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ABSTRACT

Comparing with the classical barcode system, RFID extends
the operational distance from inches to a number of feet
(passive RFID tags) or even hundreds of feet (active RFID
tags). Their wireless transmission, processing and storage
capabilities enable them to support the full automation of
many inventory management functions in the industry. This
paper studies the practically important problem of monitor-
ing a large set of RFID tags and identifying the missing ones
— the objects that the missing tags are associated with are
likely to be missing, too. This monitoring function may need
to be executed frequently and therefore should be made ef-
ficient in terms of execution time, in order to avoid disrup-
tion of normal inventory operations. Based on probabilistic
methods, we design a series of missing-tag identification pro-
tocols that employ novel techniques to reduce the execution
time. Our best protocol reduces the time for detecting the
missing tags by 88.9% or more, when comparing with exist-
ing protocols.

Categories and Subject Descriptors

C.2.1 [Networks Architecture and Design]: Wireless
Communication

General Terms

Algorithms, Performance

Keywords

RFID, Missing-tag Detection and Identification

1. INTRODUCTION
RFID (radio-frequency identification) tags are becoming ubiq-
uitously available in warehouse management, object track-
ing and inventory control. Researchers have been actively
studying RFID systems as an emerging pervasive computing
platform [1, 2], which helps create a multi-billion dollar mar-
ket [3]. Comparing with the classical barcode system, RFID
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extends the operational distance from inches to a number
of feet (passive RFID tags) or even hundreds of feet (active
tags). The passive tags are most common today. However,
the long operational range, together with their storage and
processing capabilities, make the active tags ideal for au-
tomating inventory management and object tracking in a
large area. For example, imagine a large Australian farm
with tens of thousands of goats. Each night after the herd
returns to the barn, the workers check whether some goats
are missing (due to broken fence, predator attack, sickness
or other reasons). Manual counting is laborious. Electronic
counting as the goats rush through the gate is either slow
(one goat at a time) or unreliable (when many goats simul-
taneously pass the wide gate). If each goat is attached with
a tag, then a RFID reader will automatically find out (1)
whether there is a missing goat and (2) if there is, which
goat is missing.

Important applications also exist in other settings such as
warehouses, hospitals, and prisons. In a large warehouse,
the manager wants to know if any merchandize (such as
apparel, shoes, pallets, cases, appliances, electronics, etc.) is
missing due to theft, administrative error and vendor fraud.
A fully automated counting procedure that can be frequently
performed will be greatly helpful. Similar situation arises in
a large hospital where tens of thousands of equipment and
other objects need to be tracked.

Research in RFID technologies has made significant ad-
vance in recent years. Much prior work concentrates on the
tag-collection problem, which is to collect the IDs of a large
number of tags as quickly as possible. The main challenge
is to resolve radio contention when the tags compete for the
same low-bandwidth channel to report their IDs. The solu-
tions fall in two broad categories: ALOHA-based protocols
[4, 5, 6] and tree-based protocols [7, 8, 9]. Other work stud-
ies the tag-estimation problem, which is to use statistical
methods to estimate the number of tags in a large system
[10, 11, 12].

This paper studies the practically important missing-tag
problem, which is to monitor a set of RFID tags and identify
the missing ones. Few research papers have investigated this
problem before. It may appear that, if we are able to collect
the IDs of all tags (i.e., the tag-collection problem), then we
will learn which tags are missing by comparing the collected
IDs with the expected IDs that are stored in a database.
However, collecting a large number of tag IDs by a RFID
reader is a slow process. It is an inefficient overkill if we al-
ready have the IDs in the database. More efficient protocols
can be designed without the expensive operation of reading
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these IDs again from the tags. Can we use the methods
for estimating the number of tags to solve the missing-tag
problem? After all, if some tags are missing, we are likely
to estimate a smaller-than-usual number. However, the es-
timated number is not the exact number of tags currently in
the system. If only one tag is missing, one can hardly make
an assertion based on the estimated number due to statisti-
cal variance. Note that the estimated number can turn out
to be greater than the actual number.

Most related is a recent paper by Tan, Sheng and Li [13],
who designed novel protocols to detect the missing-tag event
with probability α when the number of missing tags exceeds
m, where α and m are two system parameters. However, the
protocols cannot detect the missing-tag event with certainty
(i.e., α = 100%) and more importantly, they cannot tell
which tags are missing. In addition, when α is close to one
and m is small (such as 1 or 2), the overhead and detection
time will be both large.

We propose a series of efficient protocols that not only de-
tect the missing-tag event with certainty but also tell exactly
which tags (and the associated objects such as the goats in
the Australian farm example) are missing. The most im-
portant performance criterion is to minimize the detection
time. During the protocol execution, if normal operations
— such as moving goods out of a warehouse — remove some
tags from the system and the tag IDs in the database are
not timely updated, a false alarm will be triggered. To alle-
viate such confusion to the warehouse management, we shall
minimize the protocol execution time in order to reduce the
chance for the false alarms to occur.

Our protocol design follows two general guidelines to achieve
time efficiency: One is to reduce radio collision, such that the
information reported from the tags is not wasted. The other
is for the tags to report their presence by each transmitting a
bit, instead of a whole tag ID. To realize them, we develop a
number of interesting techniques that can progressively add
on top of one another to improve the system performance.
In order to quantify the effectiveness of each technique, we
design a series of missing-tag detection protocols, each of
which adds a new technique. More specifically, the base-
line protocol eliminates the transmission contention among
the tags and reduces the amount of information to be trans-
mitted from the tags. The two-phase protocol significantly
reduces the number of tag IDs that need to be transmit-
ted during the detection process. A novel technique called
tag removal is designed to further enhance the performance
of the two-phase protocol. Our three-phase protocol with
collision-sensitive tag removal utilizes collision slots to iden-
tify the tags that are present and the ones that are missing.
Finally, the iterative ID-free protocol uses a probabilistic ap-
proach to resolve the collision slots and it does not require
any tag ID to be transmitted (either by the tags or by the
RFID reader).

