
Localized Algorithm for Aggregate Fairness in Wireless
Sensor Networks

Shigang Chen
sgchen@cise.ufl.edu

Zhan Zhang
zzhan@cise.ufl.edu

Department of Computer & Information Science & Engineering
University of Florida

Gainesville, FL 32611

ABSTRACT
For data-collection applications in sensor networks, it is important
to ensure all data sources have equal (or weighted) access to net-
work bandwidth so that the base stations receive a complete picture
about the monitored area. We point out the fairness problem in
the current design of sensor networks, which may cause extremely
biased bandwidth allocations. It is a challenge to design a fully
distributed fairness solution due to the lack of global knowledge
about the distribution of data sources and their routing paths. This
paper proposes a new aggregate fairness model and a localized al-
gorithm (called AFA) that implements the model. AFA is designed
to work with any routing protocol. In particular, it allows the pack-
ets from a data source to follow an arbitrary set of forwarding paths
to the base stations. This flexibility makes it considerably harder
to allocate bandwidth fairly among different data sources. AFA
solves the problem with only localized operations at the sensors.
It is easy to implement, which is an attractive property for sensor
networks. Moreover, the algorithm automatically adjusts a sensor’s
forwarding rate to avoid packet drops due to downstream conges-
tion, which helps improve energy efficiency. We perform extensive
simulations, demonstrating that the proposed algorithm can effec-
tively improve end-to-end fairness.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion

General Terms
Algorithms

Keywords
Sensor networks, aggregate fairness, congestion avoidance, dis-
tributed aggregate fairness algorithm (AFA)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’06, September 23–26, 2006, Los Angeles, California, USA.
Copyright 2006 ACM 1-59593-286-0/06/0009 ...$5.00.

1. INTRODUCTION
A wireless sensor network consists of battery-powered sensing

devices that transmit their observation data to a set of base stations.
In most cases, sensors are stationary after deployment. Due to lim-
ited transmission range, sensors far away from the base stations
deliver their data through multihop communication.

Congestion control is of great importance in sensor networks [1,
2, 3, 4]. Although some applications may only query aggregate in-
formation such as the max/min/mean/ medium/avg of certain mea-
surements [5, 6], other applications are interested in macroscopic
imaging of certain features of the monitored field, which carries
much more information than simple aggregation. Such location-
specific information is often crucial in habitat monitoring, seismic
structure response, ecosystem evaluation, and natural disaster mon-
itoring. Many tradeoffs can be made in the network. Compression
or partial-aggregation techniques trade information imprecision for
less traffic volume. Periodic sleeping trades bandwidth reduction
for energy saving [7]. However, there is a limiting factor. When a
wired network scales up, more cables can be added to increase the
network capacity. When a sensor network scales up with more sen-
sors deployed in a larger area, the traffic volume increases but the
channel capacity around the bottlenecks cannot be increased easily,
given the low-cost, low-energy requirements. Therefore, we cannot
assume the aggregate traffic volume from all data sources is always
below the delivery capacity of the network. Congestion control
must play a significant role in a sensor network architecture. It is
important for elastic applications that are designed to work with
varied reporting rates. For example, a monitoring application may
prefer a reporting rate of 20 samples per unit of time, but a smaller
rate is still acceptable if the desirable rate cannot be achieved due to
congestion. When that happens, uniform (or weighted) reduction
of reporting rates from all competing sensors is superior to the case
where some (close-by) sensors send data at full rate while others
are starved.

Consider a sensor network that typically operates under light
load but may suddenly be active in response to certain important
events such as fire outbreak or earthquake. The sudden surge of
data from hundreds or even thousands of sensors must be delivered
to a small number of base stations, which may cause congestion,
especially near the base stations [2]. To handle this situation, we
must solve two important problems. The first problem, rate reduc-
tion, is to reduce the number of packets produced by data sources
to a level that can be transported by the network. The second prob-
lem, fairness control, is to ensure that all data sources have equal
or weighted access to the end-to-end network bandwidth. Much
effort on congestion control in traditional networks went to solve

274

the second problem [8, 9, 10, 11], under the assumptions of fixed
link capacities, single-path routing, and/or timely, reliable, end-to-
end feedback, which make the solutions not immediately appli-
cable in sensor networks. Recently there are several pioneering
studies on congestion control in sensor networks [2, 3, 4]. How-
ever, these works either do not consider the fairness issue or have
very restrictive assumptions on the routing structure, which limits
their scope of applicability. As we will elaborate shortly, no prior
work provides a practical distributed solution to the fairness prob-
lem in a data-collection network where packets from a data source
are routed individually and may follow numerous different paths to
the base stations.

