
Approximately-Perfect Hashing: Improving
Network Throughput through Efficient Off-chip

Routing Table Lookup

Zhuo Huang, Jih-Kwon Peir, Shigang Chen
Department of Computer & Information Science & Engineering, University of Florida

Gainesville, FL, 32611, USA
{zhuang, peir, sgchen }@cise.ufl.edu

Abstract—IP lookup is one of the key functions in the
design of core routers. Its efficiency determines how fast a
router can forward packets. As new content is continuously
brought to the Internet, novel routing technologies must be
developed to meet the increasing throughput demand. Hash-
based lookup schemes are promising because they have low
lookup delays and can handle large routing tables. To achieve
high throughput, we must choose the hash function to reduce
the lookup bandwidth from the off-chip memory where the
routing table is stored. The routing table updates also need
to be handled to avoid costly re-setup. In this paper, we
propose AP-Hash, an approximately perfect hashing approach
that not only distributes routing-table entries evenly in the
hash buckets but also handles routing table updates with low
overhead. We also present an enhanced approach, called AP-
Hash-E, which is able to process far more updates before
a complete re-setup becomes necessary. Experimental results
based on real routing tables show that our new hashing
approaches achieve a throughput of 250M packets per second
and perform re-setup as few as just once per month.

I. INTRODUCTION

The Internet is becoming the world’s communication
backbone as more and more content is moving from the
traditional media into the IP domain. Network throughput
is ever increasing, driven by bandwidth demand from new
applications, including IPTV, peer-to-peer video streaming,
online games, cloud computing, E-commerce, distrusted
data center network, etc. The line speed of a core router
is expected to reach terabits per second in near future. To
match the optical speed, the routing-table lookup function
must also be upgraded.

Each entry in a routing table consists of an address
prefix (or prefix in short), output port and other routing
information. When a router receives a packet, it extracts the
destination address, matches it against the prefixes in the
routing table, and forwards the packet based on the routing
information in the matching entry. If there are multiple
matches, the entry with the longest prefix wins. This is
called the longest prefix match (LPM).

The routing tables on todays core routers contain more
than 300K prefixes and their sizes are continually growing
[1]. Routing tables for the future IPv6 will be much larger.
Although the routers have fast on-chip memory, the size
of such memory is usually insufficient to hold a large
routing table. Hence, the routing table is likely stored in
off-chip memory. During IP lookup, routing information

is fetched from off-chip memory, which is the most time-
consuming step and likely bottleneck that determines the
throughput. It is essential to optimize off-chip access and
allow incrementally routing table updates without frequent
re-setup of the whole table.

Existing routing-table lookup schemes can be classified
into three categories, which are TCAM-based schemes [2],
trie-based schemes [3] and hash-based schemes [4], [5].
However, ever-increasing routing table sizes and speed
demands bring severe challenges to the TCAM-based and
tried-based schemes. The TCAM-based schemes can only
handle the small or middle-sized routing tables due to high
hardware and power costs. The trie-based schemes need
multiple memory accesses per packet and have variable
routing time.

Hash-based lookup schemes have low lookup delays and
can handle a large routing table. The routing table is stored
in an array of off-chip hash buckets. Each bucket contains
a small number of prefixes and the associated routing
information. The bucket in which a specific prefix is stored
is determined by one or multiple hash functions (using
the prefix as input). When a router receives a packet, it
performs two tasks. First, it determines the size of the prefix
it should extract from the destination address for longest
prefix match in routing-table lookup. Second, it determines
which bucket(s) should be fetched from off-chip memory
in order to find a matching prefix.

The first task has been solved by Controlled Prefix
Expansion [6] or Bloom filter and its variances [7], [4].
The focus of this paper is on the second task. Once an
appropriate prefix is extracted from the destination address,
the router has to use this prefix to identify and fetch one
or multiple hash buckets to the processor chip, which will
then find the matching routing entry. To maximize the
throughput, we want to minimize the amount of data that
is fetched off-chip per lookup.

