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Chapter 1
INTRODUCTION

Abstract Traffic measurement provides critical real-world data for service providers
and network administrators to perform capacity planning, accounting and billing,
anomaly detection, and service provision. In many measurement functions, statis-
tical methods play important roles in system designing, model building, formula
deriving, and error analyzing. One of the greatest challenges in designing an on-
line measurement function is to minimize the per-packet processing time in order
to keep up with the line speed of the modern routers. To meet this challenge, one
should minimize the number of memory accesses per packet and implement the
measurement module in the on-die cache memory. Hence, it is critical to make the
data structures of a measurement module as compact as possible. This book presents
several novel online measurement methods that are compact and fast.
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1.1 Online Network Functions

Modern high-speed routers forward packets from incoming ports to outgoing ports
via switching fabric, bypassing main memory and CPU. New technologies are push-
ing line speeds beyond OC-768 (40Gb/s) to reach 100Gb/s or even tera bits per
second [14]. The line cards in core routers must therefore forward packets at a rate
exceeding 150Mpps [35]; that leaves little time to process each packet. Parallel pro-
cessing and pipeline are used to speed up packet switching to a few clock cycles per
packet [15]. In order to keep up with such high throughput, online network func-
tions for traffic measurement, packet scheduling, access control, and quality of ser-
vice will also have to be implemented using on-chip cache memory and bypassing
main memory and CPU almost entirely [35, 22, 46]. However, fitting these network
functions in fast but small on-chip memory represents a major technical challenge
today [15, 29].
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The commonly-used cache memory on network processor chips is SRAM, typ-
ically a few megabytes. Further increasing on-chip memory to more than 10MB is
technically feasible, but it comes with a much higher price tag and access time is
longer. There is a huge incentive to keep on-chip memory small because smaller
memory can be made faster and cheaper. Off-chip SRAM is larger. For example,
QDR-III SRAM has 36MB [27]. But it is slower to access. Hence, on-chip memory
remains the first choice for online network functions that are designed to match the
line speeds.

On-chip memory is limited in size. To make the matter even more challenging,
it may have to be shared by security [18], measurement [22], routing [6], and per-
formance [17] functions that are implemented on the same chip. When multiple
network functions share the same memory, each of them can only use a fraction of
the available space. Depending on their relative importance, some functions may be
allocated tiny portions of the limited memory, whereas the amount of data they have
to process and store can be extremely large in high-speed networks. The disparity in
memory demand and supply requires us to implement online functions as compact
as possible [40, 36]. Furthermore, when different functions share the same memory,
they may have to take turns to access the memory, making memory access the per-
formance bottleneck. Since most online functions require only simple computations
that can be efficiently implemented in hardware, their throughput will be determined
by the bottleneck in memory access. Hence, we must also minimize the number of
memory accesses made by each function when it processes a packet. The challenge
is that compactness (in terms of space requirement) and speed (in terms of memory
accesses) are sometimes conflicting objectives.

1.2 Fundamental Primitives

The implementations of many online functions heavily rely on several fundamen-
tal building blocks for data processing and storage. This book studies three impor-
tant fundamental online functions: per-flow size estimators, spread estimators, and
origin-destination flow estimators.

Per-flow size estimators are used to measure per-flow information for high-speed
links. The goal is to estimate the size of each flow (in terms of number of packets).
A flow is identified by a label that can be a source address, a destination address,
or any combination of addresses, ports, and other fields in the packet header. Mea-
suring the sizes of individual flows has important applications. For example, if we
use the addresses of the users as flow labels, per-flow size measurement provides
the basis for usage-based billing and graceful service differentiation, where a user’s
service priority gracefully drops as he over-spends his resource quota. Studying per-
flow data over consecutive measurement periods may help us discover network ac-
cess patterns and, together with user profiling, reveal geographic/demographic traf-
fic distributions among users. Such information will help Internet service providers
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and application developers to align network resource allocation with the majority’s
needs.

We define a contact as a source-destination pair, for which the source sends a
packet to the destination. The source or destination can be an IP address, a port num-
ber, a combination of address/port together with other fields in the packet header, or
even a file name or URL in the payload. The spread of a source is the number of dis-
tinct destinations contacted by the source during a measurement period. Similarly,
we can define the spread of a destination, which is the number of distinct sources
that have contacted the destination. Measuring spread values has many applications.
Intrusion detection systems can use them to detect port scans [37], in which an ex-
ternal host attempts to establish too many connections to different internal hosts or
different ports of the same host. They may be used to detect DDoS attacks when
too many hosts send traffic to a receiver [28], i.e., the spread of a destination is
abnormally high. They can be used to estimate the infection rate of a worm by mon-
itoring how many addresses each infected host contacts over a period of time. A
large server farm may use the spread values of its servers to find how popular the
servers’ content is, which provides guidance for resource allocation. An institutional
gateway may monitor outbound traffic and identify external web servers that have
large spread values. This information helps the local proxy learn the popularity of
servers and determine the cache priority of web content.

