performs 6 or occasionally 12 memory accesses per
packet. Second, when the memory allocated to a measurement
function is far less than 4 bits per flow, our experiments show
that the message passing decoding algorithm of counter braids
cannot converge to any meaningful results. When the available
memory is just 1–2 bits per flow, the exact measurement of the
flow sizes is no longer possible. We have to resort to estimation
methods. The key is to efficiently utilize the limited space to im-
prove the accuracy of the estimated flow sizes, and do so with
the minimum number of memory accesses per packet. This is
what our paper tries to achieve.
A related thread of research is to collect statistical informa-

tion of the flows [8], [9] or identify the largest flows and de-
vote the available memory to measure their sizes while ignoring
the smaller ones [2], [6], [7], [20]. For example, RATE [21]
and ACCEL-RATE [22] measure per-flow rate by maintaining
per-flow state, but they use a two-run sampling method to filter
out small-rate flows so that only high-rate flows are measured.
Another thread of research is to maintain a large number

of counters to track various networking information. One
possible solution [23], [24] can be statistically update a counter
according to the current counter size. This approach is fit for
the applications with loose measurement accuracy. In order to
enhance the accuracy performance, Zhao et al. [25] propose a
statistical method to make a DRAM-based solution practical,
which uses a small cache and request queues to balance the
counter values. Since DRAM is involved and wirespeed is
achieved, this approach is able to achieve decent measurement
accuracy.
Also related is the work [14] that measures the number of

distinct destinations that each source has contacted. Per-flow
counters cannot be used to solve this problem because they
cannot remove duplicate packets. If a source sends 1000
packets to a destination, the packets contribute only one con-
tact, but will count as 1000 when we measure the flow size.
To remove duplicates, bitmaps (instead of counters) should
be used [5], [26]–[28]. From the technical point of view, this
represents a separate line of research, which employs a different
set of data structures and analytical tools. Attempt has also
been made to use bitmaps for estimating the flow sizes, which
is however far less efficient than counters, as our experiments
will show.

C. Our Contributions

We design a fast and compact per-flow traffic measurement
function that achieves three main objectives.

1) It shares counters among flows to save space, and does
not incur any space overhead for mapping flows to their
counters. This distinguishes our work from [15]–[17].

2) It updates exactly one counter per packet, which is optimal.
This separates our work from the counter braids that update
three or more counters per packet. Updating each counter
requires two memory accesses for read and then write.

3) It provides estimation of the flow sizes, as well as the
confidence intervals that characterize the accuracy, even
when the available memory is too small such that other
exact-counting methods including [18] and [19] no longer
work.

We believe our work is the first one that achieves all these objec-
tives. It complements the existing work by providing additional
flexibility for the practitioners to choose when other methods
cannot meet the speed and space requirements.
The design of our measurement function is based on a new

data encoding/decoding scheme, called randomized counter
sharing. It splits the size of each flow among a number of
counters that are randomly selected from a counter pool. These
counters form the storage vector of the flow. For each packet
of a flow, we randomly select a counter from the flow’s storage
vector and increment the counter by one. Such a simple online
operation can be implemented very efficiently. The storage
vectors of different flows share counters uniformly at random;
the size information of one flow in a counter is the noise to
other flows that share the same counter. Fortunately, this noise
can be quantitatively measured and removed through statistical
methods, which allow us to estimate the size of a flow from the
information in its storage vector. We propose two estimation
methods whose accuracies are statistically guaranteed. They
work well even when the total number of counters in the pool
is by far smaller than the total number of flows that share the
counters. Our experimental results based on real traffic traces
demonstrate that the new methods can achieve good accuracy
in a tight space. We also propose several methods to increase
the range of flow sizes that the estimators can measure.
The randomized counter sharing scheme proposed in this

paper for per-flow traffic measurement has applications beyond
the networking field. It may be used in the data streaming
applications to collect per-item information from a stream of
data items.
The rest of this paper is organized as follows: Section II dis-

cusses the performancemetrics. Section III gives an overview of
our system design. Section IV presents the online data encoding
module. Sections V and VI propose two offline data decoding
modules. Section VII discusses the problem of setting counter
length. Section VIII addresses the problem of collecting flow
labels. Section IX presents the experimental results. Section X
extends our estimators for large flow sizes. Section XI draws the
conclusion.

