
Available online at www.sciencedirect.com
www.elsevier.com/locate/comcom

Computer Communications 31 (2008) 304–317
Efficient file search in non-DHT P2P networks

Shiping Chen a, Zhan Zhang b,*, Shigang Chen b, Baile Shi c

a Network Center, University of Shanghai for Science and Technology, China
b Department of Computer & Information Science & Engineering, University of Florida, USA

c Department of Computer Science, FuDan University, China

Available online 17 August 2007
Abstract

Unstructured P2P networks dominate in practice due to their small maintenance overhead. However, the high volume of search traffic
threatens its continued growth. The focus of this paper is to study how to improve the search efficiency in a non-DHT P2P network
without a distributed indexing structure. We identify possible performance problems in KaZaa and Gnutella, and propose a flexible
two-phase ticket-based search algorithm (TBS). In particular, the first phase is designed to reduce the search overhead and lookup delay
in searching popular (highly replicated) files, and the second phase is designed to reduce the excessive duplicate messages in searching
unpopular (rare) files. In addition, a random sampling solution is proposed to estimate timeout between consecutive search rounds,
and a moving anchor solution is proposed to reduce duplicate visits of the same node. Moreover, we propose a ticket-based broadcast
algorithm (TBA) by slightly modifying TBS, which has the significance in supporting various network functionalities. We evaluate the
performance of the new techniques by both analysis and simulations, which demonstrate that the proposed solutions outperform the
existing alternatives.
� 2007 Elsevier B.V. All rights reserved.

Keywords: P2P networks; Overlay algorithms; Distributed file sharing; Overlay broadcast
1. Introduction

P2P (peer-to-peer) systems for file sharing fall in two
categories: unstructured P2P networks [1–5] and structured
P2P networks with DHT-based (Distributed Hash Table)
search algorithms [6–19]. They contrast each other in trade-
off between search overhead and maintenance overhead.

A structured P2P network has a strictly defined overlay
topology, which infers a unique search path for any
lookup request. Its search overhead is small, but the
maintenance overhead can be huge for a highly dynamic
system. When a new node joins, the following operations
have to be performed. First, a lookup request must be
issued to find the node’s location in the overlay network.
Second, a portion of the file-index database is transferred
from an adjacent node. Third, a number of lookup
0140-3664/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2007.08.011

* Corresponding author. Tel.: +1 3528465444.
E-mail addresses: spchen@usst.edu.cn (S. Chen), zzhan@cise.ufl.edu

(Z. Zhang), sgchen@cise.ufl.edu (S. Chen), bshi@fudan.edu.cn (B. Shi).
requests are issued to find its overlay neighbors. Fourth,
for each file to be shared from this node, a lookup request
is issued to find where the index information should be
placed. For a single join, the overhead can be large if
the node carries many shared files. Moreover, nodes
may join and leave very frequently. The observations on
FastTrack users showed that over 20% of the overlay con-
nections last 1 min or less and 60% of the IP addresses
keep active for no more than 10 min each time after they
join the system [20]. This has two implications. First, a
high rate of node joins means a high rate of lookup
requests to add the index information for the files that
the new nodes carry. Second, a high rate of node depar-
tures means that the existing index information must be
timed out to prevent staleness, which further means that,
to keep a shared file in the system, the index information
must be periodically refreshed, causing addition over-
head. Besides, it is a complicated matter to support
multi-attribute or partial lookups in a structured P2P
network.

mailto:spchen@usst.edu.cn
mailto:zzhan@cise.ufl.edu
mailto:sgchen@cise.ufl.edu
mailto:bshi@fudan.edu.cn

1 m is only for the purpose of analysis, and is not known in practice.

S. Chen et al. / Computer Communications 31 (2008) 304–317 305
Without a rigid index-placement scheme, unstructured
P2P networks have small maintenance overhead, which is
the reason that they dominate in practice. However, the
file lookup is resolved by flooding, which has serious sca-
lability problem [21]. Measurements in [22] have shown
that the flooding algorithm generates 330 TB/month in
a Gnutella network with only 50,000 nodes. Even with
the use of super nodes in Kazaa (ultrapeers in Gnutella)
and TTL-constrained flooding (also called expanding
ring), traffic volume is still high. Observing that P2P traffic
becomes dominant and even exceeding web traffic [20,23],
many organizations block P2P traffic to prevent perfor-
mance degradation of other network applications.
Improving search performance of unstructured networks
is extremely important to supporting future P2P applica-
tions without overloading the Internet.

A hybrid approach [24] was proposed to use an
unstructured network for popular files and a structured
network for unpopular files. However, without a central
server maintaining the historical access statistics of all
files, the problem of determining which files are popular
or unpopular is not satisfactorily addressed. Furthermore,
regardless how frequent they are accessed, if the number
of unpopular files is large, the overhead of maintaining
the indexes in the structured network remains a serious
problem. Another hybrid approach [25] utilized partial
index to help peers to find shared interests, and provide
search hints for those data difficult to locate even after
interest-based clustering.

This paper has three contributions. First, we identify
performance problems in the existing P2P file search sys-
tems, and propose an efficient ticket-based search algo-
rithm (TBS). The existing approaches suffers different
problems in searching for popular (highly replicated) and
unpopular(rare) files. The proposed algorithm addresses
these problems, and is able to adapt itself to suit both pop-
ular and unpopular files.

Second, we propose two optimization methods to
improve the performance of P2P file search systems. A ran-
dom sampling solution is designed to estimate the appro-
priate timeout between consecutive search rounds and a
moving anchor solution is designed to reduce duplicate vis-
its of the same node.

Last but not least, we propose a broadcast algorithm,
called ticket-broadcast algorithm (TBA), which is derived
from the ticket-based search algorithm. TBA has its own
significance in supporting various network functionalities,
e.g., collecting statistics, distributing notifications, etc.
TBA works far better than the existing broadcast
alternatives.

The rest of the paper is organized as follows. Section 2
identifies problems in existing approaches. Section 3 pro-
poses a ticket-based algorithm, and two heuristics to
improve the performance of P2P search systems. Section
4 proposes a ticket-based broadcast algorithm, and studies
its performance. Section 5 provides simulation results. Sec-
tion 6 draws the conclusion.
2. Inefficiency in existing P2P file search systems

In this section, we first define the network model, study
the optimal search overhead, and then discuss the problems
in existing P2P file search systems in details.
2.1. Network model

We use Kazaa’s structure, which is also adopted by the
current Gnutella [26]. There are two types of nodes, super

nodes (or ultrapeers) and leaf nodes. An overlay network
is formed among the super nodes, each of which carries a
set of leaf nodes. When a leaf node joins at a super node,
it reports its file indexes to the super node. When a node
looks up a file, it issues a request to its super node, which
initiates a search process in the overlay network to locate
the file. From now on, we shall focus only on the super
nodes and the overlay network formed among them. In
the sequel, we refer to a super node simply as a node.

