
You Can Drop but You Can’t Hide: K-persistent

Spread Estimation in High-speed Networks

He Huang1, Yu-E Sun2, Shigang Chen3, Shaojie Tang4, Kai Han5, Jing Yuan6, Wenjian Yang1

1School of Computer Science and Technology, Soochow University, China
2School of Rail Transportation, Soochow University, China

3Department of Computer and Information of Science and Engineering, University of Florida, US
4Naveen Jindal School of Management, University of Texas at Dallas, US

5School of Computer Science and Technology, University of Science and Technology of China, China
6Department of Computer Science, University of Texas at Dallas, US

E-mail: {huangh, sunye12}@suda.edu.cn, sgchen@cise.ufl.edu

*Yu-E Sun is the corresponding author.

Abstract—Traffic measurement in high-speed networks has
many applications in improving network performance, assisting
resource allocation, and detecting anomalies. In this paper, we
study a new problem called k-persistent spread estimation, which
measures persist traffic elements in each flow that appear during
at least k out of t measurement periods, where k and t can
be arbitrarily defined in user queries. Solutions to this problem
have interesting applications in network attack detection, popular
content identification, user access profiling, etc. Yet, it is under-
investigated as the prior work only addresses a special case with
a questionable assumption. Designing an efficient and accurate
k-persistent estimator requires us to use bitwise SUM (instead
of bitwise AND typical in the prior art) to join the information
collected from different periods. This seemly simple change has
fundamental impact on the mathematical process in deriving an
estimator, particular over space-saving virtual bitmaps. Based
on real network traces, we show that our new estimator can
accurately estimate the k-persistent spreads of the flows. It also
performs much better than the existing work on the special case
of measuring elements that appear in all periods.

Index Terms—Traffic measurement, persistent traffic, spread
estimation.

I. INTRODUCTION

Traffic measurement over big streaming data in high-speed

networks has many applications in improving network perfor-

mance, assisting resource allocation, and detecting anomalies.

One basic measurement function is called spread (or cardi-

nality) estimation [1], which counts the number of distinct

elements in each network flow, where flows may be TCP flows,

P2P flows, Http flows, or defined arbitrarily based on one

or a combination of fields in packet headers, and elements

under measurement may also be addresses/ports in packet

headers or application-specific values in packet payload. For

instance, all packets from the same source address form a

per-source flow, and we may measure the number of distinct

destination addresses (i.e., elements) that each source (i.e.,

flow label) has contacted. For another example, all packets

to each HTTP server form a flow, and we may measure the

number of distinct files (elements) that are accessed from

that server (i.e., flow label). Spread estimation has many

important applications in scan detection, worm monitoring,

proxy caching, and content access profiling [2]. We stress that

spread estimation is different from counting the number of

packets in each flow [3]–[5] or identifying elephant flows [6]–

[8]. The former is to count the distinct number of elements,

which requires duplicates to be filtered and is thus harder than

the latter, which counts simply the number of packets.

This paper investigates a new problem called k-persistent

spread estimation. Network traffic is summarized in compact

traffic records over each measurement period whose length is

pre-defined. Instead of performing spread estimation within

each period in isolation, we look across a number t of

consecutive periods and investigate the persistent elements that

appear in a flow over at least k out of t periods, where t and

k can be arbitrarily defined in user queries.

The most related work is done by Xiao et al. [9], which

is a special case of our problem — finding the number of

distinct elements that appear in a flow during all measurement

periods. Their work can be motivated by an application exam-

ple of detecting stealthy denial-of-quality attacks [9], where

malicious hosts send a sufficient number of service requests

to a server to slow the server down, without overwhelming

the server to make the attack obvious. Xiao et al. makes

the following observation from real traffic traces: legitimate

users connect to a server intermittently, while attacking hosts

would keep sending packets to the server. Therefore, one can

separate attackers from the legitimate users by finding those

that appear during all measurement periods. However, the

attackers can easily circumvent such detection by dropping

some periods, i.e., give up sending packets during some (or

even one) periods. In such a scenario, a new function with

the ability of finding those that appear in at least k out of

t periods becomes useful because it provides great flexibility

of separating malicious hosts that have more intense activities

than normal ones. More broadly, the function of measuring

k-persistent spreads has many other applications, such as

identifying popular web files that are persistently accessed by

users over at least k out of t periods, or profiling Internet

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

978-1-5386-4128-6/18/$31.00 ©2018 IEEE 1889

access patterns by finding the number of servers that each

user persistently access (during at least k out of t periods).

We want to enable k-persistent spread measurement at

a high-speed network where routers forward packets at an

extremely high rate, which requires packet processing to be

performed by specialized network processors with limited

high-speed cache memory (such as SRAM) on chip. It re-

quires all online network functions such as routing, packet

scheduling, quality of service, and traffic measurement to be

performed efficiently in terms of both processing overhead and

space overhead.

Xiao et al. uses a space-efficient bitmap to record the

elements in a flow, where each element is encoded at a certain

bit location. Their approach performs bitwise AND among

bitmaps from different periods in order to estimate the number

of common elements in all t periods. There are two problems

that prevent their approach from solving the more general

problem of k-persistent spread estimation. First, bitwise AND

is lossy in information. When we perform AND among t bits,

the result is zero as long as one of the t bits is zero. Hence,

this result does not tell how many of the t bits are ones, which

is critical to finding those elements that appear in at least k out

of t bitmaps. Second, they make an assumption that elements

appear either in all periods or in just one period. This will

simplify the mathematical process of deriving an estimator.

However, we will demonstrate that the assumption does not

already hold in real traffic traces.

In this paper, we propose to solve the problem of k-

persistent spread estimation by bitwise SUM among multiple

bitmaps collected over a number of t measurement periods.

Bitwise SUM has never been explored in spread estimation.

