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Abstract—Similar to the revolutionary change that the barcode
system brought to the retail industry, the RFID technologies are
expected to revolutionize the warehouse and inventory manage-
ment. After RFID tags are deployed to make the attached objects
wirelessly identifiable, a natural next step is to invent new ways
to benefit from this “infrastructure”. For example, sensors may
be added to these tags to gather real-time information about the
state of the objects or about the environment where these objects
reside. This leads to the problem of designing efficient protocols
to collect such information from the tags. It is a new problem that
the existing work cannot solve well. In this paper, we first show
that a straightforward polling solution will not be efficient. We
then propose a single-hash information collection protocol that
works much better than the polling solution. However, a wide
gap still exists between the execution time of this protocol and a
lower bound that we establish. Finally, we propose a multi-hash
information collection protocol that further reduces the expected
execution time to within 1.61 times the lower bound.

I. INTRODUCTION

The barcode system brought a revolutionary change in the
retail industry. Information can be embedded in the barcode.
In particular, a product ID can be encoded. Once a reader
retrieves the ID, it can use the ID to search a database to find
all information about the product, which may include price,
features, or even manufacture and shipping history. However,
barcode has a very small reading range. This is fine when used
for checkout in a retail store, but it is not suitable for warehouse
management. RFID technologies overcome this deficiency. A
reader can wirelessly access the ID of a RFID tag from a
distance even without line of sight. The most popular tags used
in today’s industry are passive ones. They do not carry batteries,
but instead rely on radio waves emitted by the reader for energy
to power its circuit and transmit information back to the reader.

For warehouse management and inventory control, it is cer-
tainly much easier to use passive tags than barcodes. A person
can carry a mobile reader and walk through the warehouse to
collect information from the tags without having to move close
to each individual object. These tags are cheap, but their oper-
ational range is short, especially in an indoor environment with
lots of racks and mechanise. They do not have much memory
space or processing capability for sophisticated functions. If
the goal is to fully automate the warehouse management in a
large scale, we believe battery-powered active tags are a better
choice. Their much longer operational distance allows a reader
to access numerous tags in a large area at one or a few fixed
locations.

The deployment of active tags will not only make the objects
in a warehouse wirelessly identifiable, but also provide an
“infrastructure” that we can leverage to do other things. For
example, we may incorporate miniaturized sensors into a tag’s
circuit to collect useful information in real time and report the
information to the RFID reader periodically. Such enhancement
to the RFID system will tremendously expand its utility. A
sensor may be designed to monitor the state of the tag itself,
for instance, the residual energy level of the battery. In this
case, the information reported to the reader can be just one
bit: ‘1’ indicates that the battery needs to be replaced, and ‘0’
means otherwise. In another example, consider a large chilled
food storage facility, where sensor-augmented RFID tags are
attached to the food items. Periodic temperature readings help
ensure the quality of the food.

The problems of how to build sensor-augmented tags or
how to encode sensor information in a number are outside
the scope of this paper. We study how to design efficient
protocols to collect sensor-produced information from the tags.
Information collection is a well-studied area in sensor networks,
but RFID systems are fundamentally different. They use a low-
rate channel (53Kb/sec in [1]). Communications are driven by
the reader. All tags communicate directly with the reader, and
they do not communicate amongst themselves. On the contrary,
sensor networks in the literature are mostly modeled as multi-
hop wireless networks that are capable of executing a rich set
of routing, packet scheduling, data aggregation, localization,
security, and MAC protocols. These protocols do not exist
for RFID tags, and in fact they cannot be handled by the
limited resources on the tags. The simpler communication
model adopted by RFID systems changes the nature of the
information collection problem as it places more restrictions in
the solution space.

The industrial RFID research strives to design efficient circuit
to operate for a greater distance and better reliability at a
lower power level. Much of the academic research is devoted to
design ID-collection protocols that read the IDs from the tags
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. In recent years,
some interest is shifted to other functions that do not require
reading the tag IDs, such as estimating the number of tags in
the system [12], [13], [14], [8], [15], [16]. An almost-universal
performance objective of these protocols is to reduce the overall
time it takes to read tag IDs or perform other functions.
The reason is that a RFID system in a large warehouse may
have tens of thousands of tags and, because it uses a low-
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rate channel, the execution time for completing a task can be
very long. A long execution time is not desirable in a busy
warehouse environment. Moreover, continuously powering the
tags for an extended period will drain their batteries. Some
interesting work also exists for the security of RFID systems
[17], [18], [19].

As we briefly reviewed above, a rich set of research results
exists for various important problems in RFID systems. Using
RFID tags for sensing purpose is not new [20], [21]. But to
the best of our knowledge, there is no prior work on how
to efficiently collect sensor-produced information from a large
number of tags to a RFID reader. Our main objective is to solve
this problem in approximately optimal (minimum) time.

