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Abstract—Measuring point traffic volume and point-to-point
traffic volume in a road system has important applications in
transportation engineering. The connected vehicle technologies
integrate wireless communications and computers into trans-
portation systems, allowing wireless data exchanges between
vehicles and road-side equipment, and enabling large-scale,
sophisticated traffic measurement. This paper investigates the
problems of persistent point traffic measurement and persistent
point-to-point traffic measurement, which were not adequately
studied in the prior art, particularly in the context of intelligent
vehicular networks. We propose two novel estimators for privacy-
preserving persistent traffic measurement: one for point traffic
and the other for point-to-point traffic. The estimators are
mathematically derived from the join result of traffic records,
which are produced by the electronic roadside units with privacy-
preserving data structures. We evaluate our estimation methods
using simulations based on both real transportation traffic
data and synthetic data. The numerical results demonstrate
the effectiveness of the proposed methods in producing high
measurement accuracy and allowing accuracy-privacy tradeoff
through parameter setting.

Index Terms—Vehicular networks, traffic measurement, persis-
tent traffic, privacy.

I. INTRODUCTION

Measuring traffic volume at points of interest in road
systems provides important information for transportation en-
gineering. These point traffic data are useful in estimating
traffic link flow distribution as part of investment plan and
calculating road exposure rates as part of safety analysis.
Much prior research on traffic measurement collects statistics
on the number of vehicles passing a certain location during
a certain measurement period, often in the form of annual
average daily traffic (AADT). Various predication models
[1]–[6] have been developed based on the data recorded
by roadside units (RSU) installed at road intersections. An
example is Mohammed’s multiple linear regression model
that incorporates demographic variables to measure AADT
[1]. Another example is Lam’s artificial neural network that
estimates AADT based on short period counts [2]. Other
research work includes the spatial statistical method by Eom
et al. [3], the support vector regression model by Neto et al.

[4], the absolute deviation penalty procedure by Yang et al.
[5], and the regression and Bayesian model by Tsapakis et al.
[6].

The emergence of connected vehicle technologies in the
intelligent transportation systems promises radical changes in
how transportation traffic measurement will be conducted. The
trend is to integrate wireless communications and computers
into vehicular cyber-physical systems for better road safety
and driving experience [7] [8]. Traffic data collection will
become more sophisticated with vehicular communications
and networking [9]–[13], such as the Dedicated Short Range
Communications standard under IEEE 802.11p [14], which
supports wireless data exchanges between vehicles and RSUs.

Such automated systems have been exploited in prior re-
search for collecting point-to-point transportation statistics,
i.e., the number of vehicles traveling between any two points
(locations) of interest during a certain measurement period in
a road system [15], [16]. Point-to-point data provide important
input to a variety of transportation studies such as identifying
the real sources of traffic congestion and characterizing turning
movements at intersections for signal timing determination
[17]. There are two performance considerations: The obvi-
ous one is the accuracy of traffic measurement. The less
obvious one is privacy concern. When vehicles are equipped
for wireless communications, there are easy ways to ensure
the measurement accuracy. For instance, we may require all
vehicles to report their unique IDs to the RSUs that they
encounter. In this way, we will be able to figure out the point-
to-point traffic volume by comparing the ID sets from two
RSUs. However, if a vehicle keeps transmitting its ID to RSUs,
its entire moving history is recorded in great details. Such
large-scale, universal tracking of movement raises privacy
concern [15], [16], [18].

In this paper, we take a step further to study a new problem
of persistent traffic volume measurement. After we measure
the point traffic volume at a certain location over time for
many measurement periods, we naturally want to mine the data
for more knowledge. Given a certain number of measurement
periods, the point persistent traffic is defined as the set of
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vehicles that pass the location in all those periods. The rest
is treated as transient traffic. For example, we may want to
learn the persistent traffic volume over the workdays of a
week, over the Saturdays of several weeks, or on all days
in a month. Such data tells us the amount of core, stable
traffic at a location, as the transient traffic varies over time.
Similarly, after measuring the point-to-point traffic volume
between two locations for many measurement periods, we
want to know the persistent traffic volume containing common
vehicles that show up during each period from one location to
the other. For example, if a location is consistently congested,
we can find the sources of the traffic based on point-to-
point traffic measurement. Yet the persistent point-to-point
traffic measurement tells us the minimum amount of traffic
contribution that we can always expect from each of those
sources. This information helps in determining the priority
order for planning measures of traffic relief at various sources.

The problem of point (point-to-point) persistent traffic mea-
surement is challenging if we want to achieve both mea-
surement accuracy and privacy protection (which prevents
even the authority from learning the trajectories of the mov-
ing vehicles). We propose two novel estimators for privacy-
preserving persistent traffic measurement: one for point traffic
and the other for point-to-point traffic. The basic idea is for
each RSU to encode the vehicles passing by during each
measurement period in a privacy-preserving data structure,
called traffic record, where the information of all vehicles is
mixed such that the vehicle identities are hidden. To estimate
the point persistent traffic, we join the traffic records produced
during the periods of interest and derive an estimation for-
mula based on the join result through probabilistic analysis.
Similarly, to estimate the point-to-point persistent traffic, we
first join the traffic records at each location and then join
their results, from which we derive an estimation formula.
We evaluate our estimation methods using simulations based
on both real transportation traffic data and synthetic data.
The extensive simulations demonstrate the effectiveness of the
proposed methods in producing persistent traffic estimation of
high accuracy and allowing accuracy-privacy tradeoff through
parameter setting.

II. PRELIMINARIES

A. Persistent Traffic Measurement

We study an intelligent transportation system with vehicle-
to-infrastructure communication capability. Road-Side Units
(RSUs) are deployed at locations of interest, such as street
intersections. All RSUs are connected wirelessly or by wire
to a central sever, where data are collected and processed for
transportation traffic management functions. Each vehicle also
has a unique ID and is equipped to communicate with the
RSUs through DSRC [14].

Traffic measurement is performed in each measurement
period (e.g., a day), whose length is set as needed by the
authority. During an arbitrary period, each RSU records the
passing vehicles in a privacy-preserving data structure, called

traffic record, without keeping any identifying information
such as vehicle IDs. We study the following problems.

First, consider a single location 𝐿 and a set Π of traffic
records produced from the RSU at 𝐿 during a number of
measurement periods — for example, records from Monday
through Friday of a certain week, records from Mondays of
three consecutive weeks, or several records of interest based on
any other criterion. A common vehicle refers to a vehicle that
passes location 𝐿 in all the measurement periods of interest.
All common vehicles form the persistent traffic. The first
problem, called point persistent traffic measurement, is to use
the traffic records in Π to estimate the volume of persistent
traffic, i.e., the number of common vehicles passing 𝐿.

