
Stochastic Analysis of Distributed Deadlock Scheduling

Shigang Chen∗ Yibei Ling †

ABSTRACT
Deadlock detection scheduling is an important, yet oft-

overlooked problem that can significantly affect the overall

performance of deadlock handling. An excessive initiation

of deadlock detection increases overall message usage, re-

sulting in degraded system performance in the absence of

deadlocks; while a deficient initiation of deadlock detection

increases the deadlock persistence time, resulting in an in-

creased deadlock resolution cost in the presence of dead-

locks. Such a performance tradeoff, however, is generally

missing in literature. In this paper we study the impact of

deadlock detection scheduling on the system performance,

and show that there exists an optimal deadlock detection

frequency that yields the minimum long-run mean average

cost associated with the message complexity of deadlock

detection and resolution algorithms, and the rate of dead-

lock formation, λ. Based on the up-to-date deadlock de-

tection and resolution algorithms, we show that the asymp-

totically optimal frequency of deadlock detection scheduling

that minimizes the message overhead is O((λn)1/3), when

the total number of processes n is sufficiently large. Further-

more, we show that in general fully distributed (uncoordi-

nated) deadlock detection scheduling can not be performed

as efficiently as centralized (coordinated) deadlock detection

scheduling.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-

tems — Distributed Applications, Distributed Databases

∗Department of Computer & Information Science & Engi-
neering, University of Florida. Email: sgchen@cise.ufl.edu
†Contact Author: Applied Research Laboratories, Telcor-
dia Technologies. Email: lingy@research.telcordia.com;
yibei.ling@gmail.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’05, July 17-20, 2005 Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-58113-994-2/05/0007 ...$5.00.

General Terms: Performance, Algorithms

Keywords: Deadlock detection scheduling, Deadlock For-

mation Rate, Deadlock Persistence Time

1. INTRODUCTION

The distributed deadlock problem [7, 17, 13, 23, 10, 12]

arises from resource contention introduced by concurrent

processes in distributed computational environments. It has

received a great deal of attention in different areas such as

distributed computing theory [19, 23, 8], distributed database

[14, 12, 7, 9, 10], and parallel and distributed simulation

[2, 25, 18]. In principle, a deadlock is formed as a result of

processes waiting for resources held by other processes while

holding resources needed by others. When none of the pro-

cesses waiting for needed resources can proceed computation

any further without obtaining the waited-for resources, the

ongoing transactions are blocked indefinitely. A deadlock is

a persistent and circular-wait condition, having an adverse

performance effect that offsets the advantages of resource

sharing and processing concurrency.

There are three common strategies of dealing with the

deadlock problem: deadlock prevention, deadlock avoidance,

and deadlock detection and resolution. It is a long-held con-

sensus that both deadlock prevention and deadlock avoid-

ance schemes are conservative and less feasible in handling

the deadlock problem in general, whereas deadlock detection

and resolution scheme is widely accepted as an optimistic

and feasible solution to the deadlock problem, because of

its exclusion of the unrealistic assumption about resource

allocation requirements of the participating processes [9, 23,

6, 24]. The central idea behind deadlock detection and reso-

lution is that it does not preclude the possibility of deadlock

occurring but leaves the burden of minimizing the adverse

impact of deadlock to deadlock detection and resolution

mechanisms. Under this scheme, the presence of deadlocks

is detected by a periodic initiation of a deadlock detection

algorithm and then resolved by a deadlock resolution algo-

rithm [27, 24, 6].

Despite significant performance improvement in the past,

deadlock detection remains a costly operation [23, 10, 16].

It requires dynamical maintenance of wait-for-graph (WFG)

265

that reflects the runtime wait-for dependency among dis-

tributed processes, and performs a graph analysis to detect

the presence of deadlocks. The periodic initiation of dead-

lock detection incurs runtime system overheads which are

basically pure overheads when no deadlock is present [23,

16]. There is an inherent tradeoff between the cost of dead-

lock detection and that of deadlock resolution [23, 20]. An

excessive initiation of deadlock detection would reduce the

deadlock resolution cost but result in system performance

degradation in the absence of deadlock, while a deficient

deadlock detection would be accompanied by the increased

number of deadlocked processes, resulting in an increased

deadlock resolution cost in the presence of deadlocks [20, 1].

It is evident that deadlock detection scheduling is one of key

factors affecting the overall system performance of deadlock

handling. Nevertheless, to the best of our knowledge, the

deadlock detection scheduling is generally missing in the

literature.

In this paper we focus exclusively on deadlock detection

scheduling, and study how to schedule deadlock detections

so as to minimize the long-run mean average cost of dead-

lock handling. We formulate this problem by introducing a

generic cost model (utility metric) and use this cost model to

establish a link between deadlock detection cost and dead-

lock resolution cost, with respect to the rate λ of deadlock

formation. We show that there exists a unique optimal dead-

lock detection frequency that yields the minimum long-run

mean average cost. Moreover, our result indicates that the

asymptotically optimal frequency of deadlock detection that

minimizes the message overhead is O((λn)1/3), when the

number of participating processes n is sufficiently large. In

addition, we prove that a fully distributed (uncoordinated)

detection scheduling can not be performed as efficiently as

its centralized counterpart (coordinate scheduling).

The rest of this paper is organized as follows. Section 2

contains a brief summary of the state-of-the-art distributed

deadlock detection and resolution algorithms in the litera-

ture. Section 3 gives the relevant notions and definitions, fol-

lowed by a generic cost model that describes the dependency

of deadlock size upon deadlock persistence time. Section 4

provides the detailed mathematical analysis and proves the

existence and uniqueness of an optimal detection frequency.

