
Peer-to-Peer Netw. Appl. (2011) 4:3–22
DOI 10.1007/s12083-010-0089-8

PSON: A scalable P2P file sharing system with efficient
complex query support

Yan Li · Jyoti Ahuja · Li Lao ·
Jun-Hong Cui · Shigang Chen

Received: 30 December 2009 / Accepted: 23 July 2010 / Published online: 14 September 2010
© Springer Science+Business Media, LLC 2010

Abstract A desired P2P file sharing system is expected
to achieve the following design goals: scalability, rout-
ing efficiency and complex query support. In this paper,
we propose a powerful P2P file sharing system, PSON,
which can satisfy all the three desired properties. PSON
is essentially a semantic overlay network of logical
nodes. Each logical node represents a cluster of peers
that are close to each other. A powerful peer is selected
in each cluster to support query routing on the overlay
network while the less powerful peers are responsible
for the maintenance of shared contents. To facilitate
query routing, super peers are organized in form of a
balanced binary search tree. By exploiting the concept

Y. Li · J.-H. Cui (B)
Computer Science & Engineering,
University of Connecticut, Storrs, CT 06269, USA
e-mail: jcui@engr.uconn.edu

Y. Li
e-mail: li2yan@yahoo.com

J. Ahuja
Yahoo Software Development India PVt Ltd,
Bangalore, 560001, India
e-mail: jyoti.ahuja@gmail.com

L. Lao
Google Santa Monica, 604 Arizona Avenue,
Santa Monica, CA 90401, USA
e-mail: llao@google.com

S. Chen
Department of CISE, University of Florida,
Gainesville, FL 32611, USA
e-mail: sgchen@cise.ufl.edu

of semantics, PSON can support complex queries in a
scalable and efficient way. In this paper, we present
the basic system design such as the semantic overlay
construction, query routing and system dynamics. A
load balancing scheme is proposed to further enhance
the system performance. By simulation experiments,
we show that PSON is scalable, efficient and is able to
support complex queries.

Keywords P2P file sharing · Complex query support ·
Semantic overlays · Load balancing

1 Introduction

Peer-to-peer file sharing has been an active research
area since the first massive P2P service for music file
sharing (http://napster.com/) was created in 1999. A
successful P2P file sharing system should achieve the
following design goals. First, the system should scale to
a large number of peers spreading throughout wide ar-
eas across different administrative domains. Secondly,
efficient and effective file lookup must be provided to
the users. Location of a requested file should be deter-
mined with the minimum communication and computa-
tion overhead. Lastly, a desired P2P file sharing system
should support complex (or partial-match) queries. As
opposite to keyword searching, a complex query is
composed by a set of file attributes. For example, a
music file can be described by the attributes of singer,
composer, title, year, etc. A desired search mechanism
should be able to handle queries that contain a subset
of full attributes or queries that even have typos.

In the literature, many P2P files sharing systems
have been proposed and captured people’s attention

http://napster.com/

4 Peer-to-Peer Netw. Appl. (2011) 4:3–22

[1, 3, 7, 8, 13, 18, 21, 24, 28]. However, very few systems
can achieve all the design goals stated above. In this
paper, we tackled the issues of scalability, efficiency
and complex query support by a new P2P file shar-
ing system, Peer-to-peer Semantic Overlay Network
(PSON). The basic design of PSON effectively exploits
the concepts of hierarchy and semantics.

Files shared in PSON are classified based on a prior
semantic hierarchy. Figure 1 shows a simple example in
which each node represents a semantic entry and all the
nodes together form a semantic tree. A semantic entry
is identified by its level in the hierarchy and its label
such that the semantic entries can be easily compared
and ordered. Every file shared in the system semanti-
cally belongs to a tree node. Thus, we can sort all the
files in the system based on their semantic entries.

In PSON, peers are organized into clusters. Within
each cluster, a “super peer” which is more powerful in
terms of bandwidth, availability, etc. is selected among
all the peers in the cluster, while the rest of peers are
“normal peers”. Each cluster is assigned a semantic
entry and maintains the content directory for all the
files shared in the system that belong to the assigned
semantic entry. If we consider each cluster as a logical
node, all the logical nodes together form a semantic
overlay network in which queries are routed on the
basis of semantic entries. When a peer publishes a file,
it first extracts the meta data for the file and generates a
location-meta data pair (i.e., a content directory item).
Then the directory item is injected into the semantic
overlay network, routed to the responsible “host” clus-
ter, and is finally stored at a normal peer in the cluster.
Similarly, if a peer wants to search for a file, it issues
a search query based on the semantic entry of the file.
The query is then routed to the cluster responsible for
storing the content directory of the semantic entry. By a
local search in the cluster, the location of the requested
item can be obtained.

Clearly, semantic overlay construction and query
routing are the fundamental issues in the whole system

Root

games movies music

comedy horror jazz pop rap rock

Fig. 1 An example of semantic hierarchy

design. To conserve the semantics of the shared con-
tents and facilitate efficient query routing, we propose
to use red-black tree as the overlay structure of the
logical nodes. With the red-black tree structure, an in-
order tree traversal could yield an encoded semantic
hierarchy, which can naturally help to conserve the
semantics of the overlay tree. Due to the balanced tree
structure, the average query search delay in terms of
the number of logical hops on the semantic overlay is
bounded by the logarithm of the overlay size.

Another critical issue addressed in this paper is
system dynamics, which is a common feature of P2P
systems. Peers can join and leave the system at will and
files are injected into and revoked from the system at
any moment. System dynamics can affect the semantic
overlay significantly and must be handled appropriately
to guarantee the system’s performance. In this paper,
we propose some mechanisms to handle peer and file
dynamics.

To evaluate the performance of PSON, we conduct
extensive simulations using the NS-2 simulator (http://
www.isi.edu/nsnam/ns/). Based on the simulation re-
sults, we can claim that PSON is a powerful system that
can guarantee all the desired design goals.

Besides the basic system design, we also address an
open issue due to the tree structure of the semantic
overlay: load balancing. We propose to add cross links
between peers to distribute queries more evenly in
the system. We discuss in detail how cross links are
formed and maintained, and evaluate the performance
of PSON with the cross link mechanism. With cross
links, the load at high level nodes in the semantic
overlay can be significantly reduced and the search
performance of the system can be improved.

The rest of the paper is organized as follows. In
Section 2, we review the background of P2P file shar-
ing and some existing systems. Then in Section 3, we
present the PSON architecture and discuss the basic
design issues, including overlay construction, overlay
routing, and system dynamics. In Section 4, we evaluate
the performance of the basic system using simulations.
In Section 5, we discuss the issue of load balancing and
propose the cross link mechanism. At the end of this
paper, we conclude our current work and discuss our
future research directions in Section 6.

2 Background and related work

In this section, we first provide some background on
the concepts of semantic hierarchy and hierarchical P2P

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/

Peer-to-Peer Netw. Appl. (2011) 4:3–22 5

systems, which are the basis of our work. Then we re-
view some related work in P2P system design.

2.1 Background

2.1.1 Semantic hierarchy

Content shared in a file system can be semantically
classified into a hierarchy (referred to as “semantic hi-
erarchy” or “classification hierarchy”) based on genres.
For example, music files can be first categorized into
jazz, pop, rap, and rock, etc, and rock music files can
be further subdivided into “soft rock” and “hard rock”.
Each subcategory of music files can further creates a
sub-hierarchy based on composer and year etc. This
type of content classification is proved to be very useful
in content organization, especially in centralized data-
bases. However, in P2P systems, semantic hierarchy has
not been widely explored yet. Crespo et al. [6] pio-
neered the research in this direction. In [6], nodes with
semantically similar contents are clustered together and
form an overlay network of clusters. For each semantic
group in the hierarchy, an overlay network is created.
Therefore, a node can join multiple overlay networks
to which it has semantically related contents. In this
system, semantic overlay networks are not structured.
Thus, f looding or a centralized directory is used to
locate a node that belongs to those overlay networks,
which results in very high query search overhead.

2.1.2 Hierarchical P2P system

PSON exploits the heterogeneity of peers, which is
similar to KaZaa (http://kazaa.com/), an enormously
successful P2P file sharing service. In KaZaa, peers
are classified into normal peers and super peers. Super
peers usually have more connection bandwidth and
better availability. Normal peers connect to a super
peer and together form a cluster. Each super peer keeps
track of the IP address and the shared content of each
normal peer in its cluster. Therefore, a search query is
first resolved by the super peer and then forwarded to
the normal peers in the cluster that have the requested
contents. KaZaa is more scalable compared to the oth-
ers such as Napster (http://napster.com/) and Gnutella
(http://gnutella.wego.com/) due to its hierarchial archi-
tecture. However, it cannot support complex queries as
query routing is irrespective of semantics. Moreover,
the super peers are not structured and thus f looding or
partial pooling is used for the communication between
super peers, which is obviously inefficient.