Next, consider two locations, 𝐿 and 𝐿′. Let Π be a set
of traffic produced by the RSU at 𝐿 during a number of
measurement periods of interest, and Π′ be the set of traffic
records produced by the RSU at 𝐿′ during the same mea-
surement periods. With respect to two locations, a common
vehicle refers to a vehicle that passes both locations in all the
measurement periods of interest, and accordingly the point-
to-point persistent traffic is the aggregate of such vehicles.
The second problem, called point-to-point persistent traffic
measurement, is to use Π and Π′ to estimate the volume of
point-to-point persistent traffic, i.e., the number of common
vehicles that pass both 𝐿 and 𝐿′.

B. Security and Threat Model

Vehicles will only interact with RSUs from trustworthy
authorities. This can be easily enforced through authentication
based on PKI. Communications begin with an RSU broadcast
beacons, each carrying its public-key certificate, which was
obtained from a trusted thirty party and was pre-installed
with the RSU. When a vehicle receives a beacon, it uses its
pre-installed public key of the trusted third party to verify
the certificate. If not successful, the vehicle will keep silent;
otherwise, it performs authentication with the RSU using the
latter’s public key obtained from the verified certificate. After
successful authentication, it performs vehicle recording with
the RSU as will be explained in the next subsection, with
all data exchanges encrypted. Rogue RSUs may be deployed
by non-authorities; they will fail the authentication with the
vehicles, which will reject further communications.

We assume a semi-trusted model for the authorities. The
transportation authority has good faith in implementing the
proposed privacy-preserving methods since their goal is not to
track people, but only to gather transportation traffic, which
provides input for city development planning (without any
real-time or short-term consequences). Their RSUs will com-
municate with the passing vehicles and perform all operations
as expected. However, as the traffic records are produced and
stored. At a later time, other people (such as police or FBI)
who gain access to the records may exploit the information to
track individual vehicles when they have the need to do so. For
instance, if a hypothetical system design requires every vehicle
to transmit its unique identifier to each encountered RSU, then
these recorded identifiers may be used to track the trajectory
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of any vehicle. In order to prevent this from happening, it is
highly desired that a vehicle will not transmit its unique ID,
nor transmit any other fixed number to the RSUs that it passes.

Moreover, we assume that an anonymous MAC protocol
such as SpoofMAC [19] is used to support privacy preservation
such that the MAC address of a vehicle is not fixed. With
such a protocol, before a vehicle communicates with an RSU,
it picks a temporary MAC address randomly from a large
space for one-time use, which prevents the MAC address from
serving as an identifier of the vehicle.

C. Performance Metrics

We consider the following two performance metrics to
evaluate persistent traffic measurement.

1. Estimation Accuracy: Let 𝑛∗ be the actual volume of
persistent traffic, i.e., number of common vehicles passing one
location (or two locations) during the measurement periods of
interest. Let 𝑛∗ be the volume estimated based on the traffic
records. We measure the estimation accuracy by evaluating the
relative error, ∣𝑛∗−𝑛∗∣

𝑛∗
. A good traffic measurement method is

expected to have close-to-zero relative errors.
2. Preserved Privacy: The essence of privacy preservation

in transportation traffic measurement is to allow the tracker
only a limited chance to identify any part of the trajectory of
any vehicle. Following [15], [16], we want to make sure that
anyone that possesses the traffic records cannot definitively
determine any trace of any vehicle. In general terms, the
traffic records may indicate that a vehicle has passed from
one location to another location when the vehicle actually did
not, and the records may indicate that the vehicle has not
passed from one location to another location when the vehicle
actually did.

As we will see shortly, the traffic records are probabilistical-
ly constructed. Consider a vehicle 𝑣 and suppose we somehow
know that the vehicle has passed a location 𝐿. The vehicle
never transmits its identifier, but there could be some external
ways that reveal its presence at a certain location — for
example, the vehicle is stopped by a police car for speeding
at the location. Now, the question of concern by this paper is
how much additional information the traffic records will leak
to reveal the trajectory of 𝑣. Consider another arbitrary location
𝐿′, let 𝑝 be the probability that the traffic records will show
that 𝑣 has passed both locations even though 𝑣 did not; clearly,
𝑝 represents a noise term that the design of traffic record
introduces. Let 𝑝′ be the probability that the traffic records will
show that 𝑣 has passed both locations when 𝑣 actually did so;
𝑝′ includes the noise contribution 𝑝. We will later derive the
formulas for 𝑝 and 𝑝′. The privacy protection is weak if the
probabilistic noise 𝑝 approaches to zero while the probabilistic
information 𝑝′ − 𝑝 approaches to one, which implies near-
definitive tracking. We want to increase the former, relative
to the latter. If we can increase the noise 𝑝 to a level that
is comparable to or even outweights 𝑝′ − 𝑝 by far, there will
be increasingly significant doubt in what the traffic records
indicate. Therefore, we use 𝑝

𝑝′−𝑝 , called the probabilistic
noise-to-information ratio, to characterize the level of privacy

protection. We expect this ratio to be at least greater than one,
and the larger the better.

D. Traffic Record and Vehicle Encoding

Consider an arbitrary RSU installed at a certain location and
an arbitrary measurement period. The data structure of traffic
record is a bitmap 𝐵 of 𝑚 bits. Each vehicle that passes the
RSU during the period is encoded by a bit, which is pseudo-
randomly selected from 𝐵 in a way that masks the identity
of the vehicle yet leaves a probabilistic signature, allowing
statistical analysis for traffic volume. The size of 𝐵, i.e.,
the value of 𝑚, may differ at different RSUs or at different
measurement periods for the same RSU. We will come back
to set 𝑚 later.

The basic observation is that there is a functional rela-
tionship between the number of ones (or zeros) in 𝐵 and
the number of vehicles encoded — the more the number of
vehicles is, the more the number of ones in 𝐵 will be. Based on
that function, we can estimate the number of vehicles from the
number of ones. The problem of persistent traffic measurement
will be more difficult as we need to combine the information
from the traffic records of different periods to figure out the
number of common vehicles, which we discuss in the next
two sections. Below we define how the traffic record 𝐵 is
constructed in each measurement period. In order to support
privacy, we want to mix the information from different vehicles
in 𝐵. The vehicle-encoding method should have the following
properties: (1) When vehicles are encoded at a certain location,
different vehicles may be probabilistically encoded by the
same bit. (2) When a vehicle passes multiple locations (RSUs),
it may be encoded at different bit indices. Together, they break
the one-to-one association between vehicles and bits.