This seemly simple deviation from bitwise AND changes

the whole mathematical process in deriving an estimator for

the more complex problem of finding the number of persist

elements in each flow that appear in at least k out of t periods

— a problem with interesting applications that was not studied

before. While bitwise SUM keeps more information, it makes

the analysis much harder. Yet, our analysis no longer requires

the assumption that all elements appear either in all periods

or in just one period. Furthermore, we show how our bitwise

SUM approach can work on virtual bitmaps: Each flow is

assigned a virtual bitmap, while the virtual bitmaps of different

flows share their bits, which help fit many flows in a tight

memory space. The virtual bitmap of a flow will not only

record all elements of the flow, but also record some (noise)

elements from other flows, due to bit sharing. We develop a

mechanism that can filter out the noise under the new context

of bitwise SUM. Based on real network traces, we show

that our new estimator based on bitwise SUM can accurately

estimate the k-persistent spreads of the flows. It also performs

much better than [9] for the special case of measuring elements

that appear in all periods.

II. PRELIMINARIES

A flow is a set of packets that share the same flow identifier,

which can be flexibly defined according to the application

Per Destination Flow

Per Source Flow

Fig. 1: An illustration of per-source flow and per-destination

flow.

need. We measure elements that are carried by the packets

of a flow; they can also be flexibly defined according to the

application need. For example, we may define that all packets

sent to the same destination host constitute a (per-destination)

flow, and let elements be the source addresses carried by the

packets. We define the spread of a flow as the number of

distinct elements in the flow. As shown in Figure 1, monitoring

the number of sources in each flow helps us detect DDoS

attacks when the spread of a flow spikes abnormally, i.e., it

receives packets from an unusually large number of sources.

As another example, we may define that all packet sent from

the same source host constitute a (per-source) flow, and let

elements be the destination addresses carried by the packets.

The spread of a flow is still defined as the number of distinct

elements in the flow. Also shown in Figure 1, monitoring the

number of destinations in each flow helps us detect scanners

(or worm attackers) that have unusually high spreads, i.e.,

sending packets to a large number of different destinations.

Below we define the concepts of k-persistent elements and

k-persistent spreads, which are the subjects of research in this

paper.

Definition 1 (k-persistent element). Given t measurement

periods of interest, we define an element of flow f as a k-
persistent element if this element appears in the flow during

at least k out of t periods, where 1 ≤ k ≤ t.

Definition 2 (k-persistent spread). Given t measurement pe-
riods of interest, we define the k-persistent spread of flow f
as the number of k-persistent elements in the flow.

This paper is to design the data structures and the algorithms

that estimate the k-persistent spreads of flows that pass through

a high-speed router, which performs per-packet operations in

on-chip memory of a network processor.

TABLE I demonstrates a possible application. The second

line of the table shows the k-persistent spread of a flow con-

sisting of packets sent to an HTTP server at 224.243.38.27/80
in a real network traffic traces downloaded from CAIDA, and

the third line shows the k-persistent spread of a flow to a

server during World Cup 1998. The measurement period is 3

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1890

TABLE I: The relationship of k-persistent spread and the value of k.

k 1 2 3 4 5 6 7 8

k-persistent spread (CAIDA) 35693 1545 195 33 10 2 1 0

k-persistent spread (The World Cup 1998) 398 109 34 12 3 1 0 0

minutes, and there are 8 periods in total. It can be observed

that in normal traffic, the k-persistent spread decreases rapidly

as k increases. Persistent denial-of-quality attackers are likely

to increase the k-persistent spread beyond its normal value,

which makes such attacks detectable.

We observe that a legitimate user often connects to a

server intermittently, while attackers would continuously send

packets to the server, thus an appropriate k should be able to

distinguish normal users from attackers.

III. MEASURING k-PERSISTENT SPREAD OF ONE FLOW

We first consider a single flow. In each measurement period,

a router records the flow in a bitmap, which is offloaded to a

server at the end of the period. After a number of periods, we

can make query to the server that will compute k-persistent

spread of the flow based on the bitmaps it stores.

A. Online Recording of a Flow

Online recording is similar to [2] (though they solve dif-

ferent problems). The router creates a bitmap Bf of m bits

to store a traffic record of flow f . Denote the ith bit of Bf

as Bf [i]. At the beginning of each measurement period, it

resets the bitmap to zeros. From each arrival packet of the

flow, the router extracts < e, f >, where e is the element

to be recorded and f is the flow label. For example, f may

be the destination address and e may be the source address

as in an application we discussed in the introduction. The

router performs H(e) ∈ [0,m) and sets B[H(e)] to one, where

H(...) is a hash function.

B. Joining Bitmaps by Bitwise SUM

After a number t of measurement periods, the server stores a

set of traffic records, B = {B1, ..., Bt}, about flow f from the

router. Given a user query with f and k, we want to compute

the k-persistent spread of f based on the information in B. Let

nj be the number of elements that appear at the router in j
out of t measurement periods, for 1 ≤ j ≤ t. The k-persistent

spread n∗ can be calculated as n∗ =
∑t

j=k nj .

Bitwise AND has been used in the prior art [9] to join the

information of multiple bitmaps. However, the operation is

lossy: When AND is performed over t bits, the result is zero

as long as at least one of the t bits is zero; the result does

not reflect exactly how many of the t bits are ones, which

is important to the estimation of k-persistent spread. Hence,

we join the information of multiple bitmaps by bitwise SUM,

a new technique never explored in spread estimation. Let S
be the resulting counter array of bitwise SUM, Bj [i] the ith
bit of Bj , and S[i] the ith counter of S, for 1 ≤ j ≤ t and

1 ≤ i ≤ m. We define S[i] =
∑t

j=1 Bj [i]. If a k-persistent

element is recorded by the ith bit, it will set the ith bit of at

least k bitmaps in B. Hence, we must have S[i] ≥ k.