When comparing with the baseline protocol, our best pro-
tocol reduces the execution time by 69% if the parameters
in the Philips I-Code system [14] are used. When compar-
ing with the tag-collection protocols that are adapted for
the missing-tag problem, our best protocol reduces the ex-
ecution time by 88.9% or more. We also establish a lower
bound for the minimum time it takes to identify the missing
tags. The execution time of our best protocol is within a
factor 2.2 of the lower bound.

2. SYSTEM MODEL

2.1 Problem and Assumption
Consider a large RFID system of N tags. Each tag car-

ries a unique ID and has the capability of performing cer-
tain computations as well as communicating with the RFID
reader wirelessly. The problem is to design efficient proto-
cols for the reader to exchange necessary information with
the tags in order to identify the missing ones.

The RFID system may use battery-powered active (or
semi-passive) tags that have long transmission ranges, or use
passive tags that are powered by radio waves transmitted by
the reader. In order to support advanced management func-
tions that cover a large area, when passive tags are used,
we expect that a reader array is installed to extend the cov-
erage. When there are multiple synchronized readers, we
logically treat them as one.

We assume that the RFID reader has access to a database
that stores the IDs of all tags. This assumption is necessary
for any missing-tag detection protocol. If we do not have the
IDs of the tags, even after the reader collects the IDs directly
from the tags, we still do not know if any one is missing, let
alone the ones that are missing, because the missing tags do
not send over their information.

This assumption can be easily satisfied if the tag IDs are
read into a database when new objects are moved into the
system and they are removed from the database when the
objects are moved out — this is what a typical inventory
management procedure will do. Even if such information is
lost due to a database failure, we can recover the information
by executing a tag-collection protocol to read the IDs from
the tags. In this case, we will not detect the tags that have
already been lost because we have no way to know their
existence in the first place. However, now that we have the
IDs of the remaining tags, those tags that are missing after
this point of time will be detected, not through the expensive
tag-collection protocol but through more efficient protocols
to be proposed shortly.

2.2 Time Slots
Communication between the reader and the tags is time-

slotted. The reader’s signal will synchronize the clocks of
the tags. In our protocols, the communication is driven by
the reader in a request-and-response pattern, in which the
reader issues a request in a time slot and then zero, one or
more tags respond in the subsequent time slot(s). If no tag
responds in a slot, the slot is said to be empty. If one and
only one tag responds, it is called a singleton slot. If more
than one tag responds, it is a collision slot. More specifically,
if k tags respond where k ≥ 2, it is referred to as a k-collision
slot.

A singleton or collision slot is also called a non-empty
slot. If we only need to determine whether a slot is empty
or non-empty, the tags can use one-bit short responses — ‘0’
(idle carrier) means empty and ‘1’ (busy carrier) means non-
empty. If we need to determine whether a slot is empty/ sin-
gleton/collision, the tags should use multi-bit long responses.
For example, the Philips I-Code system [14] requires 10 bits
to distinguish a singleton slot from a collision slot.

Another way of classifying the time slots is based on their
lengths: tag slots, long-response slots and short-response
slots. The length of a tag slot is denoted as ttag, which
allows the transmission of a tag ID, either from the reader
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to the tags or from a tag to the reader. The length of a
long-response slot is denoted as tl, which allows the trans-
mission of a long response carrying multi-bits information.
The length of a short-response slot is denoted as ts, which
allows the transmission of a short response carrying only one
bit information. Clearly, ts < tl < ttag. To design a time-
efficient protocol, we prefer the use of short-response slots
over long-response slots or the use of long-response slots over
tag slots.

In the numerical examples and the simulation settings of
this paper, we determine the values of ts, tl, and ttag based
on the specification of the Philips I-Code system [14]. Using
the parameters of the Philips I-Code system, it can be shown
that ts = 0.4ms, tl = 0.8ms, and ttag = 2.4ms (for a 96-bit
tag ID) after the required waiting times (e.g., gap between
transmissions) are included.

3. MOTIVATION

3.1 Prior Art
Identifying the missing tags is an under-investigated prob-

lem that has practical importance. As we have discussed in
the introduction, only the existing tag-collection protocols
can be adapted to solve this problem. Although they are
not specifically designed for the purpose of identifying the
missing tags, we use them as a performance benchmark to
demonstrate how much a specially designed protocol can
do better. In a tag-collection protocol, due to signal col-
lision, each tag may have to transmit its ID several times
before the RFID reader correctly receives the ID. For ex-
ample, in ALOHA-based protocols such as DFSA [15] and
EDFSA [16], each tag transmits its ID for 2.72 times on
average, which is the theoretically optimal value. After a
tag transmits its ID, it must wait for the acknowledgement
from the reader. Because the acknowledgement is a binary
response (‘1’ for correct receipt and ‘0’ otherwise), it can be
completed in a short-response slot. Therefore, the expected
protocol execution time is 2.72N(ttag + ts).

3.2 Lower Bound on Minimum Execution Time
We give a lower bound on the minimum execution time

that any protocol can possibly achieve. Each tag has to
transmit at least a short response (one bit) to announce its
presence in order to avoid being classified as a missing tag
by the RFID reader. Even if the reader does not transmit
anything, the time it takes the tags to transmit their short
responses is Nts, which is the best that any protocol can
achieve. It is unlikely that this lower is achievable because
the reader has to transmit in order to coordinate the protocol
execution.

