
World Wide Web: Internet and Web Information Systems, 7, 241–258, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

On the Performance Regularity of Web Servers

YIBEI LING lingy@research.telcordia.com
Applied Research Laboratories, Telcordia Technologies, One Telcordia Drive, RRC 1A216, Piscataway,
NJ 08854-4157, USA

SHIGANG CHEN sgchen@cise.ufl.edu
Department of Computer Science & Information Science & Engineering, University of Florida, Gainesville,
FL 32611, USA

XIAOLA LIN csxlin@cityu.edu.hk
Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon,
Hong Kong

Abstract

The performance regularity is concerned with the overall performance behavior of a system in the full spectrum
of working area. Such a performance characteristic is generally overlooked and does not receive proper attention.
The aim of this paper is twofold. First, it raises awareness of the importance of the performance regularity
of a Web server. Secondly, it introduces the Gini performance coefficient (GPC) as a scale-invariant metric
for measuring the performance regularity. In this paper, we present the theorems that relate the performance
regularity of a Web server to the GPC, thereby providing a quantitative yardstick that complements the system
capacity metric such as maximum throughput for measuring the system performance. To illustrate the use of the
proposed approach, we calculate the values of GPC for several representative systems that were used in the public
SPECweb96 benchmark study. The results are completely in line with our theoretical analysis.

Keywords: performance regularity, Gini performance coefficient, performance capacity, Lorenz performance
curve

1. Introduction

The World Wide Web (WWW) has exhibited exponential growth over the past several years
and has become the dominant application in both public Internet and corporate intranet en-
vironment. A high-performance Web server is the key to the success of the Web-based
applications. The emerging Web-based services and applications have created unique per-
formance characterization and workload patterns, leading to constant change in system
requirement. Therefore, system capacity planning needs to be frequently reexamined, and
the impact of workload characterized by new services and applications needs to be care-
fully studied, in order to prevent consequences such as performance degradation or even
crashes from happening [3].

Various performance benchmarks have been developed to characterize the various
performance problems stemming from the ever-changing computing environment. The
benchmarks should be defined to reflect the problem-specific domain [4]. For example,



242 LING ET AL.

SPECweb96 suite is a widely-recognized industrial benchmark for evaluating the static
performance capabilities of a Web server [11], measuring the maximum system through-
put in terms of HTTP GET operations/second, while SPECweb99 suite [12] is a more
recent Web server benchmark with a focus on adding dynamic content into the traffic mix,
measuring Web server performance in terms of the maximum number of simultaneous
connections. The recent TCP-W benchmark [13] places emphasis on the activities of a
business oriented transactional web server, and the performance metric used by TCP-W is
the number of web interactions processed per second.

In general, performance metrics defined in standard benchmarks are associated with sys-
tem capacity such as maximum system throughput and maximum number of simultaneous
connections. In addition, there exist aggregate performance metrics such as the harmonic
mean which is used to compute the average performance of computer systems [10] and
parallel processors [5]. As systems are expected to work under normal loads for most of
time, it is very important to understand how well system performs in the full spectrum of
system loads [2], rather than the system performance as measured by system capacity such
as maximum system throughput. The performance regularity of a system, as complemen-
tary to system capacity metric, can be used to describe the overall performance behavior
of a system under normal conditions, depending on the problem-specific domain.

The main interest of this paper is to bring awareness of the importance of the perfor-
mance regularity, and to propose a new performance metric called Gini performance coef-
ficient (GPC hereafter) to quantify the performance regularity. As a measure of the perfor-
mance regularity, GPC is derived from the system performance curve with respect to the
choice of the capacity metric being used. We want to point out that the GPC and capac-
ity metric are two complementary performance metrics, measuring system performance
from different facets: how well a system generally performs and how much load a system
can handle. We formally establish a connection that links the performance regularity of
a system with the corresponding GPC. Using the proposed approach, we measured and
reassessed various representative systems based on the SPECweb96 benchmark suite. The
obtained results are completely in line with our theoretical analysis.

It is known that SPECweb96 suite has been discontinued in favor of the more represen-
tative SPECweb99 suite. The reason that we use experimental results from SPECweb96
is the availability of intermediate data which are essential in evaluating the performance
regularity, as well as the determination of the GPC. The SPECweb96 provides us with a
rather complete picture of how system performs under different work loads, giving us a
unique opportunity to evaluate system performance from a completely different angle.

