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Abstract—Software-defined datacenters combine centralized
resource management, software-defined networking, and vir-
tualized infrastructure to meet diverse requirements of cloud
computing. To fully realizing their capability in traffic engineer-
ing and flow-based bandwidth management, it is critical for the
switches to measure network traffic for both individual flows
between virtual machines and aggregate flows between clusters
of physical or virtual machines. This paper proposes a novel
hierarchical traffic measurement scheme for software-defined
datacenter networks. It measures both aggregate flows and
individual flows that are organized in a hierarchy with an ar-
bitrary number of levels. The measurement is performed based
on a new concept of hierarchical virtual counter arrays, which
record each packet only once by updating a single counter,
yet the sizes of all flows that the packet belongs to will be
properly updated. We demonstrate that the new measurement
scheme not only supports hierarchical traffic measurement with
accuracy, but does so with memory efficiency, using a fewer
number of counters than the number of flows.

I. INTRODUCTION

Cloud computing systems are becoming increasingly large

in scale. As a key direction of cloud platform development,

software-defined datacenters combine centralized resource

management and software-defined networking with diverse

client requirements and IaaS (infrastructure as a service)

provisioning [1], [2], [3]. These datacenters will offer great

flexibility in virtualization of computing, storage and network

resources. However, achieving both scalability and sophisti-

cated service offerings places unprecedented challenges in

resource management and real-time workload monitoring.
An efficient datacenter-wide monitoring function is es-

sential to optimal resource management. Traditionally, each

server measures its workload and report residual comput-

ing/storage resources to the controller for resource allocation.

In software-defined datacenters, it is also important for the

switches to measure network traffic, which provides critical

information for bandwidth management and traffic engineer-

ing. This task is challenging when commodity SDN switches

are used, which operate at 10 or 100 Gbps line speed with

limited on-board resources. The focus of this paper is to

investigate how to perform flow-level traffic measurement

with high efficiency in both processing overhead and memory

consumption.

Software-defined networks (SDN)[4][5][6] not only make

management easier and more flexible, but also support

network-wide traffic engineering. They quickly make their

way into datacenters [7], [8]. Their ability of routing individ-

ual flows on different paths is important to quality-of-service

provisioning and load balancing. But traffic engineering at

the flow level requires the controller to know the flow rates.

While the OpenFlow standard [9] supports per-flow traffic

measurement with statistic counters in the flow table, it is

however not scalable.

SDN switches typically have a few thousands of entries in

their TCAM-based flow tables. Even the high-end Broadcom

Trident2 chipset supports only 16K forwarding rules [6].

On the other hand, datacenter networks are experiencing

more and more flows. For example, in a real datacenter

with 1500 operational server clusters [10], the average arrival

rate reaches 100K flows per second. Clearly, there are not

enough entries in the flow tables to support per-flow rout-

ing/measurement [5], [11]. To address this problem, the prior

work uses wildcard forwarding rules in the flow tables for

aggregate routing, and performs per-flow traffic measurement

in on-die cache memory such as SRAM. The controller will

identify elephant flows or other flows of interest based on the

policy or performance requirements, and reroute these flows

on their individual paths.

There exist many memory-efficient traffic measurement

algorithms designed to work in on-chip SRAM, which is

small but larger than TCAM. Most of the algorithms (e.g.,

CountMin [12], Counter braids [13], [14], and Counter tree

[15]) trade for memory efficiency with more processing

overhead, updating multiple counters for each packet, with

the exception of RCS [16], which updates one counter

per packet. Moreover, these algorithms are designed in

the context of Internet, where flows are assumed to be

independent, i.e., a packet belongs to one and only one

flow and packets of any two flows do not overlap. This

is however not necessarily true for traffic management in

software-defined datacenters that support network-resource

virtualization. For example, an institute may want to deploy

a large virtual campus network in the cloud, connecting

multiple virtual sites (implemented on designated racks in
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a datacenter). Work groups are deployed on virtual sites,