In this paper, we first give a lower bound on the execution
time for any sensor information collection protocol. We point
out that the existing ID-collection protocols are ill-fitted for this
task. We then present a straightforward polling-based protocol
as a baseline for comparison. Its execution time is much
larger than the lower bound and its energy cost is also very
high. We set forward to design more sophisticated protocols
that significantly reduce the execution time toward the lower
bound. The first protocol is called the single-hash information
collection protocol (SIC). It totally eliminates radio collisions
by using a hash function to assign tags to unique slots of a
frame, during which the tags can transmit their data. However,
a majority of the slots in the frame has to be wasted due
to hash collisions. Our second protocol is called the multi-
hash information collection protocol (MIC). It uses multiple
hash functions to resolve hash collisions. By using seven hash
functions, the protocol’s execution time is within 1.61 times the
lower bound. For some applications, our simulations show that
the execution time of the MIC protocol is about one eighth of
the polling-based protocol and one twentieth of an ID-collection
protocol that is modified to piggyback sensor information.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Problem

Consider a RFID system with a large number of active tags
deployed in a region. Each tag is equipped with a sensor that
generates a certain type of information, which can be one
bit or multiple bits. In the rest of the paper, we will refer
to a tag’s sensor information simply as a tag’s information.
We assume that the RFID reader and the tags transmit with
sufficient power such that they can communicate over a long
distance. Communications between the reader and the tags are
time-slotted. The reader’s signal will synchronize the clocks
of the tags. Generally speaking, communications are driven by
the reader in a request-and-response pattern. The reader issues
a request, which is followed by a tag’s response or a slotted
time frame in which multiple tags respond.

The problem is to design a protocol for a reader to periodi-
cally collect information from the tags. Our goal is to minimize
the execution time of the information collection protocol, so
that it uses as little time as possible to gather data from the
tags.

B. Assumption

We assume that the RFID reader has access to a database
that stores the IDs of all tags. This is a reasonable assumption
for RFID-assisted warehouse management, where the tag IDs
are read into a database when new objects are moved into
the system and they are removed from the database when the
objects are moved out. Even if this operation is not performed,
there are many protocols that are designed to collect all tag IDs
from the system (see the introduction). Once the tag IDs are
collected, we can use the protocols designed in this paper to
periodically collect information from the tags.

The set of tags in a warehouse changes over time. Because
the execution time of our protocols is small, the set of tags
is likely to be stable during the protocol execution. However,
even if the set of tags changes, the reader can simply ignore
the tags that are added or removed from the system during the
protocol execution. The reader will start to collect information
from new tags in the next execution of the protocol.

Actions may need to be taken after the sensor information
indicates a problem: For example, the battery of a sensor needs
to be replaced or the temperature in a certain section of a chilled
storage is too high. The problem of physically locating the
alarm-raising tag is beyond the scope of this paper. One possible
method is to instruct the tag to keep transmitting so that it can
be located by a mobile device that detects the direction and
distance of a transmitting target. Another approach is to use a
localization protocol [22].

C. Performance Lower Bound and ID-collection Protocols

Let tid be the length of a time slot that the reader uses to
broadcast a tag ID, which is 96 bits in the Gen2 standard.
Note that the amount of time it takes the reader to transmit
an ID may be different from what it takes a tag to transmit
an ID because the reader and the tags may operate at different
transmission rates [1]. Let tinf be the length of a time slot for
a tag to transmit its information. The value of tinf depends
on the number of bits that the information contains, which is
application-specific. Let n be the number of tags in the system.
A lower bound for any protocol to collect information from all
tags is n×tinf , which is the aggregate time for all tags to report
their information. This lower bound is not achievable because
it takes additional time for the reader to send its request(s).
However, we can design a protocol whose expected execution
time is reasonably close to this lower bound.

Collecting sensor information from tags is a different prob-
lem than collecting IDs from the tags. In fact, solutions to
these two problems are complementary in practice. First, the
ID of a tag only needs to be read once when the tag enters the
system and it is removed when the tag exits. Sensor information
needs to be collected periodically. Second, tag IDs are a set of
numbers, whereas sensor information is not only a set of sensor
readings but also a mapping from the readings to the tags where
each sensor reading takes place.

One may argue that an ID-collection protocol can piggyback
a tag’s sensor information when it reads the tag’s ID. There
are two major types of ID-collection protocols: ALOHA-based

3102



or tree-based. It is well known that, for any ALOHA-based
protocol [6], [7], [8], [9], [10], [11], the optimal execution time
for reading n tags is e × n × T [23], where e is the natural
constant and T is the length of a time slot in which a tag’s ID
and its sensor information can be transmitted.1 Note that n×T
is not achievable due to collision in ALOHA. For tree-based
protocols [2], [3], [4], [5], analytical and simulation results have
shown that their best performance is comparable to the best of
the ALOHA-based protocols.

We know that a lower bound for only collecting sensor
information from n tags is n × tinf , where tinf can be as
little as one seventh of T when one bit information is reported
(see Section VI). Hence, the optimal execution time e×n×T
of an ID-collection protocol can be almost twenty times of
our lower bound. In contrast, our best protocol specifically
designed for information collection achieves an execution time
within 1.61 times the lower bound. The reason is that when
we periodically collect sensor information from tags, the IDs
of the tags are supposed to be already known and in fact our
protocol design relies on the knowledge of these IDs to help
avoid radio collisions in order to improve time efficiency.

III. POLLING-BASED INFORMATION COLLECTION
PROTOCOL

Our baseline protocol is called the polling-based information
collection protocol (PIC). It is very simple. The RFID reader
broadcasts the tag IDs one after another. After it transmits an
ID, it waits for a period of tinf to receive the information of the
corresponding tag. Hence, the time to collect information from
one tag is tid + tinf . The total execution time of the protocol
for collecting information from all tags is n× (tid + tinf ).

PIC has two major limitations. First, its execution time
is much larger than the optimal value n × tinf . Using the
parameters in [1], we find that tid can be twelve times of
tinf when the information that a tag reports is one bit. Hence,
n × (tid + tinf ) is up to thirteen times of the lower bound,
which leaves much room for improvement. Second, each tag
must continuously listen to the communication channel until
its ID is received. If battery-powered active tags are used, this
will cause significant energy overhead because each tag has to
keep powering its circuit and may have to receive thousands
of tag IDs before finding its own. In the next two sections, we
propose two protocols that solve the energy problem and are
much more time-efficient.