C. Estimating k-Persistent Spread

We cannot estimate the number of k-persistent elements by

counting the number of counters in S whose values are at

least k. The reason is hash collision. On the one hand, when

multiple elements with spreads less than k are hashed to the

same ith bit, they together may set the ith bit of at least k
bitmaps in B, causing S[i] ≥ k and thus over-estimation of k-

persistent spread. On the other hand, when multiple elements

with spreads at least k are hashed to the same bit, they produce

a single counter greater than or equal to k, resulting in under-

estimation.

Let Vj , 0 ≤ j ≤ t, be the fraction of counters in S whose

values are js. Its value can be found by counting the number

of js in S and dividing that number by m. Let N be the total

number of distinct elements that appear at the router during all

t periods, i.e., N =
∑t

j=1 nj . What we want to know are N ,

n1, ... , and nt, from which the k-persistent spread n∗ can be

computed. What we already know are V0, V1, ..., and Vt. If we

can establish one equation for each Vj , 0 ≤ j ≤ t, that relates

the unknowns (N , n1, ... ,nt) to Vj , then we will have t+ 1
equations to solve for the values of the unknowns. Note that

because N =
∑t

j=1 nj , we actually have t unknowns, and

that because
∑t

j=0 Vj = 1, we actually have t independent

equations.

More specifically, as our probabilistic analysis will show,

we can establish an equation that relates V0 to N , from which

N can be computed. We can establish an equation that relates

V1 to N and n1, from which n1 can be computed. In general,

we can establish an equation that relates Vj to N , n1,..., and

nj , from which nj can be computed, where N , n1, ..., nj−1

have been computed by the previous equations, for 1 ≤ j ≤ t.
Next we derive the functional relationship between Vj and the

unknowns (N and nj), for 1 ≤ j ≤ t.
Consider an arbitrary counter S[i]. The probability for S[i]

to be j is denoted as Pr{S[i] = j}. There are exactly j bitmaps

in B whose ith bits are ones. Consider an arbitrary subset cj of

j bitmaps from B. There are Cj
t ways to form such a subset.

Denote the complement of the subset as c−j , which consists

of all bitmaps from B that are not in cj . Performing bitwise

SUM over cj and c−j , we denote Scj [i] =
∑

B∗∈cj
B∗[i] and

Sc−j
[i] =

∑
B∗∈c−j

B∗[i]. Let Pr{Scj [i] = j, Sc−j
[i] = 0} be

the probability for Scj [i] = j and Sc−j
[i] = 0 to happen. It is

the probability that all bitmaps in cj have their ith bit set to

ones while all bitmaps in c−j have their ith bits stay as zeros.

We have

Pr{S[i] = j} = Cj
t Pr{Scj [i] = j, Sc−j

[i] = 0}. (1)

To derive Pr{Scj [i] = j, Sc−j
[i] = 0}, we first derive the

probability Pr{Sc−j
[i] = 0} that none of the elements is

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1891

hashed to the ith bit of any bitmap in c−j , which happens

when the following two independent events happen.

1) Event H1: none of the (j + 1)-persistent elements is

mapped to the ith bit of any bitmap in B. Otherwise, it

will set the ith bit of at least (j +1) bitmaps, including

at least one in c−j , because cj only has j bitmaps.

Denote the probability of event H1 as Pr{H1}. The

probability of any (j + 1)-persistent element not being

hashed to the ith bit is 1− 1
m

. The number of (j + 1)-

persistent elements is N −
∑j

l=1 nl. We have

Pr{H1} = (1−
1

m
)(N−

∑j

l=1
nl). (2)

2) Event H2: Any element whose spread is less than or

equal to j is not hashed to the ith bit of any bitmap in

c−j . Note that such an element may be hashed to the

ith bit, but does not appear in the measurement periods

when the bitmaps in c−j are produced.

Consider an arbitrary element e that appears at the router

in l (≤ j) periods. Element e has a probability of
1
m

to be hashed to the ith bit, and a probability of
Cl

t−Cl
j

Cl
t

to appear in at least one bitmap of c−j . Thus, the

probability that e sets the ith bit of at least one bitmap

in c−j is 1
m

Cl
t−Cl

j

Cl
t

. Event H2 means that e does not

set the ith bit of any bitmap in c−j . That probability is

1 − 1
m

Cl
t−Cl

j

Cl
t

. There are nl elements appearing at the

router in l periods. Hence,

Pr{H2} =

j∏

l=1

(1−
1

m

Cl
t − Cl

j

Cl
t

)nl . (3)

Combining the above analysis, we have

Pr{Sc−j
[i] = 0}

= Pr{H1} ∗ Pr{H2}

= (1−
1

m
)(N−

∑j

l=1
nl)

j∏

l=1

(1−
1

m

Cl
t − Cl

j

Cl
t

)nl .

(4)

When Sc−j
[i] = 0, Scj [i] may be zero, 1, 2, ..., or j. Hence,

Pr{Sc−j
[i] = 0} =

j∑

l=0

Pr{Scj [i] = l, Sc−j
[i] = 0},

Pr{Scj [i] = j, Sc−j
[i] = 0}

= Pr{Sc−j
[i] = 0} −

j−1∑

l=0

Pr{Scj [i] = l, Sc−j
[i] = 0}

(5)

Below we derive Pr{Scj [i] = l, Sc−j
[i] = 0}. When

Scj [i] = l and Sc−j
[i] = 0, there must exist a subset of l

bitmaps (denoted as cl) that are selected from cj , with their

ith bits being ones, while the ith bits of all other bitmaps in cj
are zeros. There are Cl

j ways to form such a subset. Consider

an arbitrary subset cl, and let c−l be the complement of cl, i.e.,

c−l = B − cl. The probability of Scl [i] = l and Sc−l
[i] = 0 is

denoted as Pr{Scl [i] = l, Sc−l
[i] = 0}. Hence,

Pr{Scj [i] = l, Sc−j
[i] = 0}

= Cl
j Pr{Scl [i] = l, Sc−l

[i] = 0}.
(6)

By substituting (6) and (4) to (5), we have

Pr{Scj [i] = j, Sc−j
[i] = 0}

= Pr{Sc−j
[i] = 0} −

j−1∑

l=0

Cl
j Pr{Scl [i] = l, Sc−l

[i] = 0}

= (1−
1

m
)(N−

∑j

l=1
nl)

j∏

l=1

(1−
1

m

Cl
t − Cl

j

Cl
t

)nl

−

j−1∑

l=0

Cl
j Pr{Scl [i] = l, Sc−l

[i] = 0}.