3.3 Design Guidelines
To reduce the execution time 2.72N(ttag +ts) towards the

lower bound Nts, our protocol design follows two general
guidelines. First, we should reduce radio collision, such that
each tag transmits once instead of multiple times. By doing
so, we can remove the constant factor 2.72 from the time
complexity. Second, we should avoid transmitting the ID
tags, each of which takes ttag. Clever protocol design may
be able to replace an ID transmission with a short response,
which takes much shorter time ts. Moreover, if the tags
do not transmit their IDs, the acknowledgements from the
RFID readers can also be removed. As we will demonstrate

in the next section, there are various ways to partially realize
the above goals. They build on top of one another to push
the performance increasingly closer to the lower bound.

4. MISSING-TAG DETECTION PROTOCOLS
In this section, we propose five new protocols for detecting

the missing tags in a large RFID system.

4.1 Baseline Protocol
We observe that, since the RFID reader has access to the

database of tag IDs, it does not have to read such informa-
tion directly from the tags. Instead, it can broadcast these
IDs one after another. After it transmits an ID, it waits
for a short response from the tag that carries the ID. If it
receives the response, the tag must be in the system; oth-
erwise, the tag is missing. The verification of each tag’s
existence takes ttag + ts, and the total execution time is
N(ttag + ts). This is called the baseline protocol. Compar-
ing with the tag-collection protocols, it significantly reduces
the execution time by eliminating the contention among the
tags.

4.2 Two-Phase Protocol (TPP)
We propose a two-phase protocol (TPP) to reduce the

number of tag IDs that the RFID reader has to transmit.
The protocol consists of two phases: a frame phase and a
polling phase. The frame phase verifies the presence for a
majority of the tags without any ID transmission. At the
beginning of this phase, the RFID reader transmits a request
〈r, f〉, where r is a random number and f is the frame size.
The frame consists of f short-response time slots right after
the request. Each tag is pseudo-randomly mapped to a slot
at index H(id, r), where id is the tag’s ID and H is a hash
function whose range is [0..f −1]. The tag transmits a short
response at that slot. Because the reader knows the IDs of all
tags, it knows which slot each tag is supposed to respond.
Hence, it knows the locations of the empty, singleton and
collision slots. If a slot is supposed to be singleton but the
reader finds it to be empty, then the tag that is mapped to
the slot must be missing. The frame phase can verify the
existence of all tags that are mapped to the singleton slots.
However, it cannot verify the existence of the tags that are
mapped to the collision slots.

There are many efficient hash functions in the literature.
In order to keep the tag’s circuit simple, its hash value may
be derived from a pool of pre-stored random bits: We use
an offline random number generator with the ID of a tag
as seed to generate a string of 200 random bits, which are
then stored in the tag. (Note that the random number gen-
erator is not executed by the tag.) The bits form a logical
ring. H(id, r) returns a certain number of bits after the rth
bit in the ring. 200 random bits provide 200 different hash
values, which are sufficient for our purpose considering that
the next three protocols require each tag to perform only
one hash, and our final protocol requires each tag to per-
form several hashes on average. The hash value is no more
than 17 bits when the system has 50,000 tags. Even though
hashing based on 200 random bits works well in our simula-
tions, the above hash design does not place any restriction
on the number of random bits, and a number larger than
200 can be chosen when necessary.

The polling phase performs the baseline protocol on the
tags that are mapped to the collision slots in the frame
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Figure 1: Execution time of TPP with respect to
the frame size f . (∗10, 000) means that the numbers
along the x axis should be multiplied by 10,000.

phase. The reader broadcasts their IDs one after another.
Upon receiving an ID, the tag that carries the same ID trans-
mits a short response, allowing the reader to learn its pres-
ence.

Next, we show how to set the value of the protocol pa-
rameter f . Our goal is to find the optimal value of f that
minimizes the expected protocol execution time. The exe-
cution time of TPP, denoted as T1, is given below:

T1 = (ttag + ts) × N1 + f × ts,

where N1 is the number of tags mapped to the collision slots.
N1 is a random variable whose distribution is dependent on
the value of f . So is T1.

E(T1) = (ttag + ts) × E(N1) + f × ts (1)

Consider an arbitrary slot in the frame. The probability for
exactly i tags to be mapped to the slot is pi =

(

N

i

)

( 1
f
)i(1 −

1
f
)N−i. Under the condition that this is a collision slot (i.e.,

i ≥ 2), the expected number of tags that are mapped to

this slot is
N
∑

i=2

ipi. There are f slots in the frame. Hence,

the expected number of tags mapped to all collision slots,

E(N1), is f
N
∑

i=2

ipi. Therefore, we have

E(N1) = f
N
∑

i=2

i

(

N

i

)

(
1

f
)i(1 −

1

f
)N−i

= N − N(1 −
1

f
)N−1

≈ N − N · exp{−
N − 1

f
} as N, f → ∞. (2)

From (1) and (2), we know that E(T1) is a function of f .
To compute the minimum value of E(T1), we let the first
derivative of E(T1) be zero.

dE(T1)

df
= (ttag + ts) ×

dE(N1)

df
+ ts = 0, (3)

where dE(N1)
df

can be derived from (2) as follows:

dE(N1)

df
≈

−N(N − 1)

f2
· exp{−

N − 1

f
}. (4)

We find the optimal frame size f that minimizes E(T1) by
solving (3) numerically. For example, when N = 50, 000

(imagining a large warehouse with 50,000 cell phones or
a military base storing 50,000 guns and ammunition pack-
ages), Figure 1 shows the value of E(T1) with respect to f .
The curve is calculated based on (1) and (2). The optimal
frame size computed from (3) is 104,028, and the minimum
execution time of TPP is 95.04 seconds.