2.2 Related work

2.2.1 DHT based systems

DHT based P2P systems (such as CAN [15], Chord [22],
Pastry [17], and Tapestry [29], to name a few) provide
efficient data retrieval for exact-match queries. The key
idea behind these systems is to assign particular content
or pointer to the content to the peers in the system.

A hash function is introduced to map the requested
contents to a unique identifier based on a given key-
word and the range of the hash function is distributed
among all the peers in the network.

DHT based P2P systems are only designed for exact
queries since hash functions do not take the semantics
of a query into consideration.

2.2.2 P2P systems supporting semantics

Recently, there are several proposals [4–6, 9, 23] which
support semantics in P2P systems. In pSearch [23],
semantics of a document are generated by applying
Latent Semantic Indexing (LSI) on a term (or seman-
tic) vector which is generated from the document using
Vector Space Model (VSM). CAN is then employed
to create an overlay by using the document semantics
as the key to store document index. In principle, this
work extends the classical IR (Information Retrieval)
algorithms to the P2P environment so as to provide
“content” based search. In other words, the “seman-
tics” in pSearch are basically abstracted from the doc-
ument content. SSW [9] employs a similar approach to
the one used in pSearch to generate semantic vectors.
In SSW, peers are clustered according to the semantics
of local data and self-organized as a small world over-
lay network. Further, a dynamic dimension reduction
method is used to decrease the dimensionality of this
overlay network.

The key difference between PSON and these systems
is that PSON assumes a prior semantic hierarchy. To
some extent, PSON is complementary to these systems.
An analogy is that Yahoo classification is in fact an in-
dispensable service to us even though we have powerful
Google search. This is because that it is quite often that
we do not know the right keywords, but we do know
what category our needs belong to.

2.2.3 Hierarchical directory service systems

From the requirement of a prior semantic hierarchy,
PSON is quite similar to some hierarchical directory
service systems such as DNS [11, 12] and TerraDir

http://kazaa.com/
http://napster.com/
http://gnutella.wego.com/

6 Peer-to-Peer Netw. Appl. (2011) 4:3–22

[19, 20]. DNS is one of the most important services
widely deployed in the Internet. It resolves domain
names through lookup and search in a hierarchical
distributed database. TerraDir generalized DNS and
designed generic directory services for arbitrary appli-
cations. Moreover, advanced replication and caching
techniques are employed to improve performance.
Compared with these two systems, the key difference
is on overlay construction and routing: PSON maps the
semantic hierarchy to a red-black overlay tree, while
TerraDir and DNS map the namespace directly to the
physical network topology. The major advantage of the
use of red-black tree is that the routing performance
can be significantly improved, and the average search
time will be strictly bounded by O(log(n)).

3 PSON architecture

In this section, we first provide a high-level overview
of the PSON system design in which we highlight the
principles for constructing the semantic overlay. Then
we show the detailed algorithms for the key opera-
tions: semantic overlay construction and search query
routing. We also discuss the critical issue of system
dynamics and propose our solutions for peer and file
dynamics.

3.1 Overview

PSON is a self-organized semantic overlay network,
which consists of a number of logical nodes. A log-
ical node stands for a cluster of peers that are geo-
graphically close to each other. Within each cluster, a
powerful peer in terms of high bandwidth, better avail-
ability, etc. is selected as a super peer that represents
its cluster. Different from KaZaa, the super peers are
not necessarily maintain the local directories; instead,
they are mainly responsible for query routing in the
overlay network, i.e. communicating with other super
peers as well as coordinating local normal peers. The
overlay network constructed by the super peers is well
organized based on semantics. Before we present the
construction of the semantic overlay, the concept of
semantic hierarchy needs to be clarified.

3.1.1 Semantic tree

Files shared in PSON are classified into a semantic
hierarchy. In Fig. 1, a tree structure of the semantic

hierarchy is illustrated.1 Each tree node stands for a
semantic entry that is denoted as a tuple with three
attributes: semantic label, semantic level and ancestor
list. As shown in Fig. 1, “Root”, “music”, “movie”,
“jazz”, “rock”, etc. are all semantic labels which de-
scribe a class of files. Semantic level is the tree level
of the semantic entry in the semantic tree. Ancestor
list of a semantic entry is the list of the semantic labels
and levels of all its ancestors. For instance, the three
attributes of “pop” would be:

Semantic Label: Pop
Semantic Level: 2
Ancestor List: Music 1, Root 0

3.1.2 Ordering semantic entries

With the three attributes, semantic entries can be easily
compared and ordered. For any two semantic entries,
if they have the same parents, their order is decided
lexicographically. If they have different parents, we first
find their highest uncommon ancestors (according to
their ancestor lists) and compare them lexicograph-
ically. For example, referring to Fig. 1, “games” is
smaller than “movies” since they have the same parent
“Root” and “g” is smaller than “m”. Similarly, we
can say “comedy” is smaller than “pop” because their
highest uncommon ancestors are “movies” and “music”
respectively, and “movies” is smaller than “music”.

3.1.3 Semantic overlay construction

The key operation in PSON is to construct an overlay
network based on the semantic hierarchy. In other
words, PSON needs to organize various semantic en-
tries into a well-structured overlay. Once the semantic
tree is determined, the simplest way for overlay con-
struction is to do a direct mapping from the seman-
tic tree to an overlay network. For example, we can
easily construct an overlay tree which has exactly the
same shape as the semantic tree. However, content
search in such an overlay network is not guaranteed
to be efficient as the semantic tree may have unde-
sired shape, eg. very unbalanced. Moreover, we have
to keep in mind that P2P systems usually present high
dynamics: files are frequently inserted and deleted, and
peers can join and leave the system at any moment.
To maintain a dynamic P2P system in an efficient and

1Semantic tree is probably the most popular and useful clas-
sification hierarchy. Other hierarchies are also possible as shown
in [6]. In our work, we use the tree structure to illustrate the
design of PSON.

Peer-to-Peer Netw. Appl. (2011) 4:3–22 7

scalable way is very challenging. Thus, selecting a good
overlay structure and mapping the semantic tree to the
overlay are the key issues in the system design.

Overlay structure In our design of PSON, we use bal-
anced binary search tree (i.e., red-black tree) as the
overlay structure. We select red-black tree because of
its many desired features: (1) an in-order tree traversal
can yield an ordered semantic list; (2) Search time is
bounded by logarithm of the tree size; (3) The tree
construction and maintenance are simple. It is possible
to employ other overlay structures, such as mesh, ring,
etc. based on different needs. For system enhancement,
we actually convert the red-black tree into a mesh as
shown in Section 5.

From semantic tree to overlay tree In PSON, the red-
black overlay tree is built in an incremental fashion.
In the overlay tree, each cluster (or logical node) cor-
responds to one semantic entry in the semantic tree.
In other words, the peers in the cluster maintain the
directory of the files belonging to the semantic class.
However, the “mapping” cluster of a semantic entry
only “appears” in the overlay network when necessary.
For example, at early stage of the system, only a few
files are shared among peers, so it is not necessary to
build a big overlay tree. In this case, it is very likely that
only one cluster is enough to maintain all the content
directories, and thus the overlay tree is actually a “de-
graded” tree with only one node (which corresponds to
the “Root” semantic entry). Later on, with more music
files being shared, we “fork” a cluster that is dedicated
to maintain music file directories and the overlay grows
to a two-node tree. Then how to connect the new logical
node to the existing overlay? Since we use binary search
tree as the overlay structure, the new node is inserted
into the existing tree based on semantics following
the insertion algorithm of red-black tree. For instance,
“music” is smaller than “Root”, then the node storing
“music” files will be on the “left” side of the node
storing “Root” files (or unclassified files). In such a
manner, we can construct a semantic overlay in the
form of red-black tree.

In the following, we discuss in detail the two basic
PSON design issues: overlay construction and overlay
routing.

3.2 Building a semantic overlay

As mentioned earlier, the overlay network is built in
an incremental fashion. Clusters/logical nodes are in-
serted in such a way that they form a balanced binary
tree structure. The insertion procedure has two steps.
First, a logical node is inserted into the existing tree

according to its semantic entry; Secondly, an insertion
fixup procedure is invoked in order to preserve the
red-black tree properties. The insertion fixup method
may include some rotation operations to make the tree
balanced.