The bucket size is determined by the largest number of
prefixes (together with the associated routing information)
that a bucket has to store. Balanced distribution of prefixes
in the hash buckets help reduce the bucket size. Using a
single hash function will result in a large bucket size and
high off-chip overhead since it cannot achieve balanced
distribution. Multiple Hash functions can be used to balance
the prefix distribution in the buckets [8], [9] but those
schemes need to fetch multiple buckets per lookup. Perfect,

This paper was presented as part of the Mini-Conference at IEEE INFOCOM 2011

978-1-4244-9921-2/11/$26.00 ©2011 IEEE 311

TABLE I
NOTATIONS

Symbol Meaning
N Set of keys (prefixes)
n Number of keys
M Set of buckets
m Number of buckets
b Bucket size
d Number of Hash functions
s Bits of one prefix and its routing information
B Bandwidth in terms of number of bits per second
L Set of entries in HIT
l Number of entries in HIT
hi i-th hash function that maps prefix to the hash table
g Hash functions that maps prefix to HIT

HIT (i) i-th entry in HIT
Gi A group of prefixes x, where g(x) = i

collision-free hash functions [10] guarantee the minimum
bucket size. However, they can only work with a pre-
determined prefix set and require considerable on-chip
space to record the hash function itself [11].

In this paper, we propose a new hashing approach called
Approximately-Perfect Hashing (AP-Hash). It uses a small
number of hash functions and a small on-chip Hash Index
Table (HIT) to balance the prefix distribution in the hash
buckets. The AP-hash performs two levels of hashing and
table access: on-chip access to the HIT, and off-chip access
to the routing table that is stored in hash buckets. During
the setup, we first hash each prefix to an HIT entry, which
stores a hash function index, indicating which specific
hashing function we shall use to place the prefix in the hash
buckets. By adjusting the values in the HIT, we can alter the
placement of the prefixes in the buckets and achieve almost
perfect distribution. During the lookup of a prefix, we hash
the prefix to an HIT entry, retrieve the hash function index,
and use the corresponding hash function to identify an off-
chip bucket for retrieval. The AP-Hash can handle routing-
table updates with minimum HIT re-setups. When new
prefixes are inserted in the routing table, one or more HIT
entries are modified to avoid overflowing any bucket.

This paper makes several key contributions. First, to the
best of our knowledge, the AP-Hash is the first that uses
a small intermediate table to record the hashing function
for each address prefix in order to balance the prefix
distribution in a hash-based routing table. Second, the
AP-Hash provides an efficient solution to handle frequent
routing-table updates to minimize the costly re-setup. Third,
we evaluate the AP-Hash and its enhancement AP-Hash-E
using real routing tables from the core routers. Experiments
show that they can deliver a lookup rate of 250 million
packets per second to accommodate over 100 Gbps high-
speed core router line cards. In addition, based on the
routing table update traces, we find that the AP-Hash-E
only performs the routing table re-setup once a month.

II. EXISTING HASH APPROACHES

In this section, we review the existing hashing-based
routing schemes. Suppose n prefixes are mapped through
hash functions to m buckets for storage. The bucket size
is determined by the largest number of prefixes (and their
routing information) that have to be stored in any bucket.
When a packet arrives, the router first determines the length
of the longest-matched prefix lp as described in [5]. Then,
the first lp bits of the destination address is hashed to locate

the bucket in the hash table. The whole bucket is fetched to
a network processor chip, where all prefixes in the bucket
are compared with the destination address in parallel to find
the matching prefix and its routing information.

The IP-lookup procedure on a router can be pipelined to
overlap the different stages such as determining the prefix
length, fetching buckets from off-chip, and prefix compar-
ison. The most time-consuming step is fetching buckets
from off-chip, which determines maximum throughput.
Let B be the maximum bandwidth between the network
processor chip and the memory, s be the size of a routing-
table entry, including the prefix and its routing information,
b be the bucket size, i.e., the number of prefixes that a
bucket can store, and d be the number of buckets the
router has to fetch for each lookup. The maximum routing
throughput is B

dbs
. Notations are given in Table I.