The traffic record is constructed as follows: At the beginning
of each measurement period, the bits in 𝐵 are reset to zeros.
The RSU broadcasts beacons in preset intervals, such as once
per second, ensuring that each passing vehicle will be able
to receive a beacon, which carries the RSU’s location 𝐿, its
public-key certificate, and the size 𝑚 of its bitmap. After a
vehicle receives a beacon, it verifies the certificate and uses
the public key to authenticate the RSU. After verifying that
the RSU is from a trusted authority, the vehicle computes
the following hash output: ℎ𝑣 = 𝐻(𝑣 ⊕ 𝐾𝑣 ⊕ 𝐶[𝐻(𝐿 ⊕ 𝑣)
mod 𝑠]) mod 𝑚, where 𝐻 is a hash function that provides
good randomness, 𝑣 is the vehicle ID, 𝐾𝑣 is a private key
known only by the vehicle, 𝐿 is the location of the RSU, and
𝐶 is an array of 𝑠 randomly selected constants. Because ℎ𝑣 is a
function of 𝐿, its value may be different at different locations;
the system parameter 𝑠 controls the number of different values
that ℎ𝑣 may take; the use of randomized constants in 𝐶 helps
improve the quality of input to the outer hash. The vehicle
transmits ℎ𝑣 to the RSU, which will in turn set the bit at
index ℎ𝑣 to one, i.e., 𝐵[ℎ𝑣] = 1. That is the only operation
of vehicle encoding. At the end of each measurement period,
the RSU will send the content of the bitmap 𝐵 as its traffic
record to the central server, where queries may be submitted
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from the users to estimate point or point-to-point persistent
traffic.

The index ℎ𝑣 produced from a vehicle is not predictable by
others because the private key 𝐾𝑣 is not known. Moreover,
the array 𝐶 of constants are also known only to the vehicle.
During a measurement period, many vehicles may pass an
RSU. Due to vehicles’ random selection of bits to set, different
vehicles may choose the same bit as a result of hash collision.
The same vehicle may choose different indices at different
locations because the hash output is also dependent on the
location 𝐿. Such mixing and variation in vehicle encoding help
preserve privacy and make it harder for a tracker (including
the authority) to definitively determine the trajectory of any
vehicle.

Let ℎ𝑣(𝑖) = 𝐻(𝑣 ⊕𝐾𝑣 ⊕𝐶[𝑖]) mod 𝑚, where 1 ≤ 𝑖 ≤ 𝑠.
We call 𝐵[ℎ𝑣(𝑖)], 1 ≤ 𝑖 ≤ 𝑠, the representative bits of vehicle
𝑣 in bitmap 𝐵. When the vehicle passes the RSU, it selects
one of the representative bits uniformly at random through
another hashing, 𝑖 = 𝐻(𝐿⊕𝑣) mod 𝑠. The size 𝑠 of the array
𝐶 determines the number of different representative bits from
which a vehicle may choose to set. As our privacy analysis
and numerical evaluation will show, this parameter controls
a performance tradeoff between preserved privacy and traffic
estimation accuracy.

From each bitmap 𝐵 reported by an RSU, the central
server can estimate the number of vehicles passing the RSU
during the corresponding measurement period based on linear
probabilistic counting [20]–[22] as follows:

�̂� = −𝑚 ln𝑉0, (1)

where 𝑉0 is the fraction of bits in 𝐵 that are zeros. Based
on the historic traffic volumes, the central server will set the
bitmap size at each RSU as follows:

𝑚 = 2⌈log2(�̄�×𝑓)⌉, (2)

where �̄� is the expected traffic volume at the RSU during the
measurement period based on historical average at the same
location and the same time, and 𝑓 is a system-wide load factor
that specifies the ratio of the bitmap size and the expected
traffic volume.

Formula (1) allows us to estimate point traffic based a single
traffic record 𝐵. But we cannot apply it directly to solve
the new problems of measuring persistent point traffic and
persistent point-to-point traffic across multiple traffic records.
The key issues are how to combine multiple traffic records
and how to derive new estimation formulas based on the
combined information. Because the traffic volume �̄� varies
from place to place, the bitmap size varies accordingly. We
set the value of 𝑚 in (2) always as a power of two in order
to facilitate joining the information of different bitmaps for
persistent traffic estimation; such joining will become clear
when we discuss the technical details.

III. MEASUREMENT OF POINT PERSISTENT TRAFFIC

Given a set of 𝑡 bitmaps, {𝐵1, ..., 𝐵𝑡}, that are measured at
a certain location 𝐿 of interest during 𝑡 measurement periods,

B1
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��������	
�
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� � � � � � ��
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Fig. 1: An example of combining two bitmaps of the same
size, 𝐵1 and 𝐵2, by bitwise AND

�
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��������	
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E1

E2

E*

Fig. 2: An example of combining two bitmaps of different
sizes by bitwise AND

we want to estimate the point persistent traffic over the set
as defined in Section II-A. Let 𝑚 be the largest size of all
bitmaps, i.e., 𝑚 = max{𝑙1, ..., 𝑙𝑡}, where 𝑙𝑗 is the number of
bits in 𝐵𝑗 , for 1 ≤ 𝑗 ≤ 𝑡.

A. Joining the Bitmaps through Expansion

To find the common traffic encoded by multiple bitmaps,
we need to join the information from the bitmaps. Recall that
each vehicle is encoded by setting a bit. If all bitmaps have
the same size, one simple approach of combining them is to
perform bitwise AND, as shown by an example in Fig. 1. If a
bit in the resulting bitmap is one, it means the same bit must
be one in all bitmaps 𝐵1 through 𝐵𝑡, indicating that there may
be a common vehicle setting the bit in all those measurement
periods.

However, if the bitmaps have different sizes, we will not
be able to perform bitwise AND directly among them. To
circumvent this problem, if the size of a bitmap 𝐵𝑗 is smaller
than 𝑚, we expand it by replicating it multiple times until its
size reaches 𝑚, as shown by an example in Figure. 2, where
𝐵2 is replicated once (dashed part). Such expansion is always
possible because the sizes of all bitmaps are powers of 2. The
expanded bitmap is denoted as 𝐸𝑗 . If 𝑙𝑗 = 𝑚, then 𝐸𝑗 is
simply 𝐵𝑗 . We use Π to denote the set of expanded bitmaps
(also known as traffic records). We perform bitwise AND over
all expanded bitmaps in Π, and the result is denoted as 𝐸∗.
Its 𝑖th bit is denoted as 𝐸∗[𝑖], 1 ≤ 𝑖 ≤ 𝑚.