II. PERFORMANCE METRICS

We measure the number of packets in each flow during a
measurement period, which ends every time after a certain
number (e.g., 10 million) of packets are processed. The de-
sign of per-flow measurement functions should consider the
following three key performance metrics.
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A. Processing Time

The per-packet processing time of an online measurement
function determines the maximum packet throughput that the
function can operate at. It should be made as small as possible in
order to keep up with the line speed. This is especially true when
multiple routing, security, measurement, and resource manage-
ment functions share SRAM and processing circuits.
The processing time is mainly determined by the number of

memory accesses and the number of hash computations (which
can be efficiently implemented in hardware [29]). The counter
braids [18], [19] update three counters at the first level for each
packet. When a counter at the first level overflows, it needs to
update three additional counters at the second level. Hence, it
requires 3 hashes and 6 memory accesses to read and then write
back after counter increment. However, in the worse case, it
requires 6 hashes and 12 memory accesses. The multiresolution
space-code Bloom filters [13], [38] probabilistically select one
or more of its nine filters and set 3–6 bits in each of the selected
ones. Each of those bits requires one memory access and one
hash computation.
Our objective is to achieve a constant per-packet processing

time of one hash computation and two memory accesses (for
updating a single counter). This is the minimum processing time
for any method that use hash operations to identify counters for
update.

B. Storage Overhead

The need to reduce the SRAM overhead has been discussed
in Section I. One may argue that because the amount of memory
needed is related to the number of packets in a measurement pe-
riod, we can reduce the memory requirement by shortening the
measurement period. However, when the measurement period
is smaller, more flows will span multiple periods, and conse-
quently the average flow size in each period will be smaller.
When we measure the flow sizes, we also need to capture the
flow labels [19], e.g., a tuple of source address/port and desti-
nation address/port to identify a TCP flow. The flow labels are
too large to fit in SRAM. They have to be stored in DRAM.
Therefore, in a measurement period, each flow incurs at least
one DRAM access to store its flow label. If the average flow
size is large enough, the overhead of this DRAM access will
be amortized over many packets of a flow. However, if the av-
erage flow size is too small, the DRAM access will become the
performance bottleneck that seriously limits the throughput of
the measurement function. This means the measurement period
should not be too small. Our experiments in Section IX set a
measurement period such that the average flow size is about 10.

C. Estimation Accuracy

Let be the size of a flow and be the estimated size of the
flow based on a measurement function. The estimation accuracy
of the function can be specified by a confidence interval: The
probability for to be within is at least
a prespecified value , e.g., 95%. A smaller value of means
that the estimated flow size is more accurate (in a probabilistic
sense).
There is a tradeoff between the estimation accuracy and the

storage overhead. If the storage space and the processing time

Fig. 1. Traffic distribution: Each point shows the number ( -coordinate) of
flows that have a certain size ( -coordinate).

are unrestricted, we can accurately count each packet to achieve
perfect accuracy. However, in practice, there will be constraints
on both storage and processing speed, which make 100% ac-
curate measurement sometimes infeasible. In this case, one has
to settle with imperfect results that can be produced with the
available resources. Within the bounds of the limited resources,
we must explore novel measurement methods to make the esti-
mated flow sizes as accurate as possible.

III. SYSTEM DESIGN

A. Basic Idea

We use an example to illustrate the idea behind our new mea-
surement approach. Suppose the amount of SRAM allocated to
one of the measurement functions is 2 Mb ( bits), and
each measurement period ends after 10 million packets, which
translates into about 8 s for an OC-192 link (10 Gb/s) with an
average packet size of 1000 B. The types of flows that the on-
line functions may measure include per-source flows, per-des-
tination flows, per-source/destination flows, TCP flows, WWW
flows (with destination port 80), etc. Without losing generality,
suppose the specific function under consideration in this ex-
ample measures the sizes of TCP flows.
Fig. 1 shows the number of TCP flows that have a certain

flow size in log scale, based on a real network trace captured
by the main gateway of our campus. If we use 10 bits for each
counter, there will be only 0.2 million counters. The number of
concurrent flows in our trace for a typical measurement period
is around 1 million. It is obvious that allocating per-flow state
is not possible, and each counter has to store the information
of multiple flows. However, if an “elephant” flow is mapped to
a counter, that counter will overflow and lose information. On
the other hand, if only a couple of “mouse” flows are mapped
to a counter, the counter will be underutilized, with most of its
high-order bits left as zeros.
To solve the above problems, we not only store the informa-