Let N be the set of nodes, n be the number of nodes in N,
and cx be the number of neighbors of a node x 2 N, and c

be the expected value of cx, i.e., the average number of
neighbors per node or the average node degree. The k-
neighborhood of x is the set of nodes that are k or less
overlay hops away from x. While our discussions in this
paper are made mainly for looking up a file, we want to
point out that the proposed techniques can be easily applied
to pattern search, i.e., finding a specified number of files that
match a given pattern. The notations, including those
defined later, can be found in Table 1 for quick reference.
2.2. Optimal search overhead

Suppose a file has m replicated copies randomly distrib-
uted in the overlay network. Let p(i) be the probability of
not finding any copy of the file after i nodes are searched.
The file is not found if the set of m1 nodes with the file does

not overlap with the set of i nodes that are searched.
m
n

� �
is the total number of different ways that the file can be dis-

tributed in the network, and
m

n� i

� �
is the number of dif-

ferent ways that the file can be distributed among the nodes
that are not searched. Hence,

pðiÞ ¼

m
n� i

� �
m
n

� � ¼ ðn� iÞ!ðn� mÞ!
n!ðn� i� mÞ!

Suppose we sequentially search a random sequence of dis-
tinctive nodes one after another. Let X be the number of
nodes to be searched before finding the first copy of the file.
It is a random variable with a distribution between 1 and

Table 1
Notations

N Set of (super) nodes
n Number of (super) nodes
cx Number of neighbors of x

c Average number of neighbors per node
m Number of replicated copies of a file in the network
X Number of nodes to be searched before locating a file
E(Xjm,n) or E(X) Expected value of X
l, q Parameters for random walk
d Parameter for limited-degree flooding
a, k Parameter for ticket-based flooding

306 S. Chen et al. / Computer Communications 31 (2008) 304–317
n � m + 1. The expected value E(Xj m,n) is a function of
both m and n.

EðXjm; nÞ ¼
Pn�mþ1

i¼1

i � pði� 1Þ � m
n�iþ1

¼
Pn�mþ1

i¼1

i ðn�iþ1Þ!ðn�mÞ!
n!ðn�i�mþ1Þ!

m
n�iþ1

ð1Þ

where p(i � 1) is the probability of not finding any copy at
the first (i � 1) searched nodes and m

n�iþ1
is the conditional

probability of finding a copy at the ith node. Combined,
pði� 1Þ m

n�iþ1
is the probability of finding the first copy at

the ith nodes. When the context makes it clear, we will
abbreviate E(Xjm,n) simply as E(X)

Because E(X) Æ m is an increasing function with respect
to m according to the figure, we have2

EðX jm ¼ 1; nÞ 6 EðXÞ � m 6 EðX j m ¼ n; nÞ � n

From (1), EðX j m ¼ 1; nÞ ¼ nþ1
2

and E(Xjm = n,n) = 1. We
have

nþ 1

2
6 EðXÞ � m 6 n

nþ 1

2m
6 EðXÞ 6 n

m

Based on the above inequality, m has a great impact on the
average number of nodes E(X) needed to be searched. The
left plot of Fig. 1 shows the curve of E(X) with n = 10,000.
When m > 1000, E(X) < 10, which means that finding a
highly popular file is trivial. With high probability, it can
be found in a very small neighborhood. The right plot
shows how to quickly estimate the value of E(X). For
m > 100, E(X) Æ m � n and thus E(X) � n/m.

One approach, proposed by Kumar et al., is for each
node to advertise the information about its files in a neigh-
borhood [27]. When a node receives a lookup message and
it knows the whereabout information of the requested file,
it can help direct the message to the node that has the file.
This approach can reduce the search overhead at the cost
of periodic advertisement in order to prevent information
staleness. The technique of artificially increasing m is
orthogonal to the new techniques to be proposed in this
2 Note that E(X) is the abbreviation of E(X j m,n), which is a function of
m.
paper, which improve the search efficiency for any m val-
ues. The two types of techniques can be used together for
better performance.

2.3. Inefficiency in existing systems

There is significant room for improvement in the search
efficiency of some commonly deployed P2P systems. In
searching for popular (highly replicated) files, the existing
systems suffer excessive unnecessary communication over-
head or long lookup delay. In searching for unpopular
(rare) files, they suffer from excessive duplicate messages.

2.3.1. Inefficiency in searching for popular files
The current Gnutella uses the TTL-constrained flooding

approach to limit the search scope. The basic idea is to
search increasingly larger neighborhood until the requested
file is found. The source node broadcasts a lookup request
with an initial TTL (time to live) value, specifying the max-
imum number of hops the request will travel. When a node
receives the request for the first time, if it has the requested
file, it replies to the source; otherwise, if the TTL is greater
than zero, the node reduces TTL by one and forwards the
request to all neighbors except the one from which the
request is received. If the source does not receive any reply
after a timeout period, it broadcasts another request with
an increased TTL. This process repeats until one or more
replies are received or TTL exceeds a threshold value. We
call each broadcast of the request as one search round (or
round).

In the case of searching for popular files, we can assume
that the number of nodes in a k-neighborhood under
search is roughly ck. This assumption is reasonable,
because the searched neighborhood is likely to represent
a small portion of the network, the probability for the
nodes to share common direct neighbors is very small,
and consequently the search follows a tree structure with
each internal node having c children on average. The num-
ber of leaf nodes, roughly ck, is much more than the num-
ber of internal nodes when c is reasonably large.

Recall that X represents the number of nodes that are
searched when the first copy of the file is located. In order
to cover X nodes, the TTL value in the flooding has to
grow as large as ØlogcXø. The number of nodes to be
searched in the ØlogcXø-neighborhood is roughly cdlogcXe.
Because ØlogcXø can be close to logcX + 1, the overhead
(in terms of the number of nodes that are searched) can
be as large as

clogcXþ1 ¼ c � X ð2Þ
which is c times of X. Namely, (c � 1) times of more nodes
are searched even after the file is located. It represents a
serious overhead problem even when c is modest, e.g., 10.
The fundamental reason for this problem is that the over-
head in TTL-constrained flooding increases at very coarse
discrete steps – it increases by c times for each search
round.

1

10

100

1000

10000

0 2000 4000 6000 8000 10000

E
(O

m
eg

a)

m

5000

6000

7000

8000

9000

10000

11000

0 2000 4000 6000 8000 10000

E
(O

m
eg

a)
 *

 m

m

Fig. 1. E(X) is the expected number of nodes to be searched.

S. Chen et al. / Computer Communications 31 (2008) 304–317 307
Limited-degree flooding artificially reduces the value of
c. Each intermediate node forwards the lookup message to
d(<c) randomly selected neighbors. By (2) and with c

replaced by d, the number of searched nodes is reduced
to d Æ X. However, in this approach, fewer nodes can be
covered than that in TTL-constrained flooding within
the same number of hops. In order to cover X nodes,
the value of TTL has to be ØlogdXø, which is greater than
ØlogcXø. A larger TTL means that the lookup message has
to travel more hops to complete a search round, which
causes a greater lookup delay. Probabilistic flooding [28]
artificially reduces the value of c by forwarding the lookup
message to each neighbor with a certain probability. It has
a similar problem as limited-degree flooding does. Light-
Flood [29] relies on pre-constructed tree-like sub-overlay
called FloodNet to avoid revisiting the same nodes in
the networks. It has the same serious overhead problem
because the huge gap between two consecutive TTL val-
ues: the overhead is still as large as d Æ X (d is the average
degree of the nodes in the tree).
2.3.2. Inefficiency in searching for unpopular files

TTL-constrained flooding approach is designed to
search for highly replicated (popular) files. To look up such
a file, it is sufficient to search only a small number of nodes.
When TTL of the constrained flooding is not large, recur-
sively forwarding a lookup message to neighbors is a good
way to distribute the message across the overlay network,
especially when the neighbors are randomly selected. How-
ever, after a large portion of nodes have received the
lookup message, further forwarding the message to neigh-
bors is increasingly inefficient.

