
On Optimal Deadlock Detection Scheduling
Yibei Ling, Member, IEEE, Shigang Chen, and Cho-Yu Jason Chiang

Abstract—Deadlock detection scheduling is an important, yet often overlooked problem that can significantly affect the overall

performance of deadlock handling. Excessive initiation of deadlock detection increases overall message usage, resulting in degraded

system performance in the absence of deadlocks, while insufficient initiation of deadlock detection increases the deadlock persistence

time, resulting in an increased deadlock resolution cost in the presence of deadlocks. The investigation of this performance trade-off,

however, is missing in the literature. This paper studies the impact of deadlock detection scheduling on the overall performance of

deadlock handling. In particular, we show that there exists an optimal deadlock detection frequency that yields the minimum long-run

mean average cost, which is determined by the message complexities of the deadlock detection and resolution algorithms being used,

as well as the rate of deadlock formation, denoted as �. For the best known deadlock detection and resolution algorithms, we show that

the asymptotically optimal frequency of deadlock detection scheduling that minimizes the overall message overhead is Oðð�nÞ1=3Þ
when the total number n of processes is sufficiently large. Furthermore, we show that, in general, fully distributed (uncoordinated)

deadlock detection scheduling cannot be performed as efficiently as centralized (coordinated) deadlock detection scheduling.

Index Terms—Deadlock detection scheduling, deadlock formation rate, deadlock persistence time.

Ç

1 INTRODUCTION

THE distributed deadlock problem [8], [20], [16], [26], [11],
[14] arises from resource contention introduced by

concurrent processes in distributed computational environ-
ments. It has received a great deal of attention in different
areas such as distributed computing theory [22], [26], [9],
distributed database [17], [14], [8], [10], [11], and parallel
and distributed simulation [2], [28], [21]. A deadlock is a
persistent and circular-wait condition, where each process
involved in a deadlock waits indefinitely for resources held
by other processes while holding resources needed by
others. As a result, none of the processes waiting for needed
resources can continue computation any further without
obtaining the waited-for resources. A deadlock has an
adverse performance effect that offsets the advantages of
resource sharing and processing concurrency.

There are three common strategies for dealing with the
deadlock problem: deadlock prevention, deadlock avoidance,
and deadlock detection and resolution. It is a long-held
consensus that both the deadlock prevention and deadlock
avoidance strategies are conservative and less feasible in
handling the deadlock problem in general, whereas the
deadlock detection/resolution strategy is widely accepted
as an optimistic and feasible solution to the deadlock
problem because of its exclusion of the unrealistic assump-
tion about resource allocation requirements of the processes
[10], [16], [26], [7], [27]. The central idea behind the deadlock
detection and resolution strategy is that it does not preclude
the possibility of deadlock occurring but leaves the burden

of minimizing the adverse impact of deadlock to deadlock
detection and resolution mechanisms. Under this scheme,
the presence of deadlocks is detected by a periodic initiation
of a deadlock detection algorithm and then resolved by a
deadlock resolution algorithm [31], [27], [7].

Despite significant performance improvement in the
past, deadlock detection remains a costly operation [26],
[11], [19]. It requires dynamical maintenance of wait-for-
graph (WFG) that reflects the runtime wait-for dependency
among distributed processes and performs a graph analysis
to detect the presence of deadlocks. There is a substantial
trade-off between the cost of deadlock detection and that of
deadlock resolution [26], [16], [23]. An initiation of deadlock
detection consumes runtime system and network resources
which are basically pure overheads when no deadlock is
present [26], [19]. Excessive initiation of deadlock detection
would reduce the deadlock resolution cost, but result in
system performance degradation in the absence of dead-
lock, while infrequent deadlock detection would be accom-
panied by increased deadlock size, resulting in an increased
deadlock resolution cost in the presence of deadlocks [23],
[16], [15], [1]. It is evident that a deadlock detection scheduling
is one of the key factors affecting the overall system
performance of deadlock handling. Nevertheless, to the
best of our knowledge, this subject is generally missing in
the literature.

This paper investigates the optimal deadlock detection
scheduling. We study how to best schedule deadlock
detections so as to minimize the long-run mean average
cost of deadlock handling. We formulate this problem by
introducing a generic cost model (utility metric) and use
this cost model to establish a connection between deadlock
detection and deadlock resolution costs, in relation to the
rate of deadlock formation. We show that there exists a
unique optimal deadlock detection frequency that yields the
minimum long-run mean average cost. Moreover, our result
indicates that the asymptotically optimal frequency of
deadlock detection that minimizes the message overhead

1178 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9, SEPTEMBER 2006

. Y. Ling and C.-Y.J. Chiang are with Applied Research, Telcordia
Technologies, One Telcordia Drive, Piscataway, NJ 08854.
E-mail: {lingy, chiang}@research.telcordia.com.

. S. Chen is with the Department of Computer and Information Science and
Engineering, University of Florida, Gainesville, FL 32611.
E-mail: sgchen@cise.ufl.edu.

Manuscript received 15 Dec. 2004; revised 8 Jan. 2006; accepted 31 Jan. 2006;
published online 20 July 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0415-1204.

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

is Oðð�nÞ1=3Þ, when the number n of processes in the system
is sufficiently large. In addition, we prove that a fully
distributed (uncoordinated) detection scheduling cannot be
performed as efficiently as its centralized counterpart
(coordinate scheduling).

The rest of this paper is organized as follows: Section 2
contains a brief summary of the distributed deadlock
detection and resolution algorithms. Section 3 gives the
notions and definitions. Section 4 provides the detailed
mathematical analysis and proves the existence and
uniqueness of an optimal detection frequency. The deter-
mination of the optimal deadlock detection frequency, its
asymptotic relation with the number of processes in a
distributed system, and the impact of random detection
scheduling upon the long-run mean average cost of dead-
lock handling are presented. In Section 5, the main
contribution of this paper is highlighted and possible future
work is discussed.

2 BACKGROUND

In this section, we provide a brief summary of the worst-
case analysis of existing distributed detection algorithms of
generalized deadlocks and deadlock resolution algorithms
since some results will be used later on. We also touch on
Gray et al.’s simulation model [8] as well as Massey’s
formulation [20].

We restrict our discussion to distributed detection and
resolution algorithms. The references [10], [12], [13], [11], [14],
[16] provide excellent gateways to the state of the art in this
area for the generalized resource request model. In the
following, we give a brief summary of the worst-case
performance of the existing distributed detection algorithms.