tion of multiple flows in each counter, but also store the infor-
mation of each flow in a large number of counters, such that
an “elephant” is broken into many “mice” that are stored at
different counters. More specifically, we map each flow to a
set of randomly selected counters and split the flow size into
roughly equal shares, each of which is stored in one counter.
The value of a counter is the sum of the shares from all flows
that are mapped to the counter. Because flows share counters,
they introduce noise to each other’s measurement. The key to
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accurately estimate the size of a flow is to measure the noise
introduced by other flows in the counters to which the flow is
mapped.
Fortunately, this can be done if the flows are mapped to the

counters uniformly at random.Any two flowswill have the same
probability of sharing counters, which means that each flow will
have the same probability of introducing a certain amount of
noise to any other flow. If the number of flows and the number
of counters are very large, the combined noise introduced by
all flows will be distributed across the counter space about uni-
formly. The statistically uniform distribution of the noise can
be measured and removed. The above scheme of information
storage and recovery is called randomized counter sharing.
We stress that this design philosophy of “splitting” each

flow among a large number of counters is very different from
“replicating” each flow in three counters as the counting Bloom
filter [30] or counter braids [18] do—they add the size of each
flow as a whole to three randomly selected counters. Most
notably, our method increments one counter for each arrival
packet, while the counting Bloom filter or counter braids incre-
ment three counters. We store the information of each flow in
many counters (e.g., 50), while they store the information of
each flow in three counters.

B. Overall Design

Our online traffic measurement function consists of twomod-
ules. The online data encoding module stores the information of
arrival packets in an array of counters. For each packet, it per-
forms one hash function to identify a counter and then updates
the counter with two memory accesses, one for reading and the
other for writing. At the end of each measurement period, the
counter array is stored to the disk and then reset to zeros.
The offline data decoding module answers queries for flow

sizes. It is performed by a designated offline computer. We pro-
pose two methods for separating the information about the size
of a flow from the noise in the counters. The first one is called
the counter sum estimation method (CSM), which is very simple
and easy to compute. The second one is called the maximum
likelihood estimation method (MLM), which is more accurate
but also more computationally intensive. The two complemen-
tary methods provide flexibility in designing a practical system,
which may first use CSM for rough estimations and then apply
MLM to the ones of interest.

IV. ONLINE DATA ENCODING

The flow size information is stored in an array of coun-
ters. The th counter in the array is denoted as

. The size of the counters should be set so that the chance
of overflow is negligible; we will discuss this issue in detail in
Section VII. Each flow is mapped to counters that are randomly
selected from through hash functions. These counters logi-
cally form a storage vector of the flow, denoted as , where
is the label of the flow. The th counter of the vector, denoted as

, is selected from as follows:

(1)

where is a hash function whose range is . We
want to stress that is not a separate array for flow . It is
merely a logical construction from counters in for the pur-
pose of simplifying the presentation. In all our formulas, one
should treat the notation simply as . The hash
function , can be implemented from a master
function as follows: or

, where “ ” is the concatenation operator, “ ” is
the XOR operator, and is a constant whose bits differ ran-
domly for different indices .
All counters are initialized to zeros at the beginning of each

measurement period. The operation of online data encoding is
very simple: When the router receives a packet, it extracts the
flow label from the packet header, randomly selects a counter
from , and increases the counter by one. More specifically,
the router randomly picks a number between 0 and ,
computes the hash , and increases the counter ,
which is physically in the array , but logically the th element
in the vector .

V. OFFLINE COUNTER SUM ESTIMATION

A. Estimation Method

At the end of a measurement period, the router stores the
counter array to a disk for long-term storage and offline
data analysis. Let be the combined size of all flows, which
is . Let be the true size of a flow during the
measurement period. The estimated size, , based on our CSM
is

(2)

The first item is the sum of the counters in the storage vector
of flow . It can also be interpreted as the sum of the flow
size and the noise from other flows due to counter sharing.
The second item captures the expected noise. We formally de-
rive (2) as follows.
Consider an arbitrary counter in the storage vector of flow .

We treat the value of the counter as a random variable . Let
be the portion of contributed by the packets of flow , and
be the portion of contributed by the packets of other flows.
Obviously, .
Each of the packets in flow has a probability of to

increase the value of the counter by one. Hence, follows a
binomial distribution

(3)

Each packet of another flow has a probability of to in-
crease the counter by one. That is because the probability for
the counter to belong to the storage vector of flow is , and
if that happens, the counter has a probability of to be selected
for increment. Assume there is a large number of flows, the size
of each flow is negligible when comparing with the total size of
all flows, and is large such that each flow’s size is randomly
spread among many counters. We can approximately treat the
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packets independently. Hence, according to the central limit the-
orem, approximately follows a binomial distribution:

because

(4)

We must have

(5)

That is

(6)

From the observed counter values can bemeasured

as . We have the following estimation for :

(7)

If a flow shares a counter with an “elephant” flow, its size es-
timation can be skewed. However, our experiments show that
CSM works well in general because the number of “elephants”
is typically small (as shown in Fig. 1), and thus their impact is
also small, particularly when there are a very large number of
counters and flows. Moreover, our next method based on max-
imum likelihood estimation can effectively reduce the impact
of an outlier in a flow’s storage vector that is caused by an “ele-
phant” flow.