Consider an arbitrary common vehicle 𝑣. Its hash output,
ℎ𝑣 = 𝐻(𝑣 ⊕𝐾𝑣 ⊕ 𝐶[𝐻(𝐿⊕ 𝑣) mod 𝑠]) mod 𝑚, gives the
index of the bit in 𝐸∗ that the vehicle is mapped to. In order
to make sure that all common vehicles are recorded by 𝐸∗, the
following property should hold after bitwise AND: 𝐸∗[ℎ𝑣] =
1, for any common vehicle 𝑣. It is obvious that this property
holds in the special case where all original bitmaps 𝐵𝑗 , 1 ≤
𝑗 ≤ 𝑡, have the same size 𝑚. In the general case, thanks to the
design fact that the bitmap sizes are two’s powers, we prove
the property as follows: Consider an arbitrary bitmap 𝐵𝑗 of
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Fig. 3: An illustration for vehicle encoding in bitmaps, bitmap
expansion, and bitmap joining

size 𝑙𝑗 . The bit set to one by 𝑣 is at index ℎ𝑣 mod 𝑙𝑗 . After 𝑙𝑗 is
expanded to 𝑚, all the bits in 𝐸𝑗 at indices (ℎ𝑣 mod 𝑙𝑗)+𝑘𝑙𝑗 ,
0 ≤ 𝑘 < 𝑚

𝑙𝑗
, are ones. Because both 𝑙𝑗 and 𝑚 are powers of

2 and 𝑚 ≥ 𝑙𝑗 , we know that 𝑚
𝑙𝑗

is a positive integer. Hence,
ℎ𝑣 mod 𝑚 = (ℎ𝑣 mod 𝑙𝑗) + 𝑘′𝑙𝑗 , for a certain integer 𝑘′ ∈
[0, 𝑚𝑙𝑗 ). Therefore, the bit in 𝐸𝑗 at index (ℎ𝑣 mod 𝑚) must be
one. Since this holds for all expanded bitmaps 𝐸𝑗 , 1 ≤ 𝑗 ≤ 𝑡,
we conclude that 𝐸∗[ℎ𝑣] = 1.

Can we simply estimate the number of common vehicles
based on the number of ones in 𝐸∗? The answer is no because
transient vehicles can also cause bits in 𝐸∗ to be ones. See
Figure 3 for example, which shows three bitmaps, 𝐵1, 𝐵2 and
𝐵3, collected from the same location. The vehicles that appear
in each measurement period are shown above each bitmap.
A black box indicates a common vehicle that appears in all
measurement periods at the location. A white box indicates a
transient vehicle. Each vehicle sets a bit to one, as the arrows
in the figure show. The size of 𝐵1 is half of the other bitmaps’
size. We expand 𝐵1 to 𝐸1 by doubling its size, as shown in
the figure with dashed lines. 𝐸∗, which is the bitwise AND
of the three bitmaps, is at the bottom of the figure. We only
show the values of two bits in 𝐸∗; both are ones. The first bit
of one is caused by transient vehicles, which are different cars
but happen to set bits at the same index due to hash collision.
The second bit of one is caused by a common vehicle. We
also want to point out that two common vehicles may set
the same bit to one due to hash collision. Therefore, a bit
of one in 𝐸∗ may indicate zero, one or multiple common
vehicles. Estimating common vehicles solely based on ones
in 𝐸∗ will be inaccurate. But if we combine information
in Π into more than one bitmap and use that information
jointly with 𝐸∗, we will be able to gain enough differentiation
through probabilistic derivation, which in turn allows us to
make meaningful estimation.

B. Deriving an Estimator for Persistent Traffic

We divide Π into two subsets, Π𝑎 = {𝐸1, ..., 𝐸⌈𝑡/2⌉} and
Π𝑏 = {𝐸⌈𝑡/2⌉+1, ..., 𝐸𝑡}. Let 𝐸𝑎 be the join of bitmaps in
Π𝑎 by bitwise AND, 𝐸𝑏 the join of bitmaps in Π𝑏 by bitwise
AND, and 𝐸∗ the join of 𝐸𝑎 and 𝐸𝑏 by bitwise AND.

𝐸𝑎 (or 𝐸𝑏) encodes both the set of common vehicles and
possibly some transient vehicles. From (1), we compute the
number of independent vehicles that would have produce the
bitmap 𝐸𝑎 (or 𝐸𝑏):

𝑛𝑎 =
ln𝑉𝑎,0

ln(1− 1
𝑚 )

, 𝑛𝑏 =
ln𝑉𝑏,0

ln(1− 1
𝑚 )

(3)

where 𝑉𝑎,0 (𝑉𝑏,0) is the fraction of zeros in 𝐸𝑎 (𝐸𝑏). Essen-
tially we use an abstract set of 𝑛𝑎 vehicles to produce the
same effect as what all vehicles in Π𝑎 jointly produce in 𝐸𝑎.
This abstraction relieves us from the dependency within Π𝑎.
Because the bits of ones in 𝐸𝑎 retain the information from the
common vehicles, the 𝑛𝑎 vehicles contain the set of common
vehicles. Similarly we use an abstract set of 𝑛𝑏 vehicles to
summarize the effect of Π𝑏. While dividing Π into more than
two sets is possible, we find the two-set solution is not only
simple but works effectively.

For an arbitrary bit in 𝐸∗, its value can be modeled as
a random binary variable whose value is probabilistically
determined as the vehicles randomly choose their bits to set.
Let 𝑛∗ be the number of common vehicles. The probability
𝑃∗ for at least one of the common vehicles to set the bit is

𝑃∗ = 1− (1− 1

𝑚
)𝑛∗ . (4)

The probability for this bit to be set by a transient vehicle in
𝐸𝑎 (or 𝐸𝑏) is

𝑃𝑎 = 1− (1− 1

𝑚
)𝑛𝑎−𝑛∗ , 𝑃𝑏 = 1− (1− 1

𝑚
)𝑛𝑏−𝑛∗ . (5)

Let 𝑋𝑖,1, 1 ≤ 𝑖 ≤ 𝑚, be the event that the 𝑖th bit in 𝐸∗
becomes one. Combining the above analysis, the probability
for 𝑋𝑖,1, 1 ≤ 𝑖 ≤ 𝑚, to occur is

𝑃𝑟𝑜𝑏{𝑋𝑖,1} = 𝑃∗ + (1− 𝑃∗)𝑃𝑎𝑃𝑏

= 1− (1− 1

𝑚
)𝑛∗ + (1− 1

𝑚
)𝑛∗ × (1− (1− 1

𝑚
)𝑛𝑎−𝑛∗)×

(1− (1− 1

𝑚
)𝑛𝑏−𝑛∗)

= 1− (1− 1

𝑚
)𝑛𝑎 − (1− 1

𝑚
)𝑛𝑏 + (1− 1

𝑚
)𝑛𝑎+𝑛𝑏−𝑛∗ .