This work is motivated in part by the observation in SPECweb96 benchmark results that
system performance capacity does not necessarily correlate with its performance regular-
ity, and in part by the need to have a measure to quantify the performance regularity of a
system. We emphasize that the objective of this paper is to characterize the system perfor-
mance regularity, rather than to provide means for accurate benchmarking or identifying
the root cause of system problems.

The remainder of the paper is organized as follows. The concept of system performance
regularity is described in Section 2. Section 3 introduces the Lorenz performance curve
and GPC, and discusses the application of GPC in describing the performance regularity



ON THE PERFORMANCE REGULARITY OF WEB SERVERS 243

of a server, as well as algorithms for comparing the performance regularity of systems
with different system capacities. Section 4 offers an explaination of the practical meaning
of GPC. In Section 5, we present our calculated results based on the performance curves
from various systems reported in [11], and compare the performance regularity of differ-
ent platforms in the context of GPC. Section 6 concludes the paper and highlights our
contribution.

2. Performance regularity vs. system capacity

It is important to make a clear distinction between the system capacity and the performance
regularity of a server: the two closely related but drastically different notions. System ca-
pacity is an outermost limit of system performance with respect to a given performance
metric being used, serving a landmark dividing working area and non-working area. In the
non-working area, a system is unable to provide sustainable throughput and satisfactory
interactive behavior. The performance capacity metric could be selected differently, de-
pending on the choice of problem-specific domain. For instance, the capacity metric used
by SPECweb96 suite [11] is the number of HTTP GET operations/per second, whereas the
one selected by SPECweb99 suite [12] is the number of simultaneous connections. Sys-
tem performance regularity refers to the overall system behavior of a system in its working
area, with its domain being determined by the corresponding system capacity.

It stands to reason that the response time of a system is proportional to system workload
in general [8,9,14], i.e., the response time increases as the inverse of unutilized capac-
ity [6,8]. A lightly loaded system is very likely to generate faster response time than a
heavily loaded one because a high frequency of requests from clients generates a con-
siderable amount of simultaneous processes/threads in the server, incurring an expensive
run-time overhead in context-switching, process/thread synchronization and resource con-
tention which, in turn, causes a slowdown in processing each individual request as a result.

Obtaining system capacity under workload has defied rigorous analysis, and the best so-
lution known so far comes from performance benchmarking. For instance, the maximum
system throughput in SPECweb96 suite [11] is obtained via a benchmarking experiment.
For each load level of requests, the load generators installed on client machines send re-
quests with randomly selected file sizes to the server according to a predetermined pattern,
the average response time of each load level is measured. The workload level is incremen-
tally increased until the server is saturated with the requests and the response time arises
significantly to an unacceptable level.

Given a size distribution of request/response, the maximum throughput of a server is
defined as the highest rate at which the server can process the requests while still meeting
the minimum performance requirements. In other words, the system saturation point is the
value at which the system is out of capacity. There is no formal definition for the system
saturation point. Informally, it can be defined as a performance point at which a small
change in workload results in a relatively large change in response time. The benchmark
specification proposed by Doculabs [9] defines the maximum throughput of a server based
on the end-to-end response time limit of three seconds. Also, in the SPECweb99 specifi-



244 LING ET AL.

cation [12], the maximum number of simultaneous connections of a system is defined as
the number of connections that can be made and sustained at a specified maximum bit rate
with a maximum segment size.

The workload of a server is mainly determined by access frequency and request/response
size. Both the request and response size can be static such as HTML documents or dynam-
ically generated by CGI. When the size distribution of request and response is statistically
stationary (independent of access frequency), the workload of a server is statistically pro-
portional to the access frequency, so does the response time of the server. It means that
although statistical fluctuation in the request/response size might make system abnormal
in a short run, the fluctuation would be smoothed out if long-run measurement is taken.
The warmup period and the length of the experimental period in the industrial benchmark
specifications [6,11,12] and the documentation of Microsoft Web Capacity Analysis Tool
[8,9] are designed to eliminate the impact of short-run statistical fluctuations on the per-
formance results, ensuring unbiased experimental results. For instance, in SPECweb96
specification [11], the default warmup time is set to be as 300 seconds and the default time
duration of measurement is set to be as 600 seconds.