When the number of replicated copies of a file, m, is very
small, the expected number of nodes to be searched, E(X),
will be very large. For example, by (1), if m = 1, we have

EðX j m ¼ 1; nÞ ¼
Xn

i¼1

i
n� iþ 1

n
1

n� iþ 1

¼ 1

n

Xn

i¼1

i ¼ nþ 1

2

Note that nþ1
2

is the average number. In the worse case, all
nodes have to be searched. In order to cover all nodes, the
TTL of constrained flooding has to be as large as the net-
work diameter, which causes the message to be forwarded
on every overlay link, and the probability of hitting an al-
ready-searched node (called duplicate visits) becomes lar-
ger than the probability of hitting an unsearched node.
Thus, this approach is too expensive for the search of
(unpopular) files with one or a few copies.

Another approach is to carefully arrange the neighbor
links to create a balanced broadcast tree among all nodes,
which achieves the optimal hop complexity of O(logcn)
and the optimal message complexity of n. This approach
is however impractical for a high-dynamic P2P network
where tens or even hundreds of nodes join and depart at
any moment. Moreover, the internal nodes, which
account for a small portion of a tree with an average
degree of c, will take the full burden of forwarding the
broadcast traffic.

Random walk delivers a message through a set of ran-
dom paths. Limited-degree flooding forwards a message
to a fixed number (but not all) of neighbors at each hop.
Probabilistic flooding forwards a message to neighbors
with a certain probability at each hop. They are not suit-
able for broadcast. As our simulations will demonstrate,
besides the performance problems, they may fail in reach-
ing a portion of nodes.

Although unpopular files may be accessed less fre-
quently, their number can be much larger than the number
of popular files. Moreover, their importance to some users
should not be under-estimated just because fewer users
need them. Without an efficient algorithm searching for
unpopular files, a major portion of these files are essentially
lost in the network if TTL-constrained flooding is con-
strained to a limited scope.

The dynamic query algorithm was proposed in [30],
which switches the queries from probabilistic searching
to random walks if the searched files are unpopular. As
discussed, the probabilistic searching may result in long
response time. In addition, random walks may revisit
nodes in searching unpopular files and increase the
communication overhead. Another dynamic querying

308 S. Chen et al. / Computer Communications 31 (2008) 304–317
algorithm was proposed in [31], which tries to bridge the gap
between two consecutive TTL values by dynamically calcu-
lating TTL in each searching round. However, it has the
same problem as in [29] if the searched files are unpopular.
3. Ticket-based search in non-DHT P2P networks

In this section, we first propose a ticket-based search algo-
rithm, which addresses the inefficiency problems discussed in
Section 2, and is able to efficiently search for both popular
and unpopular files. We also will discuss two optimizations
to improve the performance of P2P file search systems.

3.1. Two-phase ticket-based search algorithm

Our ticket-based search algorithm (TBS) consists of two
phases. Phase one is called ticket-based flooding. Its pur-
pose is to improve the search efficiency of popular files
by significantly reducing the search overhead without sig-
nificantly increasing the lookup delay. Phase two is called
segmented ring traversal. Its purpose is to improve the
search efficiency for unpopular files by avoiding excessive
duplicate visits.
Fig. 2. Ticket-based sear
The algorithm begins with Phase one, which is able to
find most popular files. It switches to Phase two after
Phone one has delivered the lookup message to a certain
percentage of all nodes, such that further distributing the
message in a flooding way is no longer efficient due to
duplicate visits. Phase two is able to resolve all lookups
that cannot be answered by Phase one.
3.1.1. Phase one: ticket-based flooding
The concept of tickets was originally proposed in [32]

under a totally different context. To find a QoS-constrained
route, tickets specify the maximum number of wireless
paths to be probed. To locate a file, tickets in this paper
specify the number of nodes to be checked in one search
round. Each ticket represents the permission of searching
one node. If one search round does not find the file, the
number of tickets is increased by a factor a. Within each
round, when a node receives a lookup message for the first
time, it consumes one ticket and then forwards the message
to all neighbors as long as the message carries enough tick-
ets, which are split among the neighbors.

Ticket-based flooding is given in Fig. 2 with min_tickets
and kn specifying the minimum number and maximum
ch algorithm (TBS).

s s

ii

jj

kk
phase one

treee distribution

phase two

segmented ring traversal

Fig. 3. Two-phase search.

S. Chen et al. / Computer Communications 31 (2008) 304–317 309
number of tickets used in any round of Phase one, respec-
tively, where n is the number of nodes in the system and
k(<1) is a system parameter. Note that when the number
of tickets in a round becomes larger than the maximum
threshold kn, the algorithm switches to Phase two.

A lookup message contains at least four fields, msg car-
rying the information about the query, t carrying the num-
ber of tickets, sid uniquely identifying this round of search,
and a flag f specifying which phase the algorithm is execut-
ing (0 for Phase one and 1 for Phase two).

The algorithm consists of two subroutines. One is exe-
cuted at the lookup source node. It makes a sequence of
search rounds with an increasing number of tickets until
the file is found or the ticket number is larger than the
threshold kn (in this case, switching to Phase two). The
other subroutine is executed at all other nodes, upon
receiving lookup messages. It consumes one ticket and for-
wards the received message to all neighbors, with the
remaining tickets split evenly among them (lines 5–11 in
the lookup routine at the source node).

In this phase, the number of searched nodes is increased
in discrete steps by a tunable factor a 2 (1, c] (line 10 in the
lookup routine at the source node). In order to cover X
nodes, the maximum number of tickets issued for one
round will not exceed aX, which is smaller than cX.
Because a lookup message is forwarded to all neighbors
as long as the message carries enough tickets, the search
process roughly follows a tree structure with an average
degree of c. Therefore, most tickets are expected to be con-
sumed within logc(aX) < logcX + 1 hops.

Ticket-based flooding achieves the benefits of both TTL-
constrained flooding and limit-degree flooding. Like the
former, it minimizes the lookup delay by forwarding the
lookup message to all neighbors, which reduces the depth
of the flooding tree in each round. Like the latter, it reduces
the overhead increment in consecutive search rounds. More-
over, it makes the increment tunable by a system parameter a.

We will use simulations to demonstrate that a = 2
achieves a favorable tradeoff between the search overhead
and the search delay. a should not be chosen too small
because otherwise it may cause too many search rounds.

3.1.2. Phase two: segmented ring traversal

Ticket-based flooding becomes inefficient when the
number of tickets in a round is high enough to cause many
duplicate visits. When this happens, the algorithm switches
to Phase two, called segmented ring traversal, to distribute
the lookup message more efficiently.