Origin-destination (OD) flow estimators are used to measure OD flow sizes. Con-
sider two routers r1 and r2. We define the set of packets that first pass r1 and then
pass r2 or first pass r2 and then pass r1 as an origin-destination (OD) flow of the two
routers. The cardinality of the packet set is called the OD flow size. The OD flow
measurement is also an important topic in many network management applications
[32, 31, 25, 13, 9]. For example, Internet service providers may use the OD-flow in-
formation between points of interest as a reference to align traffic distribution within
the network. They may also study the OD-flow traffic pattern and identify anoma-
lies that deviate significantly from the normal pattern. In the event of a persistent
congestion, OD-flow data may help point out the source of the congestion.

One of the greatest challenges in designing an online measurement module is
to minimize the per-packet processing time in order to keep up with the line speed
of the modern routers. To meet this challenge, we should minimize the number of
memory accesses per packet and implement the measurement module in the on-die
SRAM, which is fast but expensive. Because many other functions may also run
from SRAM, it is expected that the amount of high-speed memory allocated for the
module will be small. Hence, it is critical to make the measurement module’s data
structure as compact as possible.
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1.3 Per-Flow Size Estimation through Randomized Counter
Sharing

This book first presents a particularly challenging problem, the measurement of per-
flow sizes for a high-speed link without using per-flow data structures [20]. It has
been shown in [10] that maintaining per-flow counters cannot scale for high-speed
links. Even for efficient counter implementations [33, 30, 47], SRAM will only
be able to hold a small fraction of per-flow state (including counters and indexing
data structures such as pointers and flow identities for locating the counters). The
counter braids avoid per-flow counters and achieve near-optimal memory efficiency
[22, 23]. This method maps each flow to a certain number of arbitrary counters;
they are all incremented by one for every packet of the flow. Many flows may be
mapped to the same counter, which stores the sum of the flow sizes. Essentially, the
counters represent linear equations, which can be solved for the flow sizes. Two lev-
els of counters are used to reduce the memory overhead. The counter braids require
slightly more than 4 bits per flow and are able to count the exact sizes of all flows.
But it also has two limitations. First, it performs 6 or occasionally 12 memory ac-
cesses per packet. Second, when the memory allocated to a measurement function
is far less than 4 bits per flow, the message passing decoding algorithm of counter
braids cannot converge to any meaningful results. When the available memory is
just 1∼2 bits per flow, the exact measurement of the flow sizes is no longer possible.
We have to resort to estimation methods. The key is to efficiently utilize the lim-
ited space to improve the accuracy of the estimated flow sizes, and do so with the
minimum number of memory accesses per packet.

We present a fast and compact per-flow size estimation function that achieves
three main objectives: i) It shares counters among flows to save space, and does not
incur any space overhead for mapping flows to their counters. This distinguishes
our work from [33, 30, 47]. ii) It updates exactly one counter per packet, which is
optimal. This separates our work from the counter braids that update three or more
counters per packet. Updating each counter requires two memory accesses for read
and then write. iii) It provides estimation of the flow sizes, as well as the confi-
dence intervals that characterize the accuracy, even when the available memory is
too small such that other exact-counting methods including [22, 23] no longer work.
We believe this is the first size estimator that achieves all these objectives. It com-
plements the existing work by providing additional flexibility for the practitioners
to choose when other methods cannot meet the speed and space requirements.

The design of our size estimator is based on a new data encoding/decoding
scheme, called randomized counter sharing. It splits the size of each flow among
a number of counters that are randomly selected from a counter pool. These coun-
ters form the storage vector of the flow. For each packet of a flow, we randomly
select a counter from the flow’s storage vector and increment the counter by one.
Such a simple online operation can be implemented very efficiently. The storage
vectors of different flows share counters uniformly at random; the size information
of one flow in a counter is the noise to other flows that share the same counter. For-
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tunately, this noise can be quantitatively measured and removed through statistical
methods, which allow us to estimate the size of a flow from the information in its
storage vector. We present two estimation methods whose accuracies are statisti-
cally guaranteed. They work well even when the total number of counters in the
pool is by far smaller than the total number of flows that share the counters. The ex-
perimental results based on real traffic traces demonstrate that the new methods can
achieve good accuracy in a tight space. We also provide several methods to increase
the range of flow sizes that the estimators can measure.

The randomized counter sharing scheme presented in this work for per-flow size
measurement has applications beyond the networking field. It may be used in the
data streaming applications to collect per-item information from a stream of data
items.

1.4 Spreader Classification

It is very costly to measure the spread of each source (or destination) precisely.
When a router measures the spread of a source, it has to remember the destinations
that the source has contacted so far. Future packets from the source to the same
destinations do not increase the spread value. The spread is increased only when a
packet is sent to a new destination. The problem is that it takes too much memory
to store all destination addresses that every source has contacted.

