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We study the power-aware buffering problem in battery-powered sensor networks, focusing on the
fixed-size and fixed-interval buffering schemes. The main motivation is to address the yet poorly
understood size variation-induced effect on power-aware buffering schemes. Our theoretical anal-
ysis elucidates the fundamental differences between the fixed-size and fixed-interval buffering
schemes in the presence of data-size variation. It shows that data-size variation has detrimental
effects on the power expenditure of the fixed-size buffering in general, and reveals that the size
variation induced effects can be either mitigated by a positive skewness or promoted by a negative
skewness in size distribution. By contrast, the fixed-interval buffering scheme has an obvious ad-
vantage of being eminently immune to the data-size variation. Hence the fixed-interval buffering
scheme is a risk-averse strategy for its robustness in a variety of operational environments. In
addition, based on the fixed-interval buffering scheme, we establish the power consumption rela-
tionship between child nodes and parent node in a static data-collection tree, and give an in-depth
analysis of the impact of child bandwidth distribution on the parent’s power consumption.

This study is of practical significance: it sheds new light on the relationship among power
consumption of buffering schemes, power parameters of radio module and memory bank, data
arrival rate, and data-size variation, thereby providing well-informed guidance in determining an
optimal buffer size (interval) to maximize the operational lifespan of sensor networks.

Categories and Subject Descriptors: F.2.m [Analysis of Algorithms and Problem Complexity]:
Miscellaneous; H.4.0 [Information Systems Applications]: General

General Terms: Algorithms

Additional Key Words and Phrases: Power-aware buffering schemes, algorithm analysis

Authors’ addresses: Y. Ling and C.-M. Chen, Applied Research, Telcordia Technologies, 1 Telcordia
Dr., Piscataway, NJ, 08854 94301. Shigang Chen, Department of Computer and Information of
Science and Engineering, University of Florida, Gainesville, FL 32611.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1550-4859/2010/09-ART26 $10.00
DOI 10.1145/1807048.1807055 http://doi.acm.org/10.1145/1807048.1807055

ACM Transactions on Sensor Networks, Vol. 7, No. 3, Article 26, Publication date: September 2010.



26:2 • Y. Ling et al.

ACM Reference Format:
Ling, Y., Chen, C.-M., and Chen, S. 2010. Analysis of power-aware buffering schemes in wireless
sensor networks. ACM Trans. Sensor Netw., 7, 3, Article 26 (September 2010), 33 pages.
DOI = 10.1145/1807048.1807055 http://doi.acm.org/10.1145/1807048.1807055

1. INTRODUCTION

A dramatic rise in research interest in power-conscious computing is at-
tributed, in part, to the growing awareness of the greenhouse effect brought
about by the exponentially increasing number of computing devices [Xie 2008;
Satyanarayanan 1996]. It is also driven by the impetus to meet the long-
duration operational requirement of battery-powered sensor networks [Main-
waring et al. 2002; Woo et al. 2003; Culler and Mulder 2004; Gupta and Singh
2003]. This work is motivated by problems arising from power-aware comput-
ing in general and by battery-based sensor networks in particular.

A sensor network could be composed of hundreds to thousands of tiny sen-
sor nodes. Each sensor node typically comprises a couple of sensors, memory
banks, a radio, and a microcontroller [Hempstead et al. 2005], being equipped
with a stripped-down version of the operating system. The sensor node can
perform some basic computational tasks such as data measurement, filtering,
aggregation, transmission/reception, and packet routing. Once deployed in the
field, sensor nodes can self-organize into a perceptive network that enables
novel ways to respond to emergencies, habitat monitoring, and around-clock
environmental surveillance. The sensor nodes are required to autonomously
operate under harsh conditions for several months, even years, without hu-
man intervention and maintenance [Mainwaring et al. 2002]. In certain cases,
battery replacement or recharge may not even be possible [Mainwaring et al.
2002; Landman and Rabaey 1995]. Thus the premise of sensor networks to de-
tect rarely occurring events or to monitor chronically changing events largely
depends on the lifespan of the sensor network. A review of essential features
required by sensor-based network applications yields a long list: resilience,
fault tolerance, self-organization, and autonomy. Despite such a rich feature
set, the core requirement of the sensor network is power conservation.

In a drive to bring power-aware computing to fruition, research efforts
have proceeded along three distinct yet closely related tracks: 1) battery tech-
nologies; 2) hardware-based technologies; and 3) software-based technologies.
Among these technologies, battery technologies appear to be self-contained.
Hardware-based and software-based technologies are sharply distinct but mu-
tually dependent as well.

The power conservation requirement fundamentally reshapes how hard-
ware modules should be designed, implemented and assembled. The evolu-
tion of the hardware-based approach is a process of continuously replacing
power-inefficient components with ultra-low power modules, and substituting
general-purpose components with specially designed power efficient ones. Wire-
less radio and memory components have long been recognized as the biggest
power spenders in a sensor node system [Lee et al. 2007]. Realization of this
shortcoming has directed research attention toward designing ultra-low power
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radio and memory components with multipower mode capability [Lee et al.
2007; Flautner et al. 2002]. However, the hardware multipower mode capabil-
ity alone does not warrant power efficient computing in practice. The reason is
that a transition between operating power modes (from a low-power mode to a
high-power mode or vice versa) bears a resynchronization cost, that is, a certain
amount of energy incurred to demote or to elevate the operating power level.
As a result, the availability of hardware multipower mode capability presents
a new set of collateral risks of being misused: a blind choice of operating power
mode might incur an excessive transition cost that neutralizes the benefits
brought out by power-aware hardware design.

To reap the benefit of multipower mode feature in a hardware de-
sign, software-based technologies are concerned with the design of algo-
rithms/protocols that can exploit the multipower capability, thus serving as
a reinforcer to the hardware-based power-aware technologies. The whole idea
underlying the software-based approaches centers around the exploitation of
quiescence in workload, linking the power mode of a component to its workload
characteristics.

Lee et al. [2007] introduced a power-aware buffer cache management scheme
called PABC for compressing and migrating active pages in both user-space and
kernel-space onto a few memory units. Their experimental study indicated that
the PABC scheme can reduce the energy consumption of the buffer cache by an
impressive 63%. Flautner et al. [2002] observed that in practice the hot (active)
cache only accounts for a small subset of on-chip caches for most of time. This
observation leads to an architectural design that exploits such a workload
pattern to place the cold cache into drowsy mode, thereby saving a substantial
power consumption. The experimental studies showed that about 80%–90% of
cache can be maintained in a drowsy (idle) mode without affecting performance
by more than 1%. Ling and Chen [2007], on the other hand, derived closed form
optimal buffering strategies, under the condition that the received data size is
entirely devoid of variability and identical to the size of a memory bank. This
assumption greatly simplifies mathematical derivation. It, however, appears to
be inadequate in capturing the essence of sensor networks in a realistic setting.

It is widely recognized that idle listening is the major energy spender in
sensor networks. For example, experimental study shows that 99% of energy
is dissipated on idle listening if a node is always turned on [Lin and Stankovic
2005; Shnayder et al. 2004]. Many power management protocols are proposed
to reduce power consumption in listening. Asynchronous low power listening
(ALPL) scheme uses duty cycling to reduce the listening energy. A node is
required to periodically wake up and check the radio channel. In general, the
energy saving on listening at receiver is at the expense of sender, because
the sender must open the radio channel long enough to ensure correct mes-
sage reception. Synchronous Low Power Listening scheme (SLPL) improves
on the ALPL scheme in its ability to coordinate sender’s transmit mode with
the receiver’s periodic check [Ye et al. 2002; Jurdak et al. 2007]. The weak-
ness of SLPL is that it demands a high-quality time synchronization among
a group of nodes, which incurs a nonnegligible amount of energy. In addition,
the design of an energy efficient wake-up/sleep protocol is often application
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dependent and complicated in practice. Hence, it is hard to design a general
power management system based on wake-up/sleep scheduling.

A radically different approach, called radio-triggered wake-up power man-
agement, is proposed by Lin and Stankovic [2004], Lin and Stankovic [2005],
and Ansari et al. [2009]. It uses a radio-triggered circuit as one interrupt in-
put of the processor. The circuit itself does not require any power supply and
is powered by the radio signals themselves. As a result, the radio-triggered
power scheme allows nodes to sleep without need for periodic wake-up to check
channel signals, thereby completely eliminating listening power consumption.

In this article we study the power-aware buffering problem by exploiting the
multipower mode in radio and memory components and the radio-triggered
power management. The optimization objective is to minimize power consump-
tion in the context of two buffering paradigms: the well-known fixed-size and
the lesser-known fixed-interval buffering schemes. In particular, we focus on
the size variability-induced effect on these power-aware buffering schemes.

To the best of our knowledge, the effect of size variability on power consump-
tion of buffering schemes has not been addressed before. Our analysis provides
insight into the poorly understood effect of size variability on the power-aware
buffering schemes, thereby providing a theoretical guidance for performance
tuning in practice. The novelty of this article is its adoption of asymptotic anal-
ysis, which allows us to model the limitation of power-aware buffering schemes
without sacrificing simplicity and elegance.