Table 1 summarizes the worst-case complexities of
distributed deadlock detection algorithms [3], [30], [12],
[14], where n is the total number of processes, e is the
number of edges, d is the diameter, and l is the number of
sink nodes of the WFG. The distributed detection algorithm
for generalized deadlocks by Kshemkalyni and Singhal [14]
is the clear winner among the algorithms listed in Table 1.
Their algorithm has achieved a message complexity of 2e
and a time complexity of 2d, which are believed to be
optimal. Since e ¼ nðn� 1Þ and d ¼ n in the worst-case
analysis, the worst-case message complexity and time
complexity thus can be written as 2n2 and 2n, respectively.

Although deadlock detection and deadlock resolution
are often discussed separately, the latter is as important as
the former [10], [26], [12], [7], [27], [32], [16]. The primary
issue of deadlock resolution [15], [16], [17] is to selectively
abort a subset of processes involved in the deadlock so as to
minimize the overall abortion cost [19], [26], [27], [7]. This is

often referred to as the minimum abort set problem. These
victim (aborted) processes must cancel all pending requests
and release all the acquired resources in order to avoid false
deadlock detection and resolution [26], [12], [7]. The
abortion cost thus includes 1) the sending of cancel
messages to those resources and 2) the sending of reply
messages to all the waiting processes that are currently
being blocked for the resources held by the aborted
processes. One noteworthy point is that these waiting
processes could be either transitively blocked or deadlocked
processes. To further reduce the abortion cost, checkpoint-
ing is sometimes introduced to prevent the victim processes
from being rolled back from scratch [18].

In addition, it is possible that more than two processes
can independently detect the same deadlock. If each process
that detects a deadlock resolves it, then the deadlock
resolution will be highly inefficient and will result in
subsequent false deadlock detection and deadlock resolu-
tion [26], [7], [13], [15]. Therefore, only one process should
be selected for resolving a deadlock, which in turn requires
that the initiations of deadlock resolution algorithm in
different sites be coordinated. Such a coordination for safe
deadlock resolution comes at an additional communication
cost in message exchange [7].

Generally, deadlock resolution cost is measured either in
terms of time complexity [6], [17], [27] or in terms of message
complexity [15], [16], [7]. The complexity of resolution
algorithms is summarized in Table 2, where n is the total
number of processes, m the number of processes having the
priorities greater than deadlocked processes, Nr the number
of resources, and nD the size of a deadlock. Note that the
message complexities are not given in [17], [27].

By transforming the problem of deadlock resolution into
a minimum vertex cut problem, Chen et al.’s algorithm [5] can
identify an optimal set of victim processes to be aborted,
with the properly selected abortion cost to avoid the
starvation and livelock problems. The main feature of
Terekhov and Camp’s algorithm is to take the number of
resources into account. The deadlock resolution algorithm
proposed by Mendivil et al. [7] uses a probe-based
approach, with a focus on the safety aspect of deadlock
resolution. The novelty of this algorithm is to use an
additional round of message exchanges to gather the
information needed for efficient resolution after deadlocks
are detected. The algorithm uses special messages known
as probes to travel in the opposite direction of the edges
in AWFG (asynchronous wait-for graph) and then
chooses the lowest priority process of each detected cycle
as a victim process to be aborted, hence avoiding the
livelock and starvation problems. This deadlock resolu-
tion algorithm [7] excels in the use of formal methods to
prove the correctness and in its fine-granular analysis of

LING ET AL.: ON OPTIMAL DEADLOCK DETECTION SCHEDULING 1179

TABLE 1
Distributed Deadlock Detection Algorithms

TABLE 2
Distributed Deadlock Resolution Algorithms

the algorithm complexities. In particular, its message
complexity is ofOðmn2

DÞ. The worst-case message complexity
can also be written as Oðn3Þ because the eventual deadlock
size, nD, is bounded by the total number of processes in the
distributed system, that is, m ¼ OðnÞ and nD ¼ OðnÞ.

Past research has been primarily aimed at minimizing
the complexities (costs) of the deadlock detection and
resolution algorithms. Although deadlock detection sche-
duling (particularly how frequently deadlock detection
should be performed) has a significant impact on the
overall performance of deadlock handling in practice, it is
not explicitly studied but, rather, implicitly reflected in the
description of deadlock detection algorithms, without a
clear guideline. For instance, in [10], [26], [14], [16], [19], [4],
[5], the authors stated that a deadlock detection is initiated
when a deadlock is suspected. Other works [23], [11]
suggested that it would be highly inefficient if deadlock
detection is performed whenever a process/transaction
becomes blocked.

The performance of deadlock handling not only depends
on the per-detection cost of the deadlock detection algo-
rithm, but also on how frequently the deadlock detection
algorithm is executed [11], [23], [19]. The choice of deadlock
detection frequency presents a trade-off between deadlock
detection cost and deadlock resolution cost [10], [26], [23],
[16], [11]. Park et al. [23] pointed out that the reduction of
deadlock resolution cost can be achieved at the expense of
deadlock detection cost. Krivokapic et al. [11] showed in
their simulation study that the path-pushing algorithm (one
type of deadlock detection algorithm) is highly sensitive to
the frequency of deadlock detection. Gray et al. [8] showed
that the probability of a transaction waiting for a lock
request is rare. They used a “straw-man analysis” in their
simulation model that agreed well with the observation on
several data management systems. Massey [20] formulated
a probabilistic model that gave an analytic justification for
the simulation results reported in [8], showing that the
probability of deadlock grows linearly with respect to the
number of transactions and grows in the fourth power of
the average number of resources required by transactions.

To the best of our knowledge, only a few papers [8], [16],
[27], [5], [26], [19], [6] mentioned deadlock detection
scheduling, but under a different context from this paper.
The idea of relating deadlock recovery cost to deadlock
persistence time and identifying an optimal deadlock
detection frequency that minimizes the long-run mean
average cost from the perspective of deadlock handling has
not been considered before.

3 DEADLOCK PERSISTENCE TIME AND DEADLOCK

RECOVERY COST

In this section, we first give the following definitions in
order to simplify problem formulation:

Definition 1. A deadlock refers to a circular-wait condition
where a set of processes waits indefinitely for resources from
each other. A blocked process (a process in a deadlock) refers to
the process that waits indefinitely on other processes to
progress. Deadlock size refers to the total number of blocked
processes involved in the deadlock.

Blocked processes can be decomposed into two categories:
deadlocked and transitively blocked processes [16]. Deadlocked
processes belong to a cycle in the WFG, while a transitively
blocked process refers to one that waits for the resources
held by other processes but does not belong to any cycle in
the WFG.

Definition 2. Two deadlocks are said to be independent of each
other if they don’t share any deadlocked process.

The independence of deadlock occurrence can be
justified by the wide acceptance of large-scale distributed
systems and adoption of fine-granularity locking mechan-
ism such as semantic locking [24], [11] and record-granularity
locking [24]. After decades of research and development,
large-scale distributed systems allow resource sharing
among hundreds or even thousands of sites across a
network [24], [11]. The fine-granular locking mechanisms
enable a higher degree of parallelism. Large-scale resource
distribution and fine-granularity of locking make deadlocks
likely to form independently.