(7)

Substituting (7) to (1), we have

Pr{S[i] = j}

= Cj
t [(1−

1

m
)(N−

∑j−1

l=1
nl)

j−1∏

l=1

(1−
1

m

Cl
t − Cl

j

Cl
t

)nl

× (1 −
1

m
)−nj (1−

1

m

Cj
t − Cj

j

Cj
t

)nj

−

j−1∑

l=0

Cl
j Pr{Scl [i] = l, Sc−l

[i] = 0}].

(8)

Next we show that Pr{S[i] = j} = E(Vj), where Vj is the

fraction of counters in S that are js. It is easy to see that

Vj =
1

m

m∑

i=1

Ii,j , (9)

where Ii,j is an indicator variable, whose value is 1 when

S[i] = j and 0 otherwise.

Clearly,

E(Ii,j) = Pr{S[i] = j}.

Hence, ∀ 0 ≤ j ≤ t, 0 ≤ i < m,

E(Vj) =
1

m

m−1∑

i=0

E(Ii,j) =
1

m

m−1∑

i=0

Pr{S[i] = j}

= Pr{S[i] = j}.

(10)

Substituting (10) to (8), replacing E(Vj) with the instant

value Vj measured from S, and replacing nl with its estimated

value n̂l, 1 ≤ l ≤ j, we have an equation. Solving that

equation for n̂j , we have the following recursive estimator:

∀ 1 ≤ j ≤ t,

n̂j =
a− b− c

ln(1−
C

j
t−1

mC
j
t

)− ln(1 − 1
m
)
, (11)

where

a = ln(
Vj

Cj
t

+

j−1∑

l=0

Cl
j Pr{Scl [i] = l, Sc−l

[i] = 0}),

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1892

b = (N −

j−1∑

l=1

n̂l) ln(1 −
1

m
),

c =

j−1∑

l=1

n̂l ln(1 −
Cl

t − Cl
j

mCl
t

)

.

We invoke the above estimator in the order of j = 1, 2, ...,

t. For a specific value of j, the computation of n̂j requires the

values of n̂l, 1 ≤ l < j, which are computed earlier by (11).

We need the value of N . Note that Pr{Scj [i] = 0, Sc−j
[i] = 0}

refers to the probability that no element sets the ith bit in any

bitmap. Since the probability for any element not to set the ith
bit is 1 − 1

m
and there are N independent elements in total,

we have

Pr{Scj [i] = 0, Sc−j
[i] = 0} = E(V0) = (1−

1

m
)N , (12)

where V0 is the fraction of counters in S whose values are

zeros. Replacing E(V0) with the instance value V0 that can

be measured from S, we compute an estimated value of N as

follows

N̂ =
lnV0

ln(1− 1
m
)
. (13)

We also need the values of Pr{Scl [i] = l, Sc−l
[i] = 0},

0 ≤ l < j. Again by (12), we can estimate the value of

Pr{Scj [i] = 0, Sc−j
[i] = 0} as the measured value of V0.

Now, replacing N with its estimated value N̂ and nl, 1 ≤
l < j, in (7) with its estimated value n̂l, we have

Pr{Scj [i] = j, Sc−j
[i] = 0}

≈ (1−
1

m
)(N̂−

∑j

l=1
n̂l)

j∏

l=1

(1 −
1

m

Cl
t − Cl

j

Cl
t

)n̂l

−

j−1∑

l=0

Cl
j Pr{Scl [i] = l, Sc−l

[i] = 0}.

(14)

Therefore, we should compute (11) and (14) alternatively

as j is increased from 1 to t. After n̂j is computed by (11),

we feed it in (14) to compute Pr{Scj [i] = j, Sc−j
[i] = 0},

which is in turn used in the next iteration to compute n̂j+1 by

(11). This iterative process is carried out by Algorithm 1 to

estimate the number of k-persistent elements, denoted as n̂∗.

Algorithm 1: Estimator for k-persistent spread

1: Pr{Scj [i] = 0, Sc−j
[i] = 0} = V0;

2: Compute N̂ from (13).

3: for j = 1 to k − 1 do

4: Compute n̂j by (11);

5: Compute Pr{Scj [i] = j, Sc−j
[i] = 0} by (14);

6: end for

7: Return n̂∗ = N̂ −
∑k−1

j=1 n̂j ;

IV. MEASURING k-PERSISTENT SPREADS OF NUMEROUS

FLOWS SIMULTANEOUSLY

In the previous section, we consider the case of a single flow,

which provides a basic estimator to support the measurement

of k-persistent spreads of many flows simultaneously, as we

will discuss in this section.

Most of the flow spreads in real traffic from CAIDA are less

than 100. However, the largest spread among all flows reaches

106 although the number of elephant flow is very small. Since

the router does not know the spreads of the flows during online

recording, it has to assign the flows with bitmaps of the same

size, which should be large enough to measure the largest

spread. We point out in the introduction that the size of on-

chip SRAM is typically small. This will limit the number of

concurrent flows that the router can handle at high line speed.