The determination of the optimal deadlock detection fre-

quency, its asymptotic relation with the number of partic-

ipating processes in a distributed system, and the impact

of random detection scheduling upon the long-run mean

average cost of deadlock handling, are presented. In Section

5, the main contribution of this paper is highlighted and the

possible future work is also discussed.

2. BACKGROUND

In this section we provide a brief summary of worst-case

analysis of existing distributed detection algorithms of gen-

eralized deadlocks and deadlock resolution algorithms since

some results will be used later on. We also touch on Gray’s

simulation model [7] as well as Massey’s formulation [17].

We restrict our discussion to distributed detection and

resolution algorithms. The references [13, 9, 10, 11, 12]

provide excellent gateways to the state of the art in this area

for the generalized resource request model. In the following,

we give a brief summary of the worst-case performance of

the existing distributed detection algorithms.

Criterion Bracha- Wang [26] Kshemkalyani &

Toueg [3] et al. Singhal [11],[12]

Phases 2 2 1 1

Time 4d 3d + 1 2d + 2 2d

Message 4e 6e 4e − 2n + 2l 2e

Table 1: Distributed Deadlock Detection Algorithms

Table 1 summarizes the worst-case complexities of dis-

tributed deadlock detection algorithms [11, 12], where n is

the total number of processes, e the number of edges, d the

diameter, and l the number of sink nodes of the WFG. One

influential distributed detection algorithm for generalized

deadlocks appeared in [12] by Kshemkalyni and Singhal. It

is the clear winner among the algorithms listed in Table 1

in terms of message and time complexities. Kshemkalyani

and Singhal’s algorithm achieved a message complexity of

2e and a time complexity of 2d, which are believed to be

optimal. Because e = n(n− 1) and d = n in the worse case,

the worst-case message complexity and time complexity can

also be written as 2n2 and 2n, respectively.

In this paper we focus on the performance metric of mes-

sage complexity. The reason for choosing message complex-

ity is that communication overhead is generally a dominant

factor that affects the overall system performance in a dis-

tributed system [23, 9, 11, 12], as compared with processing

speed and storage space.

Although deadlock detection and deadlock resolution are

often discussed separately, the latter is as important as the

former [13, 28, 9, 6, 24, 23]. To resolve a deadlock, indiscrim-

inately aborting deadlocked processes turns out to be highly

inefficient for two reasons. First, aborting all deadlocked

processes is extremely costly because the computations have

to start over again (rollback) after the deadlocked processes

have been aborted. Second, a blocked process may not be-

long to any deadlock cycle in the WFG, but only transitively

links to one of the cycles [9, 24, 13]. As a result, aborting

such a process does not help resolving the deadlock at all.

To efficiently resolve deadlocks, one must know all pro-

cesses and the resources needed by the processes. The mini-

mum abort set problem in deadlock resolution is to selectively

abort a set of deadlocked (victim) processes so as to mini-

mize the overall abortion cost [16, 23, 24, 6]. Checkpoint-

ing is sometimes introduced to prevent the victim processes

from being rolled back from scratch [15], thereby further

reducing the abortion cost. Generally, deadlock resolution

cost is measured either in terms of time complexity [14, 24],

or in terms of message complexity [6]. The complexity of

resolution algorithms is summarized in Table 2, where n is

the total number of processes, m the number of processes

having the priorities greater than deadlocked processes, Nr

266

the number of resources, and nD the number of deadlocked

processes.

Complexity Lin Terekhov & Gonzalez

& Chen [14] & Camp [24] et al. [6]

Time O(n3) O(n3Nr) O(mnD)

Message O(mn2
D)

Table 2: Distributed Deadlock Resolution Algorithms

By transforming the problem of deadlock resolution into

a minimum vertex cut problem, Lin & Chen’s algorithm

[5] can identify an optimal set of victim processes to be

aborted, with the properly selected abortion cost to avoid

the starvation and livelock problems. The main feature

of Terekhov & Camp’s algorithm is to take the number of

resources into account. The algorithm proposed by Gonzales

et al. [6] uses a probing-based approach, with a focus on the

safety aspect of deadlock resolution. The novelty of this

algorithm is to introduce an additional round of message

exchanges to gather the information needed for efficient res-

olution after deadlocks are detected. It is achieved by using

probe messages to travel in the opposite direction of the

edges in AWFG (asynchronous wait-for graph), in order to

identify the lowest priority process of each detected cycle.

The algorithm then chooses the deadlocked processes to be

aborted according to their priorities, thereby avoiding the

livelock and starvation problems. Gonzales et al.’s work [6]

excels in the use of formal methods to prove the algorithm

correctness and in its fine-granular analysis of the algorithm

complexities. In particular, its message complexity is of

O(mn2
D). Because m = O(n) and nD = O(n), the worst-

case message complexity can also be written as O(n3).

The past research has been primarily aimed at minimiz-

ing the complexities (costs) of the deadlock detection and

resolution algorithms. Although the problem of deadlock

detection scheduling (particularly how frequent it should be

done) has significant impact on the efficiency of deadlock

handling in practice, it is not explicitly studied but rather

implicitly reflected in the description of deadlock detection

algorithms, without a clear guideline. For instance, in [9, 23,

12, 13, 16, 4, 9, 5], the authors stated that a deadlock detec-

tion is initiated when a deadlock is suspected. Other works

[20, 10] suggested that it would be highly inefficient if dead-

lock detection is performed whenever a process/transaction

becomes blocked.