B. Estimation Accuracy

The mean and variance of will be given in (9) and (10),
respectively. They are derived as follows: Because ,
we have

The following facts are used in the above mathematical process:
because .

since and are independent.
because

(8)

In (7), , are independent samples of
. We can interpret as a random variable in the sense that a

different set of samples of may result in a different value of
. From (7), we have

(9)

Fig. 2. Standard deviation with respect to , when is set to 50, 100, and 500,
respectively.

which means our estimation is unbiased. The variance of can
be written as

(10)

The standard deviation, divided by to show the relative
value, is

(11)

We set to 50, 100, and 500, respectively, and illustrate the
standard deviation of in Fig. 2.

C. Confidence Interval

The confidence interval for the estimation will be given in
(14), and it is derived as follows. The binomial distribution,

, can be closely approximated as a Gaussian
distribution, , when is large. Similarly,
the binomial distribution, , can be approxi-
mated by . Because the linear combination
of two independent Gaussian random variables is also normally
distributed [31], we have

. To simplify the presentation, let and

(12)

where the mean and the variance agree with (5) and (8),
respectively.
Because is a linear function of ,

which are independent samples of must also approximately
follow a Gaussian distribution. From (7) and (12), we have

(13)

Hence, the confidence interval is

(14)
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where is the confidence level and is the percentile for the
standard Gaussian distribution. As an example, when %

.

VI. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we propose the second estimation method that
is more accurate, but also more computationally expensive.

A. Estimation Method

We know from Section V that any counter in the storage
vector of flow can be represented by a random variable ,
which is the sum of and , where and

. For any integer , the probability
for the event to occur can be computed as follows:

Because and are known, is a function of a
single variable and thus denoted as .
Based on the probability distribution of and , the proba-

bility for the observed value of a counter, , to
occur is

(15)
Let to simplify the formula. The probability

for all observed values in the storage vector of flow to occur
is

(16)

The MLM is to find an estimated size of flow that maxi-
mizes the above likelihood function. Namely, we want to find

(17)

To find , we first apply logarithm to turn the right side of the
equation from product to summation

(18)

Because , where

is the polygamma function [32], we have

To simplify the presentation, we denote the right side of the
above equation as . From (18), we can compute the first-
order derivative of as follows:

(19)

Maximizing is equivalent to maximizing . Hence, by
setting the right side of (19) to zero, we can find the value for
through numerical methods. Because is a monotone

function of , we have used the bisection search method in all
our experiments in Section IX to find the value that makes

equal to zero.

B. Estimation Accuracy

The estimation confidence interval will be given in (27), and
it is derived as follows. The estimation formula is given in (17).
According to the classical theory for MLM, when is suffi-
ciently large, the distribution of the flow size estimation can
be approximated by

(20)

where the fisher information [33] of is defined as
follows:

(21)

In order to compute the second-order derivative, we begin from
(12) and have the following:

(22)

where . Performing the second-order differentia-
tion, we have

(23)
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Fig. 3. The standard deviation with respect to , when is set to 50, 100, and
500, respectively.

where and . Therefore

(24)

where we have used the following facts: and
. Because , we

have

(25)

From (20), the variance of is

(26)

Hence, the confidence interval is

(27)

where is the percentile for the standard Gaussian
distribution.
We set to 50, 100, and 500, respectively, and illustrates the

standard deviation of in Fig. 3. When comparing to Fig. 2, we
find that MLM is able to achieve better estimation accuracy.