Every node in the overlay tree keeps pointers to its
left child, right child, parent, the smallest descendant
in its left subtree, and the largest descendant in its
right subtree. The pointers to the smallest and largest
descendants are kept for query routing purposes.
Algorithm 1 shows the logical node insertion proce-
dure. In this algorithm, the pointers maintained by a
logical node are denoted by “node.left”, “node.right”,
“node.parent”, “node.smallest”, and “node.largest”.
“root” is the root of the overlay tree, while “Root” is
the first semantic entry in the semantic hierarchy.

From the Algorithm 1, we can see that in the se-
mantic overlay, the node of “Root” is pre-existing in
the system with level 0. Any new node is created only
by its semantic parent. This design is very intuitive: if
there are only a few files in a subcategory, it is not
necessary to construct a new overlay node to store
the corresponding directory information and the node
for the parent category should be sufficient. Next we

Algorithm 1 Overlay-insertion(newnode)
1: // “〈”, and “〉” denotes semantic comparison
2: Contact bootstrap node, B
3: Add newnode’s address to the super peer list in B
4: B checks if newnode is the first super peer
5: if true then
6: root=newnode
7: newnode.right = Root
8: newnode.largest = Root
9: Root.parent = newnode

10: else
11: Strategically select one existing super peer, and

return address to newnode
12: newnode contacts this super peer (referred to as

oldnode)
13: if newnode 〈 oldnode then
14: Recursively find the position of newnode in the

left subtree of oldnode and insert it into the
tree

15: else
16: Recursively find the position of newnode in the

right subtree of oldnode and insert it into the
tree

17: end if
18: end if

8 Peer-to-Peer Netw. Appl. (2011) 4:3–22

explain the overlay construction algorithm with the
help of an example depicted in Fig. 2.

Initially, “Root” is the only node in the system and
handles all types of files. Then we assume that the
number of “music” files increases beyond a certain
upper bound and a new node dedicated for “music” is
requested. “Root” initiates the insertion operation for
the new node that has the semantic label “music” and
level 1. The directory of music files is moved to this
new node which can further create its own semantic
children if necessary. Let “rap” be the next node to be
inserted. The insertion procedure of “rap” is initiated
by its semantic parent “music”. The location of “rap”
in the overlay is determined as follows: “music” first
checks whether or not “rap” lies in its own left subtree
by comparing “rap” semantically with its smallest de-
scendant. Since “music” does not have a left descendant
in the current overlay, it checks to see if “rap” belongs
to its parent’s left subtree or not. “music” does not have
a parent either because it is currently the root of the
overlay tree; thus, it makes “rap” its own left child.
“movie” and “pop” are then inserted by their respec-
tive semantic parents, “Root” and “music” in similar
procedures. Clearly, the overlay tree is not balanced
after node insertions and we need to make it balanced
in order to support efficient query routing.

A right rotation is performed by “rap” to restore
the balanced structure of the overlay tree. After the
rotation, the subtree rooted at “rap” gets one level
closer to the root and the subtree at “music” becomes
one level further from the root of the overlay tree.
As shown in Fig. 2, the overlay tree is balanced after-
wards. In our algorithm, a rotation is a local operation
and is bounded by O(1) time. A rotation is invoked
whenever the overlay tree becomes unbalanced due to
node insertion/deletion. Since each node in a red-black

Root
music

music

Root

rap
music

Rootrap

music

Rootrap

movie

pop

movie

music

Rootrap

movie

pop

rap

musicmovie

Rootpop

Rotation

Root
music

music
rap

music

Rootrap

music

Rootrap

movie

poppoppop

movie

music

Rootrap

movie

pop

music

Rootrap

movie

pop

rap

musicmovie

Rootpop

Rotation

rap

musicmovie

Rootpop

Rotation

Fig. 2 An example of overlay node insertion

tree maintains a “color” bit, no global information
(for example, the hight of the (sub)tree) is needed to
decide if a rotation should be performed or not. Thus,
rotations in the semantic overlay tree are performed in
a decentralized way.

Maintaining the semantics In Fig. 2, the overlay nodes
are inserted in the following order : “Root”, “music”,
“rap”, “movie”, “pop”. Figure 3 shows the resultant
overlay after all the semantic entries in Fig. 1 are in-
serted. The in-order walk on the tree is: “games”,
“comedy”, “horror”, “movie”, “jazz”, “pop”, “rap”,
“rock”, “music”, “Root”. Though the overlay construc-
tion depends on the order in which individual nodes
are inserted, it is guaranteed that for the same semantic
hierarchy, an in-order traversal on its mapped overlay
tree yields the same ordering of the semantic entries
irrespective of the insertion order. Thus, the insertion
algorithm can maintain the semantics.

Overlay node deletion The cost for overlay node dele-
tion is comparatively less than the cost for insertion.
The reason is that for insertion, the location of the new
node in the overlay must be searched first before a
fixup is performed. While in the case of deletion, the
node can directly leave the overlay without any extra
operations (at the maximum, it tells its semantic parent
that it is leaving the overlay). After each deletion, a
fixup procedure is invoked to restore the red-black tree
properties of the overlay which may again involve new
rotations.

3.3 Overlay query routing

If a normal peer issues a search query, the query will
first be processed by its local cluster. If its local cluster
does not have the requested files, the peer will pass the
query to its super peer, which then initiates an overlay
query routing procedure. The overlay query routing
algorithm is shown in Algorithm 2.

rap

movie music

comedy pop rock Root

games horror jazz

Fig. 3 The structure of the overlay tree

Peer-to-Peer Netw. Appl. (2011) 4:3–22 9

Algorithm 2 Overlay_Query(current_node,query_node)
1: // 〈,〉 denotes semantic comparison
2: if current_node 〉 query_node then
3: if query_node 〈 current_node.smallest ||

current_node.smallest == null then
4: pass the query to current_node.parent
5: else
6: pass the query to current_node.lef t
7: end if
8: else
9: if query_node 〉 current_node.largest ||

current_node.largest == null then
10: pass the query to current_node.parent
11: else
12: pass the query to current_node.right
13: end if
14: else
15: the query is resolved
16: end if

An example is illustrated in Fig. 4. Consider a query
for “rock” songs from a cluster that is responsible
for the directory of “comedy” movies. “comedy” is
compared with “rock” (Line 2) and since “rock” is
greater than “comedy”, it is now compared with the
largest descendant of its right subtree at “comedy”
(Line 9) i.e. “horror”. “rock” is even greater than “hor-
ror”, therefore, it is further forwarded to the parent of
“comedy”, “movie” (Line 10). “movie” performs the
same comparison again (Line 2) and routes the query
accordingly.

3.4 Complexity analysis

From the above description, we can easily conclude that
the complexity of both overlay insertion/deletion and

rap

movie music

comed y pop rock Root

game s horro r jazz

Query for rock

Fig. 4 An example of query routing. Dashed arrows denote the
query path

query routing is O(log(n)) due to the fact that red-black
tree is utilized as the overlay structure (where n is the
number of overlay nodes). If there are totally N peers
and the average cluster size is M, the average number
of operations for a single insertion/deletion and query
search is bounded by O(log(N/M)). If we compare with
the average search time of SSW,2 which is O(

log2(2N/M)

l)

(where l is a constant and is set to 4 in the evaluation
of SSW [9]), we can claim that query search in PSON is
much faster than SSW in average.

3.5 How system dynamics affect the overlay?

A common feature of a P2P file sharing system is high
dynamics: peers can join and leave the system at any
moment and the files can be inserted into and deleted
from the system frequently. System dynamics can affect
the overlay significantly. In the following, we propose
our strategies of handling peer and file dynamics in
PSON.

3.5.1 Peer dynamics

Peer join Insertion of a new peer into the system
might lead to a new cluster formation. When a peer
joins the system, it first constructs connections with a
few existing peers which are geographically close to
it [16, 25]. Then the new peer will try to cluster with
its neighbors based on node connectivity in the sense
that peers are highly connected in the same clusters
and sparsely connected between clusters. The cluster-
ing procedure should follow a distributed clustering
algorithm [10, 14]. A new cluster will be created in
the following scenarios: (1) When there is no candidate
cluster for the new peer to join; and (2) when the
number of normal peers in the desired cluster exceeds
its maximum limit. We propose to keep a maximum size
limit for a cluster to achieve better performance and
minimize the maintenance overhead. More specifically,
the maximum size limit is measured by cluster diame-
ter. We want to maintain tightly connected clusters such
that peers in the same clusters are geographically close
to each other and the cost for local search within each
cluster can be minimized. A cluster is not assigned a
directory to manage until the number of peers in that
cluster exceeds a minimum threshold. This is necessary
because there would be a lot of overhead for storing a
directory due to excessive dynamics if the number of

2We have identified the fundamental difference between SSW
and PSON in Section 2. Here, we simply compare the average
search path length of the two systems.