and each group contains virtual machines that communi-

cate with other virtual machines in the same or different

sites/groups. Quality-of-service requirements are specified

for the virtual connections between sites, between work

groups, and for communications between VMs. To enforce

the QoS requirements and perform traffic engineering such

as re-routing, we need to monitor both aggregate flows

between sites (work groups) and individual data (TCP) flows

between VMs. These flows are not independent because an

individual data flow between two VMs may belong to an

aggregate flow between two work groups that contain the

VMs, which in turn belongs to a high-level aggregate flow

between sites that host the work groups. In this case, all flows

form a hierarchical structure where an aggregate parent flow

contains multiple individual flows or lower-level aggregate

flows as children.

It is a burden for the controller to keep track of all

individual flows in order to compute the traffic volume

(size) of aggregate flows; in fact, this is often not feasible

because many highly compact measurement algorithms [12],

[13], [14], [15], [16] do not even include individual flow

identifiers in their traffic synopsis (from which per-flow

traffic information is extracted). Alternatively, we can require

the switches to measure both individual flows and aggregate

flows, which may however require each packet to be recorded

multiple times (even for RCS [16]), one for each flow that the

packet belongs to. This approach multiplies the per-packet

processing overhead, which is highly undesirable because

the traffic measurement function may become a throughput

bottleneck or a limiting factor for the structure of user-

defined flow hierarchies.

This paper proposes a novel hierarchical traffic measure-

ment scheme for software-defined datacenter networks. It

measures both aggregate flows and individual flows in a

hierarchy with an arbitrary number of levels. It records each

packet only once by updating a single counter, yet the sizes

of all flows that the packet belongs to will be properly

updated. Our idea is to introduce hierarchically-constructed

virtual counter arrays, each storing the size of one flow. The

virtual arrays of individual flows select their counters from

the virtual arrays of their parent aggregate flows. The virtual

arrays of those aggregate flows select their counters from

the virtual arrays of higher-level parent flows. The virtual

arrays from the highest-level aggregate flows select their

counters from a physical counter array, which can support a

virtually unlimited number of flows due to counter sharing.

When a switch receives a packet, it updates one counter

that is shared by the virtual arrays of all flows that the

packet belongs to, simultaneously updating information for

all those flows. We derive the mathematical formula for

estimating the size of any (individual or aggregate) flow from

its virtual counter array. Our simulation shows that the new

measurement scheme not only supports hierarchical traffic

measurement with good accuracy, but does so with memory

efficiency, using a fewer number of counters than the number

of flows overall (thanks to counter sharing) — an important

feature for implementing such a function with on-die SRAM

memory of SDN switches.

II. FLOW MODELING AND PROBLEM STATEMENT

Consider a flow hierarchy consisting of k levels of flows

to be measured. The set of flows at the ith level is denoted

as Si, 1 ≤ i ≤ k, where the flows at the bottom kth level are

individual flows and the flows at other levels are aggregate

flows, each containing a subset of flows at the next level.

Let S∗ =
⋃k

i=0 Si. For an aggregate flow fi at the ith level,

1 ≤ i < k, let F (fi) be the subset of (i + 1)th-level flows

that it contains. Flow fi is called the parent flow, and flows

in F (fi) are called children flows.

As an example, at each top-of-rack switch in a datacenter,

we may want to measure the outbound traffic, including both

the aggregate flows from this rack to other racks and the

individual TCP flows from source addresses in the rack to

destinations outside of the rack. In this case, we model the

flows in a two-level hierarchy, where the first level is the set

of aggregate flows, each contains all packets from the rack

to another rack, and the second level is the set of TCP flows,

each contains all packets from certain source address/port in

the rack to certain destination address/port outside the rack.

The identifier for each aggregate flow is the rack address,

which may be the address prefix for the subnet assigned to

the rack. The identifier for each TCP flow is the classical five-

element tuple, including source address, source port, protocol

ID for TCP, destination address and destination port. The

identifiers can all be found from the packet header.