To facilitate segmented ring traversal, we augment the
overlay network with an ‘‘unrestricted’’ non-DHT ring that
connects all nodes. Each node knows the next node on the
ring, called the successor. The unrestricted ring is funda-
mentally different from the DHT-based ring found in many
structured P2P networks. In the DHT-based ring, each
node has a specific location, which makes the maintenance
of the ring difficult when a new node joins the network. In
the unrestricted ring, a node can be anywhere in the ring.
The ring maintenance is trivial. As long as a new node x

knows another node z that is already in the ring, it informs
z to set x as the successor, and then it sets its own successor
to be z’s previous successor. To prevent the ring from being
broken after an abrupt node departure, each node should
also know a number of nodes after the successor down
the ring. It also knows the previous node on the ring, called
the predecessor. In the rare case that all those nodes depart
abruptly together, a broadcast is performed to identify the
nodes that do not have predecessors and successors so that
they can be connected to form a ring. In the description of
our algorithm, when we refer to the neighbors of a node,
we do not include the successor or the predecessor, which
is treated separately.

We call the nodes reached in the last round of phase one
as phase-one nodes. The operation of segmented ring tra-
versal is illustrated by the left plot of Fig. 3. Suppose the
source node s has three neighbors and nodes i, j, and l each
have two neighbors. In the last round of Phase one, the
message is delivered to nine nodes. The phase-one nodes
partition the ring into segments, which are called phase-

two segments. As illustrated in the right plot of Fig. 3, each
phase-one node is responsible for one phase-two segment.
It forwards the message to its successor, which further for-
wards the message to the successor’s successor,. . .,until the
message reaches a node that has already received the mes-
sage. The second phase avoids the intense collision that
happen at the final stage of flooding – most message for-
wardings at the last steps of flooding are made to nodes
that have received the message.

The pseudo code of Phase two can be found in Fig. 2.
When the ticket number t is larger than the threshold kn,
the source node sets the ticket number to be kn and the
flag f to be 1 (lines 12–13 in the lookup routine at the
source node). When a node x receives the message, if
f = 1, and the node has not forwarded message with sid

to its successor before, x performs Phase two by forwarding
the message along the successor links until reaching a node
that has received the message previously (lines 12–13 and
lines 14–15 in lookup routine at intermediate nodes).
3.1.3. Determining the threshold kn

To determine the threshold kn for transition from
Phase one to Phase two, we must know k and n. k is a

310 S. Chen et al. / Computer Communications 31 (2008) 304–317
system parameter that can be chosen, but n has to be mea-
sured. We use a random sampling approach to estimate n.
In the last round of Phase one, the source node makes a
number of special tickets. For each node that consumes a
special ticket, after its phase-two segment is traversed,
the length of the segment is sent back to the source. Such
information can be collected during the segment traversal
in Phase two. After the source receives the segment lengths,
it revises the estimation of n to be the sum of the lengths
divided by the number of special tickets and then multi-
plied by the total number of tickets. The new values of n

will be used to determine the threshold in the next query.
Each query message will carry the most up-to-date esti-

mation of n at the source if the calculation is performed
recently. A node will collect these values from all received
messages and update its own estimation. For example, it
may take the average of all received estimations in a recent
period.

We performed simulations which showed that the above
approach will quickly converge the estimated values of n

towards the real values if Phase two is performed regularly
in the network. On the other hand, when Phase two is
rarely performed, the problem of precisely determining
the threshold also becomes less important.

3.2. Optimizations

3.2.1. Timeout problem and random sampling solution

Timeout between search rounds (line 6 in the lookup
routine at the source node) may be a major contributor
to the search delay. Traditionally, the next round starts
after the previous round completes. The timeout period is
set large in order to accommodate the worst-case delay of
the previous round. However, the Internet delay follows
a long-tail distribution [33]. The delays of most Internet
paths are clustered in a relatively small range, but the
delays of a small portion of Internet paths are very large.
It is non-optimal when the timeout is set to be a long time
(e.g., 10 s) while the lookup message reaches most nodes of
a round in a short time (e.g., hundreds of milliseconds).
Can we intelligently start the next round at an earlier time
before timeout?

The observation is that we do not have to start the next
round strictly after the previous round completes. For
example, we may start the next round after the lookup mes-
sage reaches a percentage b (= 75% in this paper) of nodes
in the previous round. Because of the long-tail delay distri-
bution, it takes much less time to reach a majority (instead
of all) of nodes if we do not worry about the small number
of nodes that are distant in terms of delay. In order for a b
percentage to cover X nodes, the number of tickets issued
by TBS has to be at least 1

b X. Due to the discrete ticket
increment, the actual number of tickets issued will be up
to a 1

b X, a modest increase comparing with the prior num-
ber of aX.

How to estimate when the percentage of nodes that have
been searched reaches b? We propose a random sampling
solution. The idea is to make a small number of tickets spe-
cial. They are called sampling tickets. When a node receives
a lookup message for the first time, it consumes a ticket
randomly selected from the ticket pool carried by the mes-
sage. If it happens to consume a sampling ticket, the node
sends a notification to the lookup source. Suppose the
lookup source starts one round at time t0, and it receives
notifications for a b percentage of all sampling tickets
before time t1. If t1 is before timeout, the node starts the
next round immediately.

3.2.2. Overlapped search problem and moving anchor solution

Any search round in Phase one will revisit all nodes that
have been searched in the previous rounds. One optimiza-
tion is to start the rounds at different nodes. These nodes
are called anchors. The first anchor is the lookup source,
which chooses one of its neighbors as the anchor for the
second round. The source sends a lookup message to all
neighbors except the next anchor. The information about
the next anchor is carried in the lookup message. After
receiving the message, a node will not forward the message
to this anchor even if it is a neighbor. To start the next
round, the anchor is notified, which chooses one of its
neighbors as the anchor for the yet next round before send-
ing out the lookup message. The above process repeats
until the file is found. By using different anchors to start
the search rounds, the likelihood of overlapped search is
reduced.

4. An efficient broadcast algorithm

In this section, we propose a broadcast algorithm, called
ticket-based broadcast algorithm (TBA). An efficient
broadcast function in overlay networks can serve many
purposes. For instance, an administrator or a user may
be interested in learning the statistics of the overlay net-
work and how the network properties change over a period
of time. Providing a broadcast function is useful, but its
usage should be restricted based on a privilege-based or
incentive-based mechanism, which is beyond the scope of
this paper.

4.1. Ticket-based broadcast algorithm (TBA)

Recall that the nodes visited by the last round of Phase
one partition the ring into segments, and then in Phase two,
each of those nodes forwards the query message to its suc-
cessor recursively until the segment closest to the node is
totally covered. Obviously, the whole network can be
reached by the last round of Phase one combined with
Phase two. Thus, a broadcast algorithm can be derived
from the ticket-based search algorithm as follows: Instead
of going through multiple rounds before entering Phase
two, Phase one is changed to only include the last round,
where the ticket number is set be kn, i.e., t: = kn, and the
flag f is set to be 1. We call the resulting algorithm as
ticket-based broadcast algorithm (TBA).