4.3 Two-Phase Protocol with Tag Removal
(TPP/TR)

TPP can be further improved. Suppose two tags, x and
y, are mapped to a collision slot in the frame phase. When
the reader detects the slot is non-empty, it cannot determine
whether both tags are present or only one of them is present.
Hence, it has to broadcast both IDs in the polling phase.
This approach is inefficient because the information carried
in the collision slot is totally unused. To make the collision
slot useful, we shall turn it into a singleton slot by removing
one of the two tags from the frame phase. If we remove x
from the frame phase (so that it does not transmit any short
response), y has a singleton slot and thus its presence can
be verified. In the polling phase, we only need to broadcast
the ID of x (instead of the IDs of both x and y).

Our third protocol, TPP/TP, also has two phases, but the
polling phase goes before the frame phase. In the polling
phase, a tag removal procedure is invoked to determine the
set S of tags that will not participate in the frame phase.
In this procedure, the reader first maps the tags to the slots
as what TPP does. For each k-collision slot, it randomly
removes k − 1 tags to turn the slot into a singleton. The
removed tags are inserted in S. After all collision slots are
turned into singletons, the reader broadcasts the IDs of the
tags in S one after another to verify their presence. When
a tag receives its ID, it will transmit a short response and
keep silent in the frame phase. The frame phase is the same
as in TPP except that the tags in S do not participate.

The execution time of TPP/TP, denoted as T2, is

T2 = (ttag + ts) × N2 + f × ts,

where N2 is the number of tags in S. We want to find the
optimal value of f that minimizes the expected value of E2.

E(T2) = (ttag + ts) × E(N2) + f × ts (5)

Following a similar process as we derive E(N1) in the pre-
vious subsection, we can derive E(N2) as a function of f .

E(N2) = f

N
∑

i=2

(i − 1)

(

N

i

)

(
1

f
)i(1 −

1

f
)N−i (6)

We make the following simplification:

f

N
∑

i=2

i
(N

i

)

(
1

f
)i(1 −

1

f
)N−i = N − N(1 −

1

f
)N−1 (7)

and

N
∑

i=2

(N

i

)

(
1

f
)i(1 −

1

f
)N−i = 1 − (1 −

1

f
)N −

N

f
(1 −

1

f
)N−1.

(8)

Applying (7) and (8) to (6), we have

E(N2) = N

[

1 − (1 −
1

f
)N−1

]

− f

[

1 − (1 −
1

f
)N −

N

f
(1 −

1

f
)N−1

]

= N − f + f(1 −
1

f
)N ≈ N − f + f · exp{−

N

f
}. (9)
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Figure 2: Execution time of TPP/TR with respect
of the frame size f .

According to (5) and (9), E(T2) is a function of f . Fig-
ure 2 shows the value of E(T2) with respect to f when
N = 50, 000. To compute the minimum value of E(T2),
we let the first derivative of E(T2) be zero.

dE(T2)

df
= (ttag + ts) ×

dE(N2)

df
+ ts = 0, (10)

where dE(N2)
df

can be derived from (9) as follows:

dE(N2)

df
≈ −1 + exp{−

N

f
} +

N

f
· exp{−

N

f
}. (11)

Solving (10) numerically, we can find the optimal frame size
f that minimizes E(T2). For example, the optimal frame
size in Figure 2 is 75,479.

4.4 Three-Phase Protocol with Collision
Sensitive Tag Removal (TPP/CSTR)

To make further improvement on TPP/TR, we observe
that when f is reasonably large, most collision slots are 2-
collision slots. Consider an arbitrary 2-collision slot to which
two tags are mapped. If the tags transmit short responses,
the reader cannot distinguish the following two cases: (1)
both tags are present and (2) only one tag is present. That
is because in either case the reader detects the same non-
empty slot. However, if the tags transmit long responses, the
reader will observe a collision slot if both tags are present,
and it will observe a singleton slot if only one tag is present.
Hence, observing an expected collision slot confirms that
both tags are not missing, whereas observing an unexpected
singleton slot means one of the tags is missing (but we do
not know which one is missing). If an expected collision slot
turns out to be empty, then both tags are missing.

The above idea leads to our fourth protocol, TPP/CSTR,
which has three phases: a polling phase, a frame phase, and
then another polling phase. At the beginning of the first
polling phase, TPP/CSTR executes a different tag removal
procedure: The reader maps the tags to the slots in the same
way as TPP does. For each k-collision slot with k ≥ 3, it
randomly removes k−2 tags to turn the slot into a 2-collision
slot. The removed tags are inserted in S. After all collision
slots are turned into 2-collision slots, the reader broadcasts
the IDs of the tags in S one after another to verify their
presence. When a tag receives its ID, it will transmit a
short response and keep silent in the frame phase.

In the frame phase, the tags that are not in S transmit

long responses. The reader records the slots that are ex-
pected to be 2-collision slots but turn out to be singletons.
Only the tags that are mapped to these slots cannot be ver-
ified. Hence, in the second polling phase that follows the
frame phase, the reader broadcasts the IDs of these tags to
verify their presence.

The execution time of TPP/CSTR is given below.

T3 = (ttag + ts) × (N3 + M) + f × tl,

where N3 is the number of tags whose IDs are broadcast in
the first polling phase and M is the number of tags whose
IDs are broadcast in the second polling phase. Let L be the
number of missing tags. It is easy to see that

M ≤ 2L, (12)

because each missing tag can produce at most one case in
which an expected 2-collision slot becomes a singleton. In
such a case, the IDs of the two tags mapped to the slot will
be broadcast in the second polling phase. Clearly, when no
tag is missing (i.e., L = 0), the second polling phase does
not exist because M = 0.