The overall performance of deadlock handling not only

depends on the per-detection cost of the deadlock detec-

tion algorithm, but also on how frequent the algorithm is

executed [10, 20, 16]. The choice of deadlock detection

frequency presents a tradeoff between deadlock detection

cost and deadlock resolution cost [9, 23, 20, 10]. Park et al.

[20] pointed out that the reduction of deadlock resolution

cost can be achieved at the expense of deadlock detection

cost. Krivokapie et al. [10] showed in their simulation

study that the path-pushing algorithm (one type of deadlock

detection algorithm) is highly sensitive to the interval length

of periodic deadlock detection. Gray et al. [7] showed that

the probability of a transaction waiting for a lock request is

rare. They used a ”straw-man analysis” in their simulation

model that agreed well with the observation on several data

management systems. Massey [17] formulated a probabilis-

tic model that gave an analytic justification for the simu-

lation results reported in [7], showing that the probability

of deadlock grows linearly with respect to the number of

transactions and grows in the fourth power of the average

number of resources required by transactions.

To our best knowledge, only a few papers [7, 13, 24, 5, 23,

16] mentioned about deadlock detection scheduling but un-

der a different context from this paper. The idea of relating

deadlock recovery cost to deadlock persistence time, and

identifying an optimal deadlock detection frequency that

minimizes the long-run mean average cost from the perspec-

tive of deadlock handling, has not been considered before.

3. DEADLOCK PERSISTENCE TIME AND
DEADLOCK RECOVERY COST

In this section, we begin by defining basic notions that

are prerequisites for our problem formulation, then intro-

duce the definition of independent deadlock formation, as

well as that of deadlock persistence time. Throughout this

paper, we use n to denote the total number of processes

in a distributed system and nD(.) to denote the size of a

deadlock, i.e., the number of deadlocked processes.

Definition 1. Two deadlocks are said to be independent

of each other if and only if there is no process participating

in both deadlocks. ‖

After decades of research and development, large-scale

distributed systems and fine-granular locking mechanisms

such as semantic locking [21, 10] and record-granularity lock-

ing [21] have proliferated. Large-scale distributed systems

may comprise hundreds or even thousands of sites [21, 10].

Fine-granularity of locking mechanism allows a higher de-

gree of parallelism. They make deadlocks likely to form

independently.

Next we introduce the notion of deadlock persistence time

which serves as a basis for our problem formulation. Let

S = {S1, S2, · · · } be the time instants at which independent

deadlocks initially occur, i.e., the ith deadlock forms at time

Si.

Definition 2. The persistence time of the ith deadlock

with respect to time t, denoted by tp(t, Si), is

tp(t, Si) =

{

t − Si, t > Si;

0, t ≤ Si

‖

The deadlock persistence time, tp(t, Si), represents the

time interval between the present time and the time at which

the deadlock is initially formed. It grows linearly until the

deadlock is resolved.

267

Once deadlocks are formed, other processes requesting

resources currently held by the deadlocked processes imme-

diately fall into the deadlock state, resulting in an increased

deadlock size. As a result, an initially formed deadlock

acts as an attractor trapping more and more processes into

it. As the deadlock persistence time increases, the num-

ber of blocked processes keeps growing [23, 8, 13], which

leads to higher deadlock resolution cost. Such an intrinsic

dependency of deadlock size (recovery cost) upon deadlock

persistence time was observed by Singhal et al. [23, 10] and

Park et al. [20].

Consider an arbitrary deadlock. Its size is a function of

deadlock persistence time tp, denoted as nD(tp). nD(t) by

nature is a discrete staircase function that jumps by one

whenever a new process becomes transitively blocked by the

deadlocked processes. To facilitate our later mathematical

analysis, we will treat nD(t) instead as a continuous, in-

creasing function, which is an approximation of the original

one with the values at the “jumping points” identical but

using continuous, increasing curves to connect the “jumping

points”. The approximation can be made infinitely close to

the original when the curves approach to the staircase.

As it will become clear shortly, our main purpose of intro-

ducing a continuous function is to provide a time-dependent

and fine-granular analysis of deadlock resolution cost in con-

nection with deadlock detection frequency and the rate of

deadlock formation, representing a sharp departure from

the past research that focuses primarily on minimizing per

deadlock detection cost or per deadlock resolution cost.

The deadlock size nD(t) has the following mathematical

properties:

1. nD(0) = 0

2. monotonicity: n′
D(tp) > 0, tp ≥ 0

3. bounded: nD(∞) ≤ n,

where n′
D(tp) is the derivative of nD(tp). The first property

refers to the initial condition that the number of deadlocked

processes at tp = 0 is zero. The second property reflects

the fact that the number of deadlocked processes increases

monotonically with deadlock persistence time tp, and the

third property indicates that the eventual deadlock size is

bounded by the total number of distributed processes. For

the sake of easy presentation, we drop the subscript p here-

after.

Now let’s revisit the message complexity achieved by the

deadlock resolution algorithm proposed by Mendivil et al.

[6], which is O(mn2
D) = O(nn2

D), where m is the number of

non-deadlocked processes having priority values greater than

those of the deadlocked processes. Notice that the deadlock

size, nD, is a function of deadlock persistence time. To make

such a dependency concrete, the message overhead can be

written as cnn2
D(t) for some constant c. This result will

be used later to derive the optimal frequency of deadlock

detection scheduling.

4. MATHEMATICAL FORMULATION

In this section, we begin with a generic cost model that

accounts for both deadlock detection and deadlock resolu-

tion, which is independent of deadlock detection/resolution

algorithms being used. We then prove the existence and

the uniqueness of an optimal deadlock detection frequency

that minimizes the long-run mean average cost in terms

of the message complexities of the best known deadlock

detection/resolution algorithms.