To address the above problem, Yoon et al. introduced the

concept of virtual bitmap in [2]. Their idea is to let the bitmaps

of different flows to share a common pool of bits, instead

of occupying separate memory space. Logically, the router

allocates a virtual bitmap to each flow; physically, these virtual

bitmaps share their bits from the common bit pool. Through

such bit sharing, the router is able to handle a large number

of flows in a tight space. Overestimation of flow spreads is

the main challenge for virtual bitmaps, where bits can be set

by other flows due to sharing. There must be a mechanism

that can effectively remove such “noise” introduced by other

flows.

Yoon’s work [2] is not on persistent spread estimation, but

its concept of virtual bitmap has been borrowed by [9] to

measure the number of persistent elements in all measurement

periods. As we point out earlier, this work is a special case

of k-persistent measurement. It finds the number of elements

that appear in t out of t measurement periods, not k out of t
periods, k ≤ t, that we study in this paper. We also point out in

the previous section that their bitwise AND operation is lossy

and cannot be used to find k-persistent spread. Moreover, there

is a questionable assumption in [9] that elements either appear

in all periods or appear in just one period. This assumption

makes their mathematical analysis tractable, but causes large

error in real traffic traces that violate this assumption, as we

will demonstrate through experiments.

Below we develop a new estimator for the general case of

k-persistent spread. We do not require the assumption that

elements either appear in all periods or appear in just one

period. Elements can appear in any number of measurement

periods.

A. Recording Flows with Virtual Bitmaps

Let B be a physical bit array of u bits that will be used

to record the elements of all flows. For each flow f , let Bf

be a virtual bitmap of m bits that are randomly taken from B
through hashing.

Bf [i] ≡ B[H(f ⊕H(i))], 0 ≤ i < m, (15)

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1893

TABLE II: The distribution of flow spreads.

Flow spread range 0∼10 11∼50 51∼200 201∼600 601∼1000 1001∼2000 >2000

Number of flows 14024 15101 6605 2047 379 392 451

where ⊕ is bitwise XOR. Two virtual bitmaps of different

flows may take (thus share) the same bits from B. We omit

the modulo operation in the above formula, assuming the hash

output is always modulo’ed to the desired range. For instance,

H(i) will produce a hash output of the same length as f .

At the beginning of each measurement period, all bits in B
are reset to zeros. From each arrival packet, the router extracts

< e, f >, where e is the element to be recorded and f is the

flow label. It hashes e to the H(e)th bit in the virtual bitmap

Bf [i]. However, we cannot set that bit to one because it is

virtual. We set the corresponding bit B[H(f ⊕H(H(e)))] in

the physical bit array B. Packets from different flows are all

recorded in B as described above. At the end of each period,

the content of B is offloaded to a server.

B. Estimating k-Persistent Spread from Virtual Bitmap

After a number t of measurement periods, the server has

t bit arrays, B = {B1, B2, ..., Bt}. When receiving a query

about k-persistent spread of a flow f , the server explicitly

constructs a virtual bitmap of f from each physical bit array

in B based on (15). These virtual bitmaps are denoted as Bf =
{Bf,1, Bf,2, ..., Bf,t}. This is an offline operation and thus

overhead is less of a concern.

From Bf , we can estimate the k-persistent spread of flow

f by using the method proposed in Section III. However, not

only are the bits in Bf,j set by the elements of f , but they

may also be set by elements of other flows who share bits

with Bf,j (from the common bit pool). Hence, the k-persistent

spread estimated from Bf is likely to be larger than the actual

value. To solve this problem, we need to find a way to remove

the noise in Bf that is introduced by other flows due to bit

sharing.

Let nf,j be the number of elements that persistently stay

in flow f during j out of t measurement periods, and nm
f,j be

the number of elements that are recorded in Bf and appear

during j out of t periods. We have

nm
f,j = nf,j + nu

f,j, (16)

where nu
f,j is the noise from other flows. We can compute an

estimation n̂m
f,j for nm

f,j by applying the method in Section III

to Bf .

Consider a grand flow F that consists of all flows. We view

the physical bit array B in Section IV-A as the bitmap of F
for online recording. F includes elements of all flows. Let

Nu
j be the number of elements in F that appear at the router

during j out of t periods. We can compute an estimation N̂u
j

for Nu
j , 1 ≤ j ≤ t, using the method in Section III based on

the grand flow’s traffic records in B. Among these elements,

Nu
j − nf,j of them belong to other flows are the noise from

the view point of flow f . These noise elements are randomly

recorded by the u bits in the physical bit array. Recall that

flow f randomly take m bits from the array to form its virtual

bitmap. Each noise element has a probability of m
u

to set a

bit in f ’s virtual bitmap. We have the following mean noise

in the virtual bitmap,

nu
f,j =

m

u
(Nu

j − nf,j). (17)

Combining (16) and (17), replacing Nu
j with its estimate

N̂u
j and nm

f,j with its estimate n̂m
f,j , we have the following

estimation n̂f,j for nf,j:

n̂f,j =
un̂m

f,j −mN̂u
j

u−m
. (18)

Finally, the estimator for the k-persistent spread Nf,k of

flow f is

N̂f,k =

t∑

j=k

n̂f,j =

t∑

j=k

un̂m
f,j −mN̂u

j

u−m
. (19)

V. SIMULATION

In this section, we evaluate the performance of our estimator

through extensive experiments using real Internet traffic traces.

Recall that we aim to design a k-persistent spread estimator

which can work well on on-chip SRAM with tight space

and achieve high estimation accuracy. Thus, the memory size

in our setting ranges from 1.6 to 6.8 bits per element. The

only existing work that can apply to such a small memory

is the method proposed by Xiao et al. (MVPE for short) [9].