In this paper, we propose a new aggregate fairness model, which
defines end-to-end fairness in an aggregate manner, suitable for
multipath multihop wireless sensor networks. A distributed aggre-
gate fairness algorithm (AFA) is then proposed to implement the
model. AFA does not maintain any per-flow information or global
state. Each sensor performs localized operations, yet the collective
outcome ensures that data sources sharing the same downstream
bottleneck have equal access to network bandwidth. In addition,
AFA automatically adjusts each sensor’s forwarding rate to avoid
packet drops due to downstream congestion. The simulation re-
sults demonstrate that the proposed algorithm effectively improves
end-to-end fairness.

The rest of the paper is organized as follows. Section 2 de-
scribes the fairness problem and discusses the limitations of the
prior works. Section 3 proposes a new aggregate fairness model.
Section 4 presents a distributed algorithm for updating aggregate
flow weights. Section 5 proposes a distributed algorithm that achieves
aggregate fairness. Section 6 presents simulation results. Section 7
draws the conclusion.

2. FAIRNESS — AN IMPORTANT PROB-
LEM IN WIRELESS SENSOR NETWORKS

We describe the problem of (weighted) fairness in sensor net-
works. We discuss two major forms of congestion and how the
MAC-layer local fairness exacerbates the congestion problem. We
then explain the challenge of end-to-end fairness and outline the
limitations of the existing solutions.

2.1 Fairness and Weighted Fairness
Data collection from a field (or structure) is one of the predom-

inant applications of sensor networks [12, 13, 14, 15, 16, 17]. A
basic requirement is that the sink should have uninterrupted access
to data from all parts of the field. Although there are high-end sen-
sors, many commonly-used ones (such as mica and mica2) have
only 10-40 kBaud radio [18]. In addition, long sleep periods may
be introduced for saving power in order to fulfill a lifetime require-
ment, which further reduces the available bandwidth. In case of
congestion, it is well known that a sensor close to a base station
tends to achieve much higher throughput than a sensor far away.
If information around the base station is not more important than
the information far in the field, the bias towards close-by sensors is
undesirable. Ensuring fair access to network bandwidth is critical
to keeping the reporting channel open for distant sensors, such that
the base stations receive the complete view of the monitored area.

Some sensors may have more important data and thus require
higher packet rates than others. In this case, weighted fairness in-
stead of equality fairness is more suitable. It makes bandwidth allo-
cation biased towards important data sources with higher weights.

2.2 Radio Collision, Buffer Congestion, and
“Harmful" Local Fairness

Radio collision and buffer overflow are two main forms of con-
gestion in a wireless sensor network. Solutions against collision in-
clude CSMA, TDMA, CDMA, and other multiple access schemes.
Using a larger contention window can reduce the collision fre-
quency in CSMA. Several CSMA-based MAC protocols are pro-
posed for sensor networks, such as B-MAC [19] and S-MAC [7].
But reducing the level of radio collision does not mean solving the
congestion problem. Wireless medium access brings a new con-
gestion scenario that is not present in a wired network. The local
fairness achieved by MAC-layer protocols such as CSMA directly
contributes to buffer overflow. Consider the topology in Figure 1,
where data sources y, z, and w send packets to a sink via x. In all
figures, white nodes represent data sources (sensors actively pro-
ducing data), black nodes represent forwarding sensors, and grey
nodes represent sinks. If y, z, w, and x each obtain a fair share of
the channel capacity, x will receive three packets for every packet
it sends out, which is confirmed by the ns2 simulation results plot-
ted in Figure 1. The packet queue at x will build up and eventually
overflow. Therefore, it is not sufficient for the data sources to slow
down to a level that does not cause serious radio collision. They
must slow down further such that x is able to obtain a larger por-
tion of bandwidth that matches the combined rate of y, z and w.