The remainder of this article is organized as follows. Section 2 presents rel-
evant definitions and prerequisite theorems that facilitate derivation of the
main theorems. Section 3 presents the exposition of theoretical analysis for
both power-aware fixed-size and fixed-interval buffering schemes. Section 4
compares the performance between the fixed-size and fixed-interval buffering
schemes in both the absence and presence of size variation. Section 5 dis-
cusses the gain of power-aware buffering schemes over power-oblivious ones
in terms of power conservation, with some examples to illustrate the effect of
power-aware buffering on the lifespan of sensor nodes. the power consumption
relationship between the parent and child nodes in a data collection tree is
presented. Section 6 concludes this article.

2. BACKGROUND

Multipower mode radio and memory components are the main hardware pre-
requisites of power-aware buffering schemes in this paper. The efficacy of
power-aware hardware design relies on the ability of software-based approach
to exploit the potential of power-aware hardware design.

To study the performance of power-aware buffering schemes, let us discuss
at length the power-mode transition pattern of radio and memory components.
We assume that nodes use the radio-triggered power management, thus do not
incur listening power consumption.

The power-mode of a multipower radio component can be subsumed into (1)
the sleep mode and (2) the active mode. A sleep-mode radio inhibits data trans-
mission/reception. An active-mode radio permits data transmission/reception
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Fig. 1. (a) Power state transition diagram of wireless radio module (b) Power state transition
diagram of memory bank.

but incurs more power than when in sleep mode. To save power consump-
tion, the radio is placed into sleep mode most of the time; it is only elevated
to active mode (by a radio-triggered wakeup component) when data trans-
mission/reception is needed. After completing data transmission/reception, the
radio is put back to sleep mode. The sleep-active-transmit-sleep transition dia-
gram in Figure 1(a) forms a typical power-aware radio working pattern.

A memory bank refers to the minimum size of a memory unit whose power
mode can be independently altered [Hempstead et al. 2005]. Its power mode
could be broadly classified into three categories: (1) the powerdown mode, (2)
the idle mode, and (3) the active mode. A powerdown-mode memory bank means
that the voltage supply to the memory bank is cut off, resulting in a sizable
reduction in current leakage [Flautner et al. 2002; Tarjan et al. 2006]. The
idle (sleep or drowsy) mode is the minimum power mode that preserves the
stored information but inhibits writing and reading of data. An idle-mode or
powerdown-mode memory bank must be reinstated to the active mode before a
read/write operation can be performed. An active mode memory bank not only
retains the stored information but also allows the data to be written/read. The
power consumption in a powerdown-mode memory bank is negligibly small. An
idle-mode memory bank consumes less power and has less functionality than
an active-mode memory bank.

In an ideal power-saving data buffering scenario, the power-mode transi-
tion could be divided into (1) the write power-mode transition and (2) the read
power-mode transition. A write power-mode transition is initiated by an inter-
rupt of radio-triggered circuit. The sensor node first powers up the memory
banks from the powerdown mode to the active mode, and then writes data into
the memory banks. After completing a write operation, the involved memory
banks are demoted to the idle mode to preserve power while retaining the
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Fig. 2. Evolution of powerdown-mode memory size (blue) and idle-mode memory size (red).

stored information. The powerdown-active-write-idle power mode transition in
Figure 1(b) forms a write operation cycle.

A read power-mode transition is initiated when a specified buffer size or in-
terval threshold is reached. Thus, a read power-mode transition may comprise
more than one write power-mode transition cycle, depending on the specified
buffer size. It involves loading, transmitting and clearing up all the buffered
data. To do so, it elevates the power mode of the buffered memory banks from
idle mode to active mode. Once reading of data is completed, the correspond-
ing memory banks are put back to powerdown mode. The idle-active-read-
powerdown power mode transition in Figure 1(b) forms a read operation cycle,
which is synchronized with the sleep-active-transmit-sleep power mode transi-
tion in the radio. In other words, data transmission in the radio is initiated
immediately right after reading/loading buffered data from the memory banks.

The bottom graph in Figure 2 depicts the size of of arrival data (collected via
sensors) as a function of time. The top graph shows the evolution of powerdown-
mode memory size (total memory size minus stair height) and of idle-mode
memory size (stair height). Observe that the powerdown-mode memory size
shrinks as the arrival data are accumulated in idle-mode memory banks. The
size of idle-mode memory banks grows in a stair-like fashion when it is less
than the prescribed buffer size. Once it hits the prescribed buffer size and
a transmission of buffered data is initiated. This forms a read power-mode
transition cycle for memory banks, as well as a radio power-mode transition
cycle. In practice, the duration of the read transition cycle may fluctuate widely:
it could be very sensitive to the buffering policy, data arrival rate and data size
distribution. In order to analyze the power-aware buffering issues, we begin
with two buffering policies as follows:

Definition 1. A buffering policy is said to be stationary if its decision de-
pends only on its current state and not on the time. A buffering policy is said to
be deterministic if its decision is a deterministic function of the current state.

(1) Fixed-size buffering scheme. Data transmission is initiated immediately
when a fixed (prescribed) buffer size is reached.
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(2) Fixed-interval buffering scheme. Data transmission is commenced period-
ically with a fixed time interval.

There is a clear distinction between the well-known fixed-size and lesser-
known fixed-interval buffering schemes: the threshold of the fixed-size buffer-
ing scheme depends on the size of the buffered data, and that of the fixed-
interval one depends on a specified time interval. By definition 1, the fixed-size
buffering scheme is stationary while the fixed-interval buffering scheme is de-
terministic. For notational convenience, we use the superscripts FS and F I
to denote the fixed-size and fixed-interval buffering schemes throughout the
article. Before delving into a detailed derivation, we introduce relevant notions
and essential prerequisites.

Definition 2. Let x be a random variable following a probability distribu-
tion F , i.e., x∼F , the skewness of x, denoted by γ (x), is defined as

γ (x) = E[(x − μx)3]
(E[x − μx)2])3/2

= μ3

σ 3
x

. (1)

The coefficient of variation of x, denoted by cv(x), is defined as

cv(x) =
√

E[(x − μx)2]
E[x]

= σx

μx
, (2)

where E[] is the expected function and μx = E[x].

In probability theory, γ (x) is the third standardized moment for measuring the
degree of asymmetry. It can be further divided into positive (γ (x) > 0) and
negative skewness (γ (x) < 0). The function cv(x) is a measure for the degree of
dispersion.

Definition 3. An integer-valued random variable n is said to be a stop-
ping time for the sequence x1, x2, . . . if the event {n = n} is independent of
xn+1, xn+2, . . . for all n = 1, 2, . . ..

Wald’s equation: Suppose y1, y2 · · · are iid random variable with finite expec-
tation E[yi] = μy, and n is a stopping time for y1, y2 · · · such that E[n] < ∞,
then

E

[
n∑

i=1

yi

]
= E[n]E[y] = μyE[n]. (3)

The following theorem establishes the asymptotic behavior of stopping time
variance w.r.t buffer size b.

THEOREM 1. Let {xi > 0, i ≥ 1} be a random positive walk (increment) with
mean of μx = E[xi] > 0 and finite variance of σ 2

x . Let stopping time τ (b) =
min{n ≥ 1 :

∑n
1 xi > b}. When b is sufficiently large, the stopping time variance

σ 2
τb

becomes

σ 2
τb

= bσ 2
y

μ3
y

+ k∗ = bc2
v (y)
μy

+ k∗, (4)
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where k∗ is expressed as

k∗ = 5c4
v (y)
4

+ 1
12

− 2c3
v (x)γ (y)

3
, (5)

where cv(y) denotes the coefficient of variation, and γ (y) the skewness of y.

Proof of Theorem 1 is given in the Appendix.
Theorem 1 states that in an asymptotic sense, the stopping time variance

is linearly proportional to the buffer size b, with a proportionality constant of
c2
v (y)/μy and the intercept k∗ determined by both cv(x) and γ (y). It means that

c2
v (y)/μy could play a central role in determining the stopping time variance.

The magnitude of intercept (k∗) can be either mitigated by positive skewness
or augmented by negative skewness. It is noteworthy that Theorem 1 is a
special case of Lau’s theorem [Lai and Seigmund 1977, 1979] under the positive
random increment condition, which results in a substantial simplification. The
following corollaries are special cases of Theorem 1 in which the random walk
(increment) is assumed to be exponentially or Erlangly distributed.

COROLLARY 1. For a given buffer size b, the stopping time variance τ (b) for
an exponential random walk with mean 1/λe is

σ 2
τ (b)(exp) = λeb, (6)

where στ (b)(exp) refers to the stopping time variance w.r.t. an exponential random
walk (increment).

PROOF. For an exponential random walk, by Definition 2 we get cv(y) =
1, γ (y) = 2. Substituting cv(y) and γ (y) into (4) leads to (6).