IV. SINGLE-HASH INFORMATION COLLECTION PROTOCOL

In this section, we propose a Single-hash Information Collec-
tion protocol (SIC) that avoids the transmission of tag IDs and
does not require the tags to continuously listen to the channel.

A. Protocol Overview

The execution of the SIC protocol consists of multiple
phases. Every phase has the same structure: It begins with
an information collection request sent from the reader to the

1In an ALOHA-based protocol, we cannot let tags only transmit their sensor
readings without sending their IDs because we need to know which tag each
senor reading belongs to.

tags, followed by a slotted time frame, in which some tags
are scheduled to transmit their information. As we will explain
later, about 36.8% of the tags are scheduled for transmission in
the first phase, 36.8% of the remaining tags are scheduled in the
second phase, ..., until all tags are scheduled for transmission.
We stress that each tag will be scheduled only once in one of
the phases, and it will be assigned by the reader to a unique
slot in the time frame of that phase.

In the following, we first explain how to assign tags to slots,
and then give the protocol details.

B. Assigning Tags to Time Slots Using a Hash Function

Consider an arbitrary phase. Suppose there are n′ tags from
which the reader has not yet received information. Only these
tags are considered for slot assignment because the information
of other tags has been received in the previous phases. Clearly,
n′ = n for the first phase.

The reader always sets the number of slots in the frame equal
to the number of tags it considers for slot assignment. Namely,
the frame size is n′. Before the reader sends out a request, it
has to determine which tags should transmit in this phase and
which slots in the frame they should be assigned to. To avoid
collision, it should never assign more than one tag to a slot.
Because the number of tags is equal to the number of slots, it
is not difficult for the reader to construct a one-to-one mapping
from the tags to the slots. But it is too costly to inform the
tags about this mapping, especially when the set of tags may
change each time the protocol is executed.

Our solution is for the reader to use a hash function H to map
the tags to the slots, while the tags use the same hash function
to determine which slots they should use. The hash function
takes the ID of a tag and a random number r as input and
produces a pseudo random number H(ID, r) as output, which
is used as the slot index that the tag is mapped to. However,
this approach does not ensure one-to-one mapping. Multiple
tags may be mapped to the same slot. In this case, these tags
cannot transmit in the slot because otherwise collision would
occur. The slot is thus wasted. If no tag is mapped to a slot, that
slot is also wasted. Only when one and only one tag is mapped
to a slot, the reader will assign the tag to the slot. In this case,
we say the slot is useful. How to inform tags which slots are
useful so that the tags assigned to them will transmit in these
slots? We introduce an indicator vector, which is described in
the next subsection.

C. Protocol Description

SIC consists of multiple phases. In each phase, the reader
sends out a request and then tags transmit their information
in the subsequent frame. Before sending out the request, the
RFID reader has to assign tags to the slots of the frame. It
picks a random number r and uses the hash function to map
the IDs of the tags to the slots. After determining which slots
are useful and which have to be wasted, the reader constructs an
n′-bit indicator vector, where n′ is the number of tags that are
considered for slot assignment. Recall that it is also the number
of slots in the frame. Each bit in the vector corresponds to a
slot in the frame at the same index location. If the slot is useful
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(i.e., one and only one tag is mapped to it), the bit value is 1;
otherwise, it is 0.

The request broadcast by the reader consists of the informa-
tion type to be reported, the frame size (i.e., number of slots in
the frame), a random number r, and the indicator vector, where
r is used by the hash function and it is different in each phase.
If the vector is too long, the reader divides it into segments of
96 bits (equivalent to the length of a tag ID) and transmits each
segment in a time slot of length tid.

Using the same hash function, a tag knows the index i of the
slot it is mapped to. After the tag receives the request, it knows
whether its slot will be useful or not by examining the ith bit
in the indicator vector. If the bit is 0, the tag will not transmit.
If the bit is 1, the tag will transmit its information during the
ith slot in the frame and it will not participate in the remaining
phases.

It should be noted that the tag does not have to receive the
whole indicator vector. It knows the index i of the bit it looks
for. Hence, it also knows which segment of the indicator vector
it must receive. The tag can be in a stand-by mode to conserve
energy at times other than when it receives its segment of the
indicator vector or transmits its information.

The first phase considers n tags for slot assignment and
its frame has n slots. Each subsequent phase considers a
fewer number of tags and has a smaller frame accordingly.
The protocol terminates after all tags report their information.
Alternatively, the reader may stop the SIC protocol when the
number of remaining tags is fewer than a small threshold, and
then it invokes the PIC protocol to collect information from
these tags.

The implementation of the hash function will be discussed in
Section V-E, and the impact of channel error will be considered
in Section V-G.

D. Expected Execution Time

We derive the expected execution time of the SIC protocol.
Consider an arbitrary tag x and an arbitrary phase that x
participates. Let n′ be the number of tags that are considered
for slot assignment in this phase. The frame size is also n′. Let
P1 be the probability that no other tag is mapped to the slot that
x is mapped to. The subscript ‘1’ indicates that a single hash
function is used. The purpose will be clear when we discuss
multiple hash functions in the next section.

P1 = (1− 1

n′
)n
′−1 ≈ e−

n′−1

n′ ≈ e−1 ≈ 36.8%, (1)

where e is the natural constant. When this happens, tag x
will be assigned to the slot. It will not participate in the
remaining phases. Hence, the expected number of phases that
tag x participates is

1× P1 + 2× (1− P1)P1 + 3× (1− P1)
2P1 + ...