S. Chen et al. / Computer Communications 31 (2008) 304–317 311
4.2. Analysis

We analyze the complexities of TBA. The hop complex-
ity is defined as the expected number of hops that a broad-
cast message travels from the broadcast source to an
arbitrary node. The communication complexity is the
expected number of times that a broadcast message is for-
warded in order to reach all nodes. A smaller hop complex-
ity means a more balanced delivery tree and a smaller
average delivery latency. A smaller communication com-
plexity means less network bandwidth consumed.

The proof of the following theorems and corollaries can
be found in the appendix. To make the problem tractable,
the analysis of hop complexity assumes that each node has
c neighbors and forwarding a message takes one unit of
time per hop. The general case where nodes have different
numbers of neighbors and varied link delays will be studied
by simulations.

Theorem 1 (Hop complexity). The expected number of hops

for a broadcast message to reach an arbitrary node is

bounded by
logcðknÞ þ 1

2 1� 1
c

� �
1� kc

c�1

� �
k

Corollary 1 (Hop complexity). If k ¼ H 1
logcn

� �
, then the

expected number of hops for a broadcast message to reach

an arbitrary node is O(logcn).

Theorem 2 (Communication complexity). The expected

number of times a broadcast message is forwarded before

reaching all nodes is bounded by 1þ k
1�k

� �
n.

Corollary 2 (Communication complexity). If k ¼ H 1
logcn

� �
,

then the expected number of times a broadcast message is for-

warded before reaching all nodes is bounded by nþ O n
logcn

� �
.

Based on the above analysis, when k ¼ H 1
logcn

� �
, TBA

achieves near optimal performance with hop complexity

O(logcn) and communication complexity nþ O n
logcn

� �
. In

order to pick k ¼ H 1
logcn

� �
, a node needs a rough knowledge

about the values of n and c. Both of them can be estimated
by the random sampling approach introduced in Section 3.1.

5. Simulation

In this section, we first use simulations to evaluate the
performance of the ticket-based search algorithm proposed
in Section 3, and then evaluate the performance of the
broadcast algorithm in Section 4.

5.1. Setup

A Gnutella-like overlay network is constructed among a
group of ultrapeer nodes. The default number of ultrapeer
nodes in the simulations is 50,000, but networks of different
sizes will also be studied. We assume the nodes come from
all over the Internet, rather than clustered in a few places.
In [33], Mukherjee found that the end-to-end packet delay
on the Internet can be modeled by a shifted Gamma distri-
bution, which is a long-tail distribution. The shape param-
eter varies from approximately 1.0 during low loads to 6.0
during high loads on the backbone. In this paper we set the
shape parameter to be 4.0 and the average packet delay for
one overlay link to be 100 ms, including the nodal process-
ing time.

The recent work [34] by Stutzbach and Rejaie showed
that the top-level node degree of an ultrapeer in Gnutella
does not follow the power-law distribution even though
that was claimed by some previous studies. Instead, the
node degrees concentrate in the range of 1–30, with a spike
at 30, which is the default maximum degree of the most
popular Gnutella implementation, LimeWire. We ignore
the less-significant tail distribution after 30, which is the
result of other less-popular Gnutella implementations.
For any value in the range [1..30], there are a significant
number of nodes having that degree. Since no mathemati-
cal model has been proposed to fit the observed degree
curve, in our simulations we choose a uniform degree dis-
tribution in the range [1..29] for two thirds of nodes and
approximate the spike at 30 by making one third of nodes
to have that degree. The average node degree is therefore
20. Beside the above default configuration, some simula-
tions will study networks with other average node degrees,
where the maximum degree is other than 30.

5.2. Evaluation of search performance

We implement four search algorithms: Ticket-based

search, TTL-constrained flooding, TTL-constrained lim-

ited-degree (LD) flooding, Random walk. Ticket-based
search combines ticket-based solution, random sampling
solution, and moving anchor solution in Section 3. By
default, k = 0.15, and a = 2 in the ticket-based solution,
but we will study how different a values will affect the
search performance. TTL-constrained flooding, or simply
TTL flooding, is the algorithm used in Gnutella. TTL-con-
strained limited-degree (LD) flooding, or simply TTL LD-d

flooding, forwards a received lookup message to only a
fixed number d of randomly selected neighbors. The
parameters for random walk are the same as in [35]. The
source node sends 32 probes, each of which follows a ran-
dom path and queries the source node after every four hops
until the file is found.

The timeout between consecutive rounds of TTL flooding
can dramatically increase the search time. The experiments
in [24] showed that, for Gnutella lookups that return 10 or
fewer results (which means the searched files are rare items
with only a small number of replications), 50 s on average
elapsed before the first result came back. In Fig. 4, our sim-
ulation demonstrates the same problem. The search times of
TTL flooding become very large if the timeout period is

0

20000

40000

60000

80000

100000

120000

3000 4000 5000 6000 7000 8000 90001000011000

se
ar

ch
 ti

m
e

(m
s)

timeout (ms)

ticket-based search
TTL flooding

TTL LD-2 flooding
random walk

Fig. 4. Random sampling solution reduces search time of ticket-based search.

0

5000

10000

15000

20000

25000

10 20 30 40 50 60 70 80 90 100

se
ar

ch
 ti

m
e

(m
s)

number of file replications (m)

ticket-based search
TTL flooding

TTL LD-2 flooding
random walk

Fig. 6. Search time with respect to m.

30000

35000 ticket-based search
TTL flooding

312 S. Chen et al. / Computer Communications 31 (2008) 304–317
large. Random walk does not use timeout. Ticket-based
search avoids timeout by random sampling solution, which
significantly reduces the search time. To make a sensible
comparison in the rest of the simulations, we implement ran-
dom sampling solution for TTL flooding and TTL LD
flooding as well. Without specifying otherwise, the default
number of replications of the searched file is 25.

The performance metrics that we use to evaluate the
search algorithms include (1) search overhead, which is
measured by the average number of times that a lookup
message is forwarded before the file is located, and (2)
search time, which is measured by the average time that
elapses before the file is located.

We compare the performance of the four search algo-
rithms. The results show that the ticket-based search algo-
rithm achieves a favorable tradeoff between search
overhead and search time.
0

5000

10000

15000

20000

25000

20000 40000 60000 80000

se
ar

ch
 o

ve
rh

ea
d

number of nodes (n)

TTL LD-2 flooding
random walk

Fig. 7. Search overhead with respect to n.
5.2.1. Performance w.r.t m
Figs. 5 and 6 compare the algorithms in terms of search

overhead and search time, with respect to the number m

of replications of the searched file. m ranges from 5 to
100. TTL flooding is the worst in terms of search overhead
but the best (after random sampling solution is imple-
mented) in terms of search time. Random walk is the best
in terms of search overhead but the worst in terms of search
time when m is small. However, the search time of random
0

2000

4000

6000

8000

10000

12000

10 20 30 40 50 60 70 80 90 100

se
ar

ch
 o

ve
rh

ea
d

number of file replications (m)

ticket-based search
TTL flooding

TTL LD-2 flooding
random walk

Fig. 5. Search overhead with respect to m.
walk reduces quickly when m is large. TTL flooding is too
high in search overhead; random walk is too high in search
time for small m. Ticket-based search and TTL LD-2 flood-
ing make tradeoff between the two extremes, but the former
is far better than the latter in terms of search time. We do
not plot the performance of TTL LD-d flooding for other
d values. Their performances lay between TTL LD-2 flood-
ing and TTL flooding. When d increases, the search over-
head becomes larger and the search time becomes smaller.