The problem is to measure the size of each flow in

S∗ in terms of number of packets or number of bytes;

for simplicity, our technical discussion will focus on the

former, but the proposed scheme can be easily modified

for the latter. In order for the switch to keep up with the

line speed, we should minimize both processing time and

memory consumption. For hardware on-chip implementation,

it is desired to reduce the number of memory accesses to the

minimum of one counter update per packet, and reduce the

number of counters to be fewer than the number of flows.

III. HIERARCHICAL VIRTUAL COUNTER ARRAYS

In this section, we propose a hierarchical traffic measure-

ment scheme, called Hierarchical Virtual Counter Arrays

(HVC). Below we first describe the construction of these

arrays, then explain how to record packets in the virtual

arrays, and derive the flow-size estimator based on the virtual

arrays.

A. Virtual Counter Arrays for Flows at Different Levels

Each switch allocates an array C of m counters for the

measurement function. The jth counter is denoted as C[j],
1 ≤ j ≤ m. For each first-level flow f1, we construct a

virtual counter array Cf1 by pseudo-randomly selecting s1
counters from C, where s1 is a pre-set parameter. Let Cf1 [j]
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Fig. 1: An illustration of hierarchical virtual counters.

be the jth counter in Cf1 , 1 ≤ j ≤ s1. Its selection is given

as follows:

Cf1 [j] = C[Hj(f1)], 1 ≤ j ≤ s1, (1)

where Hj , 1 ≤ j ≤ s1, is a hash function. It can be

implemented from a master hash function H∗ as follows:

Hj(x) = H∗(x⊕H∗(j)), (2)

where ⊕ is the XOR operator.

For each flow fi at the ith level, 1 < i ≤ k, we construct

a virtual counter array Cfi by pseudo-randomly selecting si
counters from Cfi−1 , where fi−1 is the parent flow of fi at

the (i− 1)th level, and si < si−1. The selection is given as

follows.

Cfi [j] = Cfi−1 [Hj(fi)], 1 ≤ j ≤ si. (3)

Although multiple counters are used in the virtual array of

each flow, those counters share the same physical counters

in C, as illustrated in Fig. 1. In fact, from the same set of

physical counters in C, we can construct a virtually unlimited

number of virtual counter arrays. Our numerical evaluation

will demonstrate that HVC can provide good estimation for

the sizes of individual/aggregate flows with good accuracy

when the total number m of counters is fewer than the

number of flows.

B. Measurement at Switches

Each switch is informed by the controller of the number

of levels in the flow hierarchy and the flow identifiers at

all levels that can be extracted from the packet headers.

Following an earlier example, the controller may assign each

rack a 24-bit prefix for its subnet address and specify that

at the first level, the aggregate flow — to which an arrival

packet belongs — will be identified by the 24-bit prefix of

the destination address in the IP header; at the second level,

the TCP flow to which the packet belongs will be identified

by the classical five-element tuple from the TCP/IP headers.

When a switch receives a packet, its extracts the identifiers

of the flows at all levels that the packet belongs to, denoted as

f1, ..., fk, where f1 is the parent flow of f2, which is in turn

the parent flow of f3, and so on. The switch then randomly

chooses a counter from the virtual array Cfk of flow fk and

increases that counter by one. More specifically, the switch

generates a random number j in the range of [1, sk], where

sk is the size of a virtual array at the kth level. It updates

Cfk [j] := Cfk [j] + 1, where := is the assignment operator.

Because Cfk [j] is chosen from Cfk−1
where fk−1 is the

parent flow of fk, we know that a counter in the virtual

array of flow fk−1 is also increased by one. By the same

token, a counter from the virtual array of any aggregate flow

to which the packet belongs will automatically be increased

by one. One counter update records the packet in the virtual

arrays of all k flows, f1, ..., fk.