The definition below is given to classify system in terms of the overall performance
behavior.

Definition 1. Suppose the size distribution of request and that of response are statistically
stationary (independent of access frequency), the performance of a system is said to be
regular if the response time of processing a request is statistically non-decreasing as the
access frequency increases. Otherwise, the performance of a system is said to be irregular.

To illustrate the importance of system performance regularity, we start with two exam-
ples reported in SPECweb96 suite as a case study.

The performance curve of a system in the SPECweb96 benchmark suite is represented
by a sequence of data pairs (x1, y1), . . . , (xn, yn), where xi ∈ R is the ith request load
level, and yi ∈ R is the corresponding response time under the request load level xi . The
performance curves depicted in Figures 1 and 2 are the reproduction of SPECweb96 re-
sults of HP 9000/L2000 published in the fourth quarter of 1999 and of Sun Enterprise 250
published in the second quarter of 1999, respectively. It is clear from Figures 1 and 2
that HP 9000/L2000 clearly outperforms Sun Enterprise 250, scoring 15206 ops/s on the
SPECweb96, as opposed to 2624 ops/s by Sun Enterprise 250. On the other hand, Sun
Enterprise 250 performs more regularly than HP 9000/L2000 counterpart: its response
time grows slowly but monotonically with the increase in workload. By contrast, the HP
9000/L2000 exhibits the erratic performance behavior reflected in the apparent anomaly in
its response time and workload relationship. The response time pathologically decreases
with the increase in workload in a wide range: from 1550 ops/s to 10855 ops/s. It is con-
trary to expectations that the response time under system throughput 1550 ops/sec is about
11.5 msec, almost twice of that under the maximum system throughput (7.7 msec for 15206
ops/s), meaning that the system needs more time in processing when it is lightly loaded.
Such a system behavior illustrated in Figure 1 is irregular and abnormal, representing a
sharp departure from our common sense and any theoretical projection.



ON THE PERFORMANCE REGULARITY OF WEB SERVERS 245

Figure 1. Performance curve of HP 9000/L2000 (MTP: maximum throughput).

Figure 2. Performance curve of Sun Enterprise 250 (MTP: maximum throughput).

Although the apparent difference in the performance regularities of the two systems
can be visually perceived by examining the respective performance curves, a quantitative
measure is desirable because of the objectiveness and accuracy, allowing us to critically
evaluate the performance regularity of a server. It needs to point out that the performance
regularity does not receive proper attention and is generally overlooked. Its negligence
is reflected in industrial benchmark reports in which intermediate results are generally
omitted, with one exceptional case in SPECweb96.

The observation on the SPECweb96 benchmark studies suggests that the performance
regularity of a server is independent of its system capacity, representing a distinct facet of
the system performance. A new metric is needed for measuring the performance regularity
of systems because the system capacity metric itself is unable to characterize the system
performance regularity.

It is worth mentioning that the SPECweb96 specification [11] demands that the perfor-
mance curve must consist of a minimum of 10 data points of different load levels, uni-



246 LING ET AL.

formly distributed across the range from zero to the maximum load. The average response
time over repeated tests is used to represent the system performance at each selected system
load. The detailed information refers to SPECweb96 benchmark specification [11].

We emphasize that the evaluation of the performance regularity of a server relies on the
availability of performance curve. In the next section, we will present a metric called GPC
for measuring the performance regularity of a server.

3. A measure for performance regularity

In order to better understand the Gini performance coefficient, a good place to begin with is
to review the Gini coefficient and Lorenz curve used in economics. A measure of inequal-
ity, referred to as Gini coefficient, was proposed by Gini in 1912 [7], and has been widely
used in economics and social sciences for measuring the magnitude of inequality in data
distributions such as wealth and income. The Gini coefficient is based on the Lorenz curve
which is represented by a cumulative frequency curve. The basic idea can be illustrated in
the following example.

Example 1. Consider a population of n individuals, with positive income denoted by a
vector z = (z1, z2, . . . , zn) in ascending order, i.e., z1 � z2 � · · · � zn, we can plot points
(k/n, Sk/Sn), where S0 = 0, Sk = ∑k

i=1 zi , 0 � k � n. Sk represents the sum of the
k lowest incomes in the population. Lorenz curve is then obtained by making piecewise
connection between every pair of adjacent points, including the origin (0, 0) and the end
point (1, 1). Gini coefficient is defined as twice the area between the line of 45 degree and
the Lorenz curve.