Since M is unknown, the reader cannot determine the
optimal value of f that minimizes E(T3). Instead, it deter-
mines the optimal value of f that minimizes the execution
time of the first polling phase and the frame phase. This
is reasonable because we expect the missing-tag events are
relatively rare. If the protocol is executed once every hour in
a warehouse and theft happens once in a week, then M = 0
for 167 out 168 executions. For the one execution when
M 6= 0, spending more time is well justified to identify the
lost object.

Let T ′

3 be the combined execution time of the first polling
phase and the frame phase.

T ′

3 = (ttag + ts) × N3 + f × tl

E(T ′

3) = (ttag + ts) × E(N3) + f × tl (13)

Following the procedure of deriving E(N1) in Section 4.2,
we can derive E(N3) as a function of f .

E(N3) = f
N
∑

i=3

(i − 2)

(

N

i

)

(
1

f
)i(1 −

1

f
)N−i

= N − 2f + 2f(1 −
1

f
)N + N(1 −

1

f
)N−1

≈ N − 2f + 2f · exp{−
N

f
} + N · exp{−

N − 1

f
}.

(14)

According to (13) and (14), E(T ′

3) is a function of f . Fig-
ure 3 shows the value of E(T ′

3) with respect to f when
N = 50, 000. To compute the minimum value of E(T ′

3),
we let the first derivative of E(T ′

3) be zero.

dE(T ′

3)

df
= (ttag + tl) ×

dE(N3)

df
+ tl = 0 (15)

where dE(N3)
df

can be derived from (14) as follows:

dE(N3)

df
≈ −2 + 2 · exp{−

N

f
} +

2N

f
· exp{−

N

f
}

+
N(N − 1)

f2
· exp{−

N − 1

f
}. (16)
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Figure 3: Execution time of TPP/CSTR with re-
spect of the frame size f

Solving (15) numerically, we can find the optimal frame size
f that minimizes E(T ′

3). For example, when N = 50, 000,
the optimal frame size is 38,466.

4.5 Iterative ID-free Protocol (IIP)
Transmitting the tag IDs in the polling phase is an ex-

pensive operation. In our final protocol (IIP), we remove
the polling phase all together. IIP iteratively performs the
frame phase. Each frame verifies the presence of a portion of
the tags. It repeats until short responses are received from
all tags that are present. The tags whose responses are not
received must be missing.

Let S be the set of tags whose presence has been verified in
the previous frames. Before a frame begins, the reader maps
the tags not in S to the slots of the frame in the same way
as TPP does. When the reader sends the request 〈r, f〉 to
the tags, it also transmits a pre-frame vector, which consists
of f bits, each indicating the expected state of one slot, ‘0’
for empty or singleton and ‘1’ for collision. Recall that a
tag is mapped to the slot of index H(id, r) in the frame.
Since the reader knows all tags, it has the full knowledge of
which are the collision slots. If a tag learns that it is mapped
to a collision slot (i.e., the bit at index H(id, r) in the pre-
frame vector is ‘1’), it will decide with 50% probability to not
participate in the current frame. More specifically, the tag
performs another hashing H ′(id, r) whose result is either ‘0’
or ‘1’. Only when the hashing result is ‘1’, it will participate
in the current frame by transmitting a short response at slot
H(id, r). Since half of the tags mapped to collision slots
will not participate, it helps resolve some collision slots and
turn them into singletons. Knowing all the IDs, the reader
can also determine which tags will not participate, which
collision slots will be turned into singletons, and which other
tags will respond in those singletons and thus be verified.

After the tags respond in the slots of the frame, the reader
measures the state of the slots and constructs a post-frame
vector, consisting of f bits, each indicating the actual state
of one slot, ‘0’ for empty or collision and ‘1’ for singleton.
The presence of the tags that respond in the singleton slots
is successfully verified, and the reader inserts them into S.
It then transmits the post-frame vector. If a tag sees that
its slot is a singleton (i.e., the bit at index H(id, r) in the
post-frame vector is ‘1’), it will not participate further in
the protocol execution. After transmitting the post-frame
vector, the reader starts the next frame with a reduced size
because there are fewer tags left to respond.

When no tag responds in a frame, the reader will repeat

the same frame with a pre-frame vector of all zeros, which
essentially requires all remaining tags, if there are any, to
respond. If still no tag responds, the protocol terminates.

If the size of a pre-frame or post-frame vector is too long,
the reader divides it into segments of 96 bits (equivalent to
the length of the tag IDs) and transmits each segment in a
time slot of size ttag. Knowing the index H(id, r), each tag
knows from which segment it should look for the information
needed.

In the following, we determine an appropriate size for each
frame. The execution time for a frame of size f is

T4 = 2⌈
f

96
⌉ × ttag + f × ts.

Let N∗ be the number of tags whose presence has not been
verified before the current frame, and Xi be the random
variable for the number of tags that respond in the ith slot
of the frame. Since each of the N∗ tags will randomly choose
a slot to respond, we have

Prob{Xi = k} =

(

N∗

k

)

(
1

f
)k(1 −

1

f
)N∗

−k. (17)

If a slot is a singleton, the corresponding tag can be veri-
fied. If a slot is a k-collision one (k > 1), according to our
protocol, it will be turned into a singleton with probability

(

k

1

)

(
1

2
)1(1 −

1

2
)k−1 = k(

1

2
)k.