VII. SETTING COUNTER LENGTH

So far, our analysis has assumed that each counter has a suf-
ficient number of bits such that it will not overflow. However,
in order to save space, we want to set the counter length as short
as possible. Suppose each measurement period ends after a pre-
specified number of packets are received. (Note that the value
of is the combined sizes of all flows during each measurement
period.) The average value of all counters will be . We set the
number of bits in each counter, denoted as , to be .
Due to the additional bit, each counter can hold at least two times

of the average before overflowing. If the allocated memory has
bits, the values of and can be determined from the fol-

lowing equations:

(28)

Due to the randomized counter sharing design, roughly
speaking, the packets are distributed in the counters at random.
We observe in our experiments that the counter values approx-
imately follow a Gaussian distribution with a mean of . In
this distribution, the fraction of counters that are more than
four times of the mean is very small—less than 5.3% in all our
experiments. Consequently, the impact of counter overflow in
CSM or MLM is also very small for most flows. Though it is
small, we will totally eliminate this impact in Section X-D.

VIII. FLOW LABELS

The compact online data structure introduced in Section IV
only stores the flow size information. It does not store the flow
labels. The labels are per-flow information, and it cannot be
compressed in the same way we do for the flow sizes. In some
applications, the flow labels are preknown and do not have to
be collected. For example, if an ISP wants to measure the traffic
from its customers, it knows their IP addresses (which are the
flow labels in this case). Similarly, if the system administrator
of a large enterprise network needs the information about the
traffic volumes of the hosts in the network, she has the hosts’
addresses.
In case the flow labels need to be collected and there is not

enough SRAM to keep them, the labels have to be stored in
DRAM. An efficient solution for label collection was proposed
in [19]. A Bloom filter [34], [35] can be implemented in SRAM
to encode the flow labels that have seen by the router during a
measurement period, such that each label is only stored once in
DRAM when it appears for the first time in the packet stream;
storing each label once is the minimum overhead if the labels
must be collected.
If we use three hash functions in the Bloom filter, each packet

incurs three SRAM accesses in order to check whether the flow
label that carried the packet is already encoded in the Bloom
filter. A recent work on one-memory-access Bloom filters [36]
shows that three SRAM accesses per packet can be reduced to
one. This overhead is further reduced if we only examine the
UDP packets and the SYN packets (which carry the label infor-
mation of TCP traffic). A recent study shows that UDP accounts
for 20% of the Internet traffic [37] and the measurement of our
campus traffic shows that SYN packets accounts for less than
10% of all TCP traffic. Therefore, the Bloom filter operation
only needs to be carried out for less than 28% of all packets,
which amortizes the overhead.

IX. EXPERIMENTS

We use experiments to evaluate our estimation methods,
CSM and MLM, which are designed based on the randomized
counter sharing scheme. We also compare our methods with
Counter Braids (CB) [18] and Multi-Resolution Space-Code
Bloom Filters (MRSCBF) [13], [38]. Our evaluation is based
on the performance metrics outlined in Section II, including
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Fig. 4. (left to right) First plot: estimation results by CSE when Mb. Each flow is represented by a point in the plot, whose -coordinate is the true flow
size and -coordinate is the estimated flow size . The equality line, , is also shown for reference. An estimation is more accurate if the point is closer to
the equality line. Second plot: 95% confidence intervals for the estimations made by CSE when Mb. The width of each vertical bar shows the size of the
confidence interval at a certain flow size (which is the -coordinate of the bar). The -coordinate of the middle point of each bar shows the mean estimation for
all flows of that size. Intuitively, the estimation is more accurate if the confidence interval is smaller, and the middle point is closer to the equality line. Third plot:
estimation results by MLM when Mb. Fourth plot: 95% confidence intervals for the estimations made by MLM when Mb. In these experiments,

M.

TABLE I
NUMBER OF MEMORY ACCESSES AND NUMBER OF HASH COMPUTATIONS

PER PACKET

per-packet processing time, memory overhead, and estimation
accuracy.
The experiments use a network traffic trace obtained from the

main gateway of our campus. We perform experiments on var-
ious different types of flows, such as per-source flows, per-desti-
nation flows, per-source/destination flows, and TCP flows. They
all lead to the same conclusions. Without losing generality, we
choose TCP flows for presentation. The trace contains about
68 million TCP flows and 750 million packets. In each mea-
surement period, 10 million packets are processed; it typically
covers slightly more than 1 million flows.

A. Processing Time

The processing time is mainly determined by the number
of memory accesses and the number of hash computations
per packet. Table I presents the comparison. CSM or MLM
performs two memory accesses and one hash computation for
each packet. CB incurs three times the overhead. It performs
six memory accesses and three hash computations for each
packet at the first counter level, and in the worst case makes
six additional memory accesses and three additional hash
computations at the second level. MRSCBF has nine filters.
The th filter uses hash functions and encodes packets with
a sampling probability , where

, and . When encoding a
packet, the th filter performs hash computations and sets
bits. Hence, the total number of memory accesses (or hash

computations) per packet for all filters is .