2.3 Challenges of End-to-End Fairness
The sequence of packets produced by a data source constitutes

a flow. Many papers studied MAC-layer fairness among one-hop
flows within a neighborhood [20, 21, 22]; we study network-layer
fairness among end-to-end flows. The packets of a flow may be
routed along different paths to a sink, which consists of one or mul-
tiple base stations. When all routing paths from the data source to
the sink are congested, the source has to reduce the rate at which it
produces packets, because the excess packets will be dropped any-
way. The end-to-end fairness problem arises. What are the max-
imum rates at which individual sensors can produce data without
causing network congestion and unfairness among the peers?

Congestion and fairness are two related but different problems.
Resolving congestion does not guarantee fairness. In the topol-
ogy of Figure 2, suppose a congestion control mechanism such as
backpressure [23, 2] limits the forwarding rate of a sensor x to six
packets per second in order to avoid downstream congestion. The
combined incoming rate to x should be equal to the forwarding rate
over the long run. Therefore, the upstream neighbors, y and z, can
each send x three packets per second on average. Further upstream,
u, v, and w can only send one packet per second. Consequently,
y is able to generate packets at three times the average rate of u,
v, and w. This analysis is confirmed by the ns2 simulation results
shown in the figure. Therefore, for the purpose of fairness, it is
insufficient that the combined rate of y and z does not exceed the
forwarding rate of x. We must carefully distribute the available
bandwidth between them, such that each upstream data source re-
ceives a fair share.

A real sensor network has far more complex topology than the
one in Figure 2. The packets of a flow are routed independently
and an intermediate sensor may forward a packet to an arbitrary
neighbor that is closer to the sink. Therefore, a flow may follow
numerous forwarding paths to reach the sink, as illustrated in Fig-
ure 3, where we assume two base stations are externally connected
and any packet may be routed to either base station. With multipath
routing, the paths of all flows may form a complex DAG (directed
acyclic graph) instead of a tree. Maintaining a DAG routing struc-
ture from the sources to a sink is not necessarily harder than main-

275

x

w

z

y

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 p

ac
ke

ts

Time

received by x
sent by x

Figure 1: Local fairness directly contributes to buffer conges-
tion in a sensor network.

x

y

zu

v

w

0
100
200
300
400
500
600
700
800
900

0 50 100 150 200

N
um

 o
f

pa
ck

et
s

Time

source u
source v
source w
source y

Figure 2: Local fairness among upstream neighbors causes end-
to-end unfairness.

x

base1 base2

Figure 3: The sequence of packets produced by x constitutes a
flow, which may be routed on numerous paths to the sink (the
two base stations).

taining a tree. Geographic routing [24, 25, 26, 27] naturally creates
a DAG, where a progress threshold may be used to select the can-
didates for the next hop [28]. Beacon broadcasts from the base sta-
tions can establish a DAG with reversed broadcast paths. A DAG is
more resilient than a tree, which will be broken if any node or link
fails. Consequently, even though BLess, Surge and mh6 [18] build
a routing tree, they have an underlying DAG where every node has
multiple candidate downstream neighbors, from which one is cho-
sen to forward packets.

Achieving fairness in a multipath routing network is consider-
ably harder than in a tree-routing network. The number of pos-
sible paths for a flow can be exponential in the distance from the
source to the sink. At a forwarding node, the bandwidth should no
longer be evenly divided among the passing flows because some
flows may receive bandwidth from other paths while other flows
may not.

2.4 Limitations of Existing Approaches
CODA [2] provides a comprehensive discussion on congestion

control and proposes an open-loop hop-by-hop backpressure mech-
anism and a close-loop multi-source regulation mechanism. Fusion
[4] combines three congestion mitigation techniques, hop-by-hop
flow control, rate limiting, and prioritized MAC. These schemes do
not consider the fairness issue, except for the rate limiting tech-
nique [4] that requires a tree routing structure to work correctly.
Another tree-based fairness scheme is proposed in [3]. Each sensor
learns the number of upstream data sources in the subtree rooted at

itself. It measures the maximum downstream forwarding rate and
computes per-source fair rate, which is propagated upstream such
that the data sources do not send packets beyond this rate.