From (3), we know that Cfk [j] is in fact the following

counter in Cfk−1
at the (k − 1)th level:

Cfk [j] = Cfk−1
[Hj(fk)] = Cfk−1

[H∗(fk ⊕H∗(j))],

which is in turn the following counter in Cfk−2
at the (k −

2)th level:

Cfk−1
[H∗(fk ⊕H∗(j))] =

Cfk−2
[H∗(fk−1 ⊕H∗(H∗(fk ⊕H∗(j))))].

Repeating the above reasoning, we have Cfk [j] is in fact the

following counter in the physical array C:

Cfk [j] = C[H∗(f1 ⊕H∗(f2 ⊕ ...H∗(H∗(fk ⊕H∗(j))))].

Therefore, after receiving a packet, the actual operation

that the switch performs is to increase the physical counter

C[H∗(f1⊕H∗(f2⊕...H∗(H∗(fk⊕H∗(j))))] by one, namely,

C[H∗(f1 ⊕H∗(f2 ⊕ ...H∗(H∗(fk ⊕H∗(j)))) + = 1, (4)

in the C style coding. It takes (k+1) hash functions that can

be pipelined for hardware implementation, and one counter

update. For the earlier example of two-level flows which will

be used in our simulations, the operation is

C[H∗(f1 ⊕H∗(f2 ⊕H∗(j)))] + = 1, (5)

which requires three hashes and one counter update. We

stress that the virtual arrays of Cf1 , ..., Cfk are not con-

structed at the switch. They are logical structures that are

reflected in (4) and (5), which make sure that one counter

update will show up in the virtual arrays of all k relevant

flows during flow-size estimation when the controller needs

this information.

To measure the flow size in terms of bytes, we change (4)

as follow

C[H∗(f1 ⊕H∗(f2 ⊕ ...H∗(H∗(fk ⊕H∗(j)))) + =
l

q
, (6)

where l is the number of bytes in the packet and q is a

normalizing integer constant for reducing the increment to

the counter.

C. Estimation at Controller

Upon query from the controller, a switch will report its

entire physical array C or a selected subset of counters as

specified in the query. Whenever a counter overflows during

measurement, the switch will report the counter value to

the controller and reset the counter to zero. Therefore, the

controller has all information needed to recover the proper
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values of all counters at all switches. It may also choose to

reset all counters to zeros for starting measurement anew.

During resource allocation, if the controller wants to know

the size of a certain flow fi at the ith level, it first locates

the array C that carries the information. Consider the earlier

example of two-level hierarchy. For a flow at the first level,

we use the flow identifier (24-bit address prefix) to locate

the top-of-rack switch and the use the counter array C from

that switch for flow-size estimation. For a flow at the second

level, we use the 24-bit prefix in the source address of the

flow identifier to locate the switch. Below we describe the

two cases for flow-size estimation.

First, consider a flow fi at the ith level, where 1 < i ≤ k.

The controller constructs the virtual array Cfi of flow fi and

the virtual array Cfi−1
of its parent flow fi−1. Let nci be the

number of packets recorded in Cfi , i.e., nci =
∑si

j=1 Cfi [j].
Let nci−1 be the number of packets recorded in Cfi−1 , i.e.,

nci−1 =
∑si−1

j=1 Cfi−1 [j]. The array Cfi records the size nfi

of flow fi and noise from other flows due to counter sharing.

Let e be a random variable for the number of noise packets

from other flows. We have

nci = nfi + e. (7)

The noise e can be measured statistically as follows: There

are nci−1
−nfi packets that do not belong to flow fi but are

recorded in Cfi−1
. Consider any of such packets. The proba-

bility for it to be recorded in Cfi is si
si−1

. If nfi is negligibly

small when comparing with nci−1
, e approximately follows

a binomial distribution:

e ∼ Bino
(
nci−1 − nfi ,

si
si−1

) ≈ Bino
(
nci−1 ,

si
si−1

)
. (8)