Now, we are in a position to introduce the notion of
deadlock persistence time, which serves as a basis for our
problem formulation. Let S ¼ fS1; S2; � � �g be the time
instants at which independent deadlocks initially occur,
i.e., the ith deadlock forms at time Si.

Definition 3. The persistence time of the ith deadlock with
respect to time t, denoted by tpðt; SiÞ, is

tpðt; SiÞ ¼
t� Si; t > Si;
0; t � Si:

�

The function tpðt; SiÞ represents the time interval between the
present time and the time at which the deadlock is initially
formed. It grows linearly until the deadlock is resolved. The
notion of deadlock persistence time in spirit is similar to that
of deadlock latency or deadlock duration in [16], [15].

Once a deadlock is formed, other processes requesting
resources currently held by the blocked processes in the
deadlock (including deadlocked and transitively blocked
processes) will be blocked forever unless the deadlock is
resolved. As a result, each deadlock acts as an attractor to
trap more processes into it. As the deadlock persistence
time increases, the size of the deadlock (the total number
of processes involved in the deadlock) keeps growing
[26], [9], [16], [15], which in turn increases the deadlock
resolution cost.

This dependency of deadlock resolution cost upon dead-
lock persistence time is illustrated in the example in Fig. 1. At
time = 1, there are three circularly deadlocked processes and
two transitively blocked processes. At time = 2, there are
seven circularly deadlocked processes. The graphs Fig. 1a
and Fig. 1b represent two snapshots in the wait-for graph,
showing that the deadlock size (including both deadlocked
and transitively-blocked processes) grows with the deadlock
persistence time. Intuitively, a deadlock resolution algorithm
will have to explore the entire deadlock in order to identify
the least costly set of victim processes to be aborted. The
intrinsic dependency of deadlock size (and, thus, deadlock
resolution cost) upon deadlock persistence time was ob-
served by Singhal et al. [26], [13], Villadangos et al. [29],

1180 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9, SEPTEMBER 2006

Lee and Kim [16], [15], Krivokapic et al. [11], Lin and Chen
[17], and Park et al. [23].

Throughout this paper, we use n to denote the total
number of processes in a distributed system and nDð:Þ to
denote the size of a deadlock. Consider an arbitrary
deadlock. Its size is a function of deadlock persistence time
tp, denoted as nDðtpÞ. The deadlock size nDðtpÞ by nature is a
discrete staircase function that jumps by one whenever a
new process becomes transitively blocked by the dead-
locked processes. To facilitate our mathematical analysis,
we will treat nDðtpÞ instead as a continuous, increasing
function which is an approximation of the staircase one.

The deadlock size function nDðtpÞ has the following
mathematical properties: 1) nDð0Þ ¼ 0, 2) monotonicity:
n0DðtpÞ > 0, tp � 0, and 3) bounded: nDð1Þ � n, where
n0DðtpÞ is the derivative of nDðtpÞ. The first property refers
to the initial deadlock size at tp ¼ 0 is zero. The second
property reflects the fact that the number of blocked
processes in the deadlock increases monotonically with
deadlock persistence time tp and the third property
indicates that the eventual deadlock size is bounded by
the total number of distributed processes. For the sake of
easy presentation, we drop the subscript p hereafter.

Now, let’s revisit the message complexity achieved by
the deadlock resolution algorithm proposed by Mendivil
et al. [7], which is Oðmn2

DÞ ¼ Oðnn2
DÞ, where m is the

number of deadlocked processes having priority values
greater than those of the deadlocked processes. Notice that
the deadlock size, nD, is a function of deadlock persistence
time. To make this dependency concrete, the message
overhead can be written as cnn2

DðtÞ for some constant c. This
result will be used later to derive the optimal frequency of
deadlock detection scheduling.

4 MATHEMATICAL FORMULATION

In this section, we begin with a generic cost model that
accounts for both deadlock detection and deadlock resolu-
tion, which is independent of deadlock detection/resolu-
tion algorithms being used. We then prove the existence
and the uniqueness of an optimal deadlock detection
frequency that minimizes the long-run mean average cost
in terms of the message complexities of the best known
deadlock detection/resolution algorithms.

In this paper, we choose the message complexity as the
performance metric for measuring the detection/resolution
cost. The reason for choosing message complexity is that
communication overhead is generally a dominant factor
that affects the overall system performance in a distributed

system [26], [10], [13], [14], as compared with processing

speed and storage space. Note that the worst-case message

complexity can normally be expressed as a polynomial of n.

Per deadlock detection cost is denoted as CD. The resolution

cost for a deadlock is denoted as CRðtÞ, which is a function

of the deadlock persistence time t. In general, the resolution

cost is a polynomial of nDðtÞ. For example, the deadlock

resolution cost for Mendivil et al.’s algorithm [7] is cnn2
DðtÞ

because nDðtÞ is a monotonically increasing function of

deadlock persistence time. CRðtÞ is also monotonically

increasing with deadlock persistence time. We assume that

deadlock formation follows a Poisson process for two

reasons: First, the Poisson process is widely used to

approximate a sequence of events that occur randomly

and independently. Second, it is due to the mathematical

tractability of the Poisson process, which allows us to

characterize the essential aspects of complicated processes

while making the problem analytically tractable.
The following theorem presents the long-run mean

average cost of deadlock handling in connection with the

rate of deadlock formation and the frequency of deadlock

detection:

Theorem 1. Suppose deadlock formation follows a Poisson

process with rate �. The long-run mean average cost of

deadlock handling, denoted by CðT Þ, is

CðT Þ ¼ CD
T
þ
�
R T

0 CRðtÞdt
T

; ð1Þ

where the frequency of deadlock detection scheduling is 1=T .

Proof. Let fXi; i � 1g be the interarrival times of

independent deadlock formations, where random vari-

ables Xi; i � 1 are independent and exponentially

distributed with mean 1=�. Define S0 ¼ 0 and

Sn ¼
Pn

i¼1 Xi, where Sn represents the time instant at

which the nth independent deadlock occurs.
Let NðtÞ ¼ supfn : Sn � tg represent the number of

deadlock occurrences within the time interval ð0; t�. The
long-run mean average cost is

lim
t!1

Eðrandom cost in ð0; t�Þ
t

; ð2Þ

where E is the expectation function. In order to associate

this cost with the deadlock detection frequency (1=T), we

partition the time interval ð0; t� into nonoverlapping

subintervals of length T . Let �kðT Þ be the cost of deadlock

handling on the subinterval ððk� 1ÞT; kT �, k > 0. �kðT Þ is

a random variable. According to the stationary and

independent increments of the Poisson process [25],

Eð�iðT ÞÞ ¼ Eð�jðT ÞÞ, i 6¼ j. The long-run mean average

cost becomes

CðT Þ ¼ lim
t!1

Eðrandom cost in ð0; t�Þ
t

¼ lim
t!1

Eð
Pb tTc

k¼0 �kðT ÞÞ
t

¼ lim
t!1

Eðb tTc�1ðT ÞÞ
t

¼ Eð�1ðT ÞÞ
T

;

ð3Þ

where bxc is the floor function in x.