(6)

Transforming (3) to 𝑉𝑎,0 = (1− 1
𝑚 )𝑛𝑎 and 𝑉𝑏,0 = (1− 1

𝑚 )𝑛𝑏 ,
we have

𝑃𝑟𝑜𝑏{𝑋𝑖,1} = 1− 𝑉𝑎,0 − 𝑉𝑏,0 + 𝑉𝑎,0𝑉𝑏,0(1− 1

𝑚
)−𝑛∗ (7)

Let 𝑉∗,1 be a random variable for the fraction of bits in 𝐸∗
that are ones. We can measure an instance value of 𝑉∗,1 from
𝐸∗. This instance value will be used in the estimator derived
later. We have

𝑉∗,1 =
1

𝑚

𝑚∑

𝑖=1

𝐼𝑋𝑖,1
, (8)

where 𝐼𝑋𝑖,1
be the indicator variable of 𝑋𝑖,1, whose value

is 1 when the event 𝑋𝑖,1 occurs and 0 otherwise. Clearly,
𝐸(𝐼𝑋𝑖,1

) = 𝑃𝑟𝑜𝑏{𝑋𝑖,1}. Hence,

𝐸(𝑉∗,1) =
1

𝑚

𝑚∑

𝑖=1

𝐸(𝐼𝑋𝑖,1
) =

1

𝑚

𝑚∑

𝑖=1

𝑃𝑟𝑜𝑏{𝑋𝑖,1}. (9)
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Because 𝑃𝑟𝑜𝑏{𝑋𝑖,1}, 1 ≤ 𝑖 ≤ 𝑚, has the same value in (7),
we have

𝐸(𝑉∗,1) = 1− 𝑉𝑎,0 − 𝑉𝑏,0 + 𝑉𝑎,0𝑉𝑏,0(1− 1

𝑚
)−𝑛∗ . (10)

Solving the equation for 𝑛∗, we have

𝑛∗ =
ln𝑉𝑎,0 + ln𝑉𝑏,0 − ln(𝐸(𝑉∗,1) + 𝑉𝑎,0 + 𝑉𝑏,0 − 1)

ln(1− 1
𝑚 )

.

(11)
Replacing the expected value 𝐸(𝑉∗,1) with the instance value
𝑉∗,1 measured from 𝐸∗, we have the following formula for an
estimated value 𝑛∗ of the number of common vehicles.

𝑛∗ =
ln𝑉𝑎,0 + ln𝑉𝑏,0 − ln(𝑉∗,1 + 𝑉𝑎,0 + 𝑉𝑏,0 − 1)

ln(1− 1
𝑚 )

. (12)

where 𝑉𝑎,0, 𝑉𝑏,0 and 𝑉∗,1 are measured from 𝐸𝑎 and 𝐸𝑏 and
𝐸∗, respectively.

IV. MEASUREMENT OF POINT-TO-POINT PERSISTENT

TRAFFIC

Consider two locations of interest, 𝐿 and 𝐿′. Let
{𝐵1, ..., 𝐵𝑡} and {𝐵′

1, ..., 𝐵
′
𝑡} be the sets of bitmaps measured

during the same periods at 𝐿 and 𝐿′, respectively. We want
to estimate the point-to-point persistent traffic between the
locations as defined in Section II-A. Let 𝑚 (𝑚′) be the largest
size of all bitmaps from 𝐿 (𝐿′). Without loss of generality,
assume 𝑚 ≤ 𝑚′.

A. Two-Level Bitmap Expansion and Joining

The first level of bitmap expansion and joining are per-
formed among the bitmaps from a single location. Consider
the bitmaps from 𝐿. For each bitmap 𝐵𝑗 , 1 ≤ 𝑗 ≤ 𝑡, if its
size is smaller than 𝑚, we expand it by replicating it multiple
times until its size reaches 𝑚. We then perform bitwise AND
over all expanded bitmaps from 𝐿. The resulting bitmap is
denoted as 𝐸∗, whose size is 𝑚. As we have explained in
Section III-A, the bitmap 𝐸∗ encodes the set 𝐶 of common
vehicles appearing at one location 𝐿 during 𝑡 measurement
periods. Besides that, 𝐸∗ also encodes transient vehicles, e.g.,
those vehicles that set the first bit of one in 𝐸∗ in Figure 3.

Similarly, we expand each bitmap from 𝐿′ to the size of
𝑚′ and perform bitwise AND over all expanded bitmaps from
𝐿′. The result is denoted as 𝐸′

∗, which encodes the set 𝐶 ′ of
common vehicles appearing at 𝐿′ during the 𝑡 measurement
periods, as well as transient vehicles. What we are interested
here is not ∣𝐶∣ or ∣𝐶 ′∣; they are the subject of the previous
section. Let 𝐶 ′′ = 𝐶

∩
𝐶 ′. We want to know ∣𝐶 ′′∣, the number

of common vehicles that pass both 𝐿 and 𝐿′ during the
𝑡 measurement periods. When we discuss the point-to-point
common vehicles in 𝐶 ′′, the vehicles in 𝐶 or 𝐶 ′′ but not in
𝐶 ′′ will also be referred to as transient vehicles.

The second level of bitmap expansion and joining are
performed between two locations. If 𝑚 < 𝑚′, we expand 𝐸∗
by replicating it multiple times until its size research 𝑚′. The
expanded bitmap is denoted as 𝑆∗, where we use 𝑆 to signify
this is the Second level expansion. If 𝑚 = 𝑚′, 𝑆∗ is simply
𝐸∗. We join the expanded 𝑆∗ with 𝐸′

∗ by bitwise OR and the

resulting bitmap is denoted as 𝐸′′
∗ . (The reason for bitwise OR

instead of bitwise AND is that the probabilistic analysis for
deriving an estimator based on the result of bitwise AND is
extremely difficult, whereas bitwise OR gives a closed-form
formula.)

B. Deriving an Estimator for Point-to-Point Persistent Traffic

In Section III-B, a common vehicle always sets bits in
𝐸𝑎 and 𝐸𝑏 at the same index, which makes probabilistic
analysis much simpler. For persistent point-to-point traffic
measurement, a common vehicle may set bits in 𝐸∗ and 𝐸′

∗ at
difference indices, ℎ𝑣 = 𝐻(𝑣 ⊕𝐾𝑣 ⊕ 𝐶[𝐻(𝐿 ⊕ 𝑣) mod 𝑠])
mod 𝑚 and ℎ′𝑣 = 𝐻(𝑣 ⊕ 𝐾𝑣 ⊕ 𝐶[𝐻(𝐿′ ⊕ 𝑣) mod 𝑠])
mod 𝑚′, which are dependent on location coordinates, 𝐿 and
𝐿′. This makes the problem much harder because a common
vehicle does not necessarily set bits in 𝐸∗ and 𝐸′

∗ at the same
index. It only has a certain probability to do so.
𝐸∗ (or 𝐸′

∗) encodes both the set 𝐶 ′′ of common vehicles
and possibly some transient vehicles. Again based on (1), we
compute the number of independent vehicles that would have
produced the bitmap 𝐸∗ (or 𝐸′

∗):

𝑛 =
ln𝑉∗,0

ln(1− 1
𝑚 )

, 𝑛′ =
ln𝑉 ′

∗,0
ln(1− 1

𝑚′ )
(13)

where 𝑉∗,0 (𝑉 ′
∗,0) is the fraction of zeros in 𝐸∗ (𝐸′

∗). Similar to
Section III-B, we use an abstract set of 𝑛 independent vehicles
to produce the same effect as what all vehicles that pass 𝐿
will jointly produce in 𝐸∗. Yet the bits of ones in 𝐸∗ retain
all information from the common vehicles. We also use an
abstract set of 𝑛′ independent vehicles to summarize what the
vehicles passing 𝐿′𝑠 will produce in 𝐸′

∗.
For an arbitrary bit 𝐸′′

∗ [𝑖], 1 ≤ 𝑖 ≤ 𝑚′, whose value is the
OR of 𝑆∗[𝑖] and 𝐸′

∗[𝑖]. We derive the probability for 𝐸′′
∗ [𝑖]

to be zero. For this to happen, no common/transient vehicle
should set 𝑆∗[𝑖] or 𝐸′

∗[𝑖] to one. Let 𝑛′′ be the number of
common vehicles in 𝐶 ′′.