COROLLARY 2. For a given buffer size b, the stopping time variance for an
Erlang random walk with parameters (α,λα) is

σ 2
τ (b)(erlang) = λαb

α2
+ 1

12

(
1 − 1

α2

)
, (7)

where α > 1 is the shape parameter (an integer), λα refers to the rate, and
στ (b)(erlang) refers to the stopping time variance w.r.t. an Erlang random walk
(increment).

PROOF. By Definition 2, for an Erlang random walk, we obtain cv(y) = 1√
α

and γ (y)= 2√
α
. Substitution of cv(y) and γ (y) into (4) yields (7).

Consider the differential stopping time variance between the exponential
and the Erlang random walks by subtracting (6) from (7).

σ 2
τ (b)(exp) − σ 2

τ (b)(erlang) = bλe − λαb
α2

+ 1
12

(
1 − 1

α2

)
(8)

Notice that the mean increment size of exponential random walk is μe = 1/λe

and that of the Erlang walk is μα = α
λα

. Letting μα = μe = μ, then (8) is reduced
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to

σ 2
τ (b)(exp) − σ 2

τ (b)(erlang) =
(

1 − 1
α

)(
b
μ

− 1
12

(
1 + 1

α

))
, (9)

then

σ 2
τ (b)(exp) − σ 2

τ (b)(erlang)

{
> 0 b

μ
> 1

12

(
1 + 1

α

)
≤ 0 b

μ
≤ 1

12

(
1 + 1

α

)
.

(10)

Equation (10) means that with the same mean increment size, the stopping
time under the exponential random walk (increment) has a wider variance
than that under the Erlang walk as long as the condition b > μ/12 is met.

Consider a hyper-exponential random walk (increment) as
∑2

i=1 piλiexp
(−λix) where

∑2
i=1 pi = 1 (letting p1 = p, p2 = 1 − p). The differential stop-

ping time variance between the hyperexponential and the exponential walks
is σ 2

τ (b)(hp)−σ 2
τ (b)(exp). Under the same mean increment, it becomes

σ 2
τ (b)(hp) − σ 2

τ (b)(exp) = b
(
c2
v (y) − 1

)
μ

+ k∗, (11)

where k∗ is explicitly given in (4). This implies that the differential stopping
time variance is linearly proportional to the buffer size b, that is, σ 2

τ (b)(hp) −
σ 2

τ (b)(exp) ∝ b
μ

(c2
v (y)−1) >0 when b is sufficiently large. Namely, in an asymptotic

sense, the hyperexponential random walk has a wider variance in the stopping
time than the exponential walk under the same mean increment size condition.

Consider the fixed-size buffering scheme with a size of b. Define the stopping
time, denoted by τ (b), to be a random variable that takes on values in [0,∞).
One sees that τ (b) is a function of b and the size distribution of the data
{yi > 0 : i ≥ 0}:

τ (b) = min

{
n :

n∑
i=1

yi ≥ b

}
, (12)

where τ (b) is referred to as the first ladder epoch and
∑τ (b)

i=1 yi is called the first
epoch height [Lai and Seigmund 1977, 1979; Feller 1971].

One key step is to establish a relationship between the mean stopping time
(the first ladder epoch) and the mean size of the data distribution. Assume that
the sensor node has enough buffer capacity to accommodate first ladder height
(overshoot) with respect to the buffer size b.

THEOREM 2. Let {yi >0, i ≥0} be the sequence of increment sizes with mean
μy, and b be the buffer size, the mean stopping time E[τ (b)] ≈ b

μy
.

PROOF. By Wald’s equation in (3) we obtain the relation
∑τ (b)−1

i=1 yi < b ≤∑τ (b)
i=1 yi. Taking expectation on both sides of this relation yields

E

[
τ (b)−1∑

i=1

yi

]
< b ≤ E

[
τ (b)∑
i=1

yi

]
=⇒ (E[τ (b)] − 1)μy < b ≤ E[τ (b)]μy. (13)
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Table I. Symbols and Meanings

Data Traffic
λ Poisson data arrival rate
μy mean value of data size distribution
bsize size of a memory bank
λμy bandwidth

Radio Module
ewu
w energy for a radio wakeup

eRX
w energy for one-byte reception

eTX
w energy for one-byte transmission (eRX

w ≈ eTX
w )

Memory Bank
pidle

m power of idle state of one memory bank
eena

m energy to elevate from powerdown to active
edem

m energy to demote from active to idle
er

m energy of reading one byte
ew

m energy for writing one byte
eresyn

m (eena
m + edem

m )/2

Dividing both sides of (13) by μy completes the proof.

The preceding theorem asserts that the fixed-size buffering scheme with a
buffer size of b can hold b

μy
data packets on average when the data size is

randomly distributed with a mean of μy, which is in line with our intuition.
For the sake of clarity, we summarize the power parameters in Table I. The

subscripts m and w denote the memory bank and radio module. eena
m and edem

m
refer to the energy required to elevate a powerdown-mode memory bank to ac-
tive mode, and to demote an active-mode memory bank to idle mode, eresyn

m is a
resynchronization cost being equal to the mean value of eena

m and edem
m , and λμy

the data volume per time unit, termed as bandwidth due to conceptual similar-
ity. Since the duration of an active-mode memory bank is extremely short, thus
the energy consumed in the active-mode could be reasonably ignored. Similarly,
the energy consumed by the active-mode of a radio module is outweighed by
eTX
w , eRX

w , and hence is ignored.

3. POWER-AWARE BUFFERING SCHEMES

3.1 Fixed-Size Buffering Scheme

In this section, we consider the fixed-size buffering scheme under randomly
distributed data size with Poisson arrival. Assume that data size follows a
certain probability distribution with a finite mean of μy. Let (xi, yi), i ≥ 0 be
a sequence of random vectors in which {xi, i ≥ 0} refers to a random variable
denoting the interarrival times of Poisson arrival data and {yi, i ≥ 0} be a
random variable representing the size of the arrival data. The random variables
xi and yi are assumed to be mutually independent.

THEOREM 3. Let λ be a Poisson arrival rate, μy be the mean data size, bsize

be the size of a memory bank, ewu
w be the per radio wakeup energy, and pidle

m be
the idle-mode power consumption of a memory bank. Then the optimal buffer
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size b∗ for the fixed-size buffering scheme is

b∗ =
√

2bsizeewu
w λμy

pidle
m

+ μ2
yk∗, (14)

where k∗ is given in (4).

PROOF. Consider a random vector sequence (xi, yi), i ≥ 0, where {xi, i ≥ 0}
represents the arrival time instants (Poisson arrival) and {yi, i ≥ 0} is a se-
quence of received data sizes, with a mean E[yi] = μy and a variance σ 2

y .
Define a renewal reward process [Ross 1996] with the cycle length being

equal to the time duration of stopping time τ (b) as follows:

Lc =
τ (b)∑
i=0

xi+1 − xi, (15)

where Lc denotes the length of a renewal cycle, and xi+1−xi, i ≥ 0 is interarrival
times. Letting sk =∑k

i=1 xi. Thus the total energy eFS(b) over a renewal cycle is

eFS(b) = ewu
w + pidle

m

bsize

τ (b)∑
i=1

(sτ (b) − si)yi +
τ (b)∑
i=1

(
eTX
w yi

)+
τ (b)∑
i=1

(
eRX
w yi + ewu

w

)
(16)

+
τ (b)∑
i=1

(
ew

m + er
m

)
yi + 2eresyn

m .

Let us return to explaining each term in (16). pidle
m

bsize

∑τ (b)
i=1(sτ (b) − si)yi denotes the

accumulated idle-mode energy for the number of memory banks in a renewal
cycle, and

∑τ (b)
i=1 eTX

w yi refers to the transmission energy,
∑τ (b)

i=1(ew
m+er

m)yi +2eresyn
m

is the total energy required to write/read data into/from the memory banks, plus
the resynchronization energy, and

∑τ (b)
i=1 eRX

w yi +ewu
w refers to the total energy for

receiving data, plus the energy for radio wakeup for receiving data. The term
ewu
w refers to per radio wakeup energy for data transmission. In other words, in

each renewal cycle, the transmission radio wakeup occurs only once, while the
reception radio wakeup occurs τ (b) times. Recall that we assume that nodes
use the radio-triggered power management scheme, thereby the radio wake-up
can be initiated without incurring listening energy. By Wald’s equation, we get

E[Lc] = E

[
τ (b)∑
i=0

xi+1 − xi

]
= E[τ (b)]E[xi+1 − xi] = E[τ (b)]

λ
= b

λμy
.