5.2.2. Performance w.r.t n

Figs. 7 and 8 compare the algorithms in terms of search
overhead and search time with respect to the number n

of nodes in the network. The search overhead of TTL
0

5000

10000

15000

20000

20000 40000 60000 80000 100000

se
ar

ch
 ti

m
e

(m
s)

number of nodes (n)

ticket-based search
TTL flooding

TTL LD-2 flooding
random walk

Fig. 8. Search time with respect to n.

4000

5000

6000

7000

8000

rc
h

ov
er

he
ad

ticket-based search

S. Chen et al. / Computer Communications 31 (2008) 304–317 313
flooding grows much faster than other algorithms when n

increases. On the other hand, the search time of random
walk grows much faster than other algorithms. Again the
ticket-based search algorithm makes a favorable tradeoff,
with both modest search overhead and modest search time
when comparing with the best values.
0

1000

2000

3000

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

se
a

alpha

Fig. 11. Search overhead with respect to a.
5.2.3. Performance w.r.t node degree

Figs. 9 and 10 compare the algorithms with respect to
the average node degree in the network. The algorithms
are largely insensitive to the change of node degree, except
that the overhead of TTL flooding generally grows at a sig-
nificant rate. That is because larger node degree means lar-
ger discrete steps in overhead increment, which tends to
cause larger mean overhead as explained in Section 3.
However, the overhead of TTL flooding stays about the same
for the node degrees between 15 and 21. That is because the
reduced search depth (maximum TTL needed) fully compen-
sates the increased search width (node degree) in this range.
5.2.4. Impact of a
We show the impact of a on the performance of ticket-

based search in Figs. 11 and 12. Recall that a is the rate at
which the number of tickets increases in consecutive search
rounds. A larger a value means coarser discrete steps in
overhead increment, which results in larger average search
overhead, but smaller search time because the algorithm
reaches a certain number (X) of nodes in a less number
0

5000

10000

15000

20000

10 15 20 25

se
ar

ch
 o

ve
rh

ea
d

avg. node degree

ticket-based search
TTL flooding

TTL LD-2 flooding
random walk

Fig. 9. Search overhead with respect to avg. node degree.

0

2000

4000

6000

8000

10000

12000

14000

10 15 20 25

se
ar

ch
 ti

m
e

(m
s)

avg. node degree

ticket-based search
TTL flooding

TTL LD-2 flooding
random walk

Fig. 10. Search time with respect to avg. node degree.
of search rounds. We pick a = 2 in all other simulations
because it seems to make a reasonable balance between
search overhead and search time.
5.3. Evaluation of broadcast performance

We also implement four broadcast algorithms: ticket-

based broadcast, flooding, probabilistic flooding, and lim-

ited-degree (LD) flooding. Ticket-based broadcast is what
we proposed in Section 4. Flooding is one of the most pop-
ular broadcast algorithms on the IP networks; reverse path
forwarding is one example. In our case, each node forwards
a copy of a message to all neighbors when it receive the
message for the first time. In order to control the overhead,
probabilistic flooding forwards a copy of the message to
each neighbor with a certain probability, which means the
message is not forwarded to all neighbors unless the probabil-
ity is one. On the other hand, LD flooding forwards a copy of
the message to only a fixed number of neighbors.

The performance metrics that we use to evaluate the
broadcast algorithms include (1) broadcast overhead, which
is measured by the number of times that a broadcast mes-
sage is forwarded, and (2) number of nodes reached. Not all
algorithms under comparison can reach every node in the
network.

In Figs. 13 and 14, we compare the performance of the
four broadcast algorithms in terms of broadcast overhead
and number of nodes reached, respectively. In ticket-based
broadcast,k = 0.25. In probabilistic flooding, the probability
0

500

1000

1500

2000

2500

3000

3500

4000

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

se
ar

ch
 ti

m
e

(m
s)

alpha

ticket-based search

Fig. 12. Search time with respect to a.

0

50000

100000

150000

200000

250000

300000

350000

400000

6 8 10 12 14 16 18 20

br
oa

dc
as

t o
ve

rh
ea

d

avg. node degree

ticket-based broadcast
flooding

LD flooding
prob flooding

Fig. 13. Comparison of broadcast overhead.

0

10000

20000

30000

40000

50000

6 8 10 12 14 16 18 20

nu
m

be
r

of
 n

od
es

 r
ea

ch
ed

avg. node degree

ticket-based broadcast
flooding

LD flooding
prob flooding

Fig. 14. Number of nodes reached by broadcast.

0

200

400

600

800

1000

1200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

br
oa

dc
as

t l
at

en
cy

 (
m

s)

lambda

ticket-based broadcast

Fig. 16. Broadcast latency with respect to k.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

br
oa

dc
as

t o
ve

rh
ea

d

lambda

ticket-based broadcast

Fig. 15. Broadcast overhead with respect to k.

314 S. Chen et al. / Computer Communications 31 (2008) 304–317
for a node to forward a message to a neighbor is 30%. In LD
flooding, each node forwards a message to two neighbors.

Fig. 13 shows that ticket-based broadcast has the least
overhead, and flooding has the highest. The overheads of
flooding and probabilistic flooding grow quickly when
the node degree increases. Ticket-based broadcast has
smaller overhead because its segmented ring traversal
avoids the heavy collision (duplicate visits) that would hap-
pen in the final stage of flooding.

One important thing to be pointed out is that probabi-
listic flooding and LD flooding cannot guarantee to reach
every node because they traverse the graph without using
all available (directed) links. As shown in Fig. 14, LD
flooding can only reach less than 80% of all nodes, and
probabilistic flooding reaches more nodes when the aver-
age node degree is larger. These two algorithms cannot
be used if the application requires that a broadcast message
must reach all nodes.

We show the impact of k on the performance of ticket-
based broadcast in Figs. 15 and 16. Recall that kn is the ini-
tial number of tickets used in Phase one. The broadcast
overhead increases linearly with k, agreeing with Theorem
2. The broadcast latency decreases non-linearly with k.
Therefore, to make a favor tradeoff, k should not be too
large. A value in the range of [0.2..0.4] is appropriate.

6. Conclusion

We identify a number of performance problems in the
search algorithms of the current unstructured P2P net-
works, and propose a new ticket-based search algorithm
to solve these problems. The new algorithm can efficiently
search both popular and unpopular files without knowing
which files are popular and which are not. The algorithm
can also be modified for efficient broadcasting. We use sim-
ulations to evaluate the performance of the new techniques,
in comparison with the existing ones.

Acknowledgement

This work is in part supported by the National Natural
Science Foundation of China under grant 60573142 and by
Shanghai Leading Academic Disclipline Project (Project
Number T0502).

Appendix A. Proof

Let kn be the number of tickets used in Phase one, T be
the number of nodes visited in this phase, called phase-one

nodes, Qi be the number of nodes that are i or less hops
away from the lookup source, and qi be the number of
nodes that are exactly i hops away.