10 Peer-to-Peer Netw. Appl. (2011) 4:3–22

peers in a cluster is too small. This strategy ensures that
the existing cluster handles all requests while the new
cluster is being created. This is significant as the system
can provide continuous service during configuration
changes.

Peer leave Events of peer leave from the same cluster
can lead to the cluster decay. If the number of peers
in a cluster decreases beyond a certain threshold, the
directory assigned to that cluster is revoked and may
be moved to another cluster, because there will be a lot
of overhead for a small number of peers to handle a
considerably sized directory. Further, if there are two
such clusters physically close by in the network, we will
combine them and a new directory is assigned to the
merged cluster. On the other hand, if there is no others
available for merging, the cluster remains without a
directory to manage and waits for new member peers.

3.5.2 File dynamics

File insertion Addition of files to a directory may lead
to its split. We propose to keep the directory size within
a maximum limit so that if the current size increases
beyond that limit, the directory is split into two and
the other half is assigned to another cluster that has
no directory to manage. This is performed in order to
improve the search efficiency and keep low overhead
for directory management.

File deletion Successive file deletion from a single
cluster may lead to significant decrease in the size of
the managed directory. In this scenario, we plan to (1)
“merge” two such directories so that member peers
of that cluster have enough content to manage or (2)
merge the shorter directory with its semantic parent. It
also helps to achieve file load balancing among clusters.

In the next section, we evaluate the performance
of PSON for each operation proposed above using
simulations, focusing on overlay construction and query
search.

4 Simulation study

In this section, we evaluate the performance of PSON
using NS-2 simulations. We focus on the performance
of the basic PSON system in overlay construction and
query search. Then, we evaluate how system dynamics
can affect the performance.

4.1 Simulation setup

We implement PSON in NS-2, and conduct simulation
experiments on Redhat Linux platform. The perfor-
mance of the system is evaluated at two levels as de-
scribed in the following.

4.1.1 Simulation of overlay construction
and query search

For overlay construction and query routing, we mea-
sure the system performance at the overlay level, i.e.
we do not consider the local search within a cluster.
The simulation is initialized by having one logical node
(with semantic label as “Root”) pre-exist in the seman-
tic overlay and then inserting logical nodes into the
existing overlay tree till the system reaches a certain
size. Afterwards, we simulate the events of logical node
leave and query routing.

The performance of the basic PSON system at the
overlay level is measured by the following metrics:

• Search Delay is the delay for locating a requested
(class of) file(s). We measure this metric by averag-
ing the number of logical hops traversed by a query
from the requesting node to the destination.

• Search Success Ratio is the percentage of search
queries for which the destination can be success-
fully located.

• Insertion Delay is the delay for inserting a new
logical node at its proper location in the semantic
overlay tree. This metric is measured as the average
number of logical hops traversed by an insertion
request in the overlay. The overhead of rotation is
not considered in this metric.

• Stabilization Overhead is the delay for the over-
lay network to stabilize itself after an insertion or
deletion. After an insertion, the semantic overlay
needs a fixup procedure to maintain its balanced
structure that may involve some rotations. Deletion
of a logical node itself does not cause any delay but
the overlay tree may still need a fixup procedure
to restore its balance. This metric is measured by
the total number of logical hops traversed by an
insertion or deletion message including the extra
hops for fixup and rotations.

4.1.2 Simulation of system dynamics

The performance of peer and file dynamics is evaluated
at the level of peers: we consider the local search within
each cluster as well as on the overlay. The metric is

Peer-to-Peer Netw. Appl. (2011) 4:3–22 11

Search Delay that includes the number of logical hops
within a cluster.

4.2 Performance of the basic system

In this set of simulations, we measure the perfor-
mance of the basic PSON system. The physical network
topologies are generated using the transit-stub model
from the GT-ITM topology generator [27]. Following
are some important issues related to the experiments.

• Semantic Tree Generation A semantic hierarchy is
the input to the simulation. To create a semantic
hierarchy, we generate a set of random words with 5
letters. Each random word stands for a class of files
(such as “Music”, “Comedy”) that a logical node
is responsible for, and characterizes the label of a
semantic entry. Each word has a random number
of children. The height of the semantic hierarchy is
also under control. In our simulations, we set the
total number of semantic entries as 1000, and the
maximum height of the semantic hierarchy as 20. In
addition, the number of semantic children of each
node is under control. For all the simulations, we
set the maximum number of semantic children as 3
unless clarified otherwise.

• Query Generation The semantic hierarchy created
in the above is maintained at each node to facilitate
query generation. To closely mimic query behav-
iors in real world, we generate overlay queries in
the following way: Whenever a node is prompted to
issue a query, it randomly selects a semantic entry
from the predefined semantic hierarchy, and then
releases the selected semantic entry as the query
into the overlay network.

• Query Classification We design two types of
queries: exact queries and complex queries. An
exact query with semantic entry α requires the
system to return the meta data for the files which
exactly match α back to the requesting node. While
for a complex query with semantic entry β, the
system should return the files which match β as
well as the files match any of the “descendant”
semantic entries of β. For instance, if “music” and
two of its semantic children, “jazz” and “classical”
are present in the overlay, a complex query for
“music” requires the location of “music”, “jazz”
and “classical”. This is because a complex query for
“music” most probably means that I do not know
what music f iles to download, but I want to browse
all music f iles. Thus “jazz” and “classical” which
are semantic descendants of “music” should also be

located. Since each query can be mapped to a node
in the semantic hierarchy, an exact query is consid-
ered successful if the overlay node responsible for
the same semantic entry is found. For a complex
query, it is termed as successful if all of the overlay
nodes classified in the semantic subtree of the query
are found. For instance, “music”, “pop” and “rap”
are the only music nodes in the overlay. If all the
three nodes are returned for the query “music”, we
will claim that the query is 100% successful as it
finds all the nodes that can be classified as “music”.
It should be noted that PSON can indirectly handle
arbitrary queries, such as “join”, “union”, “select”,
and “projection”. These types of queries should be
first decomposed into multiple queries (including
exact and complex queries) which can be routed
directly in PSON. In other words, a relatively pow-
erful user interface at each peer is required to
decompose arbitrary queries, collect search results
and conduct post-query processing. In reality, such
a user interface is not difficult to implement. On the
other hand, how to incorporate in-network query
processing in PSON is an interesting topic in our
future research plan.

4.2.1 Insertion/deletion cost

We measure the delay for logical node inser-
tion/deletion and the cost to stabilize the overlay after
logical node dynamics. For simplicity, the node inser-
tion and deletion events are not interleaved.

Node insertion In this experiment, we measure the
delay that it takes for the overlay to add a new logical
node at its proper position. Figure 5 shows the number

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000

Lo
gi

ca
l h

op
s

pe
r

in
se

rt
io

n

Number of overlay nodes

Fig. 5 Effect of overlay size on insertion performance

12 Peer-to-Peer Netw. Appl. (2011) 4:3–22

of logical hops traversed per overlay insertion. The
total number of logical nodes is kept constant at 1,000.
At the beginning, there is only one logical node “Root”.
Then the overlay nodes are inserted into the system
one by one, and thus the size of the overlay tree kept
increasing. Note that the results for this experiment
does not include the logical hops traversed in rotations
that are carried out to balance the overlay tree after in-
serting a new node. Clearly, the average number of log-
ical hops for an overlay node insertion is in logarithm
of the overlay size, which is consistent with the bal-
anced binary tree structure. The logarithmic nature
indicates the overlay construction is scalable to a large
overlay size.

Insertion f ixup A new node insertion may cause un-
balanced structure of the semantic overlay tree. There-
fore, it is important to incorporate an insertion fixup
mechanism after each insertion event. The fixup mech-
anism checks if any of the essential properties of a
red-black tree is violated and will restore the balanced
tree structure if necessary. Some rotations might be
performed in the fixup procedure, and hence some
extra overhead in terms of the number of logical hops
may be caused for an overlay node insertion. Figure 6
shows the total number of logical hops traversed by
an insertion message including insertion fixup. We can
see that as we increase the size of the overlay, the
stabilization overhead also increases for some of the
insertions. This is because an insertion fixup opera-
tion can cause more fixups if the tree is large. An
insertion fixup actually works on a part of the tree,
and when carried out on that part it may un-balance
other parts and trigger another fixup which involves

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

Lo
gi

ca
l h

op
s

pe
r

in
se

rt
io

n

Number of overlay nodes

Fig. 6 Number of logical hops traversed per insertion including
fixup

more rotations. This process propagates until the whole
overlay tree is balanced. Moreover, there is a relatively
larger variation in the insertion overhead with the fixup
mechanism implemented compared with the overhead
without fixup. This is because not every node insertion
triggers the fixup mechanism. Only if a new node inser-
tion breaks the balanced binary tree structure, a fixup
procedure is invoked. Also, not every fixup triggers a
chain of further fixups. Therefore, a node insertion may
generate different amount of overhead depending on
whether or not fixup procedure is needed.