Since B and s are usually pre-determined, we should
minimize both d and b to maximize the routing throughput
B
dbs

. The optimal routing throughput is Bm
sn

where d = 1
and b = n

m
. Hence, an ideal hash-based lookup scheme

will fetch a single bucket per lookup and evenly distribute
prefixes in hash buckets such that b is minimized to n

m
.

However, the existing hashing approaches cannot achieve
these goals.

Although approaches using a single general hash func-
tion only need to fetch one bucket, the bucket size is usually
large due to the unbalance among the buckets. It is well
known that multiple hash functions can be used to reduce
the bucket size [13]. Suppose we use d hash functions.
Each prefix is hashed to d buckets and the prefix is placed
into the bucket currently having the fewest prefixes. In
general, using multiple hash functions can achieve a near-
optimal bucket size, but it requires fetching d buckets
during lookup. Therefore, the throughput is limited to Bm

dsn

which is only 1
d

of the optimal.
Perfect hash function, which can guarantee the minimum

bucket size, has been applied in routing table lookup
problem [10]. Although the bucket size is reduced to the
minimal, any change to the routing table requires updating
the perfect hash function itself, which is a costly operation.
Moreover, the current best approach still requires more than
2n bits to encode the minimal perfect hash function [11].

III. APPROXIMATELY-PERFECT HASH FUNCTION

AP-HASH

A. Basic Design

The AP-Hash uses d hash functions so that each prefix
can be placed into one of the d buckets to balance the
buckets. In this approach, instead of fetching all d buckets,
it fetches only a single bucket for each routing lookup.
To accomplish this, the AP-Hash uses a small Hash Index
Table (HIT) to record the id of the hash function which each
prefix used. The HIT has l entries and each entry contains
e bits to encode the d choices of the hash functions, where
e = log d. As shown in Figure 1, each prefix is first hashed
to an entry in HIT to select the predetermined hashing
function for the prefix.

Note that the AP-Hash can work with any value of d and
l. In our study, we narrow the value of d to be a power of 2
to make full use of the encoded bits in each HIT entry. We
also limit the number of hashing functions to 8 to confine

312

TABLE II
SINGLE HASH, D-LEFT HASH, PERFECT HASH AND AP-HASH

bucket size b bits fetched per lookup on-chip space (bits) off-chip space (bits) update

Single Hash Θ(lnm
ln⌈1+m

n
lnn⌉

+ n
m
)[12] b× s 0 b×m× s straightforward

Multiple Hash (1 + ◦(1)) × ln lnm
ln d

+ Ω(n
m
)[13] b× s× d 0 b×m× s straightforward

Perfect Hash n
m

b× s > 2n b×m× s re-setup involved

AP-Hash ∼ n
m

b× s l× l b×m× s low cost

Prefix

Hash

Index

Table

(HIT)

Hash

Table

Hash Unit

Selected

Hash

Function

Index

Fig. 1. AP-Hash Diagram

the space overhead. In addition, the HIT size is limited to
l = n

2 entries, such that the on-chip space requirement is
0.5n ∼ 1.5n bits when 2-8 hash functions are used. Note
also that the extra HIT access increases the lookup time.
However, due to its small size and on-chip implementation,
this additional delay can be hidden in the pipelined design.

In a network, a router needs to handle the setup, lookup,
and update of the routing table. In the AP-Hash, the setup
stage establishes the HIT for the selected hashing functions.
The hashed routing table can be arranged accordingly.
During the lookup stage, a hashing function is selected
from the HIT, and the hashed bucket is fetched from off-
chip memory. The bucket size determines the achievable
network throughput. Finally, the AP-Hash must modify the
HIT and the routing table when network configurations are
changed. These important functions are described in the
following subsections.

B. AP-Hash Setup

In HIT setup, a complete search of all dl combinations
for the best HIT values is unrealistic. Instead, we propose
a two-step greedy setup approach including the first-setup
and the refine-setup.

In first-setup, we begin with an empty HIT. First, a
general hash function g(x) is selected. Then, the key set N
(i.e., prefixes in the routing table) is divided to l subgroups,
G0, G1, · · · , Gl−1, where Gi = {x|x ∈ N and g(x) =
i}. AP-Hash hashes all the prefixes in subgroup Gi into the
buckets using the same hash function hHIT (i).