LING ET AL.: ON OPTIMAL DEADLOCK DETECTION SCHEDULING 1181

Fig. 1. Increasing deadlock size with deadlock persistence time: (a) time

= 1 and (b) time = 2.

The cost �ðT Þ on interval ð0; T � is the sum of a
deadlock detection cost CD and a deadlock resolution
cost for those deadlocks independently formed within
the interval ð0; T �. For the ith deadlock formed at time
Si � T , the resolution cost CRðT � SiÞ is a function of the
deadlock persistence time T � Si. Hence, the accrued
total cost over ð0; T � is

�ðT Þ ¼ CD þ
XNðT Þ
i¼1

CRðT � SiÞIfNðT Þ>0g; ð4Þ

where I� is the indicator function whose value is 1 (or 0)

if predicate � is true (or false). Among that, the deadlock

resolution cost on interval ð0; T � is

XNðT Þ
i¼1

CRðT � SiÞIfNðT Þ>0g ¼
X1
i¼1

CRðT � SiÞIfSi�Tg; ð5Þ

E CRðT � SiÞIfSi�Tg
� �

¼
Z T

0

CRðT � tÞfiðtÞdt; ð6Þ

where fiðtÞ is the probability density function of Si which

follows the gamma distribution given below:

fiðtÞ ¼
�i

ði� 1Þ! t
i�1e��t; t > 0: ð7Þ

Substituting (7) into (6) gives rise to

E CRðT � SiÞIfSi�Tg
� �

¼
Z T

0

CRðT � tÞ
�i

ði� 1Þ! t
i�1e��tdt:

ð8Þ

The expected total resolution cost over the time

interval ð0; T � is

E
XNðT Þ
i¼1

CRðT � SiÞIfNðT Þ>0g

 !

¼
X1
i¼1

Z T

0

CRðT � tÞ
�iti�1

ði� 1Þ! e
��tdt

¼
Z T

0

CRðT � tÞ�e��t
X1
i¼1

ð�tÞi�1

ði� 1Þ!

 !
dt ¼ �

Z T

0

CRðT � tÞdt

¼ �
Z T

0

CRðtÞdt:

ð9Þ

Combining (3), (4), and (9) yields

CðT Þ ¼ Eð�1ðT ÞÞ
T

¼ CD
T
þ
�
R T

0 CRðT � tÞdt
T

¼ CD
T
þ
�
R T

0 CRðtÞdt
T

:

ð10Þ

Theorem 1 is thus established. tu
Theorem 1 is mainly concerned with the impact of

deadlock detection frequency and deadlock formation rate

on the long-run mean average cost of overall deadlock

handling. It is independent of the choice of deadlock

detection/resolution algorithms. The following corollary is

an immediate consequence of Theorem 1:

Corollary 1. The long-run mean average cost of deadlock

handling is proportional to the rate of deadlock formation �.

Proof. The proof is straightforward and, thus, omitted. tu

Theorem 1 and Corollary 1 state that the overall cost of

deadlock handling is closely associated not only with per-

deadlock detection cost and aggregated resolution cost, but

also with the rate of deadlock formation, �. In the following

lemma, we will show the existence and uniqueness of

asymptotic optimal frequency of deadlock detection when

deadlock resolution is more expensive than a deadlock

detection in terms of message complexity.

Lemma 1. Suppose that the message complexity of deadlock

detection is Oðn�Þ, and that of deadlock resolution is Oðn�Þ. If

� < �, there exists a unique deadlock detection frequency 1=T �

that yields the minimum long-run mean average cost when n

is sufficiently large.

Proof. Differentiating (1) yields

C0ðT Þ ¼ �CD
T 2
þ �CRðT Þ

T
�
�
R T

0 CRðtÞdt
T 2

: ð11Þ

Define a function ’ðT Þ as follows:

’ðT Þ � T 2C0ðT Þ ¼ �CD þ �TCRðT Þ � �
Z T

0

CRðtÞdt: ð12Þ

Notice that C0ðT Þ and ’ðT Þ share the same sign.

Differentiating ’ðT Þ, we have

’0ðT Þ ¼ �TC0RðT Þ: ð13Þ

Because CRðT Þ is a monotonically increasing function,
C0RðT Þ > 0, which means ’0ðT Þ > 0. Therefore, ’0ðT Þ is
also a monotonically increasing function. CRðT Þ �
CRðtÞ � 0 holds iff T � t. For any given 0 < � < T , it has

TCRðT Þ �
Z T

0

CRðtÞdt ¼
Z T

0

ðCRðT Þ � CRðtÞÞdt

>

Z �

0

ðCRðT Þ � CRðtÞÞdt

>

Z �

0

ðCRðT Þ � CRð�ÞÞdt

¼ �ðCRðT Þ � CRð�ÞÞ:

ð14Þ

Applying (14) to (12), we have

’ðT Þ ¼ �CD þ �ðTCRðT Þ �
Z T

0

CRðtÞdtÞ

> �CD þ ��ðCRðT Þ � CRð�ÞÞ:
ð15Þ

We further have

’ðT Þ > �CD þ ��CRðT Þ 1� CRð�Þ
CRðT Þ

� �
¼ �CD þ ��CRðT Þ�;

ð16Þ

1182 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9, SEPTEMBER 2006

where � ¼ ð1� CRð�Þ=CRðT ÞÞ and 0 < � < 1 since CRðT Þ
is monotonically increasing. Substituting CD ¼ c1n

� and
CRð1Þ ¼ c2n

� in (16), we obtain

lim
T!1

’ðT Þ > �c1n
� þ ���c2n

�: ð17Þ

Since � < �, limT!1 ’ðT Þ is asymptotically dominated
by the term ���c2n

� when n is sufficiently large. Observe
that ’ð0Þ ¼ �CD < 0 and ’ðT Þ is monotonically increas-
ing. By the intermediate value theorem, it must be true
that there exists a unique T �, 0 < T � <1, such that

’ðT Þ ¼ T 2C0ðT Þ ¼
< 0; 0 � T < T �

¼ 0; T ¼ T �
> 0; T > T �:

8<
:

It means that CðT Þ reaches its minimum at and only at
T ¼ T �. The existence and the uniqueness of optimal
deadlock detection interval T � ¼ argðminT>0 CðT ÞÞ is
proven. tu
To make the idea behind this derivation concrete, we

apply the up-to-date results of deadlock detection/resolu-
tion algorithms. As discussed before, the best-known
message complexity of a distributed deadlock detection
algorithm is 2n2 [14] when it is written as a polynomial of n.
The best-known message complexity of a deadlock resolu-
tion algorithm is Oðnn2

DÞ [7]. Therefore, CD ¼ n2 and
CRðtÞ ¼ cnn2

DðtÞ, where c is a positive constant. Because
the deadlock size nDðtÞ is always bounded by n, from (15)
we have

’ð1Þ ¼ lim
T!1

’ðT Þ > �CD þ ��ðCRð1Þ � CRð�ÞÞ

	 �2n2 þ �c�n3:
ð18Þ

Note that � is a fixed value that can be arbitrarily chosen.
For a sufficiently large n, (18) becomes

’ð1Þ 	 �c�n3 > 0; ð19Þ

’ð0Þ ¼ �CD ¼ �2n2. Because ’ðT Þ is monotonically in-
creasing, there exists an optimal deadlock detection
frequency 1=T � such that ’ðT �Þ and, thus, C0ðT �Þ are zero,
which minimizes the long-run mean average cost CðT Þ for
deadlock handling.

The motivation behind the proof is that the cost per
deadlock detection is fixed when the total number of
processes in the distributed system is given, while the cost
of deadlock resolution monotonically increases with dead-
lock persistence time. The resolution cost will eventually
outgrow the detection cost if deadlocks persist. As we set
the time interval T between any two consecutive detections
longer, the detection cost becomes smaller due to less
frequent executions of the detection algorithm, but the
resolution cost becomes larger due to the growth in
deadlock size. This implies that there exists a unique
deadlock detection frequency 1=T � that balances the two
costs such that their sum is minimized. The condition that
the asymptotic deadlock resolution cost, CRð1Þ, is greater
than the cost of deadlock detection, CD, constitutes the
natural mathematical basis to justify distributed deadlock
detection algorithms.

We are now ready to state the asymptotically optimal

frequency for deadlock detection based on the up-to-date

results of distributed deadlock detection and resolution

algorithms. Recall that the best-known message complexity

for distributed deadlock detection algorithms is 2n2 [14]

and that for deadlock resolution algorithms of Oðnn2
DÞ [7].

Theorem 2. Suppose the message complexity for distributed

deadlock detection is 2n2 and that for distributed deadlock

resolution is Oðnn2
DðtÞÞ. Then, the asymptotically optimal

frequency for scheduling deadlock detections is Oðð�nÞ1=3Þ.
Proof. Assume that the deadlock size function nDðtÞ is both

differentiable and integrable.1 Then, nDðtÞ can be

expressed in the form of Maclaurin series as follows:

nDðtÞ ¼
X1
i¼0

n
ðiÞ
D ð0Þti
i!

¼
X1
i¼0

cit
i; ð20Þ

where n
ðiÞ
D ð0Þ denote the ith derivative of the deadlock

size function nDðtÞ at point zero and ci ¼ nðiÞD ð0Þ=i!.
By the properties of the deadlock size function nDðtÞ,

we have nDð0Þ ¼ 0 and n0Dð0Þ > 0. It can be easily
verified that c0 ¼ 0 and c1 ¼ n0Dð0Þ > 0. The resolution
cost CRðtÞ can be written as cnn2

DðtÞ for some constant c.
By Theorem 1, the long-run mean average cost becomes

CðT Þ ¼ 2n2

T
þ �cn

R T
0 n2

DðtÞdt
T

: ð21Þ

Inserting (20) into (21), we have

CðT Þ ¼ 2n2

T
þ �cn3T�1

Z T

0

X1
i¼1

cit
i

 !2

dt

¼ 2n2

T
þ
�cn3

R T
0 ðc1tþ

P1
i¼2 cit

iÞ2dt
T

:

ð22Þ

Through a lengthy calculation, (22) can be simplified as

CðT Þ ¼ 2n2

T
þ c�n3 c2

1T
2

3
þ 2c1c2T

3

4

� �

þ c�n3
X1
i¼2

X1
j¼2

cicjT
iþj

iþ jþ 1

 !
:

ð23Þ

Taking a derivative of (23) with respect to T , we have

C0ðT Þ ¼ � 2n2

T 2
þ c�n3 c2

1

2T

3
þ 3c1c2T

2

2

� �

þ c�n3
X1
i¼2

X1
j¼2

cicjðiþ jÞT iþj�1

iþ jþ 1

 !
:

ð24Þ

By Lemma 1, there exists a unique optimal detection
frequency 1=T � when n is sufficiently large, such that
CðT �Þ � CðT Þ, T 2 ð0;1Þ. We know that C0ðT �Þ ¼ 0.
Based on (24), we transform C0ðT �Þ ¼ 0 to the following
equation:

LING ET AL.: ON OPTIMAL DEADLOCK DETECTION SCHEDULING 1183

1. Recall that nDðtÞ is a continuous approximation function whose curves
between “jumping points” can be chosen.

1

n
¼ c�

2

2c2
1ðT �Þ

3

3
þ 3c1c2ðT �Þ4

2
þ
X1
i¼2

X1
j¼2

cicjðiþ jÞðT �Þiþjþ1

iþ jþ 1

 !
:

ð25Þ

Only n, T �, and � are free variables and the rest are

constants. By performing the Big-O reduction, we obtain

1

n
¼ �ð�ððT �Þ3 þ ðT �Þ4 þ ðT �Þ5 þ . . .ÞÞ: ð26Þ

When n is sufficiently large and T � is sufficiently small,

we have

1

n
¼ � �

ðT �Þ3

1� T �

 !
¼ Oð�ðT �Þ3Þ

T � ¼ �
1

ð�nÞ1=3

 !
:

ð27Þ

Therefore, the asymptotic optimal deadlock detection
frequency 1=T � is Oðð�nÞ1=3Þ. tu

As an illustration, we consider an example as follows:

Let CRðtÞ ¼ n3ð1� expð�tÞÞ, CD ¼ n2. In accordance with

Theorem 1, the long-run mean average cost of deadlock
handling thus is written as

CðT Þ ¼ n
2 þ �n3ðT þ expð�T Þ � 1Þ

T
: ð28Þ

Fig. 2 and Fig. 3 show log-log plots of a family of curves
illustrating the dependence of long-run mean average cost
of deadlock handling upon detection interval. The x-axis
denotes the deadlock detection interval and the y-axis
denotes the long-run mean average cost of deadlock
handling.