=

∞∑
i=0

P1(1− P1)
i +

∞∑
i=1

P1(1− P1)
i +

∞∑
i=2

P1(1− P1)
i + ...

= 1 + (1− P1) + (1− P1)
2 + ...

=
1

P1
≈ e,

where we have used the fact that
∑∞

i=0 P1(1−P1)
i = 1. Recall

that in any phase the number of slots in the time frame is
equal to the number of tags considered for slot assignment. In
other words, each time x participates in a phase, its presence
contributes a slot in the frame. Overall, the expected number
of slots in all phases that can be attributed to x’s participation
is e. The total number of tags in the system is n. Therefore,
the number of slots in the frames of all phases is expected to
be n×e. The expected frame time in all phases is e×n× tinf .

There is a one-to-one correspondence between bits in an
indicator vector and slots in a frame. Hence, the total number
of bits in all indicator vectors is also n × e. The expected
time for transmitting all indicator vectors is e×n

96 × tid. Due
to the large denominator of 96, it is smaller than the total
frame time, e×n× tinf . The rest of the information collection
request excluding the indicator vector is very small and can
be ignored. Hence, the expected execution time of SIC is
e× n× tinf + e×n

96 × tid. The first item is about 2.72 times of
the lower bound n× tinf .

We go back to (1). Out of the n′ slots in a frame, the number
of useful slots is n′P1 ≈ 36.8%n′. Hence, in each phase of the
SIC protocol, only about 36.8% of the time slots are useful and
63.2% of the slots are wasted. This gives us significant room
for further improvement, which leads to our final protocol in
the next section.

V. MULTI-HASH INFORMATION COLLECTION PROTOCOL

We propose a Multi-hash Information Collection protocol
(MIC) to solve the hash collision problem of SIC.

A. Protocol Overview

MIC is similar to SIC except that it assigns tags to slots
using k hash functions in order to alleviate the problem of
wasted slots. More specifically, it hashes each tag to k slots in
the frame. As long as any one of these slots has no other tag,
the reader is able to assign the tag to the slot.

The execution of the MIC protocol also consists of multiple
phases. In each phase, the RFID reader broadcasts an informa-
tion collection request that is followed by a slotted time frame,
in which some tags transmit their information.

In the following, we first explain how to assign tags to slots
by using k hash functions. We then introduce a mechanism
(called hash-selection vector) to inform the tags about the
assignment.

B. Assigning Tags to Slots Using Multiple Hash Functions

The k hash functions are denoted as H[i], 1 ≤ i ≤ k, which
takes a tag ID and a random number r as input and produces
a pseudo-random number H[i](ID, r) as output.

Consider an arbitrary phase in the execution of MIC. Let n′

be the number of tags for slot assignment in this phase. The
frame size is also set to be n′. If it is the first phase, n′ = n.

The slot assignment consists of k rounds, each involving one
hash function. In the first round, we apply H[1] to map the tags
to the slots. A tag is assigned to a slot if it is the only one that is
mapped to the slot. After assignment, we remove the tag from
being further considered in the remaining rounds that involve
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other hash functions. We also mark the slot as being occupied.
The slots that are not marked at the end of this round are said
to be unoccupied.

In the second round, we apply H[2] to map the remaining
tags to the n′ slots. If a tag is mapped to an unoccupied slot
and it is the only one that is mapped to the slot, it is assigned
to the slot and removed from further consideration. The slot is
marked as occupied.

The above process is repeated for other hash functions one
round after another in order to assign as many tags as possible
to the unoccupied slots. An illustrative example is given in
Fig. 1 (a)-(b). After all k hash functions are used, the reader
has a subset of tags that are assigned to slots, and it also know
which hash function each of these tags should use. The problem
of communicating this information to the tags will be addressed
shortly.

Please be aware of the difference between the term “map”
and the term “assign”. A tag may be mapped to multiple slots
based on the k hash functions, but it can only be assigned to
one slot. Also be aware of the difference between “phase” and
“round”. Each execution of MIC consists of phases. Each phase
is a request-and-response exchange between the reader and the
tags. Before that exchange, the reader has to assign tags to slots
and the assignment process consists of multiple rounds when
more than one hash function is used.

C. Protocol Description

In the first phase of the MIC execution, before sending out
an information collection request, the RFID reader determines
which tags are assigned to which slots (see the previous
subsection). It then constructs an n-element hash-selection
vector. Each element in the vector corresponds to a slot in
the frame at the same index location. If no tag is assigned to
a slot, the reader sets the corresponding element in the hash-
selection vector to zero. If a tag is assigned to a slot using the
jth hash function, the reader sets the corresponding element to
be j. The size of an element is dlog2(k + 1)e bits.

The request broadcast by the reader consists of the infor-
mation type to be reported, the frame size, a random number
r, and the hash-selection vector, where r is used by the hash
functions and it is different in each phase. The hash-selection
vector is divided into segments of 96 bits (equivalent to the
length of a tag ID), and each segment is transmitted in a time
slot of size tid.

The tags will receive the hash-selection vector along with
other information in the request. Using the same k hash
functions, each tag knows which k slots in the frame and which
k elements in the hash-selection vector it is mapped to. If a tag
is assigned to a slot, it must be one of those k slots. If a tag is
assigned to a slot by the reader using the jth hash function, the
corresponding element in the hash-selection vector must have
a value of j because this is exactly how the hash-selection
vector is constructed. The inverse is also true. If a tag finds
that (1) it is mapped to a slot s using the jth function and
(2) the corresponding element in the hash-selection vector is
also j, then it can conclude that it must have been assigned

ID1 ID 2 ID3 ID4 ID5 ID6
ID1 ID 2 ID3 ID4 ID5 ID6

(a) First Roud of Slot Assignment

time slots time slots

(b) Second Roud of Slot Assignment

ID1 ID 2 ID3 ID4 ID5 ID6

time slots

hash-selection

vector

H[2]

H[1]

H[1]
H[2]

12 21

(c) Construction of Hash-selection Vector

3

time slots

hash-selection

vector

H[2]

12 21

H[1]

(d) Tag with ID3 finds its assigned slot.