B. Memory Overhead and Estimation Accuracy

We study the estimation accuracies of CSM and MLM under
different levels of memory availability. In each measurement

period, 10M packets are processed, i.e., M, which trans-
lates into about 8 s for an OC-192 link ( Gb/s) or about 2 s
for an OC-768 link ( Gb/s) with an average packet size of
1000 B. The memory allocated to this particular measure-
ment function is varied from 2 Mb ( bits) to 8 Mb. The
counter length and the number of counters are determined
based on (28). The size of each storage vector is 50.
When Mb, the experimental results are presented in

Fig. 4. The first plot from the left shows the estimation results
by CSM for one measurement period; the results for other mea-
surement periods are very similar. Each flow is represented by
a point in the plot, whose -coordinate is the true flow size
and -coordinate is the estimated flow size . The equality line,

, is also shown for reference. An estimation is more accu-
rate if the point is closer to the equality line.
The second plot presents the 95% confidence intervals for the

estimations made by CSM. The width of each vertical bar shows
the size of the confidence interval at a certain flow size (which is
the -coordinate of the bar). The middle point of each bar shows
the mean estimation for all flows of that size. Intuitively, the
estimation is more accurate if the confidence interval is smaller,
and the middle point is closer to the equality line.
The third plot shows the estimation results by MLM, and the

fourth plot shows the 95% confidence intervals for the estima-
tions made by MLM. Clearly, MLM achieves better accuracy
than CSM. The estimation accuracy shown in Fig. 4 is achieved
with a memory of slightly less than 2 bits per flow,
We can improve the estimation accuracy of CSM or MLM

by using more memory. We increase to 4 Mb and repeat the
above experiments. The results are shown in Fig. 5. We then in-
crease to 8 Mb and repeat the above experiments. The results
are shown in Fig. 6. The accuracy clearly improves as the con-
fidence intervals shrink when becomes larger.
We repeat the same experiments on CB, whose parameters are

selected according to [18]. The results are presented in Fig. 7.
The first plot shows that CB totally fails to produce any mean-
ingful results when the available memory is too small:
Mb, which translates into less than 2 bits per flow. In fact,

its algorithm cannot converge, but instead produce oscillating
results. We have to artificially stop the algorithm after a very
long time. The second plot shows that CB works well when

Mb. The algorithm still cannot converge by itself, even
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Fig. 5. (left to right) First plot: estimation results by CSM when Mb. Second plot: 95% confidence intervals for the estimations made by CSM when
Mb. Third plot: estimation results by MLMwhen Mb. Fourth plot: 95% confidence intervals for the estimations made by MLM when Mb.

See the caption of Fig. 4 for more explanation. In these experiments, M.

Fig. 6. (left to right) First plot: estimation results by CSM when Mb. Second plot: 95% confidence intervals for the estimations made by CSM when
Mb. Third plot: estimation results by MLMwhen Mb. Fourth plot: 95% confidence intervals for the estimations made by MLM when Mb.

See the caption of Fig. 4 for more explanation. In these experiments, M.

Fig. 7. Left plot: estimation results by CB when Mb. Middle plot: estimation results by CB when Mb. Right plot: estimation results by CB when
Mb.

though it can produce very good results whenwe artificially stop
it after a long time without observing any further improvement
in the results. It can be seen that the results carry a small posi-
tive bias because most points are on one side of the equality line.
The third plot shows that CB is able to return the exact sizes for
most flows when the memory is Mb.
Combining the results in Table I, we draw the following

conclusion: 1) In practice, we should choose CSM/MLM if the
requirement is to handle high measurement throughput (which
means low per-packet processing time) or if the available
memory is too small such that CB does not work, while rela-
tively coarse estimation is acceptable. 2) We should choose CB
if the processing time is less of a concern, sufficient memory is
available, and the exact flow sizes are required.
We also run MRSCBF under different levels of memory

availability. We begin with Mb. CSM or MLM works
very well with this memory size (Fig. 6). The performance of
MRSCBF is shown in the first plot of Fig. 8. There are some
very large estimated sizes. To control the scale in the vertical
axis, we artificially set any estimation beyond 2800 to be

2800. The results demonstrate that MRSCBF totally fails when
Mb. The performance of MRSCBF improves when

we increase the memory. The results when Mb are
shown in the second plot.1 In the third plot, when we further
increase to 80 Mb,2 no obvious improvement is observed
when comparing the second plot. A final note is that the original
paper of MRSCBF uses log scale in their presentation. The
third plot in Fig. 8 will appear as the fourth plot in log scale.
Clearly, the bitmap-based MRSCBF performs worse than

CB, CSM or MLM. To measure flow sizes, counters are supe-
rior than bitmaps.