It can be easily checked that the Gini coefficient lies between 0 and 1. For an extremely
uneven distribution with the richest possessing all, the Gini coefficient is one, while a per-
fectly uniform distribution with everyone having the same income results in a Gini coeffi-
cient of zero. The Gini coefficient grows in proportion with the magnitude of inequality in
data distribution, and the more uneven the distribution, the larger the Gini coefficient. The
Gini coefficient is scale independent. As a measure of inequality, it could used to measure
and compare the inequality of wealth distribution of countries with distinct GNPs (Gross
National Product). For instance, [1] used the Gini coefficient for comparing household per
capita income for Thailand and Mexico.

Based on the original Gini coefficient, we introduce GPC in connection with the per-
formance regularity of a system. Consider the system performance curve that consists of
n data pairs (x1, y1), . . . , (xn, yn), where (x1, . . . , xn) ∈ Rn represents the vector of sys-
tem throughput in the ascending order (x1 � x2 � · · · � xn), and (y1, . . . , yn) ∈ Rn

represents its corresponding of system response time vector. Notice that xn denotes the
system capacity, and yn represents the response time at system capacity. We construct the
two normalized vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) by the following
transformation:

xi = xi

xn

, yi = yi∑n
k=1 yk

, 1 � i � n, (1)



ON THE PERFORMANCE REGULARITY OF WEB SERVERS 247

where xn and
∑n

k=1 yk are the normalizing factors for the system throughput and the re-
sponse time, respectively. The normalization transformation scales down the x-axis by a
factor of xn which is the maximum system throughput obtained, and scales down the y-
axis by a factor of

∑n
i=1 yi . From the normalized response time vector y, we construct a

vector Y = (Y 1, . . . , Y n), where Y i = ∑i
k=1 yk = ∑i

k=1 yk/
∑n

k=1 yk, 1 � i � n. It
can be verified that xn = Yn = 1. The curve referred to as Lorenz performance curve
(LPC for short) can be constructed by making piecewise connection between every pair of
adjacent points, (0, 0), (x1, Y 1), . . . , (1, 1). With the normalizing transformation, we are
able to map the performance curve of a system into the corresponding LPC. The LPC has
the two salient features, making it distinguished from a traditional Lorenz curve:

1. The traditional Lorenz curve is constructed from one vector, and Lorenz performance
curve is constructed by the two vectors, x and y. There exists the componentwise corre-
spondence between the vectors x and y: the ith component Y i represents the normalized
response time measured when the system throughput is xi .

2. The components in the vector x = (x1, . . . , xn) are arranged in the increasing order,
but may not be uniformly distributed, i.e., xi − xi−1 �= xj − xj−1 for some i �= j .

Note that the components in the vector y may not have an increasing order. The sequence
dependence of the vector Y on the vector x demands that the order of components in the
vector y be fixed when the components in the vector x are determined. As a result, the
term Y k = ∑k

i=1 yi might not necessarily be the sum of k smallest values in y, which
is fundamentally different from example 1. Therefore, traditional Lorenz curve could be
viewed as a special case of the LPC in the sense that all components in the vector y are in
the ascending order. We are now in a position to give the definition of GPC.

Definition 2. Let L(τ) be the Lorenz performance curve defined as a continuous curve
over [0, 1], and I (τ ) be the line of equality (45 degree). The GPC is defined as

GPC = 2
∫ 1

0

(
I (τ ) − L(τ)

)
dτ. (2)

Given a system performance curve, the algorithm for calculating the GPC is given as
follows.

Algorithm 1. Calculating the GPC.
Input: A normalized throughput vector (x1, x2, . . . , xn), a normalized response time vec-
tor (y1, y2, . . . , yn);
Output: Its corresponding GPC.

(1) Y i = ∑i
k=1 yk , 1 � i � n

(2) sum = (x1 · Y 1)/2.0
(3) for i = 2 to n

(4) sum = sum + (xi − xi−1) · (Y i + Y i−1)/2.0
(5) endfor
(6) GPC = 1.0 − 2.0 · sum



248 LING ET AL.

Figure 3. LPC of HP 9000/L2000.