Hence, under our protocol, the probability for a slot to be-
come a singleton is

Prob{Xi = 1} +

N∗

∑

k=2

Prob{Xi = k} × k(
1

2
)k

=
(N∗

1

)

(
1

f
)1(1 −

1

f
)N∗

−1 +

N∗

∑

k=2

(N∗

k

)

(
1

f
)k(1 −

1

f
)N∗

−k · k(
1

2
)k

=
N∗

2f

[

(1 −
1

2f
)N∗

−1 + (1 −
1

f
)N∗

−1

]

≈
N∗

2f

[

exp{−
N∗

2f
} + exp{−

N∗

f
}

]

. (18)

There are f slots in the frame, each having the above prob-
ability to be a singleton. Let N ′ be the expected number of
tags whose presence will be verified by the frame. We must
have

N ′ ≈ f ·
N∗

2f

[

exp{−
N∗

2f
} + exp{−

N∗

f
}

]

=
N∗

2

[

exp{−
N∗

2f
} + exp{−

N∗

f
}

]

. (19)

The average time for verifying the presence of one tag is

T4

N ′
≈

2⌈ f

96
⌉ × ttag + f × ts

N∗

2

[

exp{−N∗

2f
} + exp{−N∗

f
}
]

≈
0.9

ρ · [exp{−ρ/2} + exp{−ρ}]
, (20)

where ρ = N∗/f is called the load factor, ts = 0.4ms and
ttag = 2.4ms (based on the parameters in [14]). The average
time spent per tag, T4

N′ , is a function of ρ. Figure 4 shows

the value of T4

N′ with respect to ρ.
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Figure 4: Average time for verifying the presence of
one tag with respect to the load factor ρ

We can minimize T4

N′ by maximizing the denominator of
(20), i.e., ρ · [exp{−ρ/2} + exp{−ρ}]. Using a numerical
method such as bisection search, we obtain the optimal
value ρ = 1.516, such that the average time for verifying
the presence of one tag is minimized to 0.86ms. In order to
achieve a load factor of 1.516, the frame size must be set to
f = N∗/1.516.

It is important to see that T4

N′ only depends on ρ but not
N∗ (which is the number of tags whose presence has not been
verified at the beginning of a frame). Hence, if we choose
the same load factor ρ = 1.516 for all frames, the average
time for verifying the presence of a tag becomes a constant
0.86ms across all frames during the execution of IIP. In this
case, the execution time of the protocol is 0.86ms×N . Recall
that a lower bound for the minimum execution time of any
missing-tag detection protocol is tsN = 0.4ms × N . Hence,
IIP is within a factor of 2.2 from the optimal.

4.6 Correctness and Impact of Imperfect
Channel

If the wireless channel is error-free, all our protocols are
able to identify any missing tag. The reason is that the pres-
ence of a tag can be unambiguously verified either by the
RFID reader explicitly transmitting the tag ID and polling
for the tag’s response, or by implicitly mapping the tag
to a singleton slot in a time frame where the tag can an-
nounce its existence without collision. Our protocols except
for TPP/CSTR do just that. They either assign each tag a
singleton slot, or else explicitly poll for the tag’s response.
The only exceptional case is in TPP/CSTR: For two tags
that are mapped to an expected 2-collision slot, their pres-
ence is verified if the slot turns out to be indeed a collision
slot. This is obviously true because no other tag is mapped
to the slot and if one of the two tags does not respond, there
will be no collision. We omit the detailed correctness proof
for the five protocols due to space limitation.

However, if the channel is not error-free, it can cause false
positives and false negatives. This is not only true for our
protocols but also true for others. For example, suppose a
missing tag is mapped to a singleton slot. The slot is sup-
posed to be empty. However, a false positive may occur if the
RFID reader senses a busy channel due to high noise. Chan-
nel errors can also cause mis-detection in [13] even though
it is not designed to identify each individual missing tag.
Occasional false positives do not impose a serious problem
because a missing-tag detection protocol is executed peri-
odically and a missing tag that is undetected due to a false

positive in one execution round will be detected in a later
round. If the channel error is significant, we can replace
all short-response slots in our protocols with long-response
slots that carry noise-resistent multi-bit checksums of the
tags. Consider a missing tag that is mapped to a single-
ton slot. Suppose the tag sends a 10-bit checksum of its ID
(which is 96 bits for the GEN2 standard). Even when the
slot is non-empty, if the reader does not receive the correct
checksum, it will not confirm the existence of the tag. The
tag must be queried again by the polling phase or, in the
case of IIP, by the subsequent frames.

A false negative occurs when the RFID reader transmits
the ID of a tag to poll for its response, but the transmission
is corrupted by channel error and consequently the tag does
not respond. In this case, the reader believes that the tag,
which is not missing, does not exist. False negatives can also
happen in the prior tag-collection protocols (Section 3.1).
Suppose two tags collide in their ID transmissions. The
negative acknowledgement, a flag of ‘0’, from the reader may
be changed to a positive one, a flag of ‘1’, due to channel
error. As the tags stop transmitting their IDs, the reader
will treat them as missing ones. For all protocols, the false
negatives can be easily handled in the same way: The reader
performs an extra verification step that polls each “missing”
tag to see if it responds.

False positives and false negatives may also happen if tags
are moved in or out of the system during protocol execution.
They are handled by the approaches described above. How-
ever, in order to reduce the false alarms caused by normal in-
ventory operations, we should minimize the execution time.
This is where our protocols enjoy significant advantages, as
the next section will demonstrate through simulations.

5. SIMULATION RESULTS
In this section, we evaluate the efficiency of the baseline

protocol, TPP, TPP/TR, TPP/CSTR and IIP by simula-
tions. We compare our protocols with the state-of-the-art
protocols in the related work. They are the Trusted Reader
Protocol (TRP) [13], the Enhanced Dynamic Framed Slot-
ted ALOHA (EDFSA) [16] and the Binary Tree Protocol
(BTP) [17].