We denote per deadlock detection cost as CD, which de-

pends on the total number n of processes in a distributed

system and the choice of the performance metric. We choose

the message complexity as the performance metric in mea-

suring the cost of a distributed deadlock detection algo-

rithm. Note that the worst-case message complexity can

normally be written as a polynomial of n. We denote the

resolution cost of a deadlock as CR(t), which is a function of

deadlock persistence time t. In general, the resolution cost

in terms of worst-case message complexity is a polynomial

of nD(t). For example, it is cnn2
D(t) for Mendivil et al.’s

algorithm [6].1 Because nD(t) is approximated as a mono-

tonically increasing function in the previous section, CR(t)

is also monotonically increasing in our approximation.

To study the impact of deadlock detection scheduling, we

need to know how deadlocks are formed in the real-world.

In this paper, we assume that deadlock formation follows a

Poisson process for two reasons: First, the Poisson process is

widely used to approximate a sequence of events that occur

randomly and independently. Second, it is due to mathe-

matical tractability of the Poisson process, which allows us

to characterize the essential aspects of complicated processes

while making the problem analytically tractable. Our future

work will focus on validating this assumption by using real-

life measurements from telecommunication systems.

The following theorem presents the long-run mean average

cost of deadlock handling in connection with the rate of

deadlock formation and the frequency of deadlock detection.

Theorem 1. Suppose deadlock formation follows a Pois-

son process with rate λ. The long-run mean average cost of

deadlock handling, denoted by C(T), is

C(T) =
CD

T
+

λ
∫ T

0
CR(t)dt

T
, (1)

where the frequency of deadlock detection scheduling is 1/T .

N

Proof: Let {Xi, i ≥ 1} be the interarrival times of indepen-

dent deadlock formations, where random variables Xi, i ≥ 1

are independent and exponentially distributed with mean

1/λ. Define S0 = 0 and Sn =
n
∑

i=1

Xi, where Sn represents

the time instant at which the nth independent deadlock

occurs.

1The worst-case complexity may also be written as O(n3)
when considering nD(t) = O(n).

268

Let N(t) = sup{n : Sn ≤ t} represent the number of

deadlock occurrences within the time interval (0, t]. The

long-run mean average cost is

lim
t→∞

E(random cost in (0, t])

t
, (2)

where E is the expectation function. In order to associate

this cost with the deadlock detection frequency (1/T), we

partition the time interval (0, t] into non-overlapping subin-

tervals of length T . Let ξk(T) be the cost of deadlock

handling on the subinterval ((k − 1)T, kT], k > 0. ξk(T)

is a random variable. According to the stationary and in-

dependent increments of Poisson process [22], E(ξi(T)) =

E(ξj(T)), i 6= j. The long-run mean average cost becomes

C(T) = lim
t→∞

E(random cost in (0, t])

t

= lim
t→∞

E(
b t

T
c

∑

k=0

ξk(T))

t
= lim

t→∞

E(b t
T
cξ1(T))

t

=
E(ξ1(T))

T
,

(3)

where bxc is the floor function in x.

The cost ξ1(T) on interval (0, T] is the sum of a deadlock

detection cost CD and a deadlock resolution cost for those

deadlocks independently formed within the interval (0, T].

For the ith deadlock formed at time Si ≤ T , the resolution

cost CR(T − Si) is a function of the deadlock persistence

time T − Si. Hence, the accrued total cost over (0, T] is

ξ1(T) = CD +

N(T)
∑

i=1

CR(T − Si)I{N(T)>0}, (4)

where Iθ is the indicator function whose value is 1 (or 0)

if predicate θ is true (or false). Among that, the total

resolution cost is

N(T)
∑

i=1

CR(T − Si)I{N(T)>0} =

∞
∑

i=1

CR(T − Si)I{Si≤T} (5)

E
(

CR(T − Si)I{Si≤T}

)

=

T
∫

0

CR(T − t)fi(t)dt (6)

where fi(t) is the probability density function of Si which

follows the gamma distribution given below:

fi(t) =
λi

(i − 1)!
ti−1e−λt, t > 0. (7)

Substituting Eq(7) into Eq(6) gives

E
(

CR(T − Si)I{Si≤T}

)

=
∫ T

0

CR(T − t)
λi

(i − 1)!
ti−1e−λtdt. (8)

The expected total resolution cost over the time interval

(0, T] is

E(

N(T)
∑

i=1

CR(T − Si)I{N(T)>0})

=
∞
∑

i=1

∫ T

0

CR(T − t)
λiti−1

(i − 1)!
e−λtdt

=

∫ T

0

CR(T − t)λe−λt

(

∞
∑

i=1

(λt)i−1

(i − 1)!

)

dt

= λ

∫ T

0

CR(T − t)dt = λ

∫ T

0

CR(t)dt. (9)

Combining Eqs(3), (4), and (9) gives

C(T) =
E(ξ1(T))

T
=

CD

T
+

λ
∫ T

0
CR(T − t)dt

T

=
CD

T
+

λ
∫ T

0
CR(t)dt

T
.

(10)

Theorem 1 is thus established. �

Theorem 1 is mainly concerned with the impact of dead-

lock detection frequency and deadlock formation rate on the

long-run mean average cost of overall deadlock handling. It

is independent of the choice of deadlock detection/resolution

algorithms. The following corollary is an immediate conse-

quence of Theorem 1.