Hence, the expected number of noise packets in Cfi is

E(e) = E(nci−1
) si
si−1

. Taking expectation on both sides of

(7), we have

E(nci) = nfi + E(e) = nfi + E(nci−1
)

si
si−1

,

nfi = E(nci)− E(nci−1
)

si
si−1

.
(9)

Replacing E(nci) with the instance value
∑si

j=1 Cfi [j],
which is the observed number of packets recorded in Cfi , and

replacing E(nci−1
) with the instance value

∑si−1

j=1 Cfi−1
[j],

which is the observed number of packets recorded in Cfi−1 ,

we have an estimation n̂fi for nfi as follows.

n̂fi =

si∑

j=1

Cfi [j]−
si

si−1

si−1∑

j=1

Cfi−1
[j]. (10)

Next, we consider a flow f1 at the first level. Following

a similar process as above by replacing fi with f1 and

replacing Cfi−1 with C, we have the following estimation

n̂f1 for the size nf1 of flow f1:

n̂f1 =

s1∑

j=1

Cf1 [j]−
s1
m

m∑

j=1

C[j]

=

s1∑

j=1

Cf1 [j]−
ns1
m

,

(11)

where n =
∑m

j=1 C[j] is the total number of packets

recorded by the switch.

D. Estimation Accuracy

We now analysis relative bias and standard error of

n̂fi , 1 ≤ i ≤ k.

1) Relative Bias: we first analyze the mean of nci , which

is the total number of packets recorded in Cfi . From (7), we

know that nci = nfi + e. Combining with (8), we have

E(nci) = E(nfi) + E(e) = nfi + E(nci−1)
si

si−1
. (12)

Combining the above formula with (10), we can calculate

the mean of n̂fi :

E(n̂fi) = E
( si∑

j=1

Cfi [j])−
si

si−1
E
( si−1∑

j=1

Cfi−1
[j]

)

= E(nci)− E(nci−1
)

si
si−1

= nfi + E(nci−1)
si

si−1
− E(nci−1)

si
si−1

= nfi .

(13)

The relative bias of n̂fi , which is defined as
E(n̂fi

)

nfi
− 1, is

Bias(
n̂fi

nfi

) =
E(n̂fi)

nfi

− 1 = 0. (14)

Therefore, our estimation of nfi , 1 ≤ i ≤ k, is unbiased.

2) Standard Error: Consider an arbitrary counter in the

virtual counter Cfi . We use a random variable Xi for the

value of the counter. Let Fi be the portion of Xi contributed

from flow fi, and Ei be the portion of Xi contributed from

other flows. Clearly, Xi = Fi + Ei. Since each packet of

fi has the same probability 1
si

to increase the value of the

counter by one. Hence, Fi follows a binomial distribution:

Fi ∼ Bino
(
nfi ,

1
si
). Hence,

V ar(Fi) =
nfi

si
(1− 1

si
). (15)

Now consider Ei with a hierarchical view. Each packet of

another first-level flow has a probability of 1
m to increase the

counter by one. The number of such packets is denoted by

e0. Each packet of another child flow of f1 has a probability

of 1
s1

to increase the counter by one, where f1 is the first-

level ancestor of fi. The number of such packets is denoted

by e1. Repeating this process, we know that each packet of

another child flow of fj , 1 ≤ j ≤ i− 1, has a probability of
1
sj

to increase the counter by one, where fj is the jth level

166



ancestor of fi. The number of such packets is denoted by

ej . Clearly, we have

Ei =
i−1∑

j=0

ej . (16)

Assume there is a large number of flows at each level, the

size of each flow is negligible when comparing with the total

size of its parent flow. We can approximately treat the packets

independently. Hence, e0 approximately follows a binomial

distribution: e0 ∼ Bino
(
n − nf1 ,

1
m ) ≈ Bino

(
n, 1

m ) since

nf1 � n. Similarly, we know that ej , 1 ≤ j ≤ i−1 approxi-

mately follows a binomial distribution: ej ∼ Bino
(
nfj ,

1
sj
).