Define eFS(t) to be the accumulated energy consumption at time t, where mul-
tiple renewal cycles may have occurred in the time period [0, t]. By the renewal
reward theory [Ross 1996], the long-run mean average energy consumption is

eFS(b) def= lim
t→∞

eFS(t)
t

= E[eFS(b)]
E[Lc]

= E[eFS(b)]
b

λμy

, (17)

where the unit of eFS(b) is the watt (W), rather than the joule (J). Letting
eTX
w = eRX

w . Taking expectation of the third term in (16) and applying Theorem 2,
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gives

E

[
τ (b)∑
i=1

(
2eTX

w + ew
m + er

m

)
yi + ewu

w + 2eresyn
m

]

= E[τ (b)]E
[(

2eTX
w + ew

m + er
m

)
yi + ewu

w + 2eresyn
m

]
= b

μy

(
μy
(
2eTX

w + ew
m + er

m

)+ ewu
w + 2eresyn

m

)
. (18)

It follows from (4) and the assumption of independence of yi and si = ∑i
j=1 xj ,

the expectation of the second term in (16) thus becomes

E

[
τ (b)∑
i=1

(sτ (b) − si)yi

]
= μyE

[
τ (b)∑
i=1

sτ (b) − si

]
= μy(E[τ 2(b)] − E[τ (b)])

2λ
(19)

= μy
(
E2[τ (b)] + σ 2

τ (b) − E[τ (b)]
)

2λ
=

b2

μy
+ b
(
c2
v (y) − 1

)+ μyk∗

2λ
,

where k∗ is given in (5). Substitution of (18)–(19) into (17) yields

eFS(b) =
λμyewu

w + pidle
m μ2

yk∗

2bsize

b
+ λ
(
μy
(
2eTX

w + ew
m + er

m

)+ ewu
w + 2eresyn

m

)
+ pidle

m μy

2bsize

(
c2
v (y) − 1

)+ pidle
m b

2bsize
. (20)

Solving ∂eFS(b∗)
∂b∗ = 0 yields b∗ =

√
2ewu

w bsizeλμy

pidle
m

+ k∗μ2
y. To prove that b∗ is the

optimal buffer size, it suffices to show that

lim
b→b∗

∂2eFS(b)
∂b2

= 2
ewu
w λμy + pidle

m k∗μ2
y

2bsize

(b∗)3
> 0. (21)

The proof is thus completed.

The following corollary is a special case of Theorem 3.

COROLLARY 3. When the size of received data is constant and identical to
that of a memory bank, the optimal size of power-aware fixed-size buffering is
expressed as

n∗ =
√

2λewu
w

pidle
m

+ 1
12

≈
√

2λewu
w

pidle
m

, (22)

where n∗ in (22) refers to the number of memory banks used, hence the optimal
buffer size is b∗ = n∗bsize (b∗ is a multiple of memory bank size bsize).

PROOF. It is almost trivial and therefore omitted.

Theorem 3 takes into account the impact of unevenly distributed data size,
thereby generalizing the previous work [Ling and Chen 2007] beyond the
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Fig. 3. Optimal buffer size b∗ vs. 1/λ: [pidle
m (0.409μW ), bsize(256b), μy(256b), ewu

w (8μJ, 32μJ, 128μ

J, 512μJ)].

fixed-size data condition. It shows that the first two moments of data size distri-
bution (mean and variance) alone are not sufficient to capture the dynamics of
the power-aware fixed-size buffering. The term μ2

y k∗ in (14) represents the im-
pact of varying-size data on the power-aware fixed-size buffering scheme, which
is orthogonal to the data arrival rate λ. Such an impact can be quantitatively
isolated in the form as:

�vb=
√

2ewu
w bsizeλμy

pidle
m

+ μ2
yk∗−

√
2ewu

w bsizeλμy

pidle
m

, (23)

where �vb refers to the purely size variation-induced impact on the fixed-
size buffering scheme. Examination of k∗, at least in principle, can elucidate
the respective roles of skewness and coefficient of variation in determining
the optimal buffer size b∗. The effect of size variability could be either mit-
igated or augmented by the skewness in size distribution. A positive skew-
ness alleviates the impact of size variability. In contrast, a negative skewness
strengthens the impact of size variability. In this case, k∗ is positive and grows
polynomially with cv(y), thereby ensuring �vb > 0. This requires an additional
buffer size be allocated in order to accommodate the variability in the data size
distribution.

Figure 3 plots the optimal buffer size (b∗) as a function of data arrival interval
(1/λ) when the data size is exponentially distributed with a mean value of 256
bytes. The curves are plotted in a semilog format: the y-axis refers to the
optimal buffer size b∗ in a log scale and the x-axis refers to the mean data
arrival time 1/λ. It shows that an increase in per radio wakeup energy or in
data arrival rate (decreasing data arrival interval) demands a large buffer size
to reduce the amortized per radio wakeup cost. This observation agrees with
intuition. Combining (14) and (20) gives the overall power consumption of the
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fixed-size buffering as follows.

eFS(b∗) = pidle
m b∗

bsize
+ pidle

m μy

2bsize

(
c2
v (y) − 1

)+ λ
(
2eresyn

m + ewu
w + μy

(
ew

m + er
m

))
︸ ︷︷ ︸

buffering

+ 2λμyeTX
w︸ ︷︷ ︸

trans/rec

.

(24)

Equation (24) yields some interesting observations: the power consump-
tion composition can be roughly divided into two pieces: 1) data transmis-
sion/reception power consumption is linearly proportional to bandwidth, that
is, λμy. 2) data buffering power consumption is quite complicated, hence re-
sists a straightforward explanation: the buffering power consumption not only
relies on data arrival rate λ but also depends on the first three moments of the
size distribution. Equation (24) shows explicitly that the data buffering power
consumption grows asymptotically in proportion to both (c2

v (y) − 1) and the
arrival rate λ, implying that the low-variance data size distribution (cv(y)<1)
consumes less power than the high-variance data size (cv(y)>1).

3.2 Fixed-Interval Buffering Scheme

In this subsection we study the power-aware fixed-interval buffering scheme,
which differs from its power-aware fixed-size counterpart. The following the-
orem gives a direct relation among the optimal time interval T ∗, the power
parameter of radio and memory bank, and data rate and the mean size of the
data distribution.

THEOREM 4. Let λ be a Poisson arrival rate, μy be the mean size of the data
distribution, ewu

w be the per radio wakeup energy, and pidle
m be the idle state

power consumption of a memory bank. Then, the optimal interval T ∗ for the
fixed-interval buffering scheme is

T ∗ =
√

2ewu
w bsize

pidle
m λμy

. (25)

PROOF. Let T be the interval of the fixed-interval buffering scheme. The
fixed-interval buffering is a special case of the renewal process in which the
renewal cycle is constant. Hence the energy consumed in a renewal cycle is
expressed as

eFI(T ) = ewu
w + pidle

m

n(T )∑
i=1

(T − si)yi

bsize
+

n(T )∑
i=1

eTX
w yi +

n(T )∑
i=1

(
eRX
w yi + ewu

w

)
(26)

+
n(T )∑
i=1

(
ew

m + er
m

)
yi + 2eresyn

m ,

where n(T ) is a random variable denoting the number of data arrivals within
the interval T , yi is the size of the ith arrived data, and the arrival time
si = ∑i

j=1 xj − xj−1. The term
∑n(T )

i=1 (eRX
w yi + ewu

w ) refers to the total reception
energy in the interval T , which involves the energy consumed in receiving the
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arrived data
∑n(T )

i=1 eRX
w yi, and the energy of radio wakeup for data reception

n(T )ewu
w . Notice that the radio-triggered power scheme does not incur listening

power consumption. By the renewal reward theory, the long-run mean average
energy consumption is

eFI(T ) def= lim
t→∞

eFI(t)
t

= E[eFI(T )]
T

. (27)

By Wald’s equation, the expectation of the second term in (26) is

pidle
m

bsize
E

[
n(T )∑
i=1

(T − si)I{n(T )>0}yi

]
= pidle

m μy

bsize

∫ T

0
(T − t)λe−λt

( ∞∑
i=1

(λt)i−1

(i − 1)!

)
dt (28)

= pidle
m μyλ

bsize

∫ T

0
(T − t)dt = pidle

m μyλT 2

2bsize
,

where I{n(T )>0} is the indicator function. Letting eTX
w ≈ wRX

w , the expectation of
the third-sixth terms in (26) are simplified as

E

[
n(T )∑
i=1

yi
(
2eTX

w + ew
m + er

m

)+ 2eresyn
m + ewu

w

]
(29)

= E[n(T )]E
[
yi
(
2eTX

w + ew
m + er

m

)+ 2eresyn
m + ewu

w

]
= λT

(
μy
(
2eTX

w + ew
m + er

m

)+ 2eresyn
m + wwu

w

)
.

Combining (27)–(29) gives

eFI(T ) = E[ξ1(T )]
T

= ewu
w

T
+ λT pidle

m μy

2bsize
+ λ

(
μy
(
2eTX

w + ew
m + er

m

)+ 2eresyn
m + ewu

w

)
(30)

Taking derivative of (30) w.r.t. T gives ∂eFI(T )
∂T = − ewu

w

T 2 + pidle
m λμy

2bsize
. Resolving

∂eFI(T ∗)
∂T ∗ = 0 leads to (25).