Corollary 1. The long-run mean average cost of dead-

lock handling is proportional to the rate of deadlock forma-

tion λ. N

Proof: the proof is straightforward and thus omitted. �

Theorem 1 and Corollary 1 stated that the overall cost of

deadlock handling is closely associated not only with per-

deadlock detection cost, and aggregated resolution cost, but

also with the rate of deadlock formation, λ. In the following

lemma, we will show the existence and uniqueness of asymp-

totic optimal frequency of deadlock detection when deadlock

resolution is more expensive than a deadlock detection in

terms of message complexity.

Lemma 1. Suppose that the message complexity of dead-

lock detection is O(nα), and that of deadlock resolution is

O(nβ). If α < β, there exists a unique deadlock detection

frequency 1/T ∗ that yields the minimum long-run mean av-

erage cost when n is sufficiently large. N

Proof: Differentiating Eq(1) yields

C′(T) = −
CD

T 2
+

λCR(T)

T
−

λ
∫ T

0
CR(t)dt

T 2
. (11)

Define a function ϕ(T) as follows

ϕ(T) ≡ T 2C′(T) = −CD + λTCR(T) − λ

∫ T

0

CR(t)dt.

(12)

269

Notice that C′(T) and ϕ(T) share the same sign. Differen-

tiating ϕ(T), we have

ϕ′(T) = λTC′
R(T) (13)

Because CR(T) is a monotonically increasing function,

C′
R(T) > 0, which means ϕ′(T) > 0. Therefore, ϕ′(T) is

also a monotonically increasing function. CR(T)−CR(t) ≥ 0

holds iff T ≥ t. For any given 0 < ξ < T , it has

TCR(T) −

∫ T

0

CR(t)dt =

∫ T

0

(CR(T) − CR(t))dt

>

∫ ξ

0

(CR(T) − CR(t))dt >

∫ ξ

0

(CR(T) − CR(ξ))dt

= ξ(CR(T) − CR(ξ)). (14)

Applying Eq(14) to Eq(12), we have

ϕ(T) = −CD + λ(TCR(T) −

∫ T

0

CR(t)dt)

> −CD + λξ(CR(T) − CR(ξ)) (15)

We further have

ϕ(T) > −CD + λξCR(T)(1 −
CR(ξ)

CR(T)
)

= −CD + λξCR(T)θ (16)

where θ = (1 − CR(ξ)/CR(T)) and 0 < θ < 1 since CR(T)

is monotonically increasing. Substituting CD = c1n
α and

CR(∞) = c2n
β in Eq(16), we obtain

lim
T→∞

ϕ(T) > −c1n
α + λξθc2n

β (17)

Since α < β, lim
T→∞

ϕ(T) is asymptotically dominated by the

term λξθc2n
β when n is sufficiently large. Observe that

ϕ(0) = −CD < 0, and ϕ(T) is monotonically increasing. By

the intermediate value theorem, it must be true that there

exists a unique T ∗, 0 < T ∗ < ∞, such that

ϕ(T) = T 2C′(T) =

< 0, 0 ≤ T < T ∗

= 0, T = T ∗

> 0, T > T ∗.

It means that C(T) reaches its minimum at and only at

T = T ∗. The existence and the uniqueness of optimal

deadlock detection interval T ∗ = arg

(

min
T>0

C(T)

)

is proved.

�

To make the idea behind the derivation concrete, we apply

the up-to-date results of deadlock detection/resolution algo-

rithms. As discussed before, the best-known message com-

plexity of a distributed deadlock detection algorithm is 2n2

[12] when it is written as a polynomial of n. The best-known

message complexity of a deadlock resolution algorithm is

O(nn2
D) [6]. Therefore, CD = n2, and CR(t) = cnn2

D(t),

where c is a positive constant. Because the deadlock size

nD(t) is always bounded by n, from (15) we have

ϕ(∞) = lim
T→∞

ϕ(T) > −CD + λξ(CR(∞) − CR(ξ))

≈ −2n2 + λcξn3. (18)

Note that ξ is a fixed value that can be arbitrarily chosen.

For a sufficiently large n, Eq(18) becomes

ϕ(∞) ≈ λcξn3 > 0 (19)

ϕ(0) = −CD = −2n2. Because ϕ(T) is monotonically

increasing, there exists an optimal deadlock detection fre-

quency 1/T ∗ such that ϕ(T ∗) and thus C′(T ∗) are zero,

which minimizes the long-run mean average cost C(T) for

deadlock handling.

The motivation behind the proof is that the cost per dead-

lock detection is fixed when the total number of processes

is given, while the cost of deadlock resolution monotonically

increases with deadlock persistence time. The resolution

cost will eventually outgrow the detection cost if deadlocks

persist. As we set the time interval T between any two

consecutive detections longer, the detection cost becomes

smaller due to less frequent executions of the detection al-

gorithm, but the resolution cost becomes larger due to the

growth in deadlock size. This implies that there exists a

unique deadlock detection frequency 1/T ∗ that balances the

two costs such that their sum is minimized. The condition

that the asymptotic deadlock resolution cost, CR(∞), is

greater than the cost of deadlock detection, CD, constitutes

the natural mathematical basis to justify distributed dead-

lock detection algorithms.

We are now ready to state the asymptotically optimal

frequency for deadlock detection based on the up-to-date

results of distributed deadlock detection and resolution al-

gorithms. Recall that the best-known message complexity

for distributed deadlock detection algorithms is 2n2 [12] and

that for deadlock resolution algorithms of O(nn2
D) [6].

Theorem 2. Suppose the message complexity for distributed

deadlock detection is 2n2, and that for distributed deadlock

resolution is O(nn2
D(t)). Then the asymptotically optimal

frequency for scheduling deadlock detections is O((λn)1/3).