Two performance metrics are used: (1) the execution time
of a protocol before it identifies all missing tags, and (2)
the execution time of a protocol before it detects the first
missing tag. The first performance metric tells us how long
it takes a protocol to identify exactly which tags are missing.
The second metric tells us how long it takes a protocol to
identify the missing-tag event. We run each simulation 100
times with different random seeds and average the results to
produce a data point.

Based on the specification of the Philips I-Code system
[14], after the required waiting times (e.g., gap between
transmissions) are included, a reader needs 0.4ms to de-
tect an empty slot, 0.8ms to detect a collision or a singleton
slot, and 2.4ms to transmit a 96-bit ID. Our protocols except
for TPP/CSTR need only to identify empty and non-empty
slots. TPP/CSTR has to identify empty, singleton and colli-
sion slots. Therefore, the tags in the baseline protocol, TPP,
TPP/TR, IIP and TRP transmit short responses, each tak-
ing ts = 0.4ms and the tags in TPP/CSTR transmit long
responses, each taking tl = 0.8ms. EDFSA and BTP require
the tags to transmit their IDs, each taking ttag = 2.4ms.
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Unless specified otherwise, the default number of missing
tags in the simulations is 1.

We do not simulate channel errors. As we have explained
in Section 4.6, if necessary, the false positives caused by
channel errors can be handled by replacing short-response
slots with long-response slots, which may double the execu-
tion time of our protocols. That however does not change
the basic conclusions of this paper because, even after dou-
bling, our execution times are still far smaller than the times
of other protocols before they take channel errors into ac-
count.

5.1 Time Efficiency
The first set of simulations evaluates the time efficiency of

the protocols. We compare our five protocols with EDFSA
and BTP for the time it takes each of them to identify all
missing tags. TRP [13] is not designed to identify individual
missing tags. Instead, it detects the event that at least one
tag is missing with a certain probability α when the number
of missing tags exceeds m. For this set of simulations, m =
0, and we let α = 95%. Even although TRP does not achieve
what the other protocols do, we include the results of TRP
because it is the only existing work that explicitly deals with
a variant of the missing-tag problem. For EDFSA [16], we
remove its component for estimating the number N of tags
because in our model the reader knows the information of
the tags.

We vary N from 5,000 to 100,000. Table 1 presents the
execution times of the protocols. Our baseline protocol per-
forms much better than TRP, EDFSA and BTP, cutting the
execution time by more than half when comparing with the
best result of these existing protocols. For example, when
N = 50, 000, the time of the baseline protocol is 35.9% of the
time taken by TRP, 36.1% of the time by EDFSA, and 34.7%
of the time by BTP. Our other protocols, TPP, TPP/TP,
TPP/CSTR and IIP, perform increasingly better. The exe-
cution time of IIP is around 30.7% of the time taken by the
baseline protocol.

The ratio between the execution time required by TRP
(EDFSA, BTP) and that by our best protocol IIP is around
9.1 (9.0, 9.4). When N = 50, 000, TRP (EDFSA, BTP)
requires 390.0 (387.8, 404.4) seconds while IIP requires only
43.0 seconds, representing 89.0% (88.9%, 89.4%) reduction
in the execution time.

5.2 Time to Detect the First Missing Tag
The second set of simulations studies the relation between

the number of missing tags and the time to detect the first
missing tag. It takes less time to find out whether some
tag(s) is missing than to actually identify them. This is
also an important function for RFID systems that require a
quick answer on whether the set of tags is intact. For TRP,
α = 100% in this set of simulations.

We set N = 50, 000 and vary the number L of missing
tags from 1 to 50. Note that L = 0 means the set of tags is
intact. Table 2 shows that the detection time of all protocols
except for TRP decreases as L increases. That is because
more missing tags make it easier to detect one of them. The
detection time of TRP is a constant since it requires the
reader to collect the responses from all tags before the de-
tection decision is made. From Table 2, our protocols re-
quire far less time to detect the first missing tag than TRP,
EDFSA and BTP, especially when L is small. For exam-
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Figure 5: Execution time of the second polling phase
in TPP/CSTR with respect to the number of miss-
ing tags when N = 50, 000.

ple, when L = 3, TRP (EDFSA, BTP) requires 390.0 (99.8,
113.9) seconds while our best protocol IIP requires only 12.1
seconds, representing 96.9% (87.9%, 89.5%) reduction in the
execution time. When L = 50, TRP (EDFSA, BTP) re-
quires 390.0 (7.8, 7.2) seconds while our best protocol IIP
requires only 0.8 seconds.

5.3 TPP/CSTR and Number of Missing Tags
Except for TPP/CSTR, the execution times of all other

protocols are largely independent of the number L of miss-
ing tags when they are used to identify the missing tags.
TPP/CSTR consists of three phases: the first polling phase,
the frame phase and the second polling phase. The execu-
tion time of the first polling phase and the frame phase is
also independent of L. However, the execution time of the
second polling phase is dependent on L. In this subsec-
tion, we evaluate the impact of L on the execution time of
TPP/CSTR. Figure 5 shows the execution time of the sec-
ond polling phase in TPP/CSTR with respect to L. The
time increases linearly in L and stays small when L is small.
For example, when N is 50, 000 and L is 100, the execution
time of the second polling phase is just 0.56 seconds, which
is insignificant when comparing with the 52.24 seconds for
the other two phases of the protocol.