In Fig. 2, we present plots of the deadlock detection
interval and cost of deadlock handling under different total
numbers of processes, 50, 100, 200, 500, and 1,000,
respectively. Fig. 3 shows the relationship between the
overall cost of deadlock handling and deadlock detection
interval under the different deadlock formation rates, 1s,
1=30s, 1=60s, 1=90s, and 1=120s, respectively. Fig. 2 and Fig.
3 visualize convexity that suggests the existence of an
optimal detection frequency, illustrating that the overall
cost of deadlock handling increases with the total number
of processes and deadlock formation rate.

A detailed calculation given in Table 3 shows that, as the
number of processes in a distributed system increases, the

1184 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9, SEPTEMBER 2006

Fig. 2. Cost of deadlock handling versus detection interval (n: number of processes).

Fig. 3. Cost of deadlock handling versus deadlock formation rate �.

optimal detection interval decreases, which is clearly in line
with our theoretical analysis. In the sequel, we study the
impact of coordinated versus random deadlock detection
scheduling on the performance of deadlock handling. We
consider two strategies of deadlock detection scheduling:
1) centralized, coordinated deadlock detection scheduling
and 2) fully distributed, uncoordinated deadlock detection
scheduling.

The centralized scheduling excels in its simplicity in
implementation and system maintenance, but undermines
the reliability and resilience against failures because one
and only one process is elected as the initiator of deadlock
detections in a distributed system. In contrast, the fully
distributed scheduling excels in the reliability and resilience
against failures because every process in the distributed
system can independently initiate detections [15], without a
single point of failure. However, due to the lack of
coordination in deadlock detection initiation among pro-
cesses, it presents a different mathematical problem from
the centralized deadlock detection scheduling.

In the previous discussions, we have focused on the
derivation of optimal frequency of deadlock detection in
connection with the rate of deadlock formation and the
message complexities of deadlock detection and resolution
algorithms, assuming deadlock detections are centrally
scheduled at a fixed rate of 1=T . To capture the lack of
coordination in fully distributed scheduling, we will study
the case where processes randomly, independently initiate
the detection of deadlocks.

Let n be the number of processes in a distributed system
and T be the optimal time interval between any two
consecutive deadlock detections in the centralized schedul-
ing. Consider a fully distributed deadlock detection
scheduling, where each process initiates deadlock detection
at a rate of 1=ðnT Þ independently. Although the average
interval between deadlock detections in the fully distrib-
uted scheduling remains T (the same as its centralized
counterpart), the actual occurring times of those detections
are likely to be nonuniformly spaced because the initiation
of deadlock detection is performed by the processes in a
completely uncoordinated fashion.

In the following, we will study the fully distributed
(random) scheduling and compare it with the centralized
scheduling. Consider a sequence of independently and

identically distributed iid random variables fYi; i � 1g
defined on ð0;1Þ following certain distribution H. The

sequence fYi; i � 1g represents the interarrival times of

deadlock detections initiated by the fully distributed

scheduling and it is assumed to be independent of the

arrival of deadlock formations. It is obvious that the

centralized scheduling is a special case of the fully

distributed scheduling.
Let H be the family of all distribution functions on ð0;1Þ

with finite first moment. Namely,

H ¼ H : H is a CDF on ð0;1Þ;
Z 1

0

�HðtÞdt <1
� �

;

where �HðtÞ � 1�HðtÞ; 8t � 0:

ð29Þ

The following theorem states that the lack of coordina-

tion in deadlock detection initiation by fully distributed

scheduling will introduce additional overhead in deadlock

handling. Therefore, the fully distributed scheduling in

general cannot perform as efficiently as its centralized

counterpart.

Theorem 3. Let CH denote the long-run mean average cost under

fully distributed scheduling with a random detection interval

Y characterized by certain distribution H 2 H with the mean

of � and CðT Þ denote the long-run mean average cost under

centralized scheduling with a fixed detection interval T . Then,

CH � CðT Þ; ð30Þ

when EðY Þ ¼ � ¼ T .

Proof. Since the sequence fYi; i � 1g of interarrival times of

deadlock detection is assumed to be independent of the

Poisson deadlock formations, it is easy to see that the

random costs over the intervals ð0; Y1�; ðY1; Y1 þ Y2�; . . .

are iid. Using the same line of reasoning as in the proof

of Theorem 1, the long-run mean average cost is

expressed as

CH ¼
Eðrandom cost over Y Þ

EðY Þ ; ð31Þ

where Y 2 H is a random variable representing the

interval between two consecutive deadlock detections.

Let �ðY Þ be the random cost in the interval Y . The

expected cost over the interval Y is given by

Eð�ðY ÞÞ ¼ EfE½�ðY ÞjY �g

¼
Z 1

0

EðCD þ
XNðyÞ
n¼1

CRðy� SnÞIfNðyÞ>0gÞdHðyÞ;

ð32Þ

where Sn ¼
Pn

i¼1 Xi denotes the time of the nth deadlock

formation and NðyÞ represents the number of indepen-

dent deadlocks that occurred in the time interval ð0; yÞ. It

follows from the independence of fXi; i � 1g and fYi; i �
1g and from (32) that the long-run mean average cost is

LING ET AL.: ON OPTIMAL DEADLOCK DETECTION SCHEDULING 1185

TABLE 3
Optimal Detection Interval versus # of Processes

CH ¼
Eð�ðY ÞÞ
EðY Þ ¼

R1
0 ðCD þ

R y
0 �CRðtÞdtÞdHðyÞ
EðY Þ

¼ CD
EðY Þ þ

R1
0

R1
t �CRðtÞdHðyÞ

� �
dt

EðY Þ

¼ CD
EðY Þ þ

�
R1

0 CRðtÞ �HðtÞdt
EðY Þ :

ð33Þ

When EðY Þ ¼ � ¼ T , meaning that the fixed deadlock
detection interval T equals the mean value of the random
detection interval Y , we compare the centralized (fixed)
detection scheduling with the rate of 1=T with the fully
distributed (random) one with the mean rate of
1=EðY Þ ¼ 1=�. According to Theorem 1, the long-run
mean average cost of fixed detection is given as

CðT Þ ¼ CD
�
þ
�
R �

0 CRðtÞdt
�

: ð34Þ

Subtracting (34) from (33) yields

CH � CðT Þ ¼
�

�

Z 1
0

CRðtÞ �HðtÞdt�
Z �

0

CRðtÞdt
� �

¼ �

�

Z 1
�

CRðtÞ �HðtÞdt�
Z �

0

CRðtÞHðtÞdt
� �

� �

�
CRð�Þ

Z 1
�

�HðtÞdt� CRð�Þ
Z �

0

HðtÞdt
� �

¼ �CRð�Þ
�

Z 1
�

�HðtÞdt�
Z �

0

ð1� �HðtÞÞdt
� �

¼ �CRð�Þ
�

Z 1
0

�HðtÞdt� �
� �

¼ 0:

ð35Þ

Hence, we have

CH � CðT Þ: ð36Þ

Theorem 3 is thus established. tu
It can be seen from (36) that CH � CðT Þ and the equality
holds if and only if Y is a degenerate random variable when
ProbðY ¼ T Þ ¼ 1. Theorem 3 asserts that the fully distrib-
uted (random) deadlock detection scheduling in general
results in an increased overhead in overall deadlock
handling.