In determining the best hash function hHIT (i), a data
structure named bucket-load counter is introduced to count
and compare the loads for all buckets. The bucket-load
counter is defined as blc = [b, vb, vb−1, vb−2, · · · , v0]
while b is the largest bucket size and vj is the num-
ber of buckets that contains j keys (prefixes). As-
sume blc = [b, vb, vb−1, vb−2, · · · , v0] and blc′ =
[b′, v′b, v

′

b−1, v
′

b−2, · · · , v
′

0] are two bucket-load counters.
We define blc is smaller than blc′ (blc < blc′) if one of
the following conditions is true.1) b < b′; 2) b = b′ and
vb < v′b; 3) b = b′ and vi = v′i (t < i ≤ b) and vt < v′t.

We start with G0, select the hash function hj among all
d hash functions that results in the smallest bucket-load
counter, set HIT (0) = j, and use the hash function hj to
hash all prefixes in G0 to the buckets. G1, G2, · · · , Gl−1

are consequently processed. The first-setup algorithm is
summarized in Figure 2.

for i in [0, x− 1] do
Calculate Gi

for each j, 0 ≤ j ≤ d− 1 do
for each prefix p ∈ Gi do

Calculate hj(p)
Assign key p to the bucket hj(p)

end for
Calculate the bucket-load vector blvj

end for
Find the min-max vector blvj and set V (i) = j
Assign all the keys in Gi to buckets using hj

end for

Fig. 2. AP-Hash First-Setup

The first-setup may not produce an approximately perfect
bucket size. The main reason is that only the prefixes in
G0, G1, · · · , Gi are involved in the load computation when
setting up HIT (i), but the prefixes in Gi+1, · · · , Gl−1 are
not considered. The refine-setup adjusts the HIT values. It
first retries all d possible values for HIV (0) and moves
the prefixes in G0 to the new buckets. If any hash function
results in a smaller bucket-load counter than the existing
one, the HIT (0) is updated to use the new hash function.
This procedure repeats for HIV (1),· · · , HIV (l− 1). The
refine-setup procedure can be iteratively performed multiple
times. However, one-time Refine-Setup usually produces an
approximately perfect bucket size.

C. Hash Table Update

There are three types of updates to a hash table, 1)
inserting new prefixes, 2) deleting existing prefixes, and
3) modifying the routing information of an existing pre-
fix. The deletion and modification for the AP-Hash are
straightforward. It searches the prefix to be deleted or
modified and removes it from the bucket or make any
necessary modification. However, inserting new prefixes is
more complicated. Although we can decide which bucket
the new prefix should be placed by finding the hashing
function from the HIT, the hashed bucket for the new prefix
may already be full. Inserting new prefixes into a full bucket
will prevent the bucket from being fetched in time to sustain
the target network throughput.

In this case, a straightforward solution is to re-setup the
whole HIT. However, re-setup is costly and not suitable
for frequent prefix insertions in the routing table. One
acceptable solution is to mildly modify the HIT and
the routing table when inserting a new prefix. However,
adjusting an HIT entry may affect multiple prefixes that
have already been placed into buckets. We add another
data structure, HIT mapping table, to handle the updates.
The HIT mapping table records each prefix subgroup Gi,
0 ≤ i ≤ l − 1 . It is located in the off-chip memory and
only accessed when a prefix is inserted or deleted.

The procedure to insert a prefix x works as follows.
First, we calculate i = g(x), put x into Gi in the HIT
mapping table and calculate h(x) = hHIT (i)(x). If the
bucket B(h(x)) still has room to hold the new prefix,

313

the new prefix is inserted to the bucket and the insertion
finishes. Otherwise, we try to modify HIT (i) to fit all
prefixes. The prefix subgroup Gi is fetched from the HIT
mapping table. We select a new hashing function hj and
check whether the new prefix x and all the prefixes in Gi

can find a room in the new buckets when using hj . If
successful, we set HIT (i) = j and move all the prefixes
in Gi to the new buckets. Otherwise, we try another hash
function hj . If all the possible hashing functions fail, the
HIT re-setup procedure is invoked.