Node deletion An overlay node deletion does not
cause any delay on its own because no search is in-
volved to locate the node to be deleted and the node
can just simply leave the system. However, a fixup
procedure must be carried out after each deletion event
to check and restore the red-black tree property. Ro-
tations may be triggered by the fixup mechanism to
balance the overlay. To capture the overhead caused by
node deletion, we measure the number of logical hops
traversed by a fixup after a deletion is performed.

Figure 7 depicts the overhead for different number
of deletion events. For each deletion, a node is deleted
right away and the deletion fixup method is invoked.
It is evident from the results that the number of hops
traversed by a deletion message decreases with the
increased number of deletions because of the reduced
overlay size. Also, we can see that some deletion events
generate more overhead than the others especially
when the overlay size is larger. The higher overhead is
mainly caused by more rotations during the fixup pro-
cedure. For some nodes in the overlay, their deletion
can cause unbalanced tree structure, for which rotations
must be carried out and more overhead is generated.

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

N
um

be
r

of
 lo

gi
ca

l h
op

s

Number of deletions

Fig. 7 Average number of logical hops traversed per deletion
fixup

Peer-to-Peer Netw. Appl. (2011) 4:3–22 13

Moreover, some fixup procedures may trigger further
fixups in a chain, which results in comparatively higher
overhead.

4.2.2 Query performance

In this experiment, we evaluate the performance of
the basic PSON system on query search. The average
search delay for both exact and complex queries are
measured.

Exact query performance First we present the perfor-
mance of PSON on handling exact queries. If the logical
node being searched is present in the system, the search
mechanism guarantees that it will be found in O(log(n))

hops where n is the number of logical nodes. The lower
curve in Fig. 8 shows the average number of logical
hops traversed (i.e., the search delay) for exact queries.
We can observe that the query performance is nicely
bounded by the logarithm of the overlay size and hence
is very efficient in large systems.

Complex query performance Now we show the perfor-
mance of PSON when handling complex queries. The
delay experienced for complex queries is also shown in
Fig. 8. Compared with the exact queries, the complex
queries traverse a larger number of logical hops on
average. This is consistent with our assertion that more
logical nodes will be returned as the destinations as a
complex query does not supply enough semantic at-
tributes. However, the average search delay of complex
queries is again bounded by O(log(n)). Therefore, we
can claim that PSON is able to support complex queries
efficiently.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200

A
ve

ra
ge

 lo
gi

ca
l h

op
s

Number of overlay nodes

Exact queries
Complex queries

Fig. 8 Search delay with varying overlay size

4.2.3 Comparison of PSON and f looding overlay

In this experiment, we compare PSON with flooding
overlay (used in SON [6], which is the most related
work to PSON in semantic overlay design) for the
search performance on both exact and complex queries.

In flooding overlay, a search query received by a
node is forwarded to all of the neighbors. Every neigh-
bor then checks whether it can answer the query. If
a match is found, it replies to the originator of the
query; otherwise it forwards the query to its neighbors
and the same operations are repeated. In this way, a
search query must be processed by every node in the
overlay network, which is clearly not scalable. One way
to curtail the search process is using TTL-controlled
flooding mechanism. Each query carries a TTL field.
Whenever a node receives a query, it decrements the
TTL value. If the TTL becomes zero, the forwarding
process is terminated. TTL value effectively reduces the
query propagation in the system, but it also lowers the
chance to successfully locate destinations. Therefore,
the performance of flooding overlay is sensitive to the
value of initial TTL.

For exact queries, we evaluate flooding overlay
against three different TTL values, 5, 10 and 20. Figure 9
shows the search delay and search success ratio of
PSON and flooding overlay under different number of
overlay nodes. The percentage values correspond to the
search success ratio. In flooding overlay, the success
ratio decreases with the number of overlay nodes for
each specific TTL value (except for TTL = 20). This is
because the percentage of nodes receiving a query mes-
sage decreases with the increased overlay size. PSON,
on the other hand, achieves 100% search success ratio

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000 1200

A
ve

ra
ge

 lo
gi

ca
l h

op
s

Number of overlay nodes

35%

99.8%

24%

99.4%

18%

99%

14%

99%

12%

98%
PSON

Flooding with TTL = 5
Flooding with TTL = 10
Flooding with TTL = 20

Fig. 9 Comparing exact query performance of PSON and
flooding overlay

14 Peer-to-Peer Netw. Appl. (2011) 4:3–22

on all the overlays. In addition, even though the search
success ratio of flooding overlay with TTL 20 is also
100%, PSON achieves the same performance with a
significantly lower search delay. According to our ex-
periment results, the search delay of PSON is within
five percent of the average logical hops traversed in
flooding overlay to successfully locate a search query.

For the complex query experiments, we obtain sim-
ilar results, which are omitted from this paper due to
space limit.

4.2.4 Ef fect of semantic hierarchy on PSON’s complex
query performance

Another factor that has significant impact on the per-
formance of PSON is the distribution of non-leaf nodes
in the semantic hierarchy. The average search delay
for a complex query in PSON is related to the distri-
bution of leaf queries released into the system. Since
the queries are selected randomly from the semantic
hierarchy, the performance of PSON is dependent on
the distribution of leaf semantic entries. If the number
of leaf nodes is large, the average search delay is small
because more search queries are for leaf nodes and
will immediately stop once they reach the logical nodes
responsible for the leaf queries. However, if a non-leaf
query is found, the system needs to proceed to find all
the semantic descendants of that non-leaf node. It is
worth mentioning that leaf and non-leaf queries have
the same effects on search delay if they are not found:
the system will search for the first semantic ancestor
of the query that is present in the overlay. This implies
that the distribution of leaf nodes in the semantic hier-
archy can alter the query search performance of PSON.

Figure 10 illustrates the average search delay of
PSON as we vary k, the maximum number of child
nodes of a semantic entry in the hierarchy. As shown
in the results, the average number of logical hops for a
search query increases with the size of the overlay. The
simulation results corroborate our expectation that the
change in a semantic hierarchy alters the performance
of PSON. If we decrease the maximum number of
semantic children, the number of non-leaf nodes as well
as the percentage of non-leaf queries increases. As a
result, the average number of logical hops traversed for
a search query increases for the overlays with the same
size.

4.3 System dynamics

In this set of simulations, we focus on the performance
of PSON in handling system dynamics. We consider
two different types of network topologies: random

 0

 5

 10

 15

 20

 25

 30

 35

 40

 200 400 600 800 1000

A
ve

ra
ge

 lo
gi

ca
l h

op
s

Number of overlay nodes

k=3
k=5
k=7

Fig. 10 Effect of number of overlay nodes on average number of
logical hops for 1,000 exact queries

topologies generated by Waxman [26] and power law
topologies by BA [2]. We want to evaluate whether
high performance can be kept even when the system is
highly dynamic, for which the main metric is search de-
lay which includes the number of logical hops traversed
within a cluster.

4.3.1 Peer dynamics

We consider two types of events in the system: con-
current peer join and leave. When a new peer joins
the system, it first tries to join a cluster of its neigh-
bors. The requirement for clustering is that the cluster
diameter should not exceed 3. If a new peer can not
find an existing cluster to join, a new cluster is created
for this peer. The cluster formation is handled by the
distributed clustering algorithm SDC [10] which has
good performance in forming clusters based on node
connectivity. When an existing peer leaves the system,
it needs to transfer the meta data it maintains to the
other members in the cluster. Through simulations, we
study the effects of simultaneous node join and leave
on the system’s performance in query search.

We consider a topology with 1,000 nodes and clus-
tered by SDC. 1,999 files with semantic entries ran-
domly selected from the predefined semantic tree are
injected into the system so that an overlay network is
created to maintain the meta data of these files. In our
simulation, each peer can maintain the meta data for up
to ten files. For node join events, X peers are inserted
into the system simultaneously and the search delay is
measured after the join events. Similarly, to simulate
node leave, X existing peers are randomly selected
and removed from the system. If a cluster becomes

Peer-to-Peer Netw. Appl. (2011) 4:3–22 15

too small to maintain the file information, it will be
replaced by the largest spare cluster. We control X
from 0 to 200 in order to simulate different level of
dynamics.