Examination of T ∗ in (25) reveals the apparent variability immunity of the
fixed-interval buffering scheme since T ∗ only contains the first moment μy of
the size distribution. Substituting (25) into (30) gives

eFI(T ∗) =
√

2pidle
m ewu

w λμy

bsize
+ λ
(
2eresyn

m + ewu
w + μy

(
ew

m + er
m

))
︸ ︷︷ ︸

buffering

+ λ2μyeTX
w︸ ︷︷ ︸

trans/rec

(31)

In a similar fashion, the power consumption composition in (31) also can
be divided into the data transmission/reception and buffering pieces. The data
transmission/reception piece is linearly proportional to the bandwidth (λμy),
while the data buffer one is proportional to the square root of the bandwidth√

λμy. Although there is very little apparent relationship between the fixed-size
and the fixed-interval buffering schemes, both buffering schemes essentially
share the same transmission/reception component but differ markedly in their
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data buffering components: the data buffering component of the fixed-interval
buffering scheme is a function of bandwidth. By contrast, that of the fixed-size
buffering scheme is linked to the bandwidth and the first three moments of size
distribution explicitly expressed in term μ2

yk∗.
The curves in a semilog format in Figure 4 show that radio wakeup energy

increase results in optimal time interval increase, while increasing idle-mode
power consumption in a memory bank reduces the optimal buffer interval. This
can be explained intuitively as follows: for a high per radio wakeup energy, a
large data buffer (large optimal interval) can effectively reduce the amortized
per radio wakeup energy, while a high sleep-mode power consumption would
increase the power consumption of buffering, thereby reducing optimal buffer
interval T ∗.

Let us digress a little bit from the main derivation to examine the no-buffer
scheme: a special case of the fixed-interval buffering scheme in which the sensor
node transmits data immediately upon receipt of measured data. Mathemat-
ically, this corresponds to a case where the mean buffer interval T = 1

λ
. The

following corollary deals with the no-buffer scheme.

COROLLARY 4. The long-run mean average energy consumption of the no-
buffer scheme, denoted by e(nb), is

e(nb) = λ
(
2ewu

w + μy
(
2eTX

w + ew
m + er)+ 2eresyn

m

)
(32)

PROOF. Consider a renewal reward process with the cycle length (Lc)being
equal to the data arrival interval T = 1/λ. Thus the energy consumed in this
cycle is

e(nb) = ewu
w + (2eTX

w + ew
m + er

m

)
yi + 2eresyn

m + ewu
w , (33)

where yi is the size of ith arrived data. (33) is simply attained by removing
the buffering factors (terms) in (28). Using the same argument in proving
Theorem 4 we get e(nb) = E[e(nb)]

1
λ

in (32) since E[Lc]= 1
λ
.
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Fig. 5. Top: gFI(T , T ∗) vs. arrival interval log(1/λ). Bottom: T ∗ vs. arrival interval log(1/λ):
[pidle

m (0.409μW ), ewu
m (80μJ), bsize(128b), μy(64b)].

Define a function gFI(T , T ∗) to quantify the differential gain of the optimal
power-aware fixed-interval buffering over a power-oblivious buffering scheme.

gFI(T , T ∗) = eFI(T ) − eFI(T ∗) = ewu
w

T
+ T pidle

m λμy

2bsize
−
√

2pidle
m ewu

w λμy

bsize
, (34)

where T ∗ is the optimal interval and T is chosen arbitrarily.
Results of gFI(T , T ∗) are plotted in Figure 5. The main trend is that the

optimal buffer interval T ∗ grows as the square root of 1
λ

(see bottom graph),
and that a dip in each curve occurs when arbitrarily chosen T happens to be
in the vicinity of T ∗. The differential gain gFI(T , T ∗) arises sharply when T
deviates from the optimal buffer interval T ∗. This implies that a blind selection
of buffer interval T is very likely to incur an excessive energy consumption.

4. PERFORMANCE COMPARISON

In this section we attempt to answer two fundamental questions. 1) How much
power saving via power-aware buffering can be achieved in comparison to the
no-buffer scheme ? 2) The fixed-size buffering or its fixed-interval counterpart,
which one performs better?

4.1 Comparison between the No-Buffer Scheme and Power-Aware
Buffering Schemes

It is evident that the fixed-interval buffering always outperforms the no-buffer
scheme as the latter is a special case of the former. Below we compare the
no-buffer scheme with the fixed-size buffer one.

The differential power consumption between the no-buffer and optimal fixed-
size buffering schemes is expressed as

e(nb) − eFS(b∗) = λewu
w − pidle

m

bsize

(
b∗ + μy

(
c2
v (y) − 1

)
2

)
> 0 (35)
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Equation (35) does in fact constitute an incentive condition under which
the optimal fixed-size buffering scheme outperforms the no-buffer scheme in
power conservation. It shows that increasing variability cv(y) in effect erodes
the gain brought out by the power-aware fixed-size buffering scheme, hence
shrinks the incentive area. A positive skewness in size distribution can neu-
tralize, to some extent, the size variability-induced impact. While in general
this incentive condition could be profoundly affected by various intertwined
and correlated factors, we explicitly derive closed-form expressions under some
restricted scenarios.

(1) Exponential data size distribution y with a mean of μy. Under this con-
dition, k∗ is reduced to zero according to (4), the incentive condition thus
becomes

e(nb) − eFS(b∗) = λewu
w − pidle

m b∗

bsize
= λewu

w −
√

2λpidle
m ewu

w μy

bsize
> 0 (36)

It is obvious that (36) holds as long as λewu
w >

2pidle
m μy

bsize is met. This in-
centive condition can be rewritten in a structurally meaningful form that
emphasizes the distinction between hardware parameters and operational
requirement as follow

ewu
w

pidle
m

bsize

>
2μy

λ
. (37)

Using byte-second as a quantifiable unit, the left-hand side of (37) is related
to hardware power parameters: the ratio of radio wakeup energy to the per-
byte idle-mode power consumption of a memory bank. The right-hand side,
on the other hand, is related to the operational requirement: the ratio of
the mean data size to the data arrival rate. For given power parameters

and μy, there exists a critical value for λc = 2μy pidle
m

bsizeewu
w

. When λ > λc, the
fixed-size buffering scheme is preferred. Otherwise, the no-buffer scheme
is preferred. A high ratio of the per radio wakeup energy to the per-byte
idle-mode memory power consumption favors a large buffer size. On the
other hand, the benefit of data buffering is diminished as μy

λ
increases.

(2) Erlang size distribution y with parameters (α, λα). This corresponds to the

case in which cv(y) = 1√
α
, γ (y) = 2√

α
, μy = α

λα

, σy =
√

α

λα

, then k∗ = 1
12 (1− 1

α2 ).

The incentive condition is thus expressed as

e(nb) − eFS(b∗) = λewu
w − pidle

m

bsize

(
b∗ − μy

2

(
1 − 1

α

))
> 0, (38)

where

b∗ =
√

2λbsizeewu
w μy

pidle
m

+ μ2
y

12

(
1 − 1

α2

)
. (39)

Equation (39) shows that, as compared with an exponential size distribu-
tion (α = 1), an additional buffer size needs to be allocated when the shape
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Fig. 6. Incentive area vs. arrival interval: [pidle
m (0.409μW ), bsize(256b), ewu

m (80μJ), μy(64b)].

parameter α > 1. To study the impact of data arrival rate λ, we define
f (λ) = e(nb)−eFS(b∗). Differentiating f (λ) and solving f ′(λ∗) = 0 gives

λ∗ = μy pidle
m

24bsizeewu
w

(
11 + 1

α2

)
. (40)

Observe that f (λ) has a global minimum point at λ∗ since f ′′(λ∗) > 0. This
implies that f (λ∗) < f (λ), λ ∈ R+ and λ �= λ∗. Substituting (40) into (38)
gives

f (λ∗) = −μy pidle
m

24bsize

(
1 + 12

α
− 1

α2

)
< 0, α ≥ 1 (41)

Since f (0) = pidle
m μy

2bsize
(1 − 1

α
− 1√

3

√
1 − 1

α2 ) ≤ 0, α ≥ 1, and f (λ) → ewu
w λ >

0 when λ is sufficiently large, one concludes that there exists a critical
data rate λc > λ∗ such that the no-buffer scheme outperforms the fixed-
size buffering scheme when λ ≤ λc and the fixed-size buffering scheme
is preferred when λ > λc. Figure 6 plots f (λ) as a function of 1/λ with
different shape parameters in a semilog format. Figure 6 illustrates that
increasing shape parameter α (less variation) results in a decreased critical
data rate λc (increasing Tc = 1/λc), indicating that the smaller the data
size variation, the larger the incentive region. It is worth noting that there
exists an inherent tradeoff between buffering and responsiveness: the no-
buffer scheme achieves real-time responsiveness at the expense of power
consumption, while the power-aware buffering to some extent can save
power consumption, but at the price of reduced responsiveness.

4.2 Comparison between Fixed-Size and Fixed-Interval Buffering Schemes

One question arises naturally: which buffering scheme is more power efficient?
the power-aware fixed-size scheme or the power-aware fixed-interval one. While
in general there is no simple answer to this question, there is a definite answer
under some special circumstances. We begin with an easy lemma as follows.
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LEMMA 1. Let f (x)=√
ax −√

ax + b+c, x ≥ 0, where a, b, and c are positive,
and

√
b < c. Then f (x)>0 for x≥0.