First, consider an arbitrary common vehicle in 𝐶 ′′. If the
vehicle sets 𝐸∗[𝑖 mod 𝑚] to one, then after expansion 𝑆∗[𝑖]
will be one. Let 𝐸∗[𝑖′ mod 𝑚], 1 ≤ 𝑖′ ≤ 𝑚′, be the bit that
the vehicle sets at 𝐿. The probability for 𝐸∗[𝑖′ mod 𝑚] to be
different from 𝐸∗[𝑖 mod 𝑚] is 1 − 1

𝑚 . In this case, 𝑆∗[𝑖] is
not set by the vehicle. Under this condition (𝑖′ mod 𝑚 ∕= 𝑖
mod 𝑚), we analyze the probability of the vehicle not setting
𝐸′

∗[𝑖] at location 𝐿′. The vehicle will be mapped at 𝐿′ to one
of its 𝑠 representative bits, including 𝐸′

∗[𝑖
′] with probability

1
𝑠 — in which case, 𝐸′

∗[𝑖] is not set because 𝑖′ ∕= 𝑖. With
probability 1 − 1

𝑠 , the vehicle is mapped to a bit other than
𝐸′

∗[𝑖
′], and that bit has a chance of 1

𝑚′ to happen to be 𝐸′
∗[𝑖].

In summary, the probability for any common vehicle not to
set either 𝑆∗[𝑖] or 𝐸′

∗[𝑖] is (1 − 1
𝑚 )( 1𝑠 + (1 − 1

𝑠 )(1 − 1
𝑚′ )).

The probability for none of the common vehicles to set either
𝑆∗[𝑖] or 𝐸′

∗[𝑖] is

𝑃1 = (1− 1

𝑚
)𝑛

′′
(
1

𝑠
+ (1− 1

𝑠
)(1− 1

𝑚′ ))
𝑛′′
. (14)

Second, there are 𝑛−𝑛′′ transient vehicles passing location
𝐿. The probability for none of these transient vehicles to set
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𝐸∗(𝑖 mod 𝑚) is (1− 1
𝑚 )𝑛−𝑛′′

. Similarly, there are 𝑛′ − 𝑛′′

transient vehicles passing location 𝐿′. The probability for none
of these transient vehicles to set 𝐸′

∗[𝑖] is (1− 1
𝑚′ )

𝑛′−𝑛′′
.

Now we model the value of the 𝑖th bit in 𝐸′′
∗ as a binary

random variable, where 1 ≤ 𝑖 ≤ 𝑚′. Let 𝑌𝑖,0, 1 ≤ 𝑖 ≤ 𝑚′, be
the event that the 𝑖th bit remains zero. Combining the above
analysis, we have

𝑃𝑟𝑜𝑏{𝑌𝑖,0} = 𝑃1(1− 1

𝑚
)𝑛−𝑛′′

(1− 1

𝑚′ )
𝑛′−𝑛′′

= (1 +
1

𝑠𝑚′ − 𝑠
)𝑛

′′
(1− 1

𝑚
)𝑛(1− 1

𝑚′ )
𝑛′

(15)

Applying (13), we have

𝑃𝑟𝑜𝑏{𝑌𝑖,0} = (1 +
1

𝑠𝑚′ − 𝑠
)𝑛

′′
𝑉∗,0𝑉 ′

∗,0 (16)

Let 𝑉 ′′
∗,0 be a random variable for the fraction of bits in 𝐸′′

∗
that are zeros. We have

𝑉 ′′
∗,0 =

1

𝑚′

𝑚′∑

𝑖=1

𝐼𝑌𝑖,0
, (17)

where 𝐼𝑌𝑖,0
be the indicator variable of 𝑌𝑖,0, whose value

is 1 when the event 𝑌𝑖,0 occurs and 0 otherwise. Clearly,
𝐸(𝐼𝑌𝑖,0

) = 𝑃𝑟𝑜𝑏{𝑌𝑖,0}. Hence,

𝐸(𝑉 ′′
∗,0) =

1

𝑚′

𝑚′∑

𝑖=1

𝐸(𝐼𝑌𝑖,0
) =

1

𝑚′

𝑚′∑

𝑖=1

𝑃𝑟𝑜𝑏{𝑌𝑖,0}. (18)

Because 𝑃𝑟𝑜𝑏{𝑌𝑖,0}, 1 ≤ 𝑖 ≤ 𝑚′, has the same value in (16),
we have

𝐸(𝑉 ′′
∗,0) = (1 +

1

𝑠𝑚′ − 𝑠
)𝑛

′′
𝑉∗,0𝑉 ′

∗,0. (19)

Suppose 𝑚′ is large. Solving the equation for 𝑛′′ and apply
ln(1 + 𝑥) ≈ 𝑥 when 𝑥 is small, we have

𝑛′′ ≈ 𝑠𝑚′(ln𝐸(𝑉 ′′
∗,0)− ln𝑉∗,0 − ln𝑉 ′

∗,0). (20)

Replacing the expected value 𝐸(𝑉 ′′
∗,0) with the instance value

𝑉 ′′
∗,0 measured from 𝐸′′

∗ , we have the following formula for an
estimated value 𝑛′′ of the number of common vehicles passing
both locations 𝐿 and 𝐿′ during all 𝑡 measurement periods.

𝑛′′ = 𝑠𝑚′(ln𝑉 ′′
∗,0 − ln𝑉∗,0 − ln𝑉 ′

∗,0). (21)

where 𝑉∗,0, 𝑉 ′
∗,0 and 𝑉 ′′

∗,0 are measured from 𝐸∗ and 𝐸′
∗ and

𝐸′′
∗ , respectively.