Tag with ID

tags tags

tags

H[1] H[2]

0 0 0 0

Fig. 1. Arrows represent the mapping from tags to slots based on hash
functions. Among them, thick arrows represent the assignment of tags to slots.
In this example, k = 2. (a) Two tags, ID1 and ID5, are assigned to slots in
the first round when H[1] is applied. (b) Two more tags, ID3 and ID4, are
assigned in the second round when H[2] is applied. (c) The reader constructs
a hash-selection vector based on the slot assignment. (d) After receiving the
vector, the tag with ID3 examines the elements in the hash-selection vector
that it is mapped to. The element mapped by H[2] has a value of 2. The tag
knows that it must be assigned to the corresponding slot.

to slot s by the reader. If multiple hash functions satisfy the
above conditions, the tag only uses the one that has the smallest
value of j. See Section V-F for correctness proof. An illustrative
example is given in Fig. 1.

Hence, in order to determine whether it is assigned to a slot,
a tag only needs to examine the elements in the hash-selection
vector that it is mapped to by the k hash functions. Let Ej ,
1 ≤ j ≤ k, be the element that the tag is mapped to by the jth
hash function. The tag examines the elements in order from E1

to Ek. If it finds the value of an element Ej is equal to j, the
tag knows that it must be assigned to a slot by the reader using
the jth hash function. In this case, it will stop examining the
remaining elements and wait until the assigned slot arrives. It
will transmit during that slot and then stop participating further
in the protocol execution.

Note that a tag does not have to receive the whole hash-
selection vector. It knows the indices of the elements it looks
for. The tag can be in a stand-by mode to conserve energy at
times other than it receives its segments of the hash-selection
vector or transmits its information.

After the first phase completes, the RFID reader moves to the
second phase, which is identical except that the reader removes
the tags for which it has assigned slots. It only considers the
tags that have not got a chance to transmit. The frame size in
this phase is reduced accordingly.

The above process repeats phase after phase until all tags
report their information. Alternatively, the reader may stop
when the number of remaining tags is fewer than a small
threshold, and it invokes the PIC protocol to collect information
from these tags.

Clearly, SIC is a special case of MIC when k = 1.
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D. Expected Execution Time

To compute the expected execution time of MIC, we need to
find the number of phases that an arbitrary tag is expected to
participate. Consider an arbitrary tag x and an arbitrary phase
that x participates. Let n′ be the number of tags that participate
in this phase. The frame size is also n′. Let Pi be the probability
that tag x is assigned to a slot after the first i hash functions
are applied. That is, Pi is the probability that one of the first i
hash functions maps x to a slot that no other tag is mapped to.
When this happens, tag x will transmit in this phase and will
stop participating in the remaining phases.

From (1), we know that P1 = (1− 1
n )

n−1 ≈ e−1. Next, we
derive a recursive formula for Pi, i > 1. After the first i − 1
hash functions are applied, there are two cases. The first case
is that tag x has been assigned to a slot by one of those i− 1
hash functions. The probability for this to happen is Pi−1. The
second case is that tag x has not been assigned to any slot and
thus it will be considered when the ith hash function is applied.
The probability for this to happen is 1−Pi−1. We focus on the
second case below.

Because the number of tags is the same as the number of
slots and the tag-to-slot assignment is one-to-one mapping, the
probability for an arbitrary slot to stay unoccupied after i − 1
hash functions is the same as the probability for an arbitrary
tag to stay unassigned, 1 − Pi−1. When the ith hash function
is applied, the slot that tag x is mapped to has a probability of
1− Pi−1 to be unoccupied. For each of the other n′ − 1 tags,
it has a probability of 1 − Pi−1 to be unassigned and, if so,
it has a probability of 1

n′ to be mapped to the same slot as x
does. Hence, the probability p for tag x to be the only one that
is mapped to an unoccupied slot is

p = (1− Pi−1)(1− (1− Pi−1)
1

n′
)n
′−1

≈ (1− Pi−1)e
−(1−Pi−1)

(2)

Recall that we are considering the second case here. Combining
both cases discussed previously, we have

Pi = Pi−1 + (1− Pi−1)× p
= Pi−1 + (1− Pi−1)

2e−(1−Pi−1),
(3)

where the first item on the right side is the probability for a tag
to be assigned to a slot by one of the first i− 1 hash functions
and the second item is the probability for the tag to be assigned
to a slot by the ith hash function. The probability for tag x to
be assigned to a slot after all k functions are applied is Pk, and
this is the case for any phase that x participates.

Based on the recursive formula in (3), we compute the
numerical values of Pi in Table I, which match perfectly with
our simulation results in Section VI. If seven hash functions are
used, i.e., k = 7, the probability for an unassigned tag to be
assigned to a slot in any phase is P7 ≈ 86.1%. The probability
for an arbitrary slot to be useful is also 86.1%. Only 13.9% of
the slots in each frame is wasted.

The expected number of phases that tag x participates is

1× Pk + 2× (1− Pk)Pk + 3× (1− Pk)
2Pk + ... =

1

Pk
.