5 CONCLUSION

Deadlock detection scheduling is an important, yet often
overlooked aspect of distributed deadlock detection and
resolution. The performance of deadlock handling not only
depends upon per-execution complexity of deadlock detec-
tion/resolution algorithms, but also depends fundamen-
tally upon deadlock detection scheduling and the rate of
deadlock formation. Excessive initiation of deadlock detec-
tion results in an increased number of message exchange in
the absence of deadlocks, while insufficient initiation of
deadlock detection incurs an increased cost of deadlock
resolution in the presence of deadlocks. As a result,
reducing the per-execution cost of distributed deadlock
detection/resolution algorithms alone does not warrant the
overall performance improvement on deadlock handling.

The main thrust of this paper is to bring an awareness to
the problem of deadlock detection scheduling and its
impact on the overall performance of deadlock handling.
The key element in our approach is to develop a time-
dependent model that associates the deadlock resolution
cost with the deadlock persistence time. It assists the study
of time-dependent deadlock resolution cost in connection
with the rate of deadlock formation and the frequency of
deadlock detection initiation, differing significantly from
past research that focuses on minimizing per-detection and
per-resolution costs.

Our stochastic analysis, which solidifies the ideas
presented in [10], [26], [23], [11], shows that there exists a
unique deadlock detection frequency that guarantees a
minimum long-run mean average cost for deadlock hand-
ling when the total number of processes in a distributed
system is sufficiently large and that the cost of overall
deadlock handling grows linearly with the rate of deadlock
formation.

In addition, we study the fully distributed (random)
deadlock detection scheduling and its impact on the
performance of deadlock handling. We prove that, in
general, the lack of coordination in deadlock detection
initiation among processes will increase the overall cost of
deadlock handling.

Theoretical results obtained in this paper could help
system designers/practitioners to better understand the
fundamental performance trade-off between deadlock
detection and deadlock resolution costs, as well as the
innate dependency of optimal detection frequency upon
deadlock formation rate. However, there are still a lot of
questions regarding how to use theoretical results to fine-
tune the performance of a distributed system. Determina-
tion of the actual rate of deadlock formation and verification
of the Poisson process are problems of great complexity that
can be influenced by many known/unknown factors such
as the granularity of locking, actual distribution of resource,
process mix, and resource request and release patterns [26].
Tapping into system logging files and inferring the actual
deadlock formation rate via data mining could provide an
effective and feasible way to translate theoretical insights
into actual system performance gain.

ACKNOWLEDGMENTS

The authors would like to thank Drs. Marek Rusinkiewicz,
Wai Chen, and Ritu Chadh at Applied Research, Telcordia
Technologies, for their constructive comments. They are
grateful to the anonymous reviewers for critically reviewing
the manuscript and for their truly helpful comments. Yibei
Ling would like to especially thank Dr. Shu-Chan Hsu in
the Department of Cell Biology and Neuroscience at
Rutgers University for her encouragement and support.
The material in this paper was presented in part at the 24th
Annual ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, 17-20 July 2005.

REFERENCES

[1] R. Baldoni and S. Salz, “Deadlock Detection in Multidatabase
Systems: A Performance Analysis,” DIstributed Systems Eng.,
vol. 4, pp. 244-252, Dec. 1997.

1186 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 9, SEPTEMBER 2006

[2] A. Boukerche and C. Tropper, “A Distributed Graph Algorithm
for the Detection of Local Cycles and Knots,” IEEE Trans. Parallel
and Distributed Systems, vol. 9, no. 8, pp. 748-757, Aug. 1998.

[3] G. Bracha and S. Toueg, “Distributed Deadlock Detection,”
Distributed Computing, vol. 2, pp. 127-138, 1987.

[4] K.M. Chandy, J. Misra, and L. Hass, “Distributed Deadlock,” ACM
Trans. Computer Systems, vol. 1, no. 2, pp. 144-156, May 1983.

[5] S. Chen, Y. Deng, and W. Sun, “Optimal Dealock Detection in
Distributed Systems Based on Locally Constructed Wait-For
Graph,” Proc. 16th Int’l Conf. Distributed Computing Systems,
pp. 613-619, 1996.

[6] S. Chen and Y. Ling, “Stochastic Analysis of Distributed Deadlock
Scheduling,” Proc. 24th ACM Symp. Principles of Distributed
Computing, pp. 265-273, July 2005.

[7] J.R. Gonzales de Mendivil, J.R. Garitagoitia, C.F. Alastruey, and
J.M. Bernabeu-Auban, “A Distributed Deadlock Resolution Algo-
rithm for the AND Model,” IEEE Trans. Parallel and Distributed
Systems, vol. 10, no. 5, pp. 433-447, May 1999.

[8] J. Gray, P. Homan, R. Obermarck, and H. Korth, “A Straw-Man
Analysis of the Probability of Waiting and Deadlock in a Database
System,” IBM Research, RJ3066, Feb. 1981.

[9] Y.M. Kim, T.H. Lai, and N. Soundarajan, “Efficient Distributed
Deadlock Detection and Resolution Using Probes, Tokens, and
Barriers,” Proc. Int’l Conf. Parallel and Distributed Systems, pp. 584-
591, 1997.

[10] E. Knapp, “Deadlock Detection in Distributed Databases,” ACM
Computing Surveys, vol. 19, no. 4, pp. 303-328, 1987.

[11] N. Krivokapic, A. Kemper, and E. Gudes, “Deadlock Detection in
Distributed Database Systems: A New Algorithm and a Com-
parative Performance Analysis,” VLDB J.: Very Large Data Bases,
vol. 8, no. 2, pp. 79-100, 1999.

[12] A.D. Kshemkalyani and M. Singhal, “Efficient Detection and
Resolution of Generalized Distributed Deadlocks,” IEEE Trans.
Software Eng., vol. 20, no. 1, pp. 43-54, Jan. 1994.

[13] A.D. Kshemkalyani and M. Singhal, “Distributed Detection of
Generalized Deadlocks,” Proc. 1997 Int’l Conf. Distributed Comput-
ing Systems, pp. 553-560, 1997.