N

Proof: Assume that the deadlock size function nD(t) is both

differentiable and integrable.2 Then nD(t) can be expressed

in the form of Maclaurin series as follows:

nD(t) =

∞
∑

i=0

n
(i)
D (0)ti

i!
=

∞
∑

i=0

cit
i, (20)

where n
(i)
D (0) denote the ith derivative of the deadlock size

function nD(t) at point zero and ci = n
(i)
D (0)/i!.

By the properties of the deadlock size function nD(t), we

have nD(0) = 0 and n′
D(0) > 0. It can be easily verified that

c0 = 0 and c1 = n′
D(0) > 0. The resolution cost CR(t) can

be written as cnn2
D(t) for some constant c. By Theorem 1,

the long-run mean average cost becomes

C(T) =
2n2

T
+ λcn

∫ T

0
n2

D(t)dt

T
. (21)

2Recall that nD(t) is a continuous approximation function
whose curves between “jumping points” can be chosen.

270

Inserting Eq(20) into Eq(21), we have

C(T) =
2n2

T
+ λcn3T−1

∫ T

0

(
∞
∑

i=1

cit
i)2dt

=
2n2

T
+

λcn3
∫ T

0
(c1t +

∑∞
i=2 cit

i)2dt

T
. (22)

Through a lengthy calculation, Eq(22) can be simplified as

C(T) =
2n2

T
+ cλn3(

c2
1T

2

3
+

2c1c2T
3

4
)

+ cλn3(

∞
∑

i=2

∞
∑

j=2

cicjT
i+j

i + j + 1
). (23)

Taking derivative of Eq(23) with respect to T , we have

C′(T) = −
2n2

T 2
+ cλn3(c2

1
2T

3
+

3c1c2T
2

2
)

+ cλn3(
∞
∑

i=2

∞
∑

j=2

cicj(i + j)T i+j−1

i + j + 1
). (24)

By lemma 1, there exists a unique optimal detection fre-

quency 1/T ∗ when n is sufficiently large, such that C(T ∗) ≤

C(T), T ∈ (0,∞). We know that C′(T ∗) = 0. Based on

(24), we transform C′(T ∗) = 0 to the following equation.

1

n
=

cλ

2
(
2c2

1(T
∗)3

3
+

3c1c2(T
∗)4

2

+
∞
∑

i=2

∞
∑

j=2

cicj(i + j)(T ∗)i+j+1

i + j + 1
). (25)

Only n, T ∗, and λ are free variables and the rest are con-

stants. By performing the Big-O reduction we obtain

1

n
= Θ(λ((T ∗)3 + (T ∗)4 + (T ∗)5 + ...)) (26)

When n is sufficiently large and T ∗ is sufficiently small, we

have

1

n
= Θ(λ

(T ∗)3

1 − T ∗
) = O(λ(T ∗)3)

T ∗ = Ω(
1

(λn)1/3
) (27)

Therefore, the asymptotic optimal deadlock detection fre-

quency 1/T ∗ is O((λn)1/3). �

In the following we study the impact of coordinated v.s.

random deadlock detection scheduling on the performance of

deadlock handling. We consider two strategies of deadlock

detection scheduling deadlock detections: (1) centralized,

coordinated deadlock detection scheduling, and (2) fully dis-

tributed, uncoordinated deadlock detection scheduling.

The centralized scheduling excels in its simplicity in im-

plementation and system maintenance, but undermines the

reliability and resilience against failures because one and

only one process is elected as the initiator of deadlock de-

tections in a distributed system.

In contrast, the fully distributed scheduling excels in the

reliability and resilience against failures because every pro-

cess in the distributed system can independently initiate

detections, without a single point of failure. However, due

to the lack of coordination in deadlock detection initiation

among processes, it presents a different mathematical prob-

lem from the centralized deadlock detection scheduling.

In the previous discussions we have focused on the deriva-

tion of optimal frequency of deadlock detection in connec-

tion with the rate of deadlock formation and the message

complexities of deadlock detection and resolution algorithms,

assuming deadlock detections are centrally scheduled at a

fixed rate of 1/T . To capture the lack of coordination in

fully distributed scheduling, we will study the case where

processes randomly, independently initiate the detection of

deadlocks.

Let n be the number of processes in a distributed system

and T be the optimal time interval between any two con-

secutive deadlock detections in the centralized scheduling.

Consider a fully distributed deadlock detection scheduling,

where each process initiates deadlock detection at a rate

of 1/(nT) independently. Although the average interval

between deadlock detections in the fully distributed schedul-

ing remains T (the same as its centralized counterpart),

the actual occurring times of those detections are likely to

be non-uniformly spaced because the initiation of deadlock

detection is performed by the participating processes in a

completely uncoordinated fashion.

In the following we will study the fully distributed (ran-

dom) scheduling and compare it with the centralized schedul-

ing. Consider a sequence of independently and identically

distributed iid random variables {Yi, i ≥ 1} defined on (0,∞)

following certain distribution H . The sequence {Yi, i ≥ 1}

represents the inter-arrival times of deadlock detections ini-

tiated by the fully distributed scheduling, and it is assumed

to be independent of the arrival of deadlock formations. It

is obvious that the centralized scheduling is a special case of

the fully distributed scheduling.

Let H be the family of all distribution functions on (0,∞)

with finite first moment. Namely,

H =

{

H : H is a CDF on (0,∞),

∫ ∞

0

H̄(t)dt < ∞

}

(28)

where H̄(t) ≡ 1 − H(t), ∀t ≥ 0.

The following theorem states that the absence of coordi-

nation in deadlock detection initiation by fully distributed

scheduling will introduce additional overhead in deadlock

handling. Therefore the fully distributed scheduling in gen-

eral cannot perform as efficiently as its centralized counter-

part.