Lemma 1. The number of hops a broadcast message travels

from the source to any phase-one node is bounded by logc(kn).
Proof. Consider an arbitrary phase-one node x. Let l be
the number of hops the message travels from the source
to x. At each hop, the number of tickets carried by the mes-
sage is consumed by one and then split to a fraction of 1

c.

S. Chen et al. / Computer Communications 31 (2008) 304–317 315
Specifically, at the first hop, the number of tickets carried
in the message sent by the source is no more than Økn/cø.
At the second hop, the number of tickets in the message is
no more than Ø(Økn/c ø � 1)/cø . . . When x receives the mes-
sage, the number of tickets must be at least one. Therefore,

ðd. . . dðdkn=ce � 1Þ=ce . . .e � 1Þ=c P 1
kn
cl P 1

l 6 logcn �

Lemma 2

Qi 6

Xi

j¼0

cj

Proof. The number of nodes that are i hops away is
bounded by the total number of neighbors from nodes that
are i � 1 hops away.

qi 6 qi�1c

Recursively applying the above inequality, we have

qi 6 q0ci ¼ ci

Hence,

Qi ¼
Xi

j¼0

qi 6

Xi

j¼0

cj
�

Lemma 3

EðT Þ > 1� k
c

c� 1

� �2
� �

kn

Proof. At the ith hop of Phase one, copies of the message
are forwarded from nodes (i � 1)-hops away to their neigh-
bors. When a copy reaches the receiver, in worst case, there
are no more than Qi nodes in the network that have
received the message. The probability for the copy to reach
a node that has received the message is3

pðiÞ 6 Qi � 1

n� 1

<

Pi
j¼0ci

n

The total number of tickets carried in all copies of the mes-
sage is bounded by kn. Let di be the number of tickets that
are dropped at the ith hop.

EðdiÞ 6 pðiÞkn < k
Xi

j¼0

ci

By Lemma 1, the maximum number of hops a message
travels is bounded by logc(kn). Let D be the total number
of dropped tickets during the broadcast of a message.
3 ‘‘Minus one’’ is because the sender will not send the copy to itself.
EðDÞ ¼ E
XlogcðknÞ

i¼0

di

 !
< k

XlogcðknÞ

i¼0

Xi

j¼0

ci <
c

c� 1

� �2

k2n

Each ticket that is not dropped must be consumed by a
phase-one node. Therefore,

T ¼ kn� D

EðT Þ ¼ kn� EðDÞ

> kn� c
c� 1

� �2

k2n

¼ 1� k
c

c� 1

� �2
� �

kn �

Theorem 1 (Hop complexity). The expected number of hops

for a multicast message to reach any node is bounded by
logcðknÞ þ 1

2 1� k c
c�1

� �2
� �

k

Proof. By Lemma 1, Phase one terminates in no more than

logc(kn) hops. By Lemma 3, after Phase one, the ring is

partitioned into more than 1� k c
c�1

� �2
� �

kn segments.

Phase two delivers the message in parallel along these
segments. The expected length of a segment is bounded by

n

1� k c
c�1

� �2
� �

kn
¼ 1

1� k c
c�1

� �2
� �

k

In Phase two, the average number of hops for the message
to reach a node is half of the segment length. Combining
Phase one and Phase two, the expected number of hops
for a multicast message to reach any node is bounded by

logcðknÞ þ 1

2 1� k c
c�1

� �2
� �

k
�

Corollary 1 (Hop complexity). If k ¼ Hð 1
logcnÞ and c P 2,

then the expected number of hops for a multicast message

to reach any node is O(logcn).

Proof. By Theorem 1, the upper bound on the expected
number of hops is

logcðknÞ þ 1

2 1�k c
c�1ð Þ

2
� �

k

¼ ðlogcn�HðlogclogcnÞÞ þ 1

2 1�H 1
logcn

� �
c

c�1ð Þ
2

� �
H 1

logcn

� �
¼ HðlogcnÞ þ 1

H 1
logcn

� �
¼ HðlogcnÞ þHðlogcnÞ ¼ HðlogcnÞ �

Theorem 2 (Communication complexity). The expected

number of copies of a multicast message that are transmitted

is bounded by (1 + k)n.

316 S. Chen et al. / Computer Communications 31 (2008) 304–317
Proof. In Phase one, each copy of the message for-
warded from one node to another causes at least one
ticket to be either consumed or dropped. Therefore, the
number of copies forwarded in Phase one is bounded
by the number of tickets, which is kn. Phase two sends
no more than n messages. Therefore the expected num-
ber of copies that are transmitted for a multicast message
is (1 + k)n. h

Corollary 2 (Communication complexity). If k ¼ H 1
logcn

� �
,

then the expected number of copies of a multicast message

that are transmitted is bounded by nþ O n
logcn

� �
.

Proof. Directly from Theorem 2. h
References

[1] Gnutella, <http://gnutella.wego.com/>.
[2] KaZaA, <http://www.kazaa.com/>.
[3] FastTrack, <http://www.fasttrack.nu/>.
[4] N. Sarshar, P.O. Boykin, V.P. Roychowdhury, Percolation search in

power law networks: Making unstructured peer-to-peer networks
scalable, in: Proc. P2P’04, 2004.

[5] Z. Zhang, Y. Tang, S. Chen, Speed up queries in unstructured peer-
to-peer networks, in: Proc. ICC’07, 2007.

[6] C. Plaxton, R. Rajaraman, A. Richa, Accessing nearby copies of
replicated objects in a distributed environment, in: Proc. ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA),
June 1997.

[7] P. Druschel, A. Rowstron, Pastry: scalable, distributed object
location and routing for large-scale peer-to-peer systems, in: Proc.
18th IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware 2001), November 2001.

[8] B. Zhao, J. Kubiatowicz, A. Joseph, Tapestry: an infrastructure for
fault-tolerant wide-area location and routing, Tech. Rep. UCB/CSD-
01-1141, University of California at Berkeley, Computer Science
Department, 2001.

[9] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan,
Chord: a scalable peer-to-peer lookup service for internet applica-
tions, in: Proc. ACM SIGCOMM’01, August 2001.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A
scalable content-addressable network, in: Proc. ACM SIGCOMM’01,
August 2001.

[11] L. BarriFre, P. Fraigniaud, E. Kranakis, D. Krizanc, Efficient routing
in networks with long range contacts, in: Proc. 15th International
Conference on Distributed Computing, October 2001.

[12] P. Maymounkov, D. Mazieres, Kademlia: a peer-to-peer informa-
tion systems based on the XOR metric, in: Proc. IPTPS 2002,
March 2002.

[13] D. Malkhi, M. Naor, D. Ratajczak, Viceroy: a scalable and dynamic
emulation of the butterfly, in: Proc. ACM PODC’02, July 2002.

[14] K.P. Gummadi, R. Gummadi, S.D. Gribble, S. Ratnasamy, S.
Shenker, I. Stoica, The impact of DHT routing geometry on
resilience and proximity, in: Proc. ACM SIGCOMM 2003, August
2003.

[15] P. Fraigniaud, C. Gavoille, The Content-Addressable Network D2B,
Technical Report 1349, LRI, Univ. of Paris-Sud, France, January
2003.