Other related works are surveyed below. Fairness at the MAC
layer is studied in [20, 29, 30, 21, 22]. The TAP fairness in multi-
rate wireless backhaul networks is investigated in [31]. In ESRT
[32], the sink enforces a common reporting rate for all data sources.
To relieve congestion, the reporting rate has to be set conservatively
according to the worst hotspot in the network. Proportionally-fair
congestion control in FDMA/CDMA networks is studied in [33],
under the assumptions that each flow has a single routing path
and per-flow state information is maintained at intermediate nodes,
which is undesirable for resource-constrained sensor networks. The
maxmin fairness among one-hop flows is studied in [34]. Maximiz-
ing the minimal flow rate in a routing tree is studied in [35]. The
rate-control mechanism in [36] achieves fairness only for single-
path routing. Under the assumption that each flow has one path,
Kleinberg, Rabani, and Tardos [37] propose a centralized heuristic
algorithm for route selection in order to achieve the best maxmin
fairness.

In summary, some prior works [2, 28] consider multipath rout-
ing, but do not address fairness. Other works [34, 35, 4, 3] assume
single-path routing, which simplifies the fairness problem. This pa-
per investigates the general case where no specific restrictions are
placed on routing. The proposed fairness solution will work with
any routing protocol.

3. AGGREGATE FAIRNESS
In this section, we first discuss the basic idea that we will follow

to achieve fairness. We then define the network model and nota-
tions. Finally, we give an aggregate fairness model.

3.1 Basic Idea
The basic idea is for a forwarding node to estimate the number of

flows coming from each neighbor and allocate bandwidth propor-
tional to that number. For example, in Figure 2, x should allocate
75% of its bandwidth to z and 25% to y.

Because packets of a flow may be routed on many paths (Figure
3), when the flow passes a link, chances are only a fraction of the
flow does so. The sum of the flow fractions passing a link (or node),
which may not be an integer, is called aggregate flow number or ag-
gregate number for brevity. We want to emphasize that the aggre-

276

gate number of a link is not proportional to the number of packets
passing through the link. Consider flow X that generates 10 pack-
ets per second and flow Y that generates 2 packets per second. If a
link receives 2 packets from flow X and 1 packet from flow Y per
second, the aggregate number of the link is 2

10
+ 1

2
= 0.7. On the

other hand, if the link receives 1 packet from flow X and 2 packets
from flow Y per second, the aggregate number is 1

10
+ 2

2
= 1.1.

No forwarding sensor is allowed to maintain per-flow state. There-
fore, a sensor does not know the exact fraction of a flow that it car-
ries. Yet the sensor must somehow learn the sum of the flow frac-
tions passing through it. Moreover, some data sources may be more
important than others. To characterize such difference, weights are
assigned to the data sources. A flow from a data source with a
larger weight is expected to acquire a larger share of network band-
width. The sum of weighted flow fractions passing a link (or node)
is called aggregate flow weight, which will be precisely defined
shortly. If we have a way to estimate the aggregate flow weights
of all links (nodes), we can enforce rate limits on the links propor-
tional to the aggregate weights, which will achieve fairness. We
will support this argument by proof and simulations.

3.2 Network Model and Notations
We study data-collection sensor networks where the set of data

sources is static or changes gradually. Data packets are sent from
sensors to base stations. Although not all sensors are data sources,
all of them will participate in relaying packets towards the base sta-
tions. Assume that the base stations are connected via an external
network to a data collection center. It makes no difference which
particular base station a packet is delivered to. Sensors are stati-
cally located after deployment. We do not consider mobile sensors
that form a dynamic ad-hoc network.

The media contention protocol is CSMA/CA. There is a wire-
less communication “link” from one sensor to another if the latter
can correctly receive the former’s signal. According to the pro-
tocol of CSMA/CA, only symmetric links are used for sending
data even though there may exist asymmetric links. We assume all
transceivers operate at a single transmission rate, which is reason-
able due to the cheap design requirement for inexpensive one-time
sensors that are used in large quantities.