X. EXTENSION OF ESTIMATION RANGE

We set the upper bound on the flow size that CSM and MLM
can estimate in Section IX to 2500. However, in today’s high-
speed networks, the sizes of some flows are much larger than

1At the end of each measurement period, about half of the bits in the filters
of MRSCBF are set to ones.
2At the end of each measurement period, less than half of the bits in the filters

of MRSCBF are set to ones.
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Fig. 8. (left to right) First plot: estimation results by MRSCBF when Mb. Second plot: estimation results by MRSCBF when Mb. Third plot:
estimation results by MRSCBF when Mb. Fourth plot: estimation results in logarithmic scale by MRSCBF when Mb.

Fig. 9. (left to right) First plot: estimation results by MLM when . Second plot: estimation results by MLM when . Third plot: estimation results by
MLM when . Fourth plot: estimation results by MLM when . In these experiments, M, Mb.

2500. In order to extend the estimation range to cover these
large flows, we propose four approaches that increase the es-
timation upper bound, and we present extensive experimental
results to demonstrate their effectiveness. Since MLM gener-
ally performs better than CSE, we only discuss how to extend
the estimation range of MLM. CSE can be easily enhanced by
similar approaches.
According to Section IV, each flow is assigned a unique

storage vector. A flow’s storage vector consists of counters,
and each counter has bits. Therefore, the maximum number of
packets that the storage vector can represent is . If
we increase by one, the number of packets that the vector can
represent will be doubled. Similarly, if we increase by a certain
factor, the number of packets that the vector can represent will
be increased by the same factor. Based on these observations,
we extend the estimation range of MLM by increasing the value
of and , respectively. In addition, we add a sampling module
to MLM and consider hybrid SRAM/DRAM implementation
to extend the estimation range.

A. Increasing Counter Size

Our first approach to extend the estimation range is to en-
large the counter size . We repeat the same experiment on
MLM presented in the third plot of Fig. 5 (Section IX-B), where

Mb, , and M. This time, instead of
computing from (28), we vary its value from 6 to 9. The new
experimental results are shown in Fig. 9. In the first plot, the
maximum flow size that MLM can estimate is about 1400 when

. In the second plot, where , the maximum flow
size is about 2800, which is twice of the maximum flow size
that the first plot can achieve. When is set to 8, the third plot
shows that the estimation range of MLM is further extended.
The fourth plot shows that, when , the maximum flow
size that MLM can estimate does not increase any more when

Fig. 10. Left plot: the estimation bias in the experimental results shown in
Fig. 9. It is measured as with respect to . Right plot: the standard

deviation of the experimental results in Fig. 9. It is measured as .

compared to the third plot, which we will explain shortly. The
estimation accuracy of the above experiments is presented in
Fig. 10, where the first plot shows the estimation bias and the
second plot shows the standard deviation of the experimental
results in Fig. 9. Generally speaking, both bias and standard de-
viation increase slightly when increases.
Since flows share counters in MLM, the size information of

one flow in a counter is the noise to other flows that share the
same counter. When the amount of memory allocated to MLM
is fixed ( Mb in these experiments), a larger value for
will result in a smaller value for , i.e., the total number of
counters is reduced. Hence, each counter has to be shared by
more flows, and the average number of packets stored in each
counter will increase. That means heavier noise among flows,
which degrades the estimation accuracy, as is demonstrated by
Fig. 10. Moreover, although a counter with a larger size can
keep track of a larger number of packets, since it also carries
more noise, MLM has to substract more noise from the counter
value during the estimation process. As a result, the estimation
range cannot be extended indefinitely by simply increasing ,
which explains the fact that the maximum flow size that MLM
can estimate does not increase when reaches 9 in Fig. 9.



1632 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 5, OCTOBER 2012

Fig. 11. (left to right) First plot: estimation results by MLM when . Second plot: estimation results by MLM when . Third plot: estimation results
by MLM when . Fourth plot: estimation results by MLM when . In these experiments, M, Mb.

Fig. 12. Left plot: the estimation bias in the experimental results shown in
Fig. 11. It is measured as with respect to . Right plot: the standard

deviation of the experimental results in Fig. 9. It is measured as .