Figures 11 and 12 show the search delay of PSON
in dynamic systems. Even when the system is highly
dynamic with 200 simultaneous Join/Leave, the average
number of hops traversed by a search query is still quite
close to the value measured from the static system. This
observation verifies that our mechanism in handling
peer dynamics can successfully keep the high perfor-
mance of the system.

4.3.2 File dynamics

In our simulation of file dynamics, we focus on the
performance of PSON in handling file insertion. After
successive file insertion, the number of file information
maintained by a cluster might exceed the capacity of
the cluster given each peer can maintain at most ten
files. In this situation, we randomly pick a child node of
the semantic entry that the current cluster is responsible
for based on the predefined semantic tree and move
all the meta data that belongs to the child entry to a
spare cluster. Then the spare cluster is assigned the
child semantic entry and is inserted into the semantic
overlay network.

We should be aware that the effect of file dynamics
is highly related to cluster formation. If a cluster has a
larger size, it is capable of maintaining more files and
will be affected less by file insertion. However, large
clusters may not guarantee good search performance:
if the cluster has large diameter, local search within
the cluster can become very expensive. Therefore, in
order to achieve good search performance under file

 15

 20

 25

 30

 35

 40

 0 50 100 150 200

A
ve

ra
ge

 lo
gi

ca
l h

op
s

Number of peers that join and leave the system

Join
Leave

Fig. 11 Search delay in dynamic system with random topology
and 1,000 peers

 15

 20

 25

 30

 35

 40

 0 50 100 150 200

A
ve

ra
ge

 lo
gi

ca
l h

op
s

Number of peers that join and leave the system

Join
Leave

Fig. 12 Search delay in dynamic system with power law topology
and 1,000 peers

dynamics, a clustering method that can form tightly
connected clusters with small diameters is necessary.
The existing clustering algorithm SDC is used for this
purpose.

We consider the two types of topologies, random
and power law, with 1,000–5,000 nodes. To simulate
file dynamics, we insert 1,999–9,999 files into the sys-
tem and measure the search delay which includes local
search within a cluster. Figure 13 shows the perfor-
mance of PSON in handling file dynamics on the two
types of topologies. With the increase of topology size,
the search delay increases slowly and steadily. This is
because when more files are inserted into the system,
more clusters will be inserted into the semantic overlay.
The growth of the overlay increases the number of
hops traversed for a search query. However, with large
increase of file insertion, the search delay is not affected
dramatically.

 0

 10

 20

 30

 40

 50

 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 lo
gi

ca
l h

op
s

Number of peers

random topology
power law topology

Fig. 13 Search delay under file dynamics with 1,000–5,000 peers

16 Peer-to-Peer Netw. Appl. (2011) 4:3–22

4.4 Summary

In this section, we have presented the performance
of PSON in simulation environment. Overlay inser-
tion/deletion operations are shown to be scalable. The
lookup efficiency for both exact match and complex
queries is bounded in logarithm of the overlay size.
In comparison with flooding overlay, PSON achieves
significantly better query performance in terms of the
number of logical hops and search success ratio. We
also learn from the simulations that the structure of the
predefined semantic hierarchy have impacts on PSON’s
query performance.

Besides overlay construction and query search, we
also study the effects of system dynamics on the per-
formance of PSON. Based on the simulation results,
we can claim that PSON is able to keep good search
performance even with high peer and file dynamics.

5 System enhancement

As shown above, PSON presents many desirable fea-
tures. However, we admit that the basic system design
does not provide an effective solution for query traffic
load balancing. Specifically, the balanced binary tree
structure of the system can result in high query traffic
at the root and high level nodes in the semantic overlay,
assuming queries are distributed uniformly among all
the peers in the system. To address this issue, we pro-
pose a novel and effective load balancing mechanism to
further enhance the system: we add cross links between
logical nodes based on the query traffic flow.

A cross link is defined as a unidirectional virtual
link between a pair of overlay nodes (represented by
their super peers). The origin of a cross link needs
to maintain the IP address and the related semantic
information of the end. Next, we discuss the cross link
mechanism in detail.

5.1 Construction of cross links

We denote the node which initiates a query routing as
‘S’ and the node at which the routing path ends as ‘D’.
Here a node is referred to the super peer of a logical
node in the overlay. Since queries are routed on the
basis of semantics, we can always locate the destination
‘D’. To create a cross link, we select the source node
‘S’ as the origin and determine the end of the cross link
by a uniform random sampling on the nodes along the
routing path.

Suppose the length of the routing path is k. Then the
first node n1 on the path is sampled with probability 1

k .

If n1 is not selected based on the sampling probability,
the next node on the routing path, n2 will be sampled
with a probability 1

k−1 . Without loss of generality, the
ith node along the routing path is sampled with a
probability 1

k−i+1 . It is easy to prove that the sampling
probability defined in such a way can guarantee all the
nodes along the routing path are selected with equal
probability. Once an intermediate node is sampled as
the end of a cross link, it will send its own IP address
and its semantic information back to ‘S’ and the sub-
sequent nodes on the routing path will not be sampled
any more.

However, a real implementation issue needs to be
addressed here: we can not obtain the length k of a
routing path before the routing gets started. An esti-
mation on k is needed by the sampling scheme. The
method we use to estimate the routing path length k is
similar to the well-known RTT estimation. We define
a new field l in the query packet to measure the path
length of a specific routing query. At node ‘S’, let ki−1

be the estimated path length before the ith query Qi is
issued. l is initialized as 0 and is incremented by 1 at
each intermediate node traversed on the path. Thus, at
the destination ‘D’, the value of l is exactly the length
of the routing path for the query Qi. Then node ‘D’
will simply send l back to the source node ‘S’. ‘S’ will
then estimate the routing path length after i queries as:
ki = (1 − α)l+αki−1, where α is a constant less than 1.
Then in the i + 1th query, ‘S’ can sample the end of a
new cross link using the estimated query path length ki.

One issue encountered in this construction scheme is
the additional overhead caused by returning the value
of l at the end of the query routing. We solve this prob-
lem by returning the value of l with some probability.
For instance, node ‘D’ will return l back to ‘S‘ with a
probability p.

5.2 Maintenance of cross links

Each node needs to refresh its own cross links periodi-
cally to remove the stale ones due to the high dynamics
of the system. The cost for maintenance will be huge if
the node has a large number of cross links. It is neces-
sary to bound the total number of cross links at each
node. We will show in our simulation that an upper
bound as small as 10 can balance the load distribution
effectively.

5.3 Routing with cross links

We assume that queries are uniformly distributed in the
system, i.e. half of the total queries will be routed from
one side of the semantic overlay to the other side. In

Peer-to-Peer Netw. Appl. (2011) 4:3–22 17

the absence of cross links, nodes at the higher levels of
the overlay will receive and process a higher percentage
of the total query traffic in the system. With cross links,
we expect some of the traffic will be routed directly to
the other side of the tree/sub-tree without passing to the
high level nodes.

In our new routing algorithm, before a query is
forwarded to the next hop, the current node will check
if the destination lies in the sub-tree of the end of
a maintained cross link by comparing the query with
the semantic entry of each maintained cross link end.
Among all the the cross link ends that have the des-
tination in the sub-tree, one node will be randomly
selected as the next hop of the query. Then the routing
is continued at the selected cross link end. If none of
the cross link ends has the destination in their subtree,
the current node holding the query will simply forward
it based on the original routing algorithm.

To illustrate the operations, let’s consider a query
for “rock” at node “comedy” as shown in Fig. 14. We
assume the node “comedy” has two cross links to “mu-
sic” and “jazz” respectively. “comedy” first compares
“rock” with itself. Semantically, “rock” is larger than
“comedy”. Under the new routing algorithm, the query
“rock” will not be forwarded to the largest descendant
of “comedy” at this point. Instead, “comedy” compares
the query with its two cross link ends “ music” and
“jazz” and decides to forward “rock” to “music” di-
rectly as the query “rock” must be in the subtree of
“music”. After “music” receives the query, it performs
a semantic comparison with itself and “music” is larger
than “rock”. Since “music” doesn’t have any cross links,
it follows the original routing algorithm and forwards
the query to the destination. This way, the high level
nodes which will be traversed based on the original
routing algorithm, such as “movie” and “rap” are not
involved in the new routing path at all. Thus, their load
is reduced.

Fig. 14 Query routing with cross links

Since under the new routing algorithm a query is
forwarded to a cross link end only when it is in the
subtree of that node, the search time will be surly
bounded by O(log(n)).

5.4 Performance with cross link mechanism

In this set of experiments, we examine the effect of the
load balancing scheme on the performance of PSON.
Some important settings related to the simulations need
to be clarified as follows.