6. RELATED WORK
The tag-collection protocols mainly fall into two cate-

gories. One is tree-based [17, 18, 19, 20, 21] and the other is
ALOHA-based [22, 16, 15, 6, 23, 24]. The tree-based proto-
cols organize all IDs in a tree of ID prefixes [17, 18, 19]. Each
in-tree prefix has two child nodes that have one additional
bit, ‘0’ or ‘1’. The tag IDs are leaves of the tree. The RFID
reader walks through the tree. As it reaches an in-tree node,
it queries for tags with the prefix represented by the node.
When multiple tags match the prefix, they will all respond
and cause collision. Then the reader moves to a child node
by extending the prefix with one more bit. If zero or one tag
responds (in the one-tag case, the reader receives an ID), it
moves up in the tree and follows the next branch. Another
type of tree-based protocols tries to balance the tree by let-
ting the tags randomly pick which branches they belong to
[17, 20, 21].

The ALOHA-based protocols work as follows. The reader
first broadcasts the query request. Each tag chooses a time
slot to transmit its ID. If a tag selects a slot that none of
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Table 1: The execution time with respect to N

N
Execution time in seconds

Baseline TPP TPP/TR TPP/CSTR IIP TRP EDFSA BTP
5000 14.0 9.5 6.8 5.2 4.3 39.0 38.6 40.0
10000 28.0 19.0 13.6 10.4 8.6 78.0 77.1 80.8
20000 56.0 38.0 27.1 20.9 17.2 156.0 157.2 162.0
30000 84.0 57.0 40.7 31.3 25.8 234.0 231.9 242.9
40000 112.0 76.0 54.3 41.8 34.4 312.0 311.4 324.2
50000 140.0 95.0 67.8 52.2 43.0 390.0 387.8 404.4
75000 210.0 142.6 101.7 78.35 64.5 585.0 580.7 607.9
100000 280.0 190.1 135.6 104.5 86.0 780.0 776.7 807.8

Table 2: The time to detect the first missing tag with N = 50, 000

L
Execution time in seconds

Baseline TPP TPP/TR TPP/CSTR IIP TRP EDFSA BTP
1 70.4 36.2 43.8 33.4 23.2 390.0 194.8 229.3
2 44.6 23.8 31.0 27.0 15.4 390.0 134.9 131.1
3 39.6 18.8 28.5 22.4 12.1 390.0 99.8 113.9
4 32.2 14.6 25.8 18.8 9.8 390.0 78.2 83.5
5 21.7 9.7 21.8 16.3 7.6 390.0 60.6 56.5
10 13.1 5.6 12.4 11.5 4.0 390.0 34.5 36.4
25 5.6 2.4 5.8 5.4 1.7 390.0 13.3 12.9
50 2.7 1.3 3.0 2.6 0.8 390.0 7.8 7.2

other tags select, it can be successfully identified and will
keep silent for the rest of the process. If multiple tags trans-
mit simultaneously, the responses are garbled due to collision
and retransmissions are required. The process terminates
when all the tags are identified successfully. The enhanced
dynamic framed slotted ALOHA (EDFSA) [16] increases the
identification probability by adjusting the frame size and re-
stricting the number of responding tags in the frame.

The tag estimation [10, 11, 4, 6, 12] is another impor-
tant problem in RFID system. Kodialam and Nandagopal
[10] propose a probabilistic model to estimate the number of
tags. The reader uses slotted ALOHA-protocol and counts
the number of empty and collision slots. Based on the
obtained information, the reader generates the estimation.
The process repeats until the specified accuracy is achieved.
The drawback of the estimators in [10] is the reader should
know approximately the magnitude of the number of tags to
be estimated. The authors design an Enhanced Zero-Based
(EZB) estimator in [11] in order to address the constraint
mentioned above. Qian et. al [12] present the Lottery-
Frame scheme (LoF) for the multiple-reader scenario. By
employing the hash functions with geometric distribution,
the replicate-insensitive estimation protocol achieves high
accuracy with low overhead.

Tan, Sheng and Li [13] design the Trust Reader Protocol
(TRP) to detect the missing-tag event with probability α
when the number of missing tags exceeds m, where α and
m are system parameters. In TRP, the reader broadcasts
a random number r and a frame size f . Based on the re-
ceived random number and its ID, each tag pseudo-randomly
chooses a slot in the frame to reply. A slot is denoted as ‘0’
if no tag replies in the slot. Otherwise it is denoted as ‘1’. In
this way, the reader can generate a bitstring of ‘0’s and ‘1’s
from the reply. Since the reader knows all the IDs as well as

the parameters 〈r, f〉, it is able to determine the resulting
bitstring for an intact set. The reader compares the bitstring
generated from the reply and the bitstring generated from
the records, and will report that the set of tags is not intact
if a mismatch is found. TRP uses probabilistic method to
choose the frame size, which is the smallest value that satis-
fies the system accuracy requirement. However, TRP cannot
detect the missing-tag event with certainty (i.e., α = 100%)
and more importantly, it cannot tell which tags are missing.
Moreover, when α is close to one and m is small (such as 1
or 2), the detection time will be extremely large.

7. CONCLUSION
In this paper, we study the problem of monitoring the set

of tags in a large RFID system and identifying the miss-
ing ones. The solution to this problem has important in-
ventory management applications in large livestock farms,
warehouses, and hospitals. To avoid interfering with other
normal operations, we should minimize the execution time
of the protocol for identifying the missing tags. We pro-
pose five missing-tag detection protocols with increasingly
better time efficiencies. A number of novel techniques are
introduced in the protocols, including hybrid of frame and
polling phases, tag removal, collision-sensitive tag removal,
and probabilistic iterative frame phases. These new tech-
niques achieve far smaller missing-tag detection times than
the existing protocols.
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