PROOF. Take derivation of f (x), we obtain

f ′(x) = a(
√

ax + b − √
ax)

2
√

ax(ax + b)
> 0, x > 0 (42)

This means that f (x) is monotonically increasing for x ≥ 0. Then f (0) =
min

x∈(0,∞)
f (x). It can be inferred that f (x) > f (0) > 0 for x ≥ 0 since f (0) =

−√
b + c > 0.

THEOREM 5. The power-aware fixed-size buffering scheme is more power-
efficient than the fixed-interval counterpart when the data size is constant,
while both the buffering schemes perform equally well when the data size is
exponentially distributed.

PROOF. Define g(T ∗, b∗) to denote the power consumption differential be-
tween the fixed-interval and fixed-size buffering schemes as follows

g(T ∗, b∗) = eFI(T ∗) − eFS(b∗) =
√

2μyλpidle
m ewu

w

bsize
− pidle

m

bsize

(
b∗ + μy

(
c2
v (y) − 1

)
2

)
(43)

(I) Constant data size: Since σy =0 and k∗ =1/12, thus (43) becomes

g(T ∗, b∗) =
√

2μyλpidle
m ewu

w

bsize
−

√√√√2μyλpidle
m ewu

w

bsize
+
(
μy pidle

m

)2
12b2

size
+ pidle

m μy

2bsize
(44)

Let a = 2μy pidle
m ewu

w

bsize
, b = (μy pidle

m )2

12b2
size

, c = pidle
m μy

2bsize
. Based on Lemma 1, we have

g(T ∗, b∗) > 0, i.e., eFI(T ∗) > eFS(b∗).

(II) Exponential size distribution: Since σy =μy, cv(y) = 1, γ (y) = 2, thus k∗ = 0,
(43) becomes

g(T ∗, b∗)=
√

2μyλpidle
m ewu

w

bsize
−
√

2μyλpidle
m ewu

w

bsize
= 0. (45)

Combining (I) and (II) completes the proof.

Consider a hyper-exponential size distribution: fh(y) =∑2
i=1

1
μi

pi exp (−y/μi)

and
∑2

i=1 pi = 1. Letting p1 = p, p2 = 1 − p. Since there is no closed-form
expression for g(T ∗, b∗), thus a numerical method is used to compute different
values for cv(y) and γ (y). This is achieved by varying the value of p while
maintaining μy constant. Figure 7 presents g(T ∗, b∗) as a function of 1

λ
with

different cv(y) and γ (y). It shows that cv(y) has a substantial impact on g(T ∗, b∗),
whereas γ (y) plays a marginal role. For example, when cv(y)=1.72 and γ (y) =
2.72, g(T ∗, b∗)=eFI(T ∗)−eFS(b∗)<0.
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Fig. 7. g(T ∗, b∗) vs. 1/λ: [pidle
m (0.409μW ), ewu

m (80μJ), bsize(256b)].

Combining the above analysis and numerical calculation leads to the con-
clusion that the size variation-induced effect is a non-negligible role in deter-
mining the relative advantages of the fixed-interval and fixed-size buffering
schemes: when the size distribution is of low-variance, the fixed-size buffering
scheme outperforms the fixed-interval counterpart. When the size distribution
is of high-variance, the fixed-interval buffering scheme is more energy-efficient
than the fixed-size one. Between these two extremes in size variability, the rel-
ative power efficiency of these two buffering schemes depends on data arrival
rate λ.

To illustrate the efficacy of the power-aware fixed-size buffering scheme over
a power-oblivious one, we define a function gFS(b, b∗) as follows

gFS(b, b∗) = eFS(b) − eFS(b∗) = (b∗ − b)

⎛
⎜⎜⎜⎝

λewu
w μy + pidle

m μ2
yk∗

2bsize

b · b∗ − pidle
m

2bsize

⎞
⎟⎟⎟⎠ , (46)

where b∗ denotes the optimal buffer size (see (14)), and b is arbitrarily chosen
(b ∈ R and b �= b∗). In practical terms, the amount of power consumed in the
idle-mode memory banks is quantized into discrete levels as pidle

m � b
bsize

�, where
�� is the ceiling function. This implies that only certain discrete power states
are allowed. For example, if bsize = 128, then two memory banks will be used
when the buffer size b falls within the range of [128, 255 ].

To visualize this quantization impact, we examine the function gFS(b, b∗)
when k∗ = 0 (an exponential size distribution). Figures 8–9 plot gFS(b, b∗) as a
function of 1/λ under different values of μ (mean data size). The y-axis in the
top graph in Figure 8 represents gFS(256, b∗) in the unit of (μW). The y-axis in
the bottom graph in Figure 8 denotes the optimal buffer size b∗ in a multiple of
bsize. The x-axis refers to the mean arrival interval 1/λ in a log scale.

With increases in 1
λ
, the optimal buffer size b∗ decreases. The curve

of gFS(256, b∗) gradually declines as 1
λ

increases, as shown in Figure 8. In
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Fig. 9. Top: gFS(1280, b∗) vs. log(1/λ). Bottom: optimal buffer size b∗ vs. log(1/λ). [bsize
(128b), μy(64b), ewu

w (80μJ), pidle
m (0.409μW )].

contrast, in Figure 9 with increases in 1
λ
, the differential gain gFS(1280, b∗)

initially monotonically decreases and then increases after reaching the lowest
point at which the buffer size b is optimal at 10bsize = 1280. Observe that the
memory-bank-size quantized effect produces a stair-like relation between the
amount of power consumed and 1

λ
. For example, the optimal buffer size is 6bsize

when 1
λ

∈ [5.435, 7.825). The larger the arrival interval 1
λ
, the more pronounced

(a wider stair space) the quantized effect.
To evaluate the size variation-induced effects, we calculated gFS(b, b∗) un-

der a hyperexponentially distributed data size in which cv(y) = 1.732 and
γ (y) = 2.718 and plot both gFS(256, b∗) and gFS(1280, b∗) as a function of 1

λ
in

Figures 10–11, respectively. In comparison to the absence of size variation as
shown in Figures 8–9, the size variation effect becomes inconsequential when
λ is high, but has a substantial impact when λ is low (see Figure 12).
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This phenomenon can be explained by reference to (23). �vb in (23) shows
that the size variation effect is proportional to the term μ2

yk∗. Hence the relative
effect of size variation on the optimal buffer size b∗ can be expressed as

�vb√
2λewuwbsizeμy

pidle
m

=
√

1 + μy pidle
m k∗

2λewu
m bsize

− 1. (47)

Equation (47) indicates that for a given size distribution (given cv(y)
and γ (y), thereby k∗), the size variability effect becomes prominent for low
duty-cycle sensor nodes as (47) increases with decreasing λ (low duty cycle).
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Table II. Power Parameters of Radio and Memory Bank

ewu
w pidle

m eTX
w er

m + ew
m eresyn

m

80 μJ 0.409 μW 8.976 μJ/byte 36 · 10−3μJ/byte 0.912 μJ

5. EFFECT OF POWER-AWARE BUFFERING SCHEMES ON LIFE SPAN

In this section we will use a concrete example to quantify the benefits of power-
aware schemes in terms of the lifespan extension.

Power parameters in Table II are either directly obtained or indirectly
derived from the literature. In CC2420-802.15.4 radio specification [CC2420
2004], the transmission power is −25 dBm with a data rate of 250 kbps, and
the current draw is 8.5 mA(3.3V ). The 250 kbps is the optimal rate in an ideal
environment, which may not make any practical sense. In practical terms, the
rate is assumed to be 25 kbps. Consequently, the one-byte transmission energy
is calculated as eTX

w = 8.5×3.3×8
25 = 8.976μJ/byte. The power consumption for an

idle-mode SRAM memory bank is pidle
m = 0.409μW [Hempstead et al. 2005].

Due to unavailability of actual power data of SRAM bank in the literature, the
er

m, ew
m, eresyn

m are approximated by using Rambus DRAM power data. A read or
write operation on Rambus DRAM takes 60ns and consumes 300mW , that is,
er

m = ew
m = 18 · 10−3μJ/byte. A transition from the powerdown mode of a Ram-

bus DRAM to the active mode consumes 152mW and takes 6000 ns [Fan et al.
2001]. Thus a resynchronization energy is eresyn

m = 0.912 μJ. A radio wakeup en-
ergy is assumed to be ewu

w = 80 μJ as it is not found in literature. Let the supply
voltage be 3.3 V, and the lifespan of two AA batteries be 2700 mAh [Levis 2005].