• Threshold for the number of cross links As men-
tioned in previous section, a threshold on the max-
imum number of cross links maintained at each
node needs to be defined to limit the maintenance
overhead. In our simulations, we fix this threshold
as 10.

• Probability p of returning query path length This
probability affects the estimation on the query path
length used in the cross link construction. For all
the simulations, p is set as a constant value: 0.4.

We study the performance of the load balancing
scheme under two different network states: transient
state in which the average number of cross links is
still in the growing stage and steady state in which the
average number of cross links gets stable, i.e. close
to the threshold 10. The transient state is considered
because it better reflects the cross link construction
overhead as well as the influence of the number of cross
links on the performance of the system. For the steady
state, we focus on the performance of cross links in
different overlay network size.

5.4.1 Simulation results in transient state

This set of simulations are conducted on a semantic
overlay of 300 nodes. The number of cross links at each
node is determined by the amount of queries issued: it
increases with the number of queries until gets to the
predefined threshold. As shown in Fig. 15, for 2,000
queries, the average number of cross links maintained
in the system is less than 4. It grows linearly and gets
converged after 6,000 queries are issued.

The first metric we are interested in is the aver-
age traffic load in the system (Fig. 16). It is observed
that the average traffic load increases steadily with
the number of queries. By adding cross links in the
system, we can reduce the traffic load significantly. For
example, the average traffic load for 6,000 queries is
reduced from 400 to 300 by having nine cross links at
each node on average. Moreover, the advantage of the
cross link mechanism is more significant if more cross

18 Peer-to-Peer Netw. Appl. (2011) 4:3–22

 0

 2

 4

 6

 8

 10

 12

 2000 3000 4000 5000 6000 7000 8000

A
vg

. #
 o

f c
ro

ss
 li

nk
s

Number of queries

Fig. 15 Average number of cross links with the increase of search
queries

links are constructed, as shown by the increased gap
between the data points in the figure. It indicates that
the construction and maintenance overhead for a cross
link is trivial compared with the benefit brought by a
new cross link.

Figure 17 shows the average search time under
different number of queries. For the system without
cross links, since the overlay structure is not changed
once generated, the average search time is quite sta-
ble. When cross links are added to the system, the
search time can be decreased a lot. Also, the decreased
amount is enlarged by more cross links as more queries
can be routed directly to the other side of the system
without traversing the high level nodes.

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 2000 3000 4000 5000 6000 7000 8000

A
ve

ra
ge

 tr
af

fic
 lo

ad
 p

er
 q

ue
ry

Number of queries

With cross links
Without cross links

Fig. 16 Average traffic load with increased number of queries

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2000 3000 4000 5000 6000 7000 8000

A
ve

ra
ge

 s
ea

rc
h

tim
e

Number of queries

With cross links
Without cross links

Fig. 17 Average search time with increased number of queries

5.4.2 Simulation results in steady state

In this set of simulations, we study the performance of
the load balancing scheme after the number of cross
links gets stable, i.e. close to the predefined threshold.
Our focus is on the performance of the cross link
scheme for different overlay network size.

We first study the traffic load at the root of the over-
lay tree which can be over loaded in the original PSON.
Figure 18 shows that with cross links implemented, the
traffic load at the overlay root is decreased significantly:
reduced to approximately 1

3 of the amount without
cross links, which indicates the cross link scheme is able
to balance the traffic load at root effectively.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 100 200 300 400 500 600

T
ra

ff
ic

 l
o
a
d
 p

e
r

q
u
e
ry

 a
t
ro

o
t

Overlay network size

With cross links
Without cross links

Fig. 18 Traffic load distribution at overlay root with 100–500
overlay nodes

Peer-to-Peer Netw. Appl. (2011) 4:3–22 19

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100 1000

T
ra

ff
ic

 l
o

a
d

 p
e

r
q

u
e

ry

Rank

With cross links
Without cross links

Fig. 19 Traffic load distribution in the overlay with 300 node

We also measured and compared the distribution
of traffic load after cross links are implemented with
the original system. For an overlay with 300 nodes as
shown in Fig. 19, the traffic load is much more evenly
distributed in the system with cross links constructed.

The above simulation results demonstrate our cross
link mechanism can successfully achieve the goal of
load balancing in PSON.

Figure 20 shows the average traffic load for different
overlay network size. Clearly, with more overlay nodes
joining the system, queries are more distributed. Thus
the average traffic load has a decreasing trend. With
the cross link mechanism, the average traffic load is
further decreased, which indicates an improved routing
efficiency. Consistently, the average search time of a
query in the system is also reduced with the implemen-
tation of cross links as shown in Fig. 21.

 0

 0.05

 0.1

 0.15

 0.2

 0 100 200 300 400 500 600

A
ve

ra
ge

 tr
af

fic
 lo

ad
 p

er
 q

ue
ry

Overlay network size

With cross links
Without cross links

Fig. 20 Average traffic load with 100–500 overlay nodes

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600

A
ve

ra
ge

 s
ea

rc
h

tim
e

Overlay network size

With cross links
Without cross links

Fig. 21 Average search time with 100–500 overlay nodes

6 Conclusions and future work

In this paper, we propose a powerful P2P file sharing
system, PSON. The design of PSON effectively exploit
the concept of semantics and hierarchy. We present
the PSON architecture and the key issues of overlay
construction and search query routing. By simulation
experiments, we claim that PSON can satisfy all the
design goals of a successful P2P file sharing system.

• Scalability: PSON is not only scalable to a large
number of peers, it is also scalable to a large amount
of traffic.

• Routing efficiency: By constructing a semantic
overlay with a structure of red-black tree, PSON is
able to achieve logarithmic search delay, which is
highly efficient for large systems.

• Complex query support: By exploiting the concept
of semantics, PSON is able to support complex
queries very effectively.

Besides the design of the basic system, we also pro-
pose a new load balancing scheme to further enhance
the PSON system. By adding cross links along the query
routing flows, the traffic received by the root and the
high level overlay nodes can be effectively reduced, and
hence the traffic load in the system can be effectively
balanced.

To make PSON a powerful system in various net-
work scenarios, there are still several issues to explore.
(1) PSON does not consider geography-aware overlay
routing, as obviously might lead to long search delay
even though the number of logical hops is bounded.
Designing an overlay routing algorithm which could in-
corporate the physical topology is definitely desirable.
(2) Construction of the semantic overlay depends on

20 Peer-to-Peer Netw. Appl. (2011) 4:3–22

a predefined semantic hierarchy. It is likely that the
semantic hierarchy may grow or shrink with time. How
to adapt the existing semantic overlay for the change
of the semantic hierarchy is an interesting topic to
study. (3) A smart method to determine the maximum
number of cross links maintained by each logical node
is desired. We want to balance between the overhead
for maintaining the cross links and the more evenly
distributed traffic load as well as the more efficient
query routing due to the cross link mechanism.

References

1. Aberer K, Cudré-Mauroux P, Hauswirth M, Pelt TV (2004)
Gridvine: building internet-scale semantic overlay networks.
In: International semantic web conference, pp 107–121

2. Barabasi A-L, Albert R (1999) Emergence of scaling in ran-
dom networks. Science 286:509–512

3. Bharambe AR, Agrawal M, Seshan S (2004) Mercury: sup-
porting scalable multi-attribute range queries. ACM SIG-
COMM Comput Commun Rev 34(4):353–366

4. Chen Y, Xu Z, Zhai C (2005) A scalable semantic indexing
framework for peer-to-peer information retrieval. In: SIGIR
2005 workshop: heterogeneous and distributed information
retrieval

5. Cohen E, Fiat A, Kaplan H (2003) Associative search in peer-
to-peer networks: harnessing latent semantics. IEEE INFO-
COM 2:1261–1271

6. Crespo A, Garcia-Molina H (2004) Semantic overlay net-
works for P2P systems. In: International workshop on agents
and Peer-to-Peer computing (AP2PC’04), pp 1–13

7. Doulkeridis C, Norvag K, Vazirgiannis M (2007) Desent:
decentralized and distributed semantic overlay generation in
P2P networks. IEEE J Sel Areas Commun 25(1):25–34

8. Huang Y, Fu TZ, Chiu D-M, Lui JC, Huang C (2008) Chal-
lenges, design and analysis of a large-scale P2P-VOD system.
SIGCOMM Comput Commun Rev 38(4):375–388

9. Li M, Lee W-C, Sivasubramaniam A (2004) Semantic small
world: an overlay network for Peer-to-Peer search. In: ICNP,
pp 228–238