Figure 4. LPC of Sun Enterprise 250.

Throughout the paper, the LPC stands for Lorenz performance curve. In the follow-
ing, we will present theorems illustrating a link between the GPC and the performance
regularity.

As an immediate application of the algorithm, we transform the performance curves of
the HP 9000/L2000 and Sun Enterprise 250 into the corresponding Lorenz performance
curves and calculate the values of GPC. In Figures 3 and 4, the 45 degree line (line of
perfect equality) serves a reference line. The inspection of Figure 4 indicates that Lorenz
performance curve of the HP 9000/L2000 is initially concave, lying above the line of 45
degree, then becomes convex as system throughput approaches a saturation point, making
its curve lying below the line of 45 degree. The presence of concavity in the Lorenz
performance curve makes Gini coefficient small. Overall, the value of GPC is calculated as



ON THE PERFORMANCE REGULARITY OF WEB SERVERS 249

−0.090966, reflecting the erratic overall performance behavior. In contrast, Figure 4 shows
that Sun Enterprise 250 performs regularly in its working area, and the corresponding LPC
is strictly convex, lying below the line of 45 degree. The value of Gini coefficient is
calculated as 0.345027, much greater than that of the HP 9000/L2000.

The calculation results suggest a direct connection between the GPC and the perfor-
mance regularity, indicating that the performance regularity can be quantitatively described
by the GPC. Namely, the GPC of one corresponds to a perfect performance regularity, the
GPC of zero is tantamount to a poor performance regularity, inasmuch as the negative GPC
signifies the presence of erratic behaviors as illustrated in Figure 1. The following theorem
gives a necessary condition that ensures the positiveness of the GPC.

Theorem 1. Let the LPC be constructed by using the normalized vector of system work-
load x = (x1, . . . , xn), and the normalized vector of response time y = (y1, . . . , yn). If∑i

k=1 yk � xi , then GPC is positive.

Proof: Let x0 = 0 and y0 = 0. The Lorenz performance curve is constructed by
making piecewise connection between every pair of adjacent points (xi−1,

∑i−1
k=1 yk), and

(xi ,
∑i

k=1 yk), 1 � i � n. Since
∑i

k=1 yk � xi , for 1 � i � n, all points are lying
under the line of equality (the line of 45 degree). Hence the entire LPC is below the line of
equality. By Definition 2, the GPC is positive. �

The following theorem establishes a link between the performance regularity and the
GPC with respect to the choice of performance metric, serving a pivotal theorem of this
paper. We start with a closely-related definition of the λ-weighted normalized response
time, followed by a lemma and its proof.

Definition 3. Given a workload vector x = {x1, . . . , xn} and the response time vector
y = {y1, . . . , yn}, and the components in the vector x are in the ascending order, i.e.,
x1 � · · · � xn, the λ-weighted normalized response time is defined as

yλ =
n∑

i=1

λiyi =
∑n

i=1 λiyi∑n
i=1 yi

, (3)

where the assignment of weights (λ1, . . . , λn) is determined as λi = 1−(xi + xi−1)/(2xn),
1 � i � n, and x0 = y0 = 0.

It can be verified that the weight sequence λ = (λ1, . . . , λn), constructed from the
workload vector x, is in descending order, i.e., λ1 � λ2 � · · · � λn. The λ-weighted
normalized response time is the sum of weighted normalized response time, with the dual
effect to amplify the contributions from lightly loaded states (y1, y2, . . .) and minimize the
contributions from heavily loaded states (yn, yn−1, . . .). The reason that we use λ-weighted
normalized response time instead of average response time is illustrated in the following
example.



250 LING ET AL.

Table 1. Performance comparison.

System A

x[A] 10 20 30 40 50 60 70 80
y[A] 100 100 1 1 1 1 1 200

System B

x[B] 10 20 30 40 50 60 70 80
y[B] 1 1 1 1 1 100 100 200

Example 2. Consider two systems with the same response time yn at the respective system
capacity xn, the performance data are tabulated in Table 1. Based on Definition 3, the
λ-weighted normalized response time yλ for the system A is calculated as 0.47, and for
the system B is 0.165. The system A is apparently irregular by Definition 1, while the
system B is regular. This is captured by their λ-weighted normalized response times, but
not by the average response times, which are the same.