D. Ap-Hash-E: an Enhancement of AP-Hash

In this subsection, we propose an enhanced version of
AP-Hash, named AP-Hash-E, which modifies multiple HIT
indices to resolve the bucket overflow problem. AP-Hash
fails to insert a new prefix if all values of the HIT entry
which the new prefix is hashed to result in prefix overflow
in one or more buckets. In this case, instead of resetting all
the entries of the HIT, the new AP-Hash-E tries to remove
some prefix in the overflow bucket to other buckets in hope
to avoid the overflow problem.

The AP-Hash-E works as follows. During the AP-Hash
insertion procedure, the prefix subgroup Gi is fetched from
the HIT mapping table. We select a new hashing function
hj and check whether the new x and all the prefixes in
Gi can find a room in the new buckets indexed by using
hj . When hj fails due to overflow, the hashing function
hj is remembered if it produces a minimum overflow. A
minimum overflow produces a single prefix overflow in
only one bucket. When all hashing functions of HIT (i)
fails, the new AP-Hash-E tries to resolve the detected
minimum overflow cases one-by-one.

In resolving a minimum overflow, it selects one prefix in
the overflowed bucket, removes it from the bucket, treats it
as a new prefix to insert and calls the AP-Hash algorithm
presented earlier. The AP-Hash-E is successful whenever
the overflow is resolved. The prefix in Gi, which is just
placed into the overflowed bucket, will not be selected.
The procedure repeats until the overflow is resolved or all
the prefixes in the overflowed bucket are tried. A re-setup
procedure is only invoked when all the detected minimum
overflow cases cannot be resolved.

IV. PERFORMANCE EVALUATION

When a packet arrives, the router first determines the
length of the longest-matched prefix lp as described in [7],
[4], [5]. Then, the first lp bits of the destination address plus
its length are used to hash the bucket in the hash table. In
the AP-Hash, the lp bits and its length are first hashed to the
HIT using a general hashing function in [14]. The selected
hashing function is then used to hash the lp bits plus its
length to locate the bucket in the hash table.

Five routing tables from the Internet backbone routers
are used in our experiments: as286, as513, as1103, as4608,
and as4777, downloaded from [1]. These tables are dumped
from the routers at 7:59am January 1st, 2010 and contain
276K, 291K, 279K, 283K, 281K prefixes respectively.

We compare three hashing schemes in our experiments:
single-hash, d-left-hash (d=2 and d=4) [4]; and the AP-
hash (e = 2, l = n

2), which is proposed in this paper using
the hash functions in [14]. In each experiment, we vary

TABLE III
THROUGHPUT, MEMORY SIZES FOR THREE HASH SCHEMES WITH

m = 350, 000

bucket Throughput bits pre key
size (M/sec) on-chip off-chip

Single Hash 7.62 65.61 0 604.4
2-left Hash 3 83.3 0 237.9
4-left Hash 2 62.5 0 159.6
AP-Hash 2 250 1 223.6

 0

 50

 100

 150

 200

 250

 300

 150000 300000 450000 600000 750000

R
o

u
ti

n
g

 T
h

ro
u

g
h

p
u

t
(M

/s
ec

o
n

d
)

 the number of bucket (m)

Single Hash
2-left Hash
4-left Hash

AP-Hash (e=2)

Fig. 3. The average routing throughput of 5 routing tables for Single
Hash,, d-left (d = 2 and d = 4) and AP-Hash, under different number of
buckets.

the number of buckets, m between 150K and 750K. We
try all five routing tables for each studied hashing scheme
and show the average result of all five tables based on the
average of 100 simulations.

Table III summaries the experiment results of the three
hash schemes when m = 350, 000. We compare the
bucket size, the routing throughput, and the memory size
for the three simulated schemes. We assume each prefix
and its routing information are stored in 64 bits. We use
the state-of-art QDRTMIII SRAM to evaluate the routing
throughput. The current QDR-III SRAM runs at 500MHz
and supports 64- bit read/write operations per cycle. The
throughput can be calculated as 500

b
for single hash and

AP-Hash, and 500
db

for d-left hash since it needs to fetch
d buckets. We count both on-chip and off-chip space
requirement per prefix for all three hashing schemes. For
the AP-Hash, the on-chip space is for building the HIT, and
the off-chip space includes both the routing table and the
HIT mapping table (assuming 64bits per prefix).