[14] A.D. Kshemkalyani and M. Singhal, “A One-Phase Algorithm to
Detect Distributed Deadlocks in Replicated Databases,” IEEE
Trans. Knowledge and Data Eng., vol. 11, no. 6, pp. 880-895, Nov./
Dec. 1999.

[15] S. Lee, “Fast, Centralized Detection and Resolution of Distributed
Deadlocks in the Generalized Model,” IEEE Trans. Software Eng.,
vol. 30, no. 8, pp. 561-573, Sept. 2004.

[16] S. Lee and J.L. Kim, “Performance Analysis of Distributed
Deadlock Dectection Algorithms,” IEEE Trans. Knowledge and Data
Eng., vol. 13, no. 3, pp. 623-636, May/June 2001.

[17] X. Lin and J. Chen, “An Optimal Deadlock Resolution Algorithm
in Multidatabase Systems,” Proc. 1996 Int’l Conf. Parallel and
Distributed Systems, pp. 516-521, 1996.

[18] Y. Ling, J. Mi, and X. Lin, “A Variational Calculus Approach to
Optimal Checkpoint Placement,” IEEE Trans. Computers, vol. 50,
no. 7, pp. 699-708, July 2001.

[19] P.P. Macri, “Deadlock Detection and Resolution in a CODASYL
Based Data Management System,” Proc. 1976 ACM SIGMOD Int’l
Conf. Management of Data, pp. 45-49, 1976.

[20] W.A. Massey, “A Probabilistic Analysis of a Database System,”
ACM SIGMETRICS Performance Evaluation Rev., vol. 14, no. 1,
pp. 141-146, 1986.

[21] J. Misra, “Distributed Discrete-Event Simulation,” ACM Comput-
ing Surveys, vol. 18, no. 1, pp. 39-65, Mar. 1986.

[22] R. Obermarck, “Distributed Deadlock Detection Algorithm,” ACM
Trans. Database Systems, vol. 7, no. 2, pp. 187-208, June 1982.

[23] Y.C. Park, P. Scheuermann, and S.H. Lee, “A Periodic Deadlock
Detection and Resolution Algorithm with a New Graph Model for
Sequential Transaction Processing,” Proc. Eighth Int’l Conf. Data
Eng., pp. 202-209, Feb. 1992.

[24] M. Roesler and W.A. Burkhard, “Semantic Lock Models in Object-
Oriented Distributed Systems and Deadlock Resolution,” Proc.
1988 ACM SIGMOD Int’l Conf. Management of Data, pp. 361-370,
1988.

[25] S.M. Ross, Stochastic Processes. New York: John Wiley & Sons, 1996.
[26] M. Singhal, “Deadlock Detection in Distributed Systems,”

Computer, vol. 40, no. 8, pp. 37-48, Nov. 1989.
[27] I. Terekhov and T. Camp, “Time Efficient Deadlock Resolution

Algorithms,” Information Processing Letters, vol. 69, pp. 149-154,
1999.

[28] C. Tropper and A. Boukerche, “Parallel Simulations of Commu-
nicating Finite State Machines,” Proc. SCS Multiconf. Parallel and
Distributed Simulation, pp. 143-150, May 1993.

[29] J. Villadangos, F. Farina, J.R. Gonzales de Mendivil, J.R.
Garitagoitia, and A. Cordoba, “A Safe Algorithm for Resolving
OR Deadlocks,” IEEE Trans. Software Eng., vol. 29, no. 7, pp. 608-
622, July 2003.

[30] J.W. Wang, S.-T. Huang, and N.-S. Chen, “A Distributed
Algorithm for Detecting Generalized Deadlocks,” Technical
Report (SF-C-010-1), Computer Science, National Tsing-Hua
Univ., 1990.

[31] Y.-M. Wang, M. Merritt, and A.B. Romanovsky, “Guaranteed
Deadlock Recovery: Deadlock Resolution with Rollback Propaga-
tion,” Technical Report Number 648, 1998.

[32] S. Warnakulasuriya and T.M. Pinkston, “A Formal Model of
Message Blocking and Deadlock Resolution in Interconnection
Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 11,
no. 3, pp. 212-229, Mar. 2000.

Yibei Ling received the BS degree in electrical
engineering from Zhejiang University in 1982,
the MS degree in statistics from Shanghai
Medical University (now Fuda University) in
1988, and the PhD degree in computer science
from Florida State University in Miami in 1995.
He is a research scientist in applied research at
Telcordia Technologies (formerly Bellcore). His
research interests include distributed computing,
query optimization in database management

system, scheduling, checkpointing, system performance, fault localiza-
tion and self-healing in mobile ad hoc network, and power-aware routing
in mobile ad hoc network. He has published several papers in the IEEE
Transactions on Computers, IEEE Transactions on Knowledge and
Data Engineering, IEEE Transactions on Biomedical Engineering,
SIGMOD, ICDE, PODC, Information system. He is the architect, as
well as the developer, of the voice subsystem of Telcordia Notification
System. He served as a technical program committee member for
QShine 2005 and the Computer and Network Security Symposium of
IEEE IWCCC 2006. He is a member of the IEEE.

Shigang Chen received the BS degree in
computer science from the University of Science
and Technology of China in 1993. He received
the MS and PhD degrees in computer science
from the University of Illinois at Urbana-Cham-
paign in 1996 and 1999, respectively. After
graduation, he worked at Cisco Systems for
three years before joining the University of
Florida as an assistant professor in 2002. His
research interests include network security,

quality of service, peer-to-peer networks, and sensor networks. He
received the IEEE Communications Society Best Tutorial Paper Award
in 1999. He was a guest editor for the ACM/Baltzer Journal of Wireless
Networks (WINET) and IEEE Transactions on Vehicle Technologies. He
is serving as a technical program committee cochair for the Computer
and Network Security Symposium of the IEEE IWCCC 2006. He served
as a vice technical program committee chair for IEEE MASS 2005, a
vice general chair for QShine 2005, a technical program committee
cochair for QShine 2004, and a technical program committee member
for many conferences, including IEEE ICNP, IEEE INFOCOM, IEEE
SANS, IEEE ISCC, IEEE Globecom, etc.

Cho-Yu Jason Chiang received the PhD
degree in computer science from the Ohio State
University in 2000. Since then, he has been with
Applied Research, Telcordia Technologies. His
current interests involve wireless ad hoc net-
works, including network autoconfiguration, dis-
tributed systems over unreliable environments,
adaptive middleware, policy-based computing,
and ad hoc network protocols. He has been
funded by US government agencies including

DARPA, ARL, and CERDEC to conduct his work. He is a member of
Upsilon Pi Epsilon.

LING ET AL.: ON OPTIMAL DEADLOCK DETECTION SCHEDULING 1187

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