The following lemma is very useful in simplifying the proof of the main theorem.

Lemma 1. 0 � yλ � 1.

Proof: By Equation (3), the λ-weighted normalized response time can be expressed as
follows:

yλ =
∑n

i=1 λiyi∑n
i=1 yi

� λ1

∑n
i=1 yi∑n
i=1 yi

= λ1 (4)

and

yλ � λn

∑n
i=1 yi∑n
i=1 yi

= λn, (5)

because the weight sequence λ is in the descending order, i.e.,

0 � λn � yλ � λ1 � 1. (6)

Then the lemma is proved. �

We present the main theorem of this paper as follows.

Theorem 2. Gini performance coefficient (GPC) is directly proportional to the overall
performance regularity of a server, with respect to a given response time at system capacity.

Proof: Let x0 = 0 and y0 = 0. It follows by Algorithm 1 that the GPC is expressed as

GPC = 1.0 − 2.0 ·
n∑

i=1

[(
xi − xi−1

)Y i + Y i−1

2

]
. (7)



ON THE PERFORMANCE REGULARITY OF WEB SERVERS 251

Because λi = 1 − (xi + xi−1)/2, 1 � i � n, we have

n∑
i=1

(
xi − xi−1

)(
Y i + Y i−1

)

=
∑n−1

i=1 [(xi+1 − xi−1)
∑i

k=1 yk] + (xn − xn−1)
∑n

k=1 yk∑n
k=1 yk

=
∑n

i=1(2 − xi − xi−1)yi∑n
k=1 yk

= 2

∑n
i=1 λiyi∑n
i=1 yi

= 2yλ. (8)

Therefore, we have

GPC = 1.0 − 2yλ.

The proof is completed. �

Hence, the GPC is linearly related to the λ-weighted normalized response time. It di-
rectly follows Lemma 1 that the value of GPC lies between −1 and 1. Its range is different
from traditional Gini coefficient. Notice that the traditional Lorenz curve is always below
the line of equality. With the respect to the GPC, the sequence dependence of the vector y

upon the vector x, plus the relaxation on the order-preserving property among the compo-
nents in the vector y could move the Lorenz performance curve above the line of 45 degree,
thus the range of GPC is extended from [0, 1] to [−1, 1]. Theorem 2 has established the
intimate relationship that relates the performance behavior (performance regularity) to the
GPC. Such a connection allows us to quantitatively evaluate the performance regularity of
a server.

4. Interpretation of GPC

To address the question of how to interpret the GPC value of a system, we first discuss a
few reference cases.

• For a perfect system whose response time remains near zero and shoots up only when
the workload reaches the system capacity, its GPC will be close to one.

• For a system whose response time remains high for light and heavy workloads, its GPC
will be close to zero.

• For a system whose response time is very high when the workload is near zero, decreases
sharply when the load increases, and rises back up when the load reaches the system
capacity, its GPC will be negative.

Generally speaking, a negative GPC means an “abnormal” system; a non-negative GPC
means a “regular” system. The workload range from zero to the system capacity is called
the working range, in which the segment with relatively low response time is called the



252 LING ET AL.

desirable working range. Among the positive GPCs, a larger value means a larger desirable
working range. For instance, consider two systems with the same capacity, defined as the
workload under which the response time exceeds 3 seconds. Suppose the response time of
the first system is near zero until the workload is 90% of the capacity, and that of the second
system is above 2 seconds after 50% of the capacity. Even though the two have the same
capacity, the first system is apparently better. Its desirable working area is up to 90% of the
capacity, while the desirable working area of the second system is only up to 50%. Given
its mathematical formulation, GPC will catch this difference.

In summary, system capacity should not be the sole metric for comparison. The perfor-
mance regularity in the entire working range should also be compared. The proposed met-
ric (GPC) quantifies this additional comparison. It is an abstraction of the response-time
chart, but more than the chart because it is normalized, which removes the capacity-related
factors; it is quantified, which allows an unambiguous direct comparison; and it is biased in
favor of the low end of the capacity range and consequently captures the desirable working
range under which the system performs best.