V. PRIVACY ANALYSIS

When a vehicle passes an RSU, the only thing that a vehicle
does is to set a bit in the RSU’s bitmap to one at an index
that may vary from location to location. Moreover, different
vehicles may choose the same indices. What each RSU gathers
is a bitmap, with each bit of one suggesting the passage of at
least one vehicle. Therefore, the tracker may possibly identify
the trajectory of a common vehicle through the observation
that bits with the same index at two different locations are both

ones. Below, we analyze privacy preservation of our persistent-
traffic measurement design in terms of the probabilistic noise-
to-information ratio as defined in Section II-C.

When a vehicle 𝑣 passes a location 𝐿, it sends an index
value 𝑖 to the RSU, which set the bit at the index in the bitmap
𝐵 to one, i.e., 𝐵[𝑖] = 1. Let 𝑚 be the size of 𝐵. Suppose the
authority is able to associate the index 𝑖 with the vehicle 𝑣
at 𝐿, for example, when the vehicle is stopped by a police
for speeding, there is no other vehicle around, and the police
informs the authority. Now if the authority finds at a different
location 𝐿′ that the bit at the same index in the bitmap 𝐵′ is
also one, i.e., 𝐵′[𝑖] = 1, can it assert that the vehicle 𝑣 has
moved from 𝐿′ to 𝐿, thus revealing the partial trajectory of
the vehicle?

Recall that other vehicles may choose the same index and
the same vehicle may choose difference indices at different
locations. The bit 𝐵′[𝑖] may have been set by other vehicles
passing 𝐿′; in this case, the above assertion about the trajectory
of 𝑣 will be wrong. Let 𝑝 be the probability that 𝐵′[𝑖] is set
to one by other vehicles even if 𝑣 does not pass 𝐿′. Let 𝑛′ be
the number of vehicles passing 𝐿′, each having a probability
of 1

𝑚′ to set 𝐵′[𝑖]. Therefore,

𝑝 = 1− (1− 1

𝑚′ )
𝑛′
. (22)

Let 𝑝′ be the probability that 𝐵′[𝑖] is set to one when 𝑣 does
pass 𝐿′. According to Section II-D, the same vehicle may set
bits at different indices at different locations. In particular, it
has 𝑠 representative bits and randomly selects one to set at 𝐿′.
Therefore, the probability for 𝑣 to set 𝐵′[𝑖] to one is 1

𝑠 . We
know by (22) that other vehicles will set 𝐵′[𝑖] with probability
𝑝. Hence,

𝑝′ = 𝑝+ (1− 𝑝)
1

𝑠
. (23)

The probabilistic noise-to-information ratio is therefore

𝑝

𝑝′ − 𝑝
=

1− (1− 1
𝑚′ )

𝑛′

(1− 1
𝑚′ )𝑛

′ 1
𝑠

. (24)

VI. SIMULATION

In this section, we perform simulations to evaluate the
performance of our proposed persistent traffic estimators in
terms of estimation accuracy and preserved privacy under
different parameter settings. We use both real transportation
traffic and synthetic traffic. To the best of our knowledge, this
is the first work that studies persistent traffic measurement (as
defined in Section II-A) through vehicle-to-infrastructure com-
munications. There are prior privacy-preserving approaches for
measuring point-to-point traffic [15], [16] or measuring travel
time [23]. But there is no prior work that measures persistent
point-to-point traffic under the same model in Section II-B.
We stress these are very different problems. Therefore, we
will compare the proposed estimators with some benchmark
methods of simpler designs to demonstrate the effectiveness
of the proposed design.
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A. Simulation Results Based on Real Traffic Data

First, we use the real-world vehicle trip table measured at
the city of Sioux Falls, South Dakota; the data can be found
in [24], which contains the actual traffic volume from one
point to another in the city. In our simulation, we generate
the point-to-point common vehicles between two locations 𝐿
and 𝐿′ based on the number 𝑛

′′
from the vehicle trip table,

and then randomly generate 𝑛 − 𝑛
′′

transient vehicles for 𝐿
and 𝑛′ − 𝑛

′′
transient vehicles for 𝐿′, where 𝑛 (𝑛′) is the

total traffic volume, i.e., the sum of all entries in the trip table
involving 𝐿 (𝐿′). The bitmap size 𝑚 (𝑚′) is computed from
𝑛 (𝑛′) and 𝑓 ; see Section II-D. In the simulation, we let 𝐿′ be
the location with the largest total traffic volume of all, with
𝑛′ = 451000. We randomly select 8 other locations as 𝐿.

We simulate 10 measurement periods with randomly gen-
erated transient vehicles. The performance of our estimator
on point-to-point persistent traffic between 𝐿 and 𝐿′ is shown
in Table I, where we set 𝑠 = 3 and 𝑓 = 2. The results are
the average of 1000 simulation runs. It can be seen from the
fourth row that 𝑚′ ∕= 𝑚 and their ratio ranges from 2 to
16. The 6th-9th rows present the relative error (defined in
Section II-C) when 𝑡 = 3, 5, 7, 10, respectively. In Table I,
we can see that the estimation error is mostly small. The error
is higher when 𝐿 = 8, where the number of common vehicles
is just 3,000, comparing with 451,000 vehicles passing 𝐿′ and
28,000 vehicles passing 𝐿; in this case, the noise generated
from the transient vehicles is high, relative to the number of
common vehicles.

We include the last line in the table for a benchmark
comparison with a simpler design where we set 𝑚′ = 𝑚 and
𝑚 is determined by 𝑛 and 𝑓 , which is to ensure the privacy of
the vehicles pass location 𝐿. Everything else stays the same
as described in the paper. The relative error in the last line
is larger than that in the 7th line (which is also bolded); in
both lines, 𝑡 = 5. For example, when 𝑛′′ = 3, 000 in the last
column, the relative error of the proposed estimator is just
0.0585, whereas the relative error of the same-size design is
1.3749.

The Sioux Falls data can only support limited evaluation.
We resort to synthetic data for other simulations.

B. Simulation Results Based on Synthetic Traffic

Next, we evaluate the proposed estimators based on syn-
thetic traffic data. For point persistent traffic measurement,
the number of vehicles that passes 𝐿 during each measurement
period is randomly generated from the range of (2000, 10000].
Let 𝑛𝑚𝑖𝑛 be the minimum number of generated vehicles that
pass location 𝐿 in any measurement period. We set the number
of common vehicles 𝑛∗ at 𝐿 during all measurement periods
from 0.01𝑛𝑚𝑖𝑛 to 0.5𝑛𝑚𝑖𝑛, with steps of 0.01𝑛𝑚𝑖𝑛. We set
𝑠 = 3 and 𝑓 = 2. We compare the proposed estimator
(Section III) with a benchmark method of a simpler design
that estimates directly from 𝐸∗ with �̂�∗ =

𝑙𝑛𝑉∗,0
𝑙𝑛(1−1/𝑚) [20]–

[22], where 𝐸∗ is the bitwise AND of all 𝑡 bitmaps from 𝐿.
The simulation results are presented in Fig. 4, where the

horizontal axis represents the actual persistent traffic volume

and the vertical axis represents the relative error. The left plot
is the comparison between the proposed estimator and the
benchmark when 𝑡 = 5, the right plot is the comparison when
𝑡 = 10. In both cases, the proposed estimator significantly
outperforms the benchmark, particularly when the persistent
traffic volume is relatively small. The relative error becomes
much smaller when 𝑡 is increased from 5 to 10. That is
because the AND join of more bitmaps helps filter out the
ones produced by transient vehicles (which are noise).