Let N be the set of sensors. Let Di be downstream neighbors
of i, which are the next hops on the routing paths from i to the
base stations. ∀j ∈ Di, (i, j) is called a downstream link of i.
Let Ui be upstream neighbors, which uses i as a next hop on their
routing paths to the base stations. ∀k ∈ Ui, (k, i) is called an
upstream link of i. If i is a downstream neighbor of k, then k
must be an upstream neighbor of i. Di and Ui are determined
by a routing protocol. For example, if geographic routing is used
[24, 25, 26, 27], Di consists of all neighbors that are closer to the
nearest base station (by a certain threshold [28]). It is not true that
increasing the size of Di will always improve throughput. When
the nodes in Di forward packets, they compete with each other for
media access, which can cause collisions. A compromise is to limit
the size of Di and pick those candidate downstream neighbors that
are far from each other. Let E be the set of all routing links, i.e.,
E = {(k, i) | i ∈ N, k ∈ Ui}.

A flow s is the sequence of data packets generated from a data
source s in N . The data rate of flow s is denoted as d(s), and
the weight is denoted as w(s), which indicates the importance of
this flow. A larger weight means the flow is more important and
deserves a proportionally higher rate. Let ri(s) be the rate at which
the packets of flow s pass through sensor i. As a special case,

rs(s) = d(s) (1)

Let rk,i(s) be the rate at which the packets of flow s pass through
link (k, i). The total rates at which the packets of all flows pass
through sensor i and link (k, i) are denoted as ri and rk,i, respec-
tively.

ri =
∑

s∈N

ri(s)

rk,i =
∑

s∈N

rk,i(s)

A rate assignment {ri(s), ∀i, s ∈ N ; rk,i(s), ∀s ∈ N,∀(k, i) ∈
E} is feasible if the following constraints are satisfied. The first
two are flow conservation constraints, and the third is the capacity
constraint.

1. ri(s) =
∑

k∈Ui
rk,i(s), ∀i, s ∈ N , i �= s,

2. ri(s) =
∑

j∈Di
ri,j(s), ∀i, s ∈ N , and

3. ri ≤ bi, ∀i ∈ N , where bi is the maximum rate at which i
can forward packets to its downstream neighbors.

3.3 Aggregate Fairness
The weighted fraction of a flow s that passes sensor i is defined

as

fi(s) =
ri(s) × w(s)

d(s)
(2)

The weighted fraction of a flow s that passes link (k, i) is defined
as

fk,i(s) =
rk,i(s) × w(s)

d(s)
(3)

Aggregate Flow Weight: The sum of the weighted fractions of
all flows that pass sensor i is called the aggregate flow weight of i.
It is denoted as Fi.

Fi =
∑

s∈N

fi(s) =
∑

s∈N

ri(s) × w(s)

d(s)
(4)

The sum of the weighted fractions of all flows that pass link (k, i)
is called the aggregate flow weight of (k, i). It is denoted as Fk,i.

Fk,i =
∑

s∈N

fk,i(s) =
∑

s∈N,s �=i

fk,i(s) =
∑

s∈N,s �=i

rk,i(s) × w(s)

d(s)

(5)
We assume acyclic routing, which means that packets generated
from i will not be routed back to i, i.e., rk,i(i) = 0.

Sensor i maintains local variables to store the values of Fi, Fk,i,
∀k ∈ Ui, and Fi,j , ∀j ∈ Di. ri(s) and rk,i(s), ∀s ∈ N , are per-
flow information and cannot be stored at sensor i. But the sensor
can locally measure the values of ri and ri,j , ∀j ∈ Di, based on
which the values of Fi and Fi,j must be calculated. The distributed,
iterative algorithm for such computation is given in the next section.
It should be stressed that the values of flow state, such as fi(s),
fk,i(s), ri(s), and rk,i(s), are not stored or measured.

Weighted Mean Rate: The weighted mean rate at sensor i is
defined as

Ri =
ri

Fi
(6)

The weighted mean rate at link (k, i) is defined as

Rk,i =
rk,i

Fk,i
(7)

277

If the weights of all flows are one, then Fk,i will be the sum of the
flow fractions passing (k, i), and Rk,i will be the average flow rate
among all flow fractions passing (k, i).