We compare our methods with MVPE in terms of estimation

accuracy and operating range. The numerical results show that

our estimator can accurately estimate the k-persistent spreads

in a real network traffic trace. When k = t, our solution

significantly outperforms MVPE. Moreover, the results show

that our estimator effectively detects stealthy attackers that

cannot be detected with MVPE.

A. Experiment Setup

Our dataset contains one hour of data downloaded from

CAIDA. It has 38963 distinct flows, and 7179130 distinct

elements. We observe that the flow spreads are distributed

extremely unbalance (as shown in Table II). The spreads of

more than 91% flows are less than 200. However, the largest

spread of elephant flow reaches 319807.

In our experiments, we set 5 minutes as one measurement

period, and one estimation period is composed of 8 measure-

ment periods, i.e. t = 8. The number of distinct elements

in each measurement period is 1081531, 1088492, 1089644,

1084794, 1225640, 1092274, 1111706, 1094310, separately.

We fit estimators into a 0.25MB ∼ 1MB on-chip SRAM.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1894

B. Estimation Accuracy and Operating Range

In this part, we first compare the estimation accuracy of our

estimator and MVPE. Table. III shows the results of 6 chosen

flows with spread distributed in the range (10000, 50000). We

demonstrate the true k-persistent spreads and estimated k-

persistent spreads of our estimator in that table. It is obvious

that our estimator performs much better than MVPE in terms

of higher estimation accuracy. This is mainly because MVPE

assumes that the legitimate users are independent among dif-

ferent measurement periods. However, many legitimate users

will stay multiple measurement periods when we set 5-minutes

as one measurement period. To overcome this shortcoming,

MVPE needs to increase the length of each measurement

period, which will increase the number of distinct elements

in each measurement period, and reduce its operating range.

Moreover, the experiment results also validate the robustness

of our estimator under different k values (1 ≤ k ≤ t). As

shown in Section V-C, we can detect the stealthy attacks based

on an accurate estimation of k-persistent spreads.

Fig. 2 and Fig. 3 present the experimental results when

m = 65536b and u = 0.25, 0.5, 0.75, 1MB, respectively. The

x-coordinate is the actual spread of 8-persistent traffic and the

y-coordinate is the estimated spread of 8-persistent traffic. The

experimental results show that our estimator works better than

the MVPE, especially when the persistent spread is large. The

estimation accuracy of the MVPE when u = 1MB is even

worse than our estimator when u = 0.25MB.

Our estimator has two configurable parameters: the virtual

bitmap size m and the physical bit array size u. Fig. 3 states

that the accuracy of our estimator increases with u when u is

small, then becomes stable when u > 0.75MB. The accuracy

of our estimator is still acceptable when u = 0.25MB, which

is about 1.6 bits per element. In Fig. 4, we fix u = 0.5MB,

and set m = 16384, 32768, 65536, 131072b, separately. On

one hand, the estimation accuracy increases as m increases if

we allocate a separate bitmap to each flow (As shown in Fig.

??). On the other hand, when using our solution with virtual

bitmap, a larger m will cause more noise introduced by other

flows. Hence, the estimation accuracy of flows increases as

m increases at the beginning, and then decreases when m is

large enough.

C. Stealthy DDoS Attack Detection

In this part of experiment, we test the performance of

our method under some artificially created stealthy DDoS

attack. In particular, we add DDoS attack to those flows in

Table. III, and assume existing users are legitimate users. The

number of illegal users for each flow is equal to the number

of legitimate users. We let each illegal user randomly drop

2 ∼ 4 measurement periods in each estimation period. The

simulation results are shown in Table. IV.

Based on the observation of the flows in the real Internet

traffic traces used in our simulation, the k-persistent spreads

decrease rapidly with the increase of k. Most of the users only

contact with their target server for at most 3 measurement

periods, such as the flows in Table. I and Table. III. Recall

that we assume that the stealthy attackers will keep connection

with the target server significantly longer than legitimate users.

Thus, an appropriate k should be able to distinguish legitimate

users from stealthy attackers. This value could be learned

from the historical information without being attacked. For

example, since most of elements stay in a flow for at most 3
measurement periods, we can choose k = 4. Obviously, low-

rate stealthy attackers can hardly organize an efficient attack

or be distinguished from legitimate users if they only stay in

a flow during less than 4 measurement periods. Thus, we set

each illegal user randomly drop 2 ∼ 4 measurement periods

in each estimation period.

Since k = 4 is an appropriate value for the data used in

our simulation, we treat 4-persistent elements as illegal users.

Based on the simulation results, we found that the value of

the 4-persistent spread is close to the actual number of illegal

users added to each flow, which validates the accuracy and

effectiveness of our estimator against stealthy DDoS attack.

However, simply estimating the t-persistent spread can not

tell whether a server is under attack or not. For example, the

true value of 8-persistent spread of server 3.46.30.10 is only

13, which is much smaller than 62638 (the total number of

illegal users and legitimate users). Therefore, the MVPE fails

to detect the stealthy DDoS attack, let alone estimating the

scale of the attack.

VI. RELATED WORK

To the best of our knowledge, there is no prior work on k
out of t persistent spread measurement. As we have mentioned

before, the measurement of distinct elements persist in traffic

flow for at least k out of t predefined time periods can greatly

help us to detect various network attacks (e.g., DDoS stealthy

attack, stealthy network scan), proxy caching, and content

access profiling. For the network traffic measurement, a large

body of studies have been devoted to the passive flow size

or flow spread estimation, which take advantage of the built-

in components in routers or switches to monitor the passing

traffic passively. For the individual flow measurement, the

studies can be classified into two categories. The first one is

the flow size estimation, and another line of research is the

flow spread estimation.

Flow size often refers to the number of packets for each

active flow during a certain measurement period. Chen et al.

propose a scalable counter architecture which can achieve

better memory efficiency with high estimation accuracy [5].