To solve this problem, various techniques such as sampling [39], probabilistic
counting [16], Bloom filters [46], and bitmaps [11, 3, 40] are used to reduce memory
overhead at the expense of measurement accuracy. The rationale is that absolutely
precise measurement of spread values may not be necessary for most applications.
It is often practically sufficient to estimate spread values with a certain level of
accuracy. Moreover, many applications only require us to classify spreaders into
categories, such as (1) heavy spreaders, i.e., sources (or destinations) whose spread
values are large, and (2) non-heavy spreaders. This further lowers the accuracy re-
quirement and allows additional room for memory saving. For example, in scan
detection, we want to identify heavy spreaders (scanners) that have contacted a lot
of destinations. In the previous server-farm example, we want to know the set of
servers with large spread values. Even if we do not identify all such servers, it is
very helpful in resource allocation if we can identify most of them.

This book addresses the spreader classification problem. Single-objective spreader
classification is to identify the set of heavy spreaders. Multi-objective spreader clas-
sification places sources (or destinations) into more categories based on their spread
values. We present an efficient spreader classification scheme based on a new stor-
age method, called dynamic bit sharing, which stores contact information of all
sources in a compact format. The level of compactness is so deep that the total num-
ber of available bits is less than one twentieth of the number of sources in some of
our experiment cases: On average, just one bit is available for every twenty sources.
Yet still we are able to make spreader classification with predictable accuracy. We
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employ a maximum likelihood estimation method to extract per-source information
from the compact storage and determine the heavy spreaders. It ensures that false
positive/negative ratios are bounded. Moreover, given an arbitrary set of false pos-
itive/negative bounds, we develop a systematic approach to determine the optimal
system parameters, such that the amount of memory needed to satisfy the bounds is
minimized. We carry out experiments based on a real traffic trace and demonstrate
that, using these optimal parameters, we can reduce the memory consumption by
three to twenty times when comparing with other existing work.

1.5 Origin-Destination Flow Measurement

When we solve the problem of origin-destination (OD) flow measurement [21], the
goal is to design an efficient method to measure the number of packets that tra-
verse between two routers during a measurement period. It generally consists of two
phases: One for online packet information storage and the other for offline OD-flow
size computation. In the first phase, routers record information about arrival pack-
ets. In the second phase, each router reports its stored information to a centralized
server, which performs the measurement of each OD flow based on the information
sent from the origin/destination router pair.

Measurement efficiency and accuracy are two main technical challenges. In terms
of efficiency, we want to minimize the per-packet processing overhead to accom-
modate future routers that forward packets at extremely high rates. More specifi-
cally, the function should minimize the computational complexity and the number
of memory accesses for each packet.

Accuracy is another important design goal. In high-speed networks, we have to
deal with a very large volume of packets. And it is unrealistic to store all packet-level
information in order to achieve 100% accuracy. To solve this problem, some past
research [42, 43, 41] uses data such as link load, network routing, and configuration
data to indirectly measure the OD flows. Cao, Chen and Bu [2] propose a quasi-
likelihood approach based on a continuous variant of the Flajolet-Martin sketches
[12]. However, none of them is able to achieve both efficiency and accuracy at the
same time.

To meet these challenges, we present a novel OD flow measurement method,
which uses a compact bitmap data structure for packet information storage. At the
end of a measurement period, bitmaps from all routers are sent to a centralized
server, which examines the bitmaps of each origin/destination router pair and uses
a statistical inference approach to estimate the OD flow size. The new method has
three elegant properties. First, its processing overhead is small and constant, only
one hash operation and one memory access per packet. Second, it is able to achieve
excellent measurement results, which will be demonstrated by both simulations and
experiments. Finally, its data storage is very compact. The memory allocation is less
than 1 bit for each packet on average.
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Traffic measurement is an important subject of Internet technologies. In the broad
context of computer networks, there are many other topics such as QoS and maxmin
routing [34, 38, 24, 8, 26, 7, 5], P2P networks [19, 45, 44], distributed computing
[1, 4], etc. Although we do not address these topics, they may interact with traffic
measurement under certain scenarios where new research problems and applications
may sprout.

1.6 Outline of the Book

The rest of the book is organized as follows: Chapter 2 presents a fast and com-
pact per-flow size estimator based on randomized counter sharing. In this chapter,
we provide of a novel data encoding/decoding scheme, which mixes per-flow infor-
mation randomly in a tight SRAM space for compactness. Chapter 3 presents an
efficient spread estimation scheme based on dynamic bit sharing, which optimally
combines probabilistic sampling, bit-sharing storage, and maximum likelihood es-
timation. Chapter 4 gives a novel method for OD flow measurement which employs
the bitmap data structure for packet information storage and uses statistical infer-
ence approach to compute the measurement results.
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