TABLE I
NUMERICAL VALUES OF Pi

P1 P2 P3 P4 P5 P6 P7

36.8% 58.0% 69.6% 76.4% 80.8% 83.9% 86.1%

For each phase that x participates, the reader allocates a slot
in the frame. Hence, the expected number of slots that can be
attributed to x’s participation in the protocol is 1

Pk
. There are

n tags. The total number of slots in all phases is expected to
be n

Pk
. The total expected time in the frames of all phases is

n
Pk
tinf . When k = 7, it becomes 1.16 × n × tinf , just 16%

more than the lower bound. Because 32 elements of the hash-
selection vector can fit in a segment of 96 bits, the expected
time for all indicator vectors is n

32Pk
tid. Hence, the expected

execution time of MIC is about n
Pk
tinf + n

32Pk
tid.

The ratio of n
32Pk

tid to the lower bound n × tinf is largest
when the information reported by each tag is one bit. In this
case, tid is about 12 times of tinf , according to the parameters
in [1] (see details in Section VI). Hence, when k = 7, n

32Pk
tid

is up to 45% of the lower bound. Consequently, the expected
execution time of MIC is up to 1.61 times the lower bound.

E. Hash Functions

There are many efficient hash functions in the literature.
We describe a simple implementation that helps to keep the
complexity of a tag’s circuit low. The tags do not have to fully
implement the k hash functions, H[i](ID, r). When k = 1,
the expected number of phases a tag will participate is just
1
P1
≈ 2.7, which means that a tag only needs to produce 2.7

hash values on average. Similarly, when k = 3, a tag needs
1
P3
≈ 1.4 hash values on average. When k = 7, a tag needs

1
P7
≈ 1.2 hash values on average. For n = 50, 000, each hash

value is 16 bits long. We may derive these hash values from a
ring of pre-stored random bits as follows: We use an offline
random number generator with the ID of a tag as seed to
generate a string of random bits. We take k segments of the
string. Each segment contains a certain number of bits, forming
a ring by logically connecting the last bit with the first bit.
These rings are pre-stored in the tags before they are deployed.
To find the value of H[i](ID, r), a tag takes a certain number
of bits from the ith ring. More specifically, it takes a number
of bits from the ring clockwise beginning from the rth bit. An
alternative approach is to begin from the rth bit and take one
bit after every r bits until a sufficient number of bits are taken.
The final hash value is the number represented by these bits
modulo the frame size.

The larger the size of each ring, the better the pseudo
randomness in the hash output. Because our protocol only
requires a tag to produce a very small number of hash values
from each ring, a ring size of 100 bits should be more than
sufficient. In this case, when k = 3, each tag needs to store
300 bits to implement the hash functions. When k = 7, each
tag needs 700 bits.

The RFID reader knows the IDs of the tags, and it picks the
random number r. Hence, it can predict the hash values of all
tags.
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F. Correctness

In Section V-B, the RFID reader assigns a tag to a slot
only when no other tag is mapped to the same slot. After a
tag is assigned to a slot, the reader removes it from further
consideration. Hence, from the reader’s point of view, each
tag is uniquely assigned to a slot. According to the protocol
description in Section V-C, each tag will only transmit once.
What we want to make sure is that the tag will transmit in the
assigned slot. Moreover, there should not be collision in that
slot.

To determine in which slot it transmits, a tag first uses the
k hash functions to map itself to k slots in the frame. The rule
states that: If the tag finds that (1) it is mapped to a slot s
using the jth function and (2) the corresponding element in
the hash-selection vector is also j, then it can conclude that
it must have been assigned to slot s by the reader. If multiple
hash functions satisfy the above conditions, the tag only uses
the one that has the smallest value of j. When a tag x is mapped
to a slot using the jth hash function, if the tag finds that the
corresponding element in the hash-selection vector is also j, it
means that the reader has assigned a tag to the slot based on
the jth function, and moreover the reader will do so only when
a single tag is mapped to the slot using the jth function. Tag x
can thus conclude that this single tag must be itself. Because
it is the only tag that will transmit in this slot, there will not
be a collision.

G. Channel Error

We now consider the impact of channel error. If a segment
in the hash-selection vector is corrupted, the tags that extract
information from that segment may transmit in wrong slots,
causing collision. It may also happen that the information
transmitted by a tag in the correct slot is corrupted by noise
in the channel. If the channel error is mild and the application
can tolerate a certain level of error, the protocol may not need
additional error control mechanisms. For example, suppose the
reader collects the battery status of the tags to see if any battery
needs to be replaced. The reader may periodically collect such
information. Over a period of time, it will receive a certain
number of readings from each tag. It decides whether a tag
needs to replace battery based on the majority votes. In this
way, occasional information corruption due to channel error
does not cause a misjudgement of the battery status. In another
example, consider a large chilled food storage facility and the
application is to monitor the temperature at each section of the
storage by using sensor-augmented RFID tags that are attached
to the food items. Each section has many tags, which provide
a large amount of redundancy in the information reported to
the RFID reader. If temperature readings from some tags are
corrupted, the reader can still retrieve correct temperature data
by removing outliers from all the readings it receives from a
particular section of the storage.

If the application requires that the information received from
every tag is correct, we need to add checksum such as a CRC
code to each transmission for error detection. Each segment of
96 bits in the hash-selection vector carries 16-bit checksum,

and it uses the remaining 80 bits to carry 26 elements of 3 bits
each. Each information report from a tag also carries 16-bit
checksum. Consider the following two cases: (1) When a tag
finds that one of its k segments in the hash-selection vector is
corrupted, it ignores the segment and only uses other segments
to decide whether it is assigned to a slot. If none of the other
segments suggests that it is assigned to a slot, it makes the
conservative decision that it will not participate in the remaining
phases even through it does not transmit in this phase, because
the reader might have assigned it to a slot using the corrupted
segment. (2) Beside the case that a tag may not transmit at all,
even when a tag transmits in the correct slot, that slot may be
corrupted due to channel error, which can be detected by the
reader through the mismatching CRC code.