[10], [11] also focus on memory efficiency per-flow traffic es-

timation by introducing the similar statistical memory sharing.

Flow spread estimation (also known as the flow cardinality

estimation) mainly aims to estimate the number of distinct

elements for each flow during a predefined time period [2],

[12], [13]. In [2], Yoon et al. design a new spread estimator

which can achieve good performance in a very tight memory

space through building a virtual bit vector.

In recent years, the research on flow’s persistent spread

estimation has been attracted more attention since it can detect

the long-term network anomalies, such as stealthy DDoS

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1895

TABLE III: The actual and estimated k-persistent spread when u = 0.5MB, m = 32768b

Server Address
Our estimator based on virtual bitmap MVPE

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 t = 8

146.25.164.98
Actual Spread 16406 3729 1580 828 450 247 140 50 50

Estimated Spread 15916 3858 1731 808 347 273 143 71 173

3.46.30.10
Actual Spread 31319 8438 1669 517 168 52 23 13 13

Estimated Spread 30635 8644 1704 516 297 297 21 17 175

36.1.82.240
Actual Spread 36644 8197 1636 353 157 91 20 6 6

Estimated Spread 36010 7993 1519 924 67 66 48 38 191

70.63.100.108
Actual Spread 32869 11451 4794 2445 1244 658 363 216 216

Estimated Spread 31311 11776 5297 2551 1361 662 366 219 534

72.192.80.170
Actual Spread 35846 8557 3173 1505 830 450 247 128 128

Estimated Spread 35199 8448 3722 1014 662 455 165 57 305

92.79.46.194
Actual Spread 41804 7181 2493 1173 607 330 178 84 84

Estimated Spread 41590 8268 2405 1045 1036 304 211 75 342

1000 2000 3000

Actual Persistent Spread

500

1000

1500

2000

2500

3000

E
st

im
at

ed
 V

al
u
e

u=0.25MB

1000 2000 3000

Actual Persistent Spread

500

1000

1500

2000

2500

3000

E
st

im
at

ed
 V

al
u
e

u=0.5MB

1000 2000 3000

Actual Persistent Spread

500

1000

1500

2000

2500

3000

E
st

im
at

ed
 V

al
u
e

u=0.75MB

1000 2000 3000

Actual Persistent Spread

500

1000

1500

2000

2500

3000

E
st

im
at

ed
 V

al
u
e

u=1MB

Fig. 2: t-persistent spread estimate using MVPE, with m = 65536b, t = 8.

1000 2000 3000

Actual Persistent Spread

500

1000

1500

2000

2500

3000

E
st

im
at

ed
 V

al
u
e

u=0.25MB

1000 2000 3000

Actual Persistent Spread

500

1000

1500

2000

2500

3000

E
st

im
at

ed
 V

al
u
e

u=0.5MB

1000 2000 3000

Actual Persistent Spread

500

1000

1500

2000

2500

3000

E
st

im
at

ed
 V

al
u
e

u=0.75MB

1000 2000 3000

Actual Persistent Spread

500

1000

1500

2000

2500

3000

E
st

im
at

ed
 V

al
u
e

u=1MB

Fig. 3: k-persistent spread estimate using our estimator, with m = 65536b, t = 8, k = 8.

attack or network scan. In [9], authors present a persistent

spread estimation method by using the multi-virtual bitmaps

for the tight memory scenario. The proposed method can

estimate the number of distinct elements which persist in all

the predefined t time periods. Dai et al. [14] concentrate on

finding the persistent items in data streams. Literature [15]

studies the privacy preserving persistent traffic measurement

for the intelligent transportation [16]. We have proposed a new

problem called k-persistent spread estimation, which measures

the number of distinct elements that persist in a flow for

at least k out of t predefined number of time periods. The

design is based on the observation that the active time for the

stealthy attackers are often longer than most of the legitimate

users. Further, we find that the most of the malicious users

will occupy most of the scanning time periods instead of all

the time periods. These observations make the study of k-

persistent spread estimation more challenge and meaningful.

Due to the very limited size of on-chip SRAM, it is highly

desirable to design a light weight estimator. There have

been plenty of cardinality estimators proposed in [17], [18],

[19], [20], [21], however, these methods will cause accuracy

degradation due to the limited memory space. Thus, we choose

the data structure of virtual bitmaps which can achieve very

high estimation accuracy.

VII. CONCLUSION

We notice that a sophisticated attacker may drop some

measurement periods to avoid existing detection that is based

on persistent spread estimation. In this paper, we propose a

new persistent spread estimator that is able to measure the

volume of elements that stay in a flow for at least k out of t
predefined measurement periods. Our scheme can achieve high

accuracy and fit into a size constrained memory. Even when

the attackers drop some measurement periods, our k-persistent

spread estimator can still detect those stealthy attacks. We

conduct extensive experiments using real network traffic traces

and the experiment results show that our estimator, requiring

memory space with only 1.6 bits per element, can detect the

stealthy DDoS attack effectively and accurately.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1896

1000 2000 3000

Actual Persistent Spread

500

1000

1500

2000

2500

3000

E
st

im
at

ed
 V

al
u
e

m=16384b

1000 2000 3000

Actual Persistent Spread

500

1000

1500

2000

2500

3000

E
st

im
at

ed
 V

al
u
e

m=32768b

1000 2000 3000

Actual Persistent Spread

500

1000

1500

2000

2500

3000

E
st

im
at

ed
 V

al
u
e

m=65536b

1000 2000 3000

Actual Persistent Spread

500

1000

1500

2000

2500

3000

E
st

im
at

ed
 V

al
u
e

m=131072b

Fig. 4: k-persistent spread estimate using our estimator, with u = 0.5MB, t = 8, k = 8.