For point-to-point persistent traffic measurement, the num-
ber of vehicles that passes 𝐿 (or 𝐿′) is randomly generated
from (2000, 10000], and thus the two locations have the
same average traffic. Suppose 𝑛𝑚𝑖𝑛 (𝑛′

𝑚𝑖𝑛) is the minimum
number of generated vehicles that passed 𝐿 (𝐿′) during any
measurement period. Let 𝑛′′

𝑚𝑖𝑛 = min{𝑛𝑚𝑖𝑛, 𝑛
′
𝑚𝑖𝑛}. We

set the number 𝑛
′′

of common vehicles from 0.01𝑛′′
𝑚𝑖𝑛 to

0.5𝑛′′
𝑚𝑖𝑛, with step size of 0.01𝑛′′

𝑚𝑖𝑛.
Under different values of 𝑓 , Fig. 5 - 6 present the mea-

surement accuracy in a different form, with each point in the
figures representing a measurement, where the x-coordinate
of the point is the actual persistent traffic volume and the y-
coordinate is the estimated volume. We also draw the equality
line 𝑦 = 𝑥. The closer the points are to the line, the better the
measurement accuracy will be. As the points cluster around
the equality line, two plots is each figure confirm that the
proposed estimators produce good measurement accuracy for
both point persistent traffic and point-to-point persistent traffic.
When we increase the value of 𝑓 from 2 to 3, the estimation
accuracy is visibly better. Recall that 𝑓 is the ratio of the
bitmap size and the expected traffic volume. Increasing 𝑓
means that the bitmap size is increased, which reduces the
mixing of information from different vehicles, thus improving
accuracy, but in the meantime reducing privacy protection, as
we will see next.

C. Preserved Privacy

In Table II, we examine privacy protection by measuring
the probabilistic noise-to-information ratio with respect to 𝑓
and 𝑠. We know that the larger this ratio is, the better the
privacy protection will be, because it will become increasingly
uncertain to use the traffic records to track individual vehicles.
We want this ratio to be at least greater than 1. We see from the
table that the ratio increases when 𝑓 decreases or 𝑠 increases.
Earlier we have observed that the estimation accuracy moves
in the opposite direction: it decreases when 𝑓 decreases or 𝑠
increases. So there is a tradeoff between accuracy and privacy.
Based on all our numerical evaluations, we believe 𝑓 = 2 and
𝑠 = 3 make a good compromise between the two. Under these
parameters, our accuracy evaluation has consistently produced
good results, and the probabilistic noise-to-information ratio is
about 2 as shown in the table. In the last row, we also give the
noise probability 𝑝 that the traffic records will show a vehicle
passes both locations even when it actually does not. The value
of 𝑝 only depends on 𝑓 . It is about 40% when 𝑓 = 2. A noise-
to-information ratio of 2 implies a probability of 60% that the
traffic records will show a vehicle passes both locations when
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𝐿 1 2 3 4 5 6 7 8
𝑛 213000 140000 121000 78000 76000 47000 40000 28000
𝑚 524288 524288 262144 262144 262144 131072 131072 65536

𝑚′/𝑚 2 2 4 4 4 8 8 16
𝑛′′ 40000 20000 19000 8000 8000 7000 6000 3000

relative error (𝑡 = 3) 0.0122 0.0167 0.0210 0.0369 0.0361 0.0398 0.0438 0.0948
relative error (𝑡 = 5) 0.0101 0.0144 0.0169 0.0252 0.0267 0.0284 0.0265 0.0585
relative error (𝑡 = 7) 0.0111 0.0151 0.0171 0.0257 0.0241 0.0279 0.0251 0.0518

relative error (𝑡 = 10) 0.0104 0.0139 0.0172 0.0258 0.0256 0.0261 0.0234 0.0497
same-size bitmaps (𝑡 = 5) 0.0110 0.0172 0.0267 0.0510 0.0491 0.1271 0.1305 1.3749

TABLE I: relative error of point-to-point persistent traffic volume estimation in the Sioux Falls network
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Fig. 4: Relative error of point persistent traffic estimation. Left plot: 𝑡 = 5; right plot: 𝑡 = 10.
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Fig. 5: Left plot: measurement accuracy of point persistent traffic volume (𝑡 = 5, 𝑓 = 2); right plot: measurement accuracy of
point-to-point persistent traffic volume (𝑡 = 5, 𝑓 = 2).
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Fig. 6: Left plot: measurement accuracy of point persistent traffic volume (𝑡 = 5, 𝑓 = 3); right plot: measurement accuracy of
point-to-point persistent traffic volume (𝑡 = 5, 𝑓 = 3).
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����𝑠
𝑓

𝑓 = 1 𝑓 = 1.5 𝑓 = 2 𝑓 = 2.5 𝑓 = 3 𝑓 = 3.5 𝑓 = 4

𝑠 = 2 3.4368 1.8956 1.2975 0.9837 0.7912 0.6614 0.5681
𝑠 = 3 5.1553 2.8433 1.9462 1.4755 1.1869 0.9922 0.852
𝑠 = 4 6.8737 3.7911 2.5950 1.9673 1.5825 1.3229 1.1361
𝑠 = 5 8.5921 4.7389 3.2437 2.4592 1.9781 1.6536 1.4201
𝑝 0.6321 0.4866 0.3935 0.3297 0.2835 0.2485 0.2212

TABLE II: Privacy preserving: the probabilistic noise-to-information ratio and noise 𝑝

it does, including the noise contribution of 40%. Noise (40%)
overwhelms information (20%) by a ratio of 2 to 1, making
any tracking result very questionable.

VII. CONCLUSION

This paper studies the new problems of persistent point
traffic measurement and persistent point-to-point traffic mea-
surement in the context of intelligent vehicular networks,
where the vehicles can communicate with the RSUs wirelessly.
We present the operation protocol that the RSUs use to encode
the vehicles in their traffic records. We propose two novel
estimators for measuring point persistent traffic volume and
point-to-point persistent traffic volume. The estimator design
considers both measurement accuracy and privacy preserva-
tion. We analyze the preserved privacy of the estimators. The
numerical evaluation demonstrates the effectiveness of the pro-
posed methods in producing high measurement accuracy and
allowing accuracy-privacy tradeoff through parameter setting.
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