Although two systems with the same GPC can behave differently, the general trends
of their performances are likely to be very similar after the capacity factors are removed
by normalization. This is confirmed during our evaluation of real-system data, which is
presented in the next section. If two systems behave vastly different over their working
ranges, their GPC values will also differ greatly. Using Example 2, the GPC for system
A is calculated as 0.06, reflecting the strong irregularity in its response time distribution,
and that for system B is 0.67. The calculated results provide a quantitative description of
their performance regularity differential. The comparison of two systems in terms of the
performance regularity is thus reduced to comparing the values of their GPC.

It should be emphasized that GPC is measured based on the average response times
over a sufficiently long period of time, during which the temporary system irregularity
(due to other concurrent processes, scheduled tasks, temporary surge of one activity type)
is smoothed out. One particular request under heavy load may have longer response time
than another particular request under light load even for a regular system, but under normal
conditions this should not happen consistently in an average sense. The purpose of GPC is
to quantatively measure and compare the system regularity. While it serves as an indication
of the overall performance behavior of systems in the working area, it does not point out
the root causes of the problem by itself.

5. Assessment of system performance regularity

In this section, we will assess the performance regularity of systems reported in
SPECweb96 [11] in the context of the GPC. We emphasize that the main reason of us-
ing the experimental results from SPECweb96 benchmark suite is the availability of per-
formance curves. To simplify terminology, we use MTP hereafter to represent maximum
system throughput. We have chosen to focus on investigating:

1. The impact of number of CPUs on the performance regularity of a system.
2. The impact of different versions of operating system on performance regularity.



ON THE PERFORMANCE REGULARITY OF WEB SERVERS 253

Figure 5. GPC vs. no. of CPUs.

Figure 6. GPC vs. no. of CPUs.

It is well known that an increase in the number of CPUs in SMP system architecture
is generally accompanied with an increase in system capacity such as maximum system
throughput. It would be of interest to see its impact on the performance regularity.

In Figures 5–14, we transform the original performance curves reported in SPECweb96
into the corresponding Lorenz performance curves and calculate the values of the GPC.
We are unable to produce similar calculation on the benchmark results submitted in 2000
because of the absence of performance curves (see http://www.spec.org for detail).

In an effort to investigate such effects, we intentionally group the results of system with
the different number of processors into one graph for easy comparison and presentation
clarity. Our study based on Figures 5, 7, 10, 13, 14 suggests that Microsoft and Sun
Microsystem have done a better job in utilizing SMP architecture. There exists a positive
correlation between the GPC and the number of processors. An increase in the number of
processors could produce an additional gain in the GPC, signifying an improvement in the
performance regularity.



254 LING ET AL.

Figure 7. GPC vs. no. of CPUs.

Figure 8. GPC vs. no. of CPUs.

Figure 9. GPC vs. no. of CPUs.



ON THE PERFORMANCE REGULARITY OF WEB SERVERS 255

Figure 10. GPC vs. no. of CPUs.

Figure 11. GPC vs. no. of CPUs.

Figure 12. GPC vs no. of processors.



256 LING ET AL.

Figure 13. GPC vs. versions of Microsoft 2000.

Figure 14. GPC vs. versions of Microsoft 2000.

Note that there exists one exception case for Microsoft IIS, which was reported in
SPECweb96’s first quarter 1999, the GPC for HP NetServer running on IIS 4.0 declines
as the number of processor increases (see Figure 8 for details). By contrast, Apache and
Zeus HTTP servers in Figures 6, 9, 11 do not improve system performance regularity with
an increase of the number of processors. The obtained results also suggest that for Apache
HTTP server, a great deal of effort is needed to narrow its performance difference with
other high-end HTTP servers, such as ones from Sun, Microsoft, and IBM, with a focus on
improving the performance regularity by better utilizing SMP architecture.

The graphs of the GPC versus different versions of Window 2000 advanced server are
showed in Figures 13 and 14. In Figure 13, with eight Pentium III Xeon processors at
550 MHz, running Microsoft IIS 5.0, we compare two Dell PowerEdge 8450/550 systems
running on the two versions of Windows 2000 advanced server, with the same hardware
configurations. The benchmark results were reported in the third quarter 1999, and the
fourth quarter 1999, respectively. In Figure 14, with four Pentium III Xeon processors at



ON THE PERFORMANCE REGULARITY OF WEB SERVERS 257

500 MHz, running Microsoft IIS 5.0, we compare two IBM Netfinity 7000/M10 systems
running on two versions of Windows 2000 advanced server, the benchmark results were
reported in the first quarter 2000, and the third quarter 1999, respectively.