Consider a scenario with a Poisson arrival and constant data size (implying
k∗ = 1/12). Letting yi = μy = bsize = 128b. Based on Table II, the comparison
results between the optimal fixed-size buffering, optimal fixed-interval buffer-
ing, and an power-oblivious buffering with buffer size of 256 are tabulated in
Table III.
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Table III. Performance Comparison

λ eFS(b∗) lifespan eFI(T ∗) lifespan eFS(256) lifespan
(1/s) (μW ) (yr) (μW ) (yr) (μW ) (yr)

1 2392.1739 0.4252 2392.3775 0.4252 2424.5010 0.4195
0.9 2153.3299 0.4723 2153.5336 0.4723 2182.0722 0.4661
0.8 1914.4623 0.5313 1914.6659 0.5312 1939.6434 0.5244
0.7 1675.5663 0.6070 1675.7698 0.6069 1697.2146 0.5993
0.6 1436.6355 0.7080 1436.8389 0.7079 1454.7858 0.6992
0.5 1197.6609 0.8493 1197.8641 0.8491 1212.3570 0.8390
0.4 958.6283 1.0610 958.8314 1.0608 969.9282 1.0487
0.3 719.5143 1.4136 719.7172 1.4132 727.4994 1.3981
0.2 480.2728 2.1178 480.4753 2.1169 485.0706 2.0969
0.1 240.7851 4.2242 240.9869 4.2207 242.6418 4.1919

With λ = 0.5, by (14), the optimal buffer size is calculated as b∗ =
1790.54(b), thus the number of memory banks involved is � b∗

bsize
� = 14. By

(24), we obtain eFS(b∗) = 1197.660858 μW. The amount of current draw is
1197.660858

3.3 = 362.927533μA, and the lifespan is 3.3∗2700000
1197.660858∗24∗365 = 0.849258(yr).

Similarly, the power consumption of the power-oblivous and optimal fixed-
interval schemes are calculated as eFS(256) = 1212.357021 μW and eFI(T ∗) =
1197.864140 μW. This implies that the power-aware fixed-size scheme outlives
the power-oblivious one by 3.75761 days and outlives the optimal fixed-interval
one by 1.262509 hours.

Table III shows that the role of the power-aware buffering becomes more
prominent when the node operates at a low duty cyle. For example, with
λ = 1, the optimal fixed-size buffer scheme outlives the power-oblivious one
by 2.069278 days, when λ = 0.1, the optimal fixed-size buffer scheme outlives
the power-oblivious one by 11.797951 days. A side-by-side comparison in Ta-
ble III suggests that the fixed-size buffering scheme performs slightly better
than the fixed-interval counterpart. However, this marginal advantage will be
disappeared in the presence of data-size variations.

To see the size variation effect on the fixed-size buffering scheme, we consider
a hypothetical symmetrical size distribution (γ (y) = 0). Thus the optimal buffer
size b∗ is expressed as

b∗ =
√

2λewu
m μybsize

pidle
m

+ μ2
y

(
5c4

v (y)
4

+ 1
12

)
. (48)

Based on (24) and Table II, Figure 13 plots the lifespan as a function of cv(y)
under different data arrival rates (λ). One can see a monotonic decline in
the lifespan with increasing cv(y). This trend indicates that for the fixed-size
buffering scheme, high data size variation has a detrimental effect that fur-
ther depletes battery. By contrast, the fixed-interval buffering scheme has an
obvious advantage of being eminently immune to data-size variation: its power
consumption is only associated to mean data size μy, and is independent of data
size variance. To illustrate, under two power parameter settings, the lifespan,
optimal buffer interval T ∗, and the power consumption under different rates
are given in Table IV.
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Table IV. Lifespan under Data Arrival Rates for Fixed-Interval Buffering Scheme

λ(1/s) T ∗(s) eFI(T ∗)(μW ) lifespan (yr) T ∗ (s) eFI(T ∗)(μW ) lifespan (yr)
1 19.79 2392.38 0.425 12.65 3230.78 0.315

0.5 13.99 4780.02 0.213 8.94 6387.46 0.159
0.25 9.89 9553.33 0.107 6.32 12670.13 0.08
0.125 6.99 19097.18 0.053 4.47 25192.07 0.04
0.0625 4.94 38180.97 0.027 3.16 50174.57 0.02
power ewu

w (80 μJ), pidle
m (0.409 μW ) ewu

w (800 μJ), pidle
m (10 μW )

parameters eTX
w (8.976 μJ/byte) eTX

w (8.976 μJ/byte)
bsize(128b), μy(128b), er

m + ew
m(36 · 10−3μJ/byte)

For environmental monitoring, a sensor-based network forms a data collec-
tion tree. Each node gathers local information, and forwards the data from its
child nodes to its routing parent (see Figure 14). The sink node then collates
the received information into global environmental data. Below we establish an
energy consumption relationship between a routing parent node and its child
nodes in the context of fixed-interval buffering scheme.

THEOREM 6. Suppose a parent node has k child nodes in a static data collec-
tion tree. Let the ith child have Poisson arrival with a rate of λi and a mean size
of μi . If the parent and child nodes adopt the fixed-interval buffering scheme,
then the optimal buffer interval T ∗

p for the parent node is

T ∗
p =

√√√√√ 2ewu
w bsize

pidle
m

k∑
i=1

λiμi

. (49)

PROOF. It follows from (25) that for the ith child node, its optimal interval

is Ti =
√

2ewu
w bsize

pidle
m λiμi

. This means that successive transmission from the ith node

to its parent node is equally spaced by an interval Ti, with the mean size
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Fig. 14. Data collection tree: bandwidth conservation between parent and child nodes.

of λiTiμi. Assume that each node has the radio-triggered wakeup capability,
thereby incurring no listening power consumption.

Let T be the length of a renewal cycle of the parent node. Each child node
independently transmits the buffered data at the rate of 1/Ti. With respect to
the ith child, the corresponding energy consumed by the parent node, denoted
by eFI(T )(i), can be decomposed into three pieces:

(1) The energy for data buffering (idle-mode) at the parent node, denoted by
eFI

b (T )(i), is bounded as:

� T
Ti

�∑
k=1

pidle
m (T − kTi)yi(k)

bsize
≤ eFI

b (T ) ≤
� T

Ti
�∑

k=0

pidle
m (T − kTi)yi(k)

bsize
, (50)

where yi(k) is the size of kth data sent by the i child node, and E[yi(k)] =
λiTiμi.

� T
Ti

�∑
k=1

pidle
m (T − kTi)λiTiμi

bsize
≤ E[eFI

b (T )] ≤
� T

Ti
�∑

k=0

pidle
m (T − kTi)λiTiμi

bsize
. (51)

This yields E[eFI
b (T )(i)] ≈ pidle

m T 2

2Ti

λi Tiμi
bsize

= pidle
m T 2λiμi

2bsize
.

(2) The energy for data transmission and for reading/writing data from/into
memory banks, plus elevating/demoting the power status of memory banks,
is

eFI
t (i) =

ni (T )∑
k=0

yi(k)
(
eTX
w + ew

m + er
m

)+ 2eresyn
m , (52)

E[eFI
t (i)] = T

(
λiμi

(
eTX
w + ew

m + er
m

)+ 2eresyn
m /Ti

)
,

where ni(T ) is the number of transmissions by the ith node over T interval,
and its expectation E[ni(T )] is T/Ti.

(3) The energy for data reception (eFI
r (i)) from the ith child is

eFI
r (i) =

ni (T )∑
k=0

yi(k)eRX
w + ewu

w , E
[
eFI

r (i)
] = T λiμieRX

w + T ewu
w

Ti
, (53)

where ni(T ) denotes the number of data receptions at the parent over T , so
that the number of radio-wakeups (by a radio-triggered wakeup mechanism) is
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T/Ti, and the expected energy in radio wakeup over T is T ewu
w

Ti
. The energy for

data reception is T λiμieRX
w ≈ T λiμieTX

w , assuming that eRX
w ≈ eTX

w .
Thus the average total energy of the parent node with k child nodes over T

is:

E[eFI(T )] = ewu
w + pidle

m T 2

2bsize

k∑
i=1

λiμi + T
k∑

i=1

(
λiμi

(
2eTX

w + ew
m + er

m

)+ 2eresyn
m + ewu

w

Ti

)
(54)

Notice that only one radio wakeup for data transmission and
∑k

i=1 T/Ti radio
wakeups for data receptions from k child nodes in each cycle T . Using the same
trick in the proof of Theorem 4, the long-run mean average energy is

eFI(T ) = ewu
w

T
+ T pidle

m

2bsize

k∑
i=1

λiμi +
k∑

i=1

(
λiμi

(
2eTX

w + ew
m + er

m

)+ 2eresyn
m + ewu

w

Ti

)
.

(55)

Taking derivative of (55) w.r.t. T gives
∂eFI(T )

∂T
= −ewu

w

T 2
+ λpidle

m

2bsize

k∑
i=1

λiμi. Resolv-

ing ∂eFI(Tp)
∂Tp

= 0 yields (49).

Let v = (λ1μ1, . . . , λkμk) be a bandwidth distribution vector of k child nodes,
and eFI(Tp)(v) refer to the long-run mean average energy consumption of the
parent node under v. Substituting (49) into (55) gives

eFI(Tp)(v) =

√√√√√2pidle
m ewu

w

k∑
i=1

λiμi

bsize
+ (2eTX

w + ew
m + er

m

) k∑
i=1

λiμi

+
(

eresyn
m + ewu

w

2

)√
2pidle

m

ewu
w bsize

k∑
i=1

√
λiμi, (56)

where
∑k

i=1 λiμi refers to the total bandwidth of the parent node.
A natural question arises as to how bandwidth distribution among child

nodes affects the overall power consumption of the parent node.
To answer this question, we first introduce the notion of majorization, and

then provide a lemma to facilitate necessary derivations.
For any vector x = (x1, . . . , xn) ∈ Rn, let x(1) ≤· · · ≤ x(n) be the component of x

in ascending order, and x↓ = (x(1), . . . , x(n)) be the ascending rearrangement of x.