[16] F. Kaashoek, D.R. Karger, Koorde: a Simple Degree-Optimal Hash
Table, in: Proc. 2nd International Workshop on Peer-to-Peer Systems
(IPTPS’03), February 2003.
[17] G.S. Manku, Routing networks for Distributed Hash Tables, in:
Proc. 22nd ACM Symposium on Principles of Distributed Computing
(PODC), June 2003.

[18] G.S. Manku, M. Bawa, P. Raghavan, Symphony: distributed hashing
in a small world, in: Proc. 4th USENIX Symposium on Internet
Technologies and Systems (USITS), March 2003.

[19] G.S. Manku, M. Naor, U. Wieder, Know thy neighbor’s
neighbor: the power of lookahead in randomized P2P networks,
in: Proc. 36th ACM Symposium on Theory of Computing
(STOC), June 2004.

[20] S. Sen, J. Wang, Analyzing peer-to-peer traffic across large networks,
ACM SIGCOMM Internet Measurement Workshop, August 2002.

[21] J. Ritter, Why Gnutella can’t Scale. No, Really, <http://www.tch.org/
gnutella.html/>.

[22] M. Ripeanu, A. Iamnitchi, I. Foster, Mapping the Gnutella network,
IEEE Internet Comput. J. Special Issue on Peer-to-Peer Networking,
6 (1), 2002.

[23] S. Saroiu, K.P. Gummadi, R.J. Dunn, S.D. Gribble, H.M. Levy,
An analysis of internet content delivery systems, in: Proc. 5th
Symposium on Operating Systems Design and Implementation
(OSDI), December 2002.

[24] B.T. Loo, R. Huebsch, I. Stoica, J.M. Hellerstein, The case for a
hybrid P2P Search infrastructure, in: Proc. 3rd International Work-
shop on Peer-to-Peer Systems (IPTPS), February 2004.

[25] R. Zhang, Y.C. Hu, Assisted peer-to-peer search with partial
indexing, in: Proc. INFOCOM’05, 2005.

[26] Gnutella_Ultrapeers, <http://rfc-gnutella.sourceforge.net/Proposals/
Ultrapeer/Ultrapeers.htm/>.

[27] A. Kumar, J. Xu, E. W. Zegura, Efficient and scalable query routing
for unstructured peer-to-peer networks, in: Proc. INFOCOM’05,
March 2005.

[28] D. Tsoumakos, N. Roussopoulos, Adaptive probabilistic search for
peer-to-peer network, in: Proc. 3rd International Conference on Peer-
to-Peer Computing (P2P’03), September 2003.

[29] S. Jiang, L. Guo, X. Zhang, LightFlood: anefficient flooding schemefor the
file search in unstructured peer-to-peer system, in: Proc. ICPP’03, 2003.

[30] H. Wang, T. Lin, On efficiency in searching networks, in: Proc.
INFOCOM’05, 2005.

[31] H. Jiang, S. Jin, Exploiting dynamic querying like flooding techniques
in unstructured peer-to-peer networks, in: Proc. ICNP’05, 2005.

[32] S. Chen, K. Nahrstedt, Distributed quality-of-service routing in ad-
hoc networks, IEEE J. Selected Areas in Communications, Special
Issue on Ad-Hoc Networks, 17 (8) (1999).

[33] A. Mukherjee, On the dynamics and significance of low frequency
components of internet load, Internetworking: Res. Exp. 5 (4) (1994)
163–205.

[34] D. Stutzbach, R. Rejaie, Characteristing the two-tier Gnutella
topology, in: Proc. SIGMETRICS’05, June 2005.

[35] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, Search and replication in
unstructured peer-to-peer networks, in: Proc. ACM SIGMET-
RICS’02, June 2002.

Shiping Chen received his B.S.degree in Electircal
Engineering from JiangXi University of China in
1984. He received his M.S. and PH.D. degrees in
Computer Science from Institute of Computing
Technology of Chinese Academy Sciences and
Fudan University in 1990 and 2006, respectively.
He joined University of Shanghai for Science and
Technology in 1990 and is currently a full professor
in the computer science department. He is also the
director of the network center of the university. His
research interests include peer-to-peer networks,
network communications, and database systems.

http://gnutella.wego.com
http://www.kazaa.com
http://www.fasttrack.nu
http://www.tch.org/gnutella.html
http://www.tch.org/gnutella.html
http://rfc-gnutella.sourceforge.net/Proposals/Ultrapeer/Ultrapeers.htm
http://rfc-gnutella.sourceforge.net/Proposals/Ultrapeer/Ultrapeers.htm

S. Chen et al. / Computer Communications 31 (2008) 304–317 317
Zhan Zhang received his M.S. degree in computer
science from Fudan University of China in 2003,
and received his Ph.D degree in Computer and
Information Science and Engineering from
University of Florida in 2007. His research fields
include overlay networks, wireless and sensor
networks, and network security.
Shigang Chen received his B.S. degree in com-

puter science from University of Science and
Technology of China in 1993. He received M.S.
and Ph.D. degrees in computer science from
University of Illinois at Urbana-Champaign in
1996 and 1999, respectively. After graduation, he
had worked with Cisco Systems for three years
before joining University of Florida as an assis-
tant professor in 2002. His research interests
include network security, peer-to-peer networks,
and sensor networks. He received IEEE Com-
munications Society Best Tutorial Paper Award in 1999. He was a guest

editor for ACM/Baltzer Journal of Wireless Networks (WINET) and
IEEE Transactions on Vehicle Technologies. He served as a TPC co-chair
for the Computer and Network Security Symposium of IEEE IWCCC
2006, a vice TPC chair for IEEE MASS 2005, a vice general chair for
QShine 2005, a TPC co-chair for QShine 2004, and a TPC member for
many conferences including IEEE ICNP, IEEE INFOCOM, IEEE SANS,
IEEE ISCC, IEEE Globecom, etc.
Baile Shi joined the Department of Computer
and Information Technology of Fudan Univer-
sity in 1975. He was promoted to an associated
and then full professor in 1980 and 1985,
respectively. He was the department chair from
1985 to 1996. His research field is database the-
ories and applications. He has published over 70
papers in the top Chinese journals and written
more than 10 textbooks. He has won numerous
awards, including one national science and tech-
nology advancement award, one Guanghua
award, nine Shanghai science and technology
advancement awards, and four textbook awards.

	Efficient file search in non-DHT P2P networks
	Introduction
	Inefficiency in existing P2P file search systems
	Network model
	Optimal search overhead
	Inefficiency in existing systems
	Inefficiency in searching for popular files
	Inefficiency in searching for unpopular files

	Ticket-based search in non-DHT P2P networks
	Two-phase ticket-based search algorithm
	Phase one: ticket-based flooding
	Phase two: segmented ring traversal
	Determining the threshold lambda n

	Optimizations
	Timeout problem and random sampling solution
	Overlapped search problem and moving anchor solution

	An efficient broadcast algorithm
	Ticket-based broadcast algorithm (TBA)
	Analysis

	Simulation
	Setup
	Evaluation of search performance
	Performance w.r.t m
	Performance w.r.t n
	Performance w.r.t node degree
	Impact of alpha

	Evaluation of broadcast performance

	Conclusion
	Acknowledgement
	Proof
	References