We can make several observations from Table III. First,
the AP-Hash achieves the highest routing throughput of
250 millions IP lookups per second. It has over three times
higher throughput than the throughput of using the single
hash and the d-left hashes. This is because the AP-Hash not
only reduces the bucket size to be nearly optimal but also
needs to fetch only one bucket for each lookup. Second,
although the d-left hashes have small bucket size, it needs
to fetch d buckets so that the routing throughput is reduced
to 1/d., Third, even with the HIT Mapping Table, the AP-
Hash still requires smaller off-chip memory space than the
single-hash and the 2-left hash. The 4-left hash needs the
smallest off-chip memory, however, its routing throughput
is the worst. Lastly, the AP-Hash needs small on-chip space,
1 bit per prefix to build the HIT.

Next, we simulate the impact of using different number
of buckets. The results are given in Figure 3 where the
horizontal axis is the number of buckets and the vertical
axis is the average throughput. We can observe that the
AP-Hash has about three times routing throughput than any
other hashing schemes over the entire range of buckets.

In the third experiment, we study how our AP-Hash

314

TABLE IV
ROUTING TABLE UPDATES UNDER AP-HASH AND AP-HASH-E

AP-Hash AP-Hash-E
number of buckets 350,000 350,000
forced to re-setup 221 1.01

bit fetched per add 305.2 305.0
bit updated per add 130.6 129.6

and its enhancement AP-Hash-E handles the routing table
updates. We initialed our hash table with the routing table
as286 dumped at January 1st, 2010 from [1] and use the
update trace during January 2010 to simulate the re-setup
frequency. The update trace contains 1.5 million additions
and 1.5 million deletions and 8 million updates on the
output port with m = 350, 000. As shown in Table IV,
the AP-Hash needs to re-setup the routing table about 221
times during the whole month, which is about 7 times a
day. The AP-Hash-E only needs to re-setup once for the
entire month. The bits fetched and updated for each prefix
addition for AP-Hash and AP-Hash-E are very close. The
results show that the enhanced AP-Hash-E rarely need to
re-setup the entire routing table.

V. RELATED WORK

There are three main categories of IP lookup approaches
which support the longest prefix match (LPM) require-
ment, including Ternary Content Addressable Memories
(TCAM)[2], trie-based searches [3], and hash-based ap-
proaches [8], [7], [4], [9], [5]. TCAMs are the special-
designed memory modules which support simultaneously
searching to all the stored contents. Although the delay for
TCAM is low, it requires significant space and power and is
not suitable for large routing tables. Trie-based approaches
use one-bit tree (trie) to organize the prefixes. They con-
sume fewer power and storage space, but needs multiple
consecutive off-chip memory accesses which result in long
lookup delays and low routing throughput.

Hashed-based approaches use hash tables to organize
the prefixes. It is power-efficient and capable of handling
large routing tables. However, there are two fundamental
difficulties for hash-based approaches: hash collisions and
inefficiency in handling the LPM function. Multiple hash-
ing functions can be used and each prefix can be placed into
the bucket with fewest prefixes among the d buckets with
the d hash functions [13], [8]. Cuckoo [9] and Peacock [15]
further reduce the bucket size by relocating the prefixes
from the long buckets to short ones. However, all those
approaches need to search multiple buckets.

Many works focus on handling the LPM requirement
in the hash-based approaches. Their goals are orthogonal
to what we do in this paper. The approaches, such as
Controlled Prefix Expansion [6], Bloom filter and its
invariance [7], [4], can be combined with our approaches.

An IP-lookup approach based on prefect hash functions
by using the counted Bloom filter is proposed in [10].
Although it can reach very high routing throughput, it
needs about 8.6 bit per key on chip and it cannot handle
the routing table updates. The DM-Hash approach in [16]
achieves one bucket access with near optimal bucket size
by using a small on-chip index table. However DM-Hash
also has difficulties to handle the routing table updates and
its on-chip space is larger than our AP-Hash.