Definition 4. For two vectors x, y ∈ Rn,

x ≺ y if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k∑
i=1

x(i) ≥
k∑

i=1
y(i), 1 ≤ k ≤ n − 1

n∑
i=1

x(i) =
n∑

i=1
y(i)

(57)
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Then x is said to be majorized by y [Marshall and Olkin 1979].

A trivial example is given to illustrate the notion of majorization:(
1
n

, . . . ,
1
n

)
≺
(

1
n − 1

, . . . ,
1

n − 1
, 0
)

≺ · · · ≺
(

1
2

,
1
2

, 0, . . . , 0
)

≺ (1, 0, . . . , 0)

LEMMA 2. Let x = (x1, . . . xn), y = (y1, . . . , yn) be two vectors and g be a
concave function. If x ≺ y, then

∑n
i=1 g(yi) <

∑n
i=1 g(xi).

The proof can be seen in Marshall and Olkin [1979] and therefore is omitted.

THEOREM 7. Let v = (λ1μ1, . . . , λkμk) and v′ = (λ′
1μ

′
1, . . . , λ

′
kμ

′
k) be two child

bandwidth distribution vectors. Letting
∑k

i=1 λiμi = ∑k
i=1 λ′

iμ
′
i = B. If v is ma-

jorized by v′ (v≺v′), then the parent node consumes more power under v than un-
der v′, with the same optimal buffer interval Tp. Namely, eFI(Tp)(v) > eFI(Tp)(v′).

PROOF. Since
∑k

i=1 λiμi =
∑k

i=1 λ′
iμ

′
i =B, by (49), the optimal interval for the

parent node, Tp =
√

2ewu
w bsize
pidle

m B
, is identical under both v and v′. Based on lemma 2

that
∑k

i=1
√

λiμi >
∑k

i=1

√
λ′

iμ
′
i since v ≺ v′, we get

eFI(Tp)(v) − eFI(Tp)(v′) =
(

eresyn
m + ewu

w

2

)√
2pidle

m

ewu
w bsize

(
k∑

i=1

√
λiμi −

√
λ′

iμ
′
i

)
> 0.

(58)

Theorem 7 is thus proved.

Let VB be a convex space formed by a set of vectors satisfying v =
(λ1μ1, . . . , λkμk) ∈ VB iff

∑k
i=1 λiμi = B. Let v↔ = (Bk , . . . , B

k ) ∈ VB and
v� = (B, 0, . . . , 0) ∈ VB be two child bandwidth distribution vectors. The vector
v↔ represents a uniform bandwidth distribution in which each child equally
contributes the B

k bandwidth of the parent, while v� is an extremely uneven
bandwidth distribution where only child constitutes the B of the parent node
and the remaining children contribute nothing. Clearly, for any bandwidth
distribution v ∈ VB, v↔ ≺ v≺ v�. It follows from Theorem 7, we have

eFI(Tp)(v↔) = max{eFI(Tp)(v) : v ∈ VB} (59)

eFI(Tp)(v�) = min{eFI(Tp)(v) : v ∈ VB}. (60)

By the aid of (58), the power difference of the parent node under v↔ and v� is

eFI(Tp)(v↔) − eFI(Tp)(v�) =
(

eresyn
m + ewu

w

2

)√
2pidle

m B
ewu
w bsize

(
√

k − 1). (61)

Theorem 7 provides a means of quantifying the impact of uniformity in child
bandwidth distribution on power consumption of the parent node. Equation
(61) in particular gives the bound on the range of such bandwidth distribution
effect, which is proportional to the square root of the number of child nodes.
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6. CONCLUSION AND FUTURE WORK

The longevity of battery-powered sensor networks is an essential performance
metric of around-clock environmental surveillance and monitoring. This article
focuses on the exploitation of power-aware buffering schemes to reduce power
consumption of sensor networks based on the radio-triggered power manage-
ment. It shows that the power-aware buffering is a nonnegligible factor that ef-
fectively improves the lifespan of sensor networks and that the power-oblivious
buffering is harmful as it is very likely to result in an excessive power consump-
tion.

An in-depth analysis shows that the fixed-size and fixed-interval buffering
schemes differ markedly in relation to data size variability. The power-aware
fixed-size buffering scheme is implicated in both the skewness and coefficient
of variation in the data size distribution, and its performance could deteriorate
rapidly when the data size is of high-variance. In contrast, the hallmark of
the fixed-interval buffering scheme is its immunity to the data-size variation.
The fixed-interval buffering scheme is therefore the buffering choice for its
performance stability in a variety of sensor-based application environments.
Furthermore, in the context of the fixed-interval buffering scheme, we establish
the power consumption relationship between parent and child nodes in a static
data collection tree in sensor networks. We show that a uniform bandwidth
distribution among child nodes in fact consumes more power of the parent
node than an uneven bandwidth distribution.

These findings are valuable in understanding the asymptotic behavior of
the power-aware buffering schemes in the presence of size variability. They
provide well-informed guidance on determining the optimal buffer size or buffer
interval based on the power parameter of radio and memory banks, allowing
us to judiciously select a buffering scheme that better tailors to data arrival
rate and data size distribution.

Our future work will focus on 1) validating the buffering models in a lab
environment, including simulation and system implementation; 2) studying
the power-aware buffering issue under real-time constraints. The goal of the
new research avenue is to study strategy that can provide optimal trade-off
between power-aware buffering and responsiveness.

APPENDIX

We first introduce the notion of first ladder height, then present Lai and
Seigmund’s remarkable theorem [Lai and Seigmund 1977], which has laid
theoretical basis for quantifying the size variation impact on the fixed-size
buffering scheme.

Definition 5. Let x1, x2, · · · be random variables following certain distribu-
tion F with parameter θ , and Sn be the random walk consisting of the partial
sum Sn = ∑n

i=1 xi. The first time τ = inf {n : Sn > 0} that the random walk is
positive is called the first ladder epoch and the first positive value Sr taken by
the random walk is called as the first ladder height.
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A detailed derivation of Theorem 8 can be found in Lai and Seigmund [1977,
1979]. Keener [1987] later gave a simplified expression for k in terms of mo-
ments of ladder height variables.

THEOREM 8. Let {xi, i ≥ 1} be a random walk with a mean of μx = E[x1] > 0
and finite variance σ 2

x . Let τ (b) = min{n ≥ 1 :
∑n

1 xi > b}, Rb = Sτ (b) − b, M =
min
n≥0

Sn, τ
+ =τ (0), and H = Sτ+ . As b→∞, the stopping time variance becomes

σ 2
τ (b) = bσ 2

x

μ3
x

+ k
μ2

x
+ o(1), (62)

where τ (b) refers to the stopping time and k is the key constant with a rather
complicated expression as follows:

k = σ 2
x EH2

2μx EH
+ 3

4

(
EH2

EH

)2

− 2
3

EH3

EH
− EH2 EM

EH
− 2

∫ ∞

0
ERx P(M ≤ −x)dx

(63)

Based on Theorem 8, we provide a proof of Theorem 1 in this article.

PROOF. Consider random variables with positive increments {xi > 0, i ≥ 0}
because the received data size is always positive. Let’s reexamine the expres-
sion for k in (63) under the positive increment condition. Define the ladder
epochs τ0 = 0 and τ+

1 = τ+, and τ+
n+1 = inf {k > τ+

n : Sk > Sτ+
n
} for n≥1. For n > 0,

the (n + 1)th ladder height Hn+1 = Sτ+
n+1

−Sτ+
n

. Consider Hn+1 = Sτ+
n+1

−Sτ+
n

= xn+1

under the positive increment condition, i.e., H = x. As a result, we obtain

EH = E[x] = μx, EH2 = E[x2] = σ 2
x + μ2

x, (64)

EH3 = E[x3] = 3σ 2
x μx + μ3

x + σ 3
x γ (x)

Using the identity EM= EH2

2EH − E[x2]
2E[x] [Woodroofe 1976], we obtain that EM = 0

when the positive random walk is assumed. Substitution of these identities
into (63) yields a simplified expression for k, denoted by k∗, as follows:

k∗ = σ 2
x

(
σ 2

x + μ2
x

)
2μ2

x
+ 3

4

(
σ 2

x + μ2
x

μx

)2

− 2
3

(
3σ 2

x μx + μ3
x + σ 3

x γ (x)
μx

)
(65)

= 5σ 4
x

4μ2
x

+ μ2
x

12
− 2σ 3

x γ (x)
3μx

= 5σ 2
x c2

v (x)
4

+ μ2
x

12
− 2σ 3

x cv(x)γ (x)
3

,

Substitution of (65) into (62) completes the proof.
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