Hence, we have

V ar(e0) =
n

m
(1− 1

m
),

V ar(ej) =
nfj

sj
(1− 1

sj
), 1 ≤ j ≤ i− 1.

(17)

The packets represented by ej , 1 ≤ j < i, are different and

independent. Therefore, we have

V ar(Ei) = V ar(

i−1∑

j=0

ej) =

i−1∑

j=0

V ar(ej)

=
n

m
(1− 1

m
) +

i−1∑

j=1

nfj

sj
(1− 1

sj
).

(18)

Since Fi and Ei are independent. We have

V ar(Xi) = V ar(Fi) + V ar(Ei)

=
n

m
(1− 1

m
) +

i∑

j=1

nfj

sj
(1− 1

sj
).

(19)

In (10), Cfi−1
[j], 1 ≤ j ≤ si−1, are independent samples of

Xi−1. Recall that the sj counters in Cfi are selected from

Cfi−1 . When i > 1, from (10), the variance of nfi−1 is

V ar(n̂fi) = V ar(

si∑

j=1

Cfi [j]−
si

si−1

si−1∑

j=1

Cfi−1 [j])

=si
(
1− si

si−1
)2V ar(Xi) + (si−1 − si)

( si
si−1

)2V ar(Xi−1),

(20)

where V ar(Xi) and V ar(Xi−1) can be calculated through

(19). Next, we consider a flow f1 at the first level. Following

a similar process as above, we have the following variance

of n̂f1 :

V ar(n̂f1) = s1V ar(X1). (21)

The standard (relative) error, which is the standard deviation

divided by the actual flow size, is given below:

SE(
n̂fi

nfi

) =

√
V ar(n̂fi)

nfi

. (22)

IV. PERFORMANCE EVALUATION

We perform simulations to evaluate the performance of

HVC under different memory availability and system pa-

rameter settings, and compare it with RCS [16] which has

the smallest per-packet processing overhead among the prior

work.

We consider an SDN datacenter, where 1000 racks are

turned on, actively serving client workload, which is assigned

by the controller about evenly to the servers in the racks

for load balancing. Suppose each rack contains 16 servers

to host VMs, which communicate with one another via vir-

tual infrastructure deployments, emulating campus/institution

networks. The controller requires workload information from

each server and each VM, as well as the network traffic

matrix, both at the flow level and at the rack level, in order

to support complex performance optimizations. Our focus is

on network traffic estimation.

In our simulations, each top-of-rack switch is required

to monitor both first-level aggregate flows from the rack to

all other racks and second-level TCP flows from sources in

the rack to destinations outside of the rack. There are 999

aggregate flows, each going to a different rack. The number

of TCP flows contained in each aggregate flow is randomly

chosen from a range [500, 1500] with an average of 1000.

The TCP flow sizes follow a Zipf distribution based on the

characteristics of the traffic trace on our campus network.

A. Estimation Accuracy

The first set of simulations is to evaluate the accuracy of

the proposed HVC scheme under different memory avail-

ability. The simulation results are shown in Fig. 2-4, where

the memory allocated by a switch for traffic measurement

is 0.5MB in the leftmost plot, 1MB in the middle plot, and

2MB in the rightmost plot. The counter size is set to 10

bits. Because the average number of TCP flows per switch

is 1 million, the number of physical counters per TCP flow

is 0.4 in the leftmost plot, 0.8 in the middle plot, and 1.6

in the rightmost plot. If we take the aggregate flows into

consideration, the average number of counters per flow will

be slightly lower. We set s1 = 10, 000 and s2 = 200; we

will study their impact in later simulations.

Fig. 2 shows the estimation results for first-level aggregate

flows f1, where each point represents a flow, with the

x-coordinate being the actual flow size nf1 and the y-

coordinate being the estimated size n̂f1 . The equality line

y = x is also shown for reference. The closer a point is

to the equality line, the more accurate the estimation is.