TABLE IV: The actual and estimated k-persistent spread when u = 0.5MB,m = 32768b

Server Address
Our estimator based on virtual bitmap

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

146.25.164.98
Actual Spread 32812 20135 17986 17234 11438 5754 140 50

Estimated Spread 32334 20586 18141 17167 11442 5670 226 40

3.46.30.10
Actual Spread 62638 39757 32988 31836 21001 10452 23 13

Estimated Spread 61407 40694 32782 31884 21204 10763 182 103

36.1.82.240
Actual Spread 73288 44841 38280 36997 24565 12300 20 6

Estimated Spread 73549 46008 38841 38841 25095 12588 19 19

70.63.100.108
Actual Spread 65738 44320 37663 35314 23340 11623 363 216

Estimated Spread 64133 45090 39888 36255 24707 11086 368 368

72.192.80.170
Actual Spread 71692 44403 39019 37351 24765 12375 247 128

Estimated Spread 71224 44255 39538 37643 25282 13065 520 0

92.79.46.194
Actual Spread 83608 48985 44297 42977 28449 14216 178 84

Estimated Spread 82582 49773 44599 42503 29133 14702 461 111

ACKNOWLEDGEMENT

The research of authors is partially supported by Nation-

al Science Foundation (NSF) CNS-1719222, STC-1562485,

National Natural Science Foundation of China (NSFC) under

Grant No. 61572342, No. 61672369, Natural Science Founda-

tion of Jiangsu Province under Grant No. BK20151240, No.

BK20161258. The research of Kai Han is partially supported

by NSFC under Grant No. 61472460, No. 61772491, NSF of

Jiangsu Province under Grant No. BK20161256. This work is

also supported by the grant from Florida Cybersecurity Center.

REFERENCES

[1] M. Yoon, T. Li, S. Chen, and J. kwon Peir, “Fit a Spread Estimator in
Small Memory,” Proc. of INFOCOM, pp. 504–512, 2009.

[2] M. Yoon, T. Li, S. Chen, and J. Peir, “Fit a Compact Spread Estimator in
Small High-Speed Memory,” IEEE/ACM Transactions on Networking,
vol. 19, no. 5, pp. 1253–1264, October 2011.

[3] S. Ramabhadran and G. Varghese, “Efficient Implementation of a
Statistics Counter Architecture,” Proc. ACM SIGMETRICS, vol. 31,
no. 1, pp. 261–271, June 2003.

[4] Q. Zhao, J. Xu, and Z. Liu, “Design of a novel statistics counter
architecture with optimal space and time efficiency,” ACM SIGMETRICS
Performance Evaluation Review, vol. 34, no. 1, pp. 323–334, 2006.

[5] M. Chen, S. Chen, and Z. Cai, “Counter tree: A scalable counter
architecture for per-flow traffic measurement,” IEEE/ACM Transactions
on Networking (TON), vol. 25, no. 2, pp. 1249–1262, 2017.

[6] X. Dimitropoulos, P. Hurley, and A. Kind, “Probabilistic Lossy Count-
ing: An Efficient Algorithm for Finding Heavy Hitters,” ACM SIGCOM-
M Computer Communication Review, vol. 38, no. 1, pp. 7–16, 2008.

[7] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund, “Online Iden-
tification of Hierarchical Heavy Hitters: Algorithms, Evaluation, and
Application,” Proc. of ACM SIGCOMM IMC, pp. 101–114, October
2004.

[8] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
Sketch to Rule Them All: Rethinking Network Flow Monitoring with
UnivMon,” Proc. of ACM SIGCOMM, pp. 101–114, 2016.

[9] Q. Xiao, Y. Qiao, M. Zhen, and S. Chen, “Estimating the persistent
spreads in high-speed networks,” in Proc. of IEEE ICNP 2014, 2014,
pp. 131–142.

[10] T. Li, S. Chen, and Y. Ling, “Fast and compact per-flow traffic mea-
surement through randomized counter sharing,” in Proc. of INFOCOM,
2011, pp. 1799–1807.

[11] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: a novel counter architecture for per-flow measurement,”
ACM SIGMETRICS Performance Evaluation Review, vol. 36, no. 1, pp.
121–132, 2008.

[12] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high-speed links,” IEEE/ACM Transactions on Network-
ing, vol. 14, no. 5, pp. 925–937, 2006.

[13] M. ROESCH, “Snort-lightweight intrusion detection for networks,”
LISA’99: Proc. 13th USENIX Conference on System Administration,
vol. 99, no. 1, pp. 229–238, 1999.

[14] H. Dai, M. Shahzad, A. X. Liu, and Y. Zhong, “Finding persistent items
in data streams,” Proceedings of the VLDB Endowment, vol. 10, no. 4,
pp. 289–300, 2016.

[15] H. Huang, Y.-E. Sun, S. Chen, H. Xu, and Y. Zhou, “Persistent
traffic measurement through vehicle-to-infrastructure communications,”
in Proc. of ICDCS 2017, 2017.

[16] Z. Tang, A. Liu, Z. Li, Y. june Choi, H. Sekiya, and J. Li, “A Trust-
Based Model for Security Cooperating in Vehicular Cloud Computing,”
Mobile Information Systems, 2016.

[17] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A Linear-
time Probabilistic Counting Algorithm for Database Applications,” ACM
Transactions on Database Systems, vol. 15, no. 2, pp. 208–229, June
1990.

[18] C. Estan, G. Varghese, and M. Fish, “Bitmap Algorithms for Counting
Active Flows on High-Speed Links,” IEEE/ACM Trans. on Networking,
vol. 14, no. 5, October 2006.

[19] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” Journal of computer and system sciences, vol. 31,
no. 2, pp. 182–209, 1985.

[20] M. Durand and P. Flajolet, “Loglog counting of large cardinalities,”
European Symposium on Algorithms, pp. 605–617, 2003.

[21] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm,” in AofA:
Analysis of Algorithms, 2007, pp. 137–156.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

1897