The comparison results indicate that Microsoft Windows 2000 advanced server release
candidate 2 consistently outperforms its predecessors in both system capacity and perfor-
mance regularity, with the gain in the GPC by (0.332536 − 0.294711 = 0.037825) in the
case of IBM 7000/M10 model, and with the gain in the GPC by (0.305606 − 0.264933 =
0.040673) in the case of Dell PowerEdge 8450/550 model. The improvement, though too
small to be distinguished visually due to the striking similarity in the performance curve,
is distinguishable quantitatively in the context of the GPC.

6. Conclusion

The paper has mainly focused on system performance regularity, instead of concerning
with accurate benchmarking and identifying the root cause of the performance irregularity
of servers as illustrated in Figure 1. We have shown that system capacity and performance
regularity are two distinct aspects of system performance, and that the performance reg-
ularity of a system often does not necessarily correlate with its capacity. Measuring the
performance regularity of a system is an important aspect of the system performance be-
cause a system typically operates below its maximum capacity. However, evaluating the
performance regularity of a server is largely overlooked in system benchmarking study, as
evidenced by the omission of intermediate results in almost all benchmark reports.

This work is motivated by the importance of the performance regularity and by the
necessity of making finer distinction of the system performance. We establish theorems
that relate the GPC to the system performance regularity, thereby providing a quantitative
description of the performance regularity. We also present the algorithm for constructing
the Lorenz performance curve based on the available performance curve and calculating
the GPC.

It is worth noting that the GPC is scale-independent and could be derived from the per-
formance curve of the system with respect to the chosen capacity metric. For instance, it
can be used to measure the performance regularity with respect to the performance metric
such as the number of simultaneous connections as well. Measuring the performance regu-
larity of Web servers with the Gini performance coefficient represents the first step towards
the identification of performance problems in Web servers.

Our study suggests that the performance curves (intermediate data points) should be
considered as an integral part of a benchmarking report, because they contain valuable
information about not only the system capacity but also how well a system performs in
its working area. A better understanding of system performance could be enhanced by
analysis of the performance regularity of a server. The use of GPC, in conjunction with
any performance metric (capacity), can lead a better and comprehensive assessment of
system performance.



258 LING ET AL.

Acknowledgements

Partial funding was provided by Hong Kong grant CERG No. 9040695.

References

[1] O. P. Attanasio and M. Szekely, “Household saving in developing countries: Inequality, demographics and
all that,” World Bank Document, April 2000.

[2] G. Banga and P. Druschel, “Measuring the capacity of a web server,” in Proceedings of the USENIX Sym-
posium on Internet Technologies and Systems, December 1997, pp. 244–263.

[3] S. L. Gaede, “Perspectives on the SPEC SDET Benchmark,” Lone Eagle System Inc., January 1999,
http://www.loneagle.com/SDET/SDETPerspectives.html

[4] J. Gray, The Benchmark Handbook for Database and Transaction Processing Systems, Morgan Kaufmann,
New York, 1993.

[5] K. Hwang and F. A. Briggs, Computer Architecture and Parallel Analysis, McGraw-Hill, New York, 1988.
[6] K. Kant and Y. Won, “Server capacity planning for web traffic workload,” IEEE Transactions on Knowledge

and Data Engineering, September/October 1999, 731–747.
[7] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press,

New York, 1979.
[8] Microsoft Corporation, User Guide: Microsoft Web Capacity Analysis Tool Version 4.35 Windows 2000

Operating System, Microsoft Corporation, 2000.
[9] M. Pendleton and G. Desai, “@Bench test report: Performance and scalability of Windows 2000,” Docu-

labs, August 2000.
[10] J. Smith, “Charactering computer performance with a single number,” Communications of ACM 31(10),

1988, 1202–1206.
[11] SPECweb96, 1996, http://www.spec.org/osg/web96
[12] SPECweb99, 1999, http://www.spec.org/osg/web99
[13] Transaction Processing Performance Council, “TPC Benchmark W (Web Commerce),” October 2001.
[14] B. L. Wong, Configuration and Capacity Planning for Solaris Servers, Prentice Hall PTR/Sun Microsys-

tems Press, 1997.