As is expected, the estimation accuracy improves with more

memory, which is shown with points clustered closer towards

the line. Similar observation is made in Fig. 3, where each

point represents a second-level TCP flow f2.

The four plots in Fig. 4 show (a) the relative bias in the

estimations for the first-level flows, (b) the corresponding

standard error, (c) the relative bias in the estimations for the

second-level flows, and (d) the corresponding standard error,
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where the horizontal axis is the actual flow size. We can see

that as the flow size increases, the relative bias quickly drops

towards zero and the standard error also decreases rapidly,

even when the average number of physical counters is less

than 1. It is practically valuable to have high accuracy for

large flows because they are the important flows in traffic

engineering. Although the standard (relative) error of small

flows is higher in the plots, their absolute error will remain

relatively small.
For comparison, in Fig. 5, we show the relative bias and

the standard error of RCS [16], which also updates a single

counter to record a packet in a flow. However, because it does

not have hierarchical design, it has to update two counters

per packet in the simulations because each packet belongs to

two flows, one TCP and one aggregate. Despite doubling the

processing overhead, in general, RCS’s accuracy is slightly

lower than HVC’s in Fig. 4.

B. Impact of Value s1 on HVC
The second set of simulations evaluate the impact of s1

(i.e., number of counters in first-level virtual counter arrays)

on estimation accuracy. The memory size is set to 1MB and

the value of s2 is kept at 200. We repeat the simulations

with s1 = 2500, 5000, 20000, respectively. The estimation

results for the first-level aggregate flows are shown by the

first three plots in Fig. 6, respectively; the fourth plot shows

their standard errors, together with that of s1 = 10000
used in the simulations reported earlier. The results for the

second-level TCP flows are shown in Fig. 7. Interestingly,

as s1 increases, the accuracy decreases at the first level but

increases at the second level. The reason is that when the size

of a first-level virtual array is larger, it carries more noise due

to counter sharing, which degrades the first-level estimation,

but in the meantime it offers more counters for the second-

level children flows and thus improves their estimation.

C. Impact of Value s2 on HVC
The third set of simulations evaluate the impact of s2 (i.e.,

number of counters in second-level virtual counter arrays) on

estimation accuracy. The memory size is set to 1MB and the

value of s1 is kept at 1000. We repeat the simulations with

s2 = 50, 100, 400, respectively. The estimation results for the

first-level aggregate flows are shown by the first three plots

in Fig. 8, respectively; the fourth plot shows their standard

errors, together with that of s2 = 200 used in the simulations

reported earlier. The results for the second-level TCP flows

are shown in Fig. 9. The observation is opposite to the

previous subsection: as s2 increases, the accuracy improves

at the first level but degrades at the second level. The reason

is that when the size of a second-level virtual array is larger,

it carries more noise for second-level estimation, but causes

more sharing at the first level, making the noise there more

uniformly distributed, which helps noise removal.

V. CONCLUSION

This paper proposes a hierarchical traffic measurement

scheme to measure aggregate flows and individual flows

together in software-defined datacenter networks. The key

idea is the introduction of virtual counter arrays that replicate

the containment relationship among the flows. In addition,

it achieves memory efficiency by letting virtual arrays to

share counters. We mathematically derive the formulas for

estimating the size of any (individual or aggregate) flow from

its virtual counter array, and formally analyze the estimation

accuracy. Our simulation demonstrates that the new scheme

provides good measurement accuracy in tight memory space

at a small per-packet processing overhead.
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Fig. 3: Estimation results of second-level flows with 0.5MB, 1MB, and 2MB memory, respectively.
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Fig. 4: Accuracy of first-level estimation n̂f1 and second-level estimation n̂f2 under HVC.
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Fig. 6: Estimation results of first-level flows under different value of s1 with 1MB memory.
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Fig. 7: Estimation results of second-level flows under different value of s1 with 1MB memory.
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Fig. 8: Estimation results of first-level flows under different values of s2 with 1MB memory.
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