The reader handles the above cases in the same way: It only
assigns one slot to each tag during the execution of MIC. If it
does not receive a tag’s information in the assigned slot or the
information is corrupted, it will not assign another slot because
otherwise we would run into the issue of acknowledging the
tags whether their information is received correctly — this can
get complicated, considering that the acknowledgement itself
may also be corrupted. After MIC completes, the reader wakes
up all tags and performs the polling protocol (PIC) on the
set of tags from which the information has not been received
correctly. We expect the set to be relatively small in a practical
environment where the channel noise is not too large to hinder
the effectiveness of the RFID system. In PIC, each transmission
also carries CRC. Due to channel error, the reader may poll for
the information of a tag more than once until the information
is correctly received.

The overhead for the above error control will be investigated
by simulations in the next section.

VI. SIMULATION RESULTS

A. Simulation Setting

The simulation setting is based on the Philips I-Code specifi-
cation [1]. Any two consecutive transmissions (from the reader
to tags or vice versa ) are separated by a waiting time of 302
µs. According to the specification, the transmission rate from a
tag to the reader is different than the transmission rate from the
reader to a tag. The rate from a tag to the reader is 53Kb/sec;
it takes 18.88 µs for a tag to transmit one bit. The value of
tinf is calculated as the sum of a waiting time and the time
for transmitting the information, which is 18.88 µs multiplied
by the length of the information. For example, if the sensor
information is one bit, tinf is 321 µs if a CRC code is not
added, and it is 623 µs if a 16-bit CRC is added. If the sensor
information is 16 bits, tinf is 604 µs without CRC, and it is
906 µs with CRC.

The transmission rate from the reader to tags is 26.5 Kb/sec;
it takes 37.76 µs for the reader to transmit one bit. Each tag ID
contains 96 bits, which include a 16-bit CRC code according
to the Gen2 standard. Recall that tid is the time it takes the
reader to transmit an ID to a tag. It is 3927 µs (including a
waiting time before the transmission). The time for the reader
to transmit a segment of the indicator vector or a segment of the
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TABLE II
EXECUTION TIME COMPARISON (IN SECONDS) WHEN THE SENSOR

INFORMATION IS 1 BIT LONG.

n = 10,000 30,000 50,000 70,000 90,000
EDFSA 89.4 268.8 530.1 749.0 1051.1

PIC 42.5 127.4 212.4 297.3 382.3
SIC 10.0 30.0 49.7 69.6 89.2

MIC, k = 3 5.9 17.4 29.0 40.6 52.1
MIC, k = 7 5.2 15.5 25.8 36.1 46.4
lower bound 3.2 9.6 16.0 22.5 28.9

TABLE III
EXECUTION TIME COMPARISON (IN SECONDS) WHEN THE SENSOR

INFORMATION IS 16 BITS LONG.

n = 10,000 30,000 50,000 70,000 90,000
EDFSA 96.9 292.3 576.7 814.8 1156.5

PIC 45.3 135.9 226.6 317.2 407.8
SIC 17.7 53.3 88.6 124.0 159.0

MIC, k = 3 9.9 29.6 49.3 69.0 88.7
MIC, k = 7 8.5 25.4 42.3 59.2 76.0
lower bound 6.0 18.1 30.2 42.3 54.4

TABLE IV
EXECUTION TIME COMPARISON (IN SECONDS) WHEN THE SENSOR

INFORMATION IS 32 BITS LONG.

n = 10,000 30,000 50,000 70,000 90,000
EDFSA 106.4 320.5 623.6 884.8 1261.7

PIC 48.3 145.0 241.7 338.3 435.0
SIC 25.9 78.3 130.1 182.0 233.4

MIC, k = 3 14.3 42.6 71.0 99.4 127.8
MIC, k = 7 12.0 35.9 59.8 83.7 107.6
lower bound 9.1 27.2 45.3 63.4 81.6

hash-selection vector is the same. However, if a tag transmits a
96-bit ID to the reader, it only takes 2114 µs due to a different
transmission rate.

In each simulation run, we set the number n of tags in the
RFID system. We then execute five protocols: PIC, SIC, MIC
with k = 3, MIC with k = 7, and EDFSA [6]. EDFSA is one of
the best ID-collection protocols. We modify it for information
collection. The modification is simple: When a tag transmits
its ID to the reader, it piggybacks its sensor information. We
measure and compare the execution times of the five protocols.
Each data point in the figures is the average outcome of 100
simulation runs under the same setting.

In the following, we first present the simulation results when
CRC codes are not used for error control, and then we present
the results when CRC codes are used (see Section V-G).

B. Execution Time Comparison

We first study the performance of our protocols without
considering channel error. That is, the RFID reader can always
correctly receive the information when a tag transmits in a slot
without collision.

Table II compares the execution times of the five protocols
under different values of n when the sensor information is
one bit. This corresponds to the application of monitoring the

battery status of the RFID tags: ‘1’ means the battery is ok;
‘0’ means the battery needs to be replaced. We examine the
fourth column in the table for n = 50, 000 (imagine that a large
military base stores 50,000 pieces of weapons and ammunition
packets, each attached with a tag). The execution time of
EDFSA is 530.1 seconds, which is about thirty-three times of
the lower bound, 16.0 seconds. PIC reduces the execution time
by 60% to 212.4 seconds because it eliminates collisions that
exist in EDFSA, which is ALOHA-based. SIC further reduces
the time to 49.7 seconds, about one fourth of the time needed
by PIC. Our best protocol, MIC, reduces the execution time
to 29.0 seconds when three hash functions are used or 25.8
when seven hash functions are used. Similar conclusions can
be drawn from other columns: MIC works the best, SIC follows,
then PIC, and finally EDFSA.