B. Increasing Storage Vector Size

Our second approach for extending the estimation range is to
increase the storage vector size . We repeat the experiments in
Section X-A for MLM with Mb, , and M.
We vary from 50 to 1000. Fig. 11 presents the experimental
results. The first plot shows that the maximum flow size that
MLM can estimate is about 5800 when . As we increase
the value of , MLM can estimate increasingly larger flow sizes.
However, when becomes too large, estimation accuracy will
degrade, which is evident in the fourth plot. The reason is that
each flow shares too many counters with others, which results
in excessive noise in the counters and consequently introduce
inaccuracy in the estimation process.
The estimation accuracy of the above experiments is pre-

sented in Fig. 12, where the first plot shows the estimation bias
and the second plot shows the standard deviation of the exper-
imental results in Fig. 11. Generally speaking, both bias and
standard deviation increase slightly when increases. Clearly,
the value of should not be chosen too large (such as )
in order to prevent estimation accuracy to degrade significantly.

C. Employing Sampling Module

In our third approach, we add a sampling module to MLM to
enlarge the estimation range. The sampling technique has been
widely used in network measurement [1], [8], [10], [11], [13],
[27], [28], [38]. We show that it also works for MLM. Let
be the sampling probability. For each packet that the router re-
ceives in the data encoding phase, the router generates a random
number in a range . If , the router processes
the packet as we describe in Section IV. Otherwise, it ignores
the packet without encoding it in the counter array. In the data
decoding phase, the estimated flow size should be , where

is computed from (19). The estimation range is expanded by a
factor of .
We again repeat the experiments in the previous sections for

MLM with Mb, , and M. The value
of is computed from (28). This time, we introduce a sampling
probability and varies its value. Fig. 13 presents the experi-
mental results of MLM with % % %, and 2%, re-
spectively. It demonstrates that when the sampling probability
decreases, the estimation range increases. However, it comes
with a penalty on estimation accuracy. Fig. 14 shows the esti-
mation bias and standard deviation of the estimation results in
Fig. 13. If the sampling probability is not decreased too small,
e.g., when %, the increase in bias and standard deviation
is insignificant. However, if the sampling probability becomes
too small such as 2%, the degradation in estimation accuracy
also becomes noticeable.

D. Hybrid SRAM/DRAM Design

Can we extend the estimation range without any limitation
and do so without any degradation in estimation accuracy? This
will require a hybrid SRAM/DRAM design. In SRAM, we still
choose the value of based on (28). The limited size of each
counter means that a counter may be overflowed during the data
encoding phase even though the chance for this to happen is very
small (Section VII). To totally eliminate the impact of counter
overflow, we keep another array of counters in DRAM, each of
which has a sufficient number of bits. The counters in DRAM
are one-to-one mapped to the counters in SRAM. Initially, all
counters in SRAM and DRAM are set to zero. When a counter
in SRAM is overflowed, it is reset to zero and the corresponding
counter in DRAM is incremented by one. During offline data
analysis, the counter values are set based on both SRAM and
DRAM data. For example, when , a counter in SRAM
can only store the information of 127 packets, when
the 128th packet comes, it increases the corresponding counter
in DRAM by 1 and reset the current counter to zero. Because
overflow happens only to a small fraction of SRAM counters
and a DRAM access is made only after an overflowed SRAM
counter is accessed times, the overall overhead of DRAM
access is very small.

XI. CONCLUSION

Per-flow traffic measurement provides real-world data for a
variety of applications on accounting and billing, anomaly de-
tection, and traffic engineering. Current online data collection
methods cannot meet the requirements of being both fast and
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Fig. 13. (left to right) First plot: estimation results by MLM when %. Second plot: estimation results by MLM when %. Third plot: estimation
results by MLM when %. Fourth plot: estimation results by MLM when %. In these experiments, M, Mb.

Fig. 14. Left plot: the estimation bias in the experimental results shown in
Fig. 13. It is measured as with respect to . Right plot: the standard

deviation of the experimental results in Fig. 13. It is measured as .

compact. This paper proposes a novel data encoding/decoding
scheme, which mixes per-flow information randomly in a tight
SRAM space for compactness. Its online operation only incurs a
small overhead of one hash computation and one counter update
per packet. Two offline statistical methods—the counter sum es-
timation and the maximum likelihood estimation—are used to
extract per-flow sizes from the mixed data structures with good
accuracy. Due to its fundamentally different design philosophy,
the new measurement function is able to work in a tight space
where exact measurement is no longer possible, and it does so
with the minimal number of memory accesses per packet.
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