10. Li Y, Lao L, Cui J-H (2006) SDC: a distributed clustering
protocol for Peer-to-Peer networks. In: The fifth IFIP net-
working conference, vol 3976, pp 1234–1239

11. Mockapetris PV (1987) Domain names—concepts and facili-
ties. Request for Comments 1034. Internet Engineering Task
Force

12. Mockapetris PV (1987) Domain names—implementation
and specification. Request for Comments 1035. Internet
Engineering Task Force

13. Qiu D, Srikant R (2004) Modeling and performance analysis
of bittorrent-like Peer-to-Peer networks. SIGCOMM Com-
put Commun Rev 34(4):367–378

14. Ramaswamy L, Gedik B, Liu L (2005) A distributed ap-
proach to node clustering in decentralized Peer-to-Peer net-
works. IEEE Trans Parallel Distrib Syst 16(9):814–829

15. Ratnasamy S, Francis P, Handley M, Karp R, Schenker S
(2001) A scalable content-addressable network. In: ACM
SIGCOMM, pp 161–172

16. Ratnasamy S, Handley M, Karp RM, Shenker S (2002)
Topologically-aware overlay construction and server selec-
tion. In: INFOCOM

17. Rowstron A, Druschel P (2001) Pastry: scalable, decentral-
ized object location, and routing for large-scale Peer-to-Peer
systems. Lect Notes Comput Sci 2218:329–350

18. Sahin OD, Gulbeden A, Emekci F, Agrawal D, Abbadi AE
(2005) Prism: indexing multi-dimensional data in P2P net-
works using reference vectors. In: MULTIMEDIA ’05: pro-
ceedings of the 13th annual ACM international conference
on multimedia. ACM, New York, pp 946–955

19. Silaghi B, Bhattacharjee B, Keleher P (2002) Query routing
in the terradir distributed directory. In: SPIE ITCOM, vol
4868, pp 299–309

20. Silaghi B, Gopalakrishnan V, Bhattacharjee B, Keleher P
(2004) Hierarchical routing with soft-state replicas in terradir.
In: The 18th international parallel and distributed processing
symposium

21. Sripanidkulcha K, Maggs B, Zhang H (2003) Efficient con-
tent location using interest-based locality in Peer-to-Peer sys-
tems. IEEE INFOCOM 3:2166–2176

22. Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan
H (2001) Chord: a scalable peer-to-peer lookup service for
internet applications. In: ACM SIGCOMM, pp 149–160

23. Tang C, Xu Z, Dwarkadas S (2003) Peer-to-Peer information
retrieval using self-organizing semantic overlay networks. In:
ACM SIGCOMM, pp 175–186

24. Terpstra WW, Kangasharju J, Leng C, Buchmann AP (2007)
Bubblestorm: resilient, probabilistic, and exhaustive Peer-to-
Peer search. SIGCOMM Comput Commun Rev 37(4):49–60

25. Waldvogel M, Rinaldi R (2003) Efficient topology-aware
overlay network. SIGCOMM Comput Commun Rev
33(1):101–106

26. Waxman BM (1988) Routing of multipoint connections.
IEEE J Sel Areas Commun 6:1617–1622

27. Zegura EW, Calvert KL, Bhattacharjee S (1996) How to
model an internetwork. IEEE INFOCOM 2:594–602

28. Zhang R, Hu YC (2005) Assisted Peer-to-Peer search with
partial indexing. IEEE INFOCOM 3:1514–1525

29. Zhao BY, Kubiatowicz JD, Joseph AD (2001) Tapestry: an
infrastructure for fault-tolerant wide-area location and rout-
ing. UC Berkeley, Tech. Rep. UCB/CSD-01-1141

Yan Li received her B.S. degree in Computer Science and
Communication Engineering from Southwest Jiaotong Univer-
sity, China in 2002. From 2004 to 2010, she worked as a Ph.D
student in the Ubiquitous Networking Research Lab leb by
Dr. Jun-Hong Cui at the University of Connecticut. She worked
for ECI Telecom from August 2009 and joined Conviva One year
later as a software engineer.

Peer-to-Peer Netw. Appl. (2011) 4:3–22 21

Dr. Li’s research interests cover the design, modeling, and
performance evaluation of networks and distributed systems. Her
research mainly focuses on exploiting the spatial properties in
modeling of network topology and group membership, scalable
and efficient communication support in overlay and peer-to-peer
networks.

Jyoti Ahuja received her B.S in Computer Science from Agra
University, India and her M.S. degree in Computer Science from
University of Connecticut. Currently, She is working for the
web search team of Yahoo! Software Development India Pvt.
Ltd, Bangalore. Her interests include peer to peer networks,
web scale information retrieval techniques and real time stream
processing systems. Recently, her work has been focused on user
personalization for Yahoo! Search. She has been involved with
research on information retrieval areas and has published couple
of papers for an internal tech conference.

Li Lao received her B.S. degree from Fudan University, China
in 1998. She received her M.S. and Ph.D. degrees in Computer
Science from University of California, Los Angeles in 2002 and
2006, respectively. She joined Google Inc in April 2006. Her
research focuses on multicasting, overlay network management,
multicast modeling and performance evaluation.

Jun-Hong Cui received her B.S. degree in Computer Science
from Jilin University, China in 1995, her M.S. degree in Com-
puter Engineering from Chinese Academy of Sciences in 1998,
and her Ph.D. degree in Computer Science from UCLA in
2003. Currently, she is on the Faculty of the Computer Science
and Engineering Department at University of Connecticut. Her
research interests cover the design, modelling, and performance
evaluation of networks and distributed systems. Recently, her
research mainly focuses on exploiting the spatial properties in
the modeling of network topology, network mobility, and group
membership, scalable and efficient communication support in
overlay and peer-to-peer networks, algorithm and protocol de-
sign in underwater sensor networks.

She is actively involved in the community as an organizer, a
TPC member, and a reviewer for many conferences and journals.
She has served as a guest editor for Elsevier Ad Hoc Networks on
two special issues (one on underwater networks and the other on
wireless communication in challenged environments). She now
serves as an Associate Editor for Elsevier Ad Hoc Networks.
She co-founded the first ACM International Workshop on Un-
derWater Networks (WUWNet’06), and she is now serving as the
WUWNet steering committee chair. Jun-Hong received US NSF
CAREER Award in 2007 and ONR YIP Award in 2008. She
is a member of ACM, ACM SIGCOMM, ACM SIGMOBILE,
IEEE, IEEE Computer Society, and IEEE Communications
Society. More information about her research can be found at
http://www.cse.uconn.edu/∼jcui.

Shigang Chen received his B.S. degree in computer science
from University of Science and Technology of China in 1993.
He received M.S. and Ph.D. degrees in computer science from
University of Illinois at Urbana-Champaign in 1996 and 1999, re-
spectively. After graduation, he had worked with Cisco Systems

http://www.cse.uconn.edu/~jcui

22 Peer-to-Peer Netw. Appl. (2011) 4:3–22

for three years before joining University of Florida in 2002.
His research interests include network security and wireless net-
works. He received IEEE Communications Society Best Tutorial
Paper Award in 1999 and NSF CAREER Award in 2007. He was
a guest editor for ACM/Baltzer Journal of Wireless Networks
(WINET) and IEEE Transactions on Vehicle Technologies. He

served as a TPC co-chair for IEEE IWQoS 2009, the Computer
and Network Security Symposium of IEEE IWCCC 2006, a vice
TPC chair for IEEE MASS 2005, a vice general chair for QShine
2005, a TPC co-chair for QShine 2004, and a TPC member
for many conferences including IEEE ICNP, IEEE INFOCOM,
IEEE ICC, IEEE Globecom, etc.

	PSON: A scalable P2P file sharing system with efficient complex query support
	Abstract
	Introduction
	Background and related work
	Background
	Semantic hierarchy
	Hierarchical P2P system

	Related work
	DHT based systems
	P2P systems supporting semantics
	Hierarchical directory service systems

	PSON architecture
	Overview
	Semantic tree
	Ordering semantic entries
	Semantic overlay construction

	Building a semantic overlay
	Overlay query routing
	Complexity analysis
	How system dynamics affect the overlay?
	Peer dynamics
	File dynamics

	Simulation study
	Simulation setup
	Simulation of overlay construction and query search
	Simulation of system dynamics

	Performance of the basic system
	Insertion/deletion cost
	Query performance
	Comparison of PSON and flooding overlay
	Effect of semantic hierarchy on PSON's complex query performance

	System dynamics
	Peer dynamics
	File dynamics

	Summary

	System enhancement
	Construction of cross links
	Maintenance of cross links
	Routing with cross links
	Performance with cross link mechanism
	Simulation results in transient state
	Simulation results in steady state

	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