Theorem 3. Let CH denote the long-run mean average

cost under fully distributed scheduling with a random detec-

tion interval Y characterized by certain distribution H ∈ H

with the mean of µ, and C(T) denote the long-run mean av-

erage cost under centralized scheduling with a fixed detection

interval T . Then

CH ≥ C(T), (29)

when E(Y) = µ = T . N

271

Proof: Since the sequence {Yi, i ≥ 1} of interarrival times

of deadlock detection is assumed to be independent of the

Poisson deadlock formations, it is easy to see that the ran-

dom costs over the intervals (0, Y1], (Y1, Y1 + Y2], . . . are iid.

Using the same line of reasoning in the proof of Theorem 1,

the long-run mean average cost is expressed as

CH =
E(random cost over Y)

E(Y)
, (30)

where Y ∈ H is a random variable representing the interval

between two consecutive deadlock detections. Let ξ(Y) be

the random cost in the interval Y . The expected cost over

the interval Y is given by

E(ξ(Y)) = E{E[ξ(Y)|Y]} =

∫ ∞

0

E(CD +

N(y)
∑

n=1

CR(y − Sn)I{N(y)>0})dH(y), (31)

where Sn =
n
∑

i=1

Xi denotes the time of the nth deadlock

formation and N(y) represents the number of independent

deadlocks occurred in the time interval (0, y). It follows from

the independence of {Xi, i ≥ 1} and {Yi, i ≥ 1}, and from

Eq(31), the long-run mean average cost is

CH =
E(ξ(Y))

E(Y)
=

∫∞

0
(CD +

∫ y

0
λCR(t)dt)dH(y)

E(Y)

=
CD

E(Y)
+

∫∞

0

(∫∞

t
λCR(t)dH(y)

)

dt

E(Y)

=
CD

E(Y)
+

λ
∫∞

0
CR(t)H̄(t)dt

E(Y)
. (32)

When E(Y) = µ = T , meaning that the fixed deadlock

detection interval T equals to the mean value of the random

detection interval Y , we compare the centralized (fixed)

detection scheduling with the rate of 1/T with the fully

distributed (random) one with the mean rate of 1/E(Y) =

1/µ. According to Theorem 1, the long run mean average

cost of fixed detection is given as

C(T) =
CD

µ
+

λ
∫ µ

0
CR(t)dt

µ
. (33)

Subtracting Eq(33) from Eq(32) yields

CH − C(T) =
λ

µ

{
∫ ∞

0

CR(t)H̄(t)dt −

∫ µ

0

CR(t)dt

}

=
λ

µ

{
∫ ∞

µ

CR(t)H̄(t)dt −

∫ µ

0

CR(t)H(t)dt

}

≥
λ

µ

{

CR(µ)

∫ ∞

µ

H̄(t)dt − CR(µ)

∫ µ

0

H(t)dt

}

=
λCR(µ)

µ

{
∫ ∞

µ

H̄(t)dt −

∫ µ

0

(1 − H̄(t))dt

}

=
λCR(µ)

µ

{
∫ ∞

0

H̄(t)dt − µ

}

= 0. (34)

Hence we have

CH ≥ C(T). (35)

Theorem 3 is thus established. �

It can be seen from Eq(35) that CH ≥ C(T) and the equal-

ity holds if and only if Y is a degenerate random variable

when Prob(Y = T) = 1. Theorem 3 asserts that the fully

distributed (random) deadlock detection scheduling carries

an increased overhead in overall deadlock handling.

5. CONCLUSION

Deadlock detection scheduling is an important, yet oft-

overlooked aspect of distributed deadlock detection and res-

olution. The overall performance of deadlock handling not

only depends upon per-execution complexity of deadlock

detection/resolution algorithms, but also depends funda-

mentally upon deadlock detection scheduling and the rate of

deadlock formation. An excessive initiation of deadlock de-

tection results in an increased number of control messages in

the absence of deadlocks, while a deficient initiation of dead-

lock detection incurs an increased cost of deadlock resolution

in the presence of deadlocks. As a result, reducing the per-

execution cost of distributed deadlock detection/resolution

algorithms alone does not warrant the overall performance

improvement on deadlock handling.

The main thrust of this paper is to bring an awareness to

the problem of deadlock detection scheduling and its impact

on overall deadlock handling. The key element in our ap-

proach is to develop a time-dependent model that associates

the deadlock resolution cost with the deadlock persistence

time. It assists the study of time-dependent deadlock reso-

lution cost in connection with the rate of deadlock formation

and the frequency of deadlock detection initiation, differing

significantly from the past research that focuses on minimiz-

ing per-detection and per-resolution costs.

Our stochastic analysis, which solidifies the ideas pre-

sented in [9, 23, 20, 10], shows that there exists a unique

deadlock detection frequency that guarantees a minimum

long-run mean average cost for deadlock handling when the

total number of processes in a distributed system is suffi-

ciently large, and that the cost of overall deadlock handling

grows linearly with the rate of deadlock formation.

In addition, we study the fully distributed (random) dead-

lock detection scheduling and its impact on the performance

of deadlock handling. We prove that in general the absence

of coordination in deadlock detection initiation among pro-

cesses will increase the overall cost of deadlock handling.

6. ACKNOWLEDGEMENTS

We would like to thank Professor Shu-Chan Hsu at Rut-

gers University for her support and encouragement.

7. REFERENCES
[1] Roberto Baldoni and Silvio Salz. Deadlock Detection

in Multidatabase Systems: a Performance Analysis.

DIstributed Systems Engineering, 4:244–252,

December 1997.