VI. CONCLUSION

This paper studies the hash-based IP lookup problem and
focus on solving two essential issues. The first one is how to
minimize the off-chip routing-table access by reducing both
the size of hashing buckets and the number of buckets that
needs to be fetched for each routing lookup. We introduce
a new hashing scheme, AP-Hash, which can balance the
hashing buckets, hence reduce the size of the bucket by
providing multiple choices of hash functions in placing
each prefix. To avoid accessing multiple buckets during the
lookup, a small Hash Index Table (HIT) is implemented
using the fast on-chip memory in network routers to record
the selected hash function for each prefix. The second issue
is how to handle routing table updates. A HIT mapping
table which records the mapping of all the prefixes into the
HIT is saved off-chip. Such a table allows partial updates
of the HIT and routing table to keep the buckets balanced
when new prefixes are inserted. Performance evaluations
of real routing tables and update traces show that our
approach can maintain a constant routing throughput of
250M lookups per second and only needs to re-setup the
whole table once in a month.

REFERENCES

[1] “Routing Information Service,” http://www.ripe.net/ris/, 2009.

[2] M. Akhbarizadeh, M. Nourani, D. Vijayasarathi, and P. Balsara,

“Pcam: A Ternary Cam Optimized for Longest Prefix Matching

Tasks,” In Proc. of IEEE ICCD, 2004.

[3] W. Jiang, Q. Wang, and V. Prasanna, “Beyond TCAMS: An SRAM-

based Parallel Multi-Pipeline Architecture for Terabit IP Lookup,”

In Proc. of IEEE INFOCOM, 2008.

[4] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Vargh-

ese, “Beyond Bloom Filters: From Approximate Membership

Checks to Approximate State Machines,” In Proc. of ACM SIG-

COMM, 2006.

[5] H. Song, F. Hao, M. Kodialam, and T. Lakshman, “IPv6 Lookups

using Distributed and Load Balanced Bloom Filters for 100Gbps

Core Router Line Cards,” In Proc. of INFOCOM, 2009.

[6] V. Srinivasan and G. Varghese, “Fast Address Lookups Using Con-

trolled Prefix Expansion,” ACM Transactions on Computer Systems,

1999.

[7] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor., “Longest Prefix

Matching using Bloom Filters,” In Proc. of ACM SIGCOMM, 2003.

[8] A. Broder and M. Mitzenmacher, “Using Multiple Hash Functions

to Improve IP Lookups,” In Proc. of INFOCOM, 2001.

[9] S. Demetriades, M. Hanna, S. Cho, and R. Melhem, “An Efficient

Hardware-based Multi-hash Scheme for High Speed IP Lookup,” In

Proc. of IEEE HOTI, Aug 2008.

[10] Y. Lu, B. Prabhakar, and F. Bonomi, “Perfect hashing for network

applications,” Proceedings of IEEE Symposium on Information

Theory, 2006.

[11] F. C. Botelho, R. Pagh, and N. Ziviani, “Simple and space-efficient

minimal perfect hash functions,” WADS, 2007.

[12] A. Czumaj and V. Stemann, “Randomized allocation processes,”

Proceedings of the 38th Annual Symposium on Foundations of

Computer Science, 1997.

[13] Y. Azar, A. Broder, and E. Upfal, “Balanced Allocations,” In Proc.

of ACM STOC, 1994.

[14] M. Ramakrishna, E. Fu, and E. Bahcekapili, “A performance study

of hashing functions for hardware applications,” Proceedings of 6th

International Conference Computing and Informationy, 1994.

[15] S. Kumar, J. Turner, and P. Crowley, “Peacock Hash: Fast and Updat-

able Hashing for High Performance Packet Processing Algorithms,”

In Proc. of IEEE INFOCOM, 2008.

[16] Z. Huang, D. Lin, S. Chen, J. Peir, and I. Alam, “Fast Routing

Table Lookup Based on Deterministic Multi-Hashing,” In Proc. of

IProceedings of the 18th IEEE ICNP, 2010.

315