Table III and Table IV present the execution times when the
sensor information is 16 bits long and 32 bits long, respectively.
Again, similar conclusions can be drawn. For example, when
the information is 16 bits long and n = 50, 000, the execution
time of MIC with k = 7 is 48% of the time needed by SIC,
19% of the time needed by PIC, and just 7.3% of the time
needed by EDFSA. When the information is 32 bits long and
n = 50, 000, the execution time of MIC with k = 7 is 46% of
the time needed by SIC, 25% of the time needed by PIC, and
9.5% of the time needed by EDFSA.

The execution time of MIC with k = 3 is only slightly worse
than that of MIC with k = 7. Because each tag has to store
k hash outputs, if one wants to reduce the storage overhead, k
may be chosen as 3.

C. Execution Time Comparison under Channel Error

The method for handling channel error is described in
Section V-G. Suppose the sensor information is 1 bit long.
Table V, VI and VII present the execution time comparison
when the channel error rate is 1%, 5% and 10%, respectively.
The channel error rate c is defined as the percentage of slots
that is corrupted. In our simulations, each slot has a probability
of c to be corrupted. With the presence of different levels of
channel error, we continue to observe that MIC performs much
better than SIC, which in turn performs better than PIC, which
is better than EDFSA.

For example, in Table V where the channel error rate is 1%,
when n = 50, 000, the execution time of MIC with k = 7 is
49.4 seconds, the time of SIC is 96.9 seconds, the time of PIC
is 232.1 seconds, and the time of EDFSA is 460.0 seconds. In
Table VI where the channel error rate is 5%, when n = 50, 000,
the execution time of MIC with k = 7 is 69.4 seconds, the time
of SIC is 116.8 seconds, the time of PIC is 252.1 seconds, and
the time of EDFSA is 480.1 seconds. In Table VII where the
channel error rate is 10%, when n = 50, 000, the execution
time of MIC with k = 7 is 98.1 seconds, the time of SIC is
145.6 seconds, the time of PIC is 280.8 seconds, and the time
of EDFSA is 505.8 seconds.

D. Values of Pi

To verify our analytical results in Section V-D, we measure
the values of Pi by simulations. As shown in Table VIII, the
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TABLE V
EXECUTION TIME COMPARISON (IN SECONDS) WHEN THE CHANNEL

ERROR RATE IS 1%.

n = 10,000 30,000 50,000 70,000 90,000
EDFSA 79.7 236.9 460.0 652.7 911.0

PIC 46.4 139.3 232.1 325.0 417.8
SIC 19.3 58.4 96.9 135.5 173.8

MIC, k = 3 11.3 33.9 56.5 79.0 101.6
MIC, k = 7 9.9 29.7 49.4 69.1 88.9

TABLE VI
EXECUTION TIME COMPARISON (IN SECONDS) WHEN THE CHANNEL

ERROR RATE IS 5%.

n = 10,000 30,000 50,000 70,000 90,000
EDFSA 82.0 248.5 480.1 685.0 950.4

PIC 50.4 151.2 252.1 352.9 453.7
SIC 23.3 70.3 116.8 163.5 209.8

MIC, k = 3 15.3 45.9 76.4 106.9 137.5
MIC, k = 7 13.9 41.6 69.4 97.1 124.8

TABLE VII
EXECUTION TIME COMPARISON (IN SECONDS) WHEN THE CHANNEL

ERROR RATE IS 10%.

n = 10,000 30,000 50,000 70,000 90,000
EDFSA 86.0 259.5 505.8 715.8 995.4

PIC 56.1 168.5 280.8 393.2 505.5
SIC 29.0 87.5 145.6 203.7 261.6

MIC, k = 3 21.0 63.1 105.2 147.2 189.3
MIC, k = 7 19.6 58.9 98.1 137.3 176.6

TABLE VIII
VALUES OF Pi

P1 P2 P3 P4 P5 P6 P7

by simulation 37.0% 58.2% 69.9% 76.6% 80.8% 83.8% 86.2%
by analysis 36.8% 58.0% 69.6% 76.4% 80.8% 83.9% 86.1%

values of Pi measured from simulations match well with the
numerically-computed values based on the recursive formula
(3), which confirms the correctness of our analysis.

VII. CONCLUSION

This paper investigates a new problem of how to efficiently
collect sensor information from all tags to a reader in a
large RFID system. We present three protocols. The first one,
called the polling-based information collection protocol (PIC),
serves as a baseline for comparison. The second protocol,
called the single-hash information collection protocol (SIC),
improves time and energy efficiencies by totally eliminating
the transmission of tag IDs. It uses a hash function to assign
tags to the slots of a frame, during which the tags can transmit
their data successfully. However, due to hash collisions, many
slots have to be wasted. A wide gap still exists between the
execution time of SIC and a lower bound that we establish.
We use multiple hash functions to solve the hash collision
problem, which leads to our third protocol, called the multi-
hash information collection protocol (MIC). Its execution time

is about half of the execution time of the SIC, up to seven times
smaller than the execution time of PIC, and up to nineteen times
smaller than the execution time of a representative ID-collection
protocol [6] that is enhanced to collect sensor information.
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