272

[2] Azzedine Boukerche and Carl Tropper. A Distributed

Graph Algorithm for the Detection of Local Cycles

and Knots. IEEE Transactions on Parallel and

Distributed Systems, 9(8):748–757, August 1998.

[3] G. Bracha and S. Toueg. Distributed Deadlock

Detection. Distributed Computing, 2:127–138, 1987.

[4] K.M. Chandy, J. Misra, and L. Hass. Distributed

Deadlock. ACM Transaction on Computer Systems,

1(2):144–156, May 1983.

[5] S. Chen, Y. Deng, and W. Sun. Optimal Dealock

Detection in Distributed Systems Based on Locally

Constructed Wait-for Graph. In Proceedings of the

16th International Conference on Distributed

Computing Systems, pages 613–619, 1996.

[6] Jose Ramon Gonzales de Mendivil, Jose Ramon

Garitagoitia, Carlos F. Alastruey, and J.M.

Bernabeu-Auban. A Distributed Deadlock Resolution

Algorithm for the AND Model. IEEE Transactions on

Parallel and Distributed Systems, 10(5):433–447, May

1999.

[7] J. Gray, P. Homan, R. Overmarck, and H. Korth. A

Straw-man Analysis of the Probability of Waiting and

Deadlock in a Database System. IBM Research

Report, 1981.

[8] Y. M. Kim, T. H. Lai, and N. Soundarajan. Efficient

Distributed Deadlock Detection and Resolution Using

Probes, Tokens, and Barriers. In Proceedings of the

International Conference on Parallel and Distributed

Systems, pages 584–591, 1997.

[9] Edgar Knapp. Deadlock Detection in Distributed

Databases. ACM Computing Surveys, 19(4):303–328,

1987.

[10] Natalija Krivokapic, Alfons Kemper, and Ehud Gudes.

Deadlock Detection in Distributed Database Systems:

A New Algorithm and a Comparative Performance

Analysis. VLDB Journal: Very Large Data Bases,

8(2):79–100, 1999.

[11] Ajay D. Kshemkalyani and Mukesh Singhal.

Distributed Detection of Generalized Deadlocks. In

Proceedings of the 1997 International Conference on

Distributed Computing Systems, pages 553–560, 1997.

[12] Ajay D. Kshemkalyani and Mukesh Singhal. A

One-Phase Algorithm to Detect Distributed Deadlocks

in Replicated Databases. IEEE Transactions on

Knowledge and Data Engineering, 11(6):880–895,

1999.

[13] Soojung Lee and Junguk L. Kim. Performance

Analysis of Distributed Deadlock Dectection

Algorithms. IEEE Transactions on Knowledge and

Data Engineering, 13(3):623–636, 2001.

[14] Xuemin Lin and Jian Chen. An Optimal Deadlock

Resolution Algorithm in Multidatabase Systems. In

Proceedings of the 1996 International Conference on

Parallel and Distributed Systems, pages 516–521, 1996.

[15] Yibei Ling, Jie Mi, and Xiaola Lin. A Variational

Calculus Approach to Optimal Checkpoint Placement.

IEEE Transactions on Computers, 50(7):699–708,

July 2001.

[16] Philip P. Macri. Deadlock Detection and Resolution in

a CODASYL based Data Management System. In

Proceedings of the 1976 ACM SIGMOD International

Conference on Management of Data, pages 45–49,

1976.

[17] William A. Massey. A Probabilistic Analysis of a

Database System. ACM SIGMETRICS Performance

Evaluation Review, 14(1):141–146, 1986.

[18] J. Misra. Distributed discrete-event simulation. ACM

Computing Surveys, 18(1):39–65, March 1986.

[19] R. Obermark. Distributed Deadlock Detection

Algorithm. ACM Transactions on Database Systems,

7(2):187–208, June 1982.

[20] Young Chul Park, Peter Scheuermann, and Snag Ho

Lee. A Periodic Deadlock Detection and Resolution

Algorithm with a New Graph Model for Sequential

Transaction Processing. In Proceedings of the Eighth

International Conference of Data Engineering, pages

202–209, February 1992.

[21] M. Roesler and W. A. Burkhard. Semantic Lock

Models in Object-oriented Distributed Systems and

Deadlock Resolution. In Proceedings of the 1988 ACM

SIGMOD International Conference on Management of

Data, pages 361–370, 1988.

[22] Sheldon M. Ross. Stochastic Processes. John Wiley &

Sons, Inc., New York, 1996.

[23] Mukesh Singhal. Deadlock detection in distributed

systems. IEEE Computer Magazine, 40(8):37–48,

November 1989.

[24] I. Terekhov and T. Camp. Time Efficient Deadlock

Resolution Algorithms. Information Processing

Letters, 69:149–154, 1999.

[25] Carl Tropper and Azzedine Boukerche. Parallel

simulations of communicating finite state machines. In

Proceedings of the SCS Multiconf on Parallel and

Distributed Simulation, pages 143–150, May 1993.

[26] J. Wang, S. Huang, and N. Chen. A Distributed

Algorithm for Detecting Generalized Deadlocks.

Technical Report, Computer Science, National

Tsing-Hua University, 1990.

[27] Yi-Min Wang, Michael Merritt, and Alexander B.

Romanovsky. Guaranteed Deadlock Recovery:

Deadlock Resolution with Rollback Propagation. In

Technical Report Number 648, 1998.

[28] Sugath Warnakulasuriya and Timothy Mark Pinkston.

A Formal Model of Message Blocking and Deadlock

Resolution in Interconnection Networks. IEEE

Transactions on Parallel and Distributed Systems,

11(3):212–229, March 2000.

273