When a sensor i is not congested, it forwards all packets received
from upstream. However, when it is congested, it must inform up-
stream neighbors to reduce their rates, and we want to equalize the
weighted mean rates, Rk,i, ∀k ∈ Ui, for all upstream data sources.

Aggregate Fairness: We define a new fairness model. A fea-
sible rate assignment is said to achieve the aggregate fairness if it
satisfies the following condition: at every congested sensor i, the
weighted mean rate Rk,i of any upstream link (k, i) cannot be in-
creased without decreasing the weighted mean rate Rk′,i of another
upstream link (k′, i), for which Rk′,i ≤ Rk,i.

The above condition requires i to equalize the weighted mean
rates of all upstream links whenever possible. In other words, it
requires i to assign bandwidth to the upstream links in proportion
to their aggregate flow weights.

This is a local condition that can be enforced by local operations.
Once a sensor knows the aggregate flow weights of all upstream
links, it will work with the upstream neighbors to make their for-
warding rates proportional to those weights. Below we address the
problem of computing aggregate flow weights.

4. DISTRIBUTED COMPUTATION OF
AGGREGATE FLOW WEIGHTS

We prove several properties for any feasible rate assignment.
Based on the properties, we describe a distributed algorithm to
compute the aggregate flow weights.

PROPERTY 1. For any feasible rate assignment, the aggregate
flow weight of a sensor is equal to the sum of the aggregate flow
weights of the upstream links and the weight of the locally gener-
ated flow.

Proof: Consider an arbitrary sensor i. By (1), ri(i) = d(i). By
(4),

Fi =
∑

s∈N

ri(s) × w(s)

d(s)

= (
∑

s∈N,s�=i

ri(s) × w(s)

d(s)
) +

ri(i) × w(i)

d(i)

= (
∑

s∈N,s�=i

ri(s) × w(s)

d(s)
) + w(i)

Applying the first constraint of a feasible rate assignment, we have

Fi = (
∑

s∈N,s�=i

∑
k∈Ui

rk,i(s) × w(s)

d(s)
) + w(i)

=
∑

s∈N,s�=i

∑

k∈Ui

fk,i(s) + w(i)

=
∑

k∈Ui

Fk,i + w(i)

(8)

�

PROPERTY 2. For any feasible rate assignment, the aggregate
flow weight of a sensor i is equal to the sum of the aggregate flow
weights of its downstream links. Furthermore, the aggregate flow
weight Fi,j of each downstream link (i, j) is proportional to the
data rate ri,j passing the link. Namely, Fi,j ∝ ri,j , j ∈ Di.

Proof: In a data collection network, all flows share a common set
of destinations (base stations). No matter which sources they come
from, packets routed through i are randomly divided among the
downstream links with probabilities proportional to the link rates
ri,j , j ∈ Di. When i forwards a packet, it sends the packet to a
downstream node j with a probability of

ri,j

ri
. For any flow s that

passes i, the fraction of packets sent to j is the same,
ri,j

ri
. That is,

ri,j(s)

ri(s)
=

ri,j

ri

ri,j(s) = ri(s) × ri,j

ri

(9)

Fi,j can be calculated as follows.

Fi,j =
∑

s∈N

ri,j(s) × w(s)

d(s)

=
∑

s∈N

ri(s) × w(s)

d(s)
× ri,j

ri

= Fi
ri,j

ri

(10)

Therefore, Fi,j is proportional to ri,j . It is easy to verify that∑
j∈Di

Fi,j = Fi. �

PROPERTY 3. For any feasible rate assignment, it holds that
Ri,j = Ri, ∀i ∈ N, j ∈ Di.

Proof: By (7), Ri,j =
ri,j

Fi,j
=

∑
s∈N ri,j(s)

Fi,j
. By (9), we have

Ri,j =

∑
s∈N ri(s) × ri,j

Fi,j × ri
=

ri,j

Fi,j

By (10), we have

Ri,j =
ri,j × ri

ri,j × Fi
= Ri (11)

�

Based on the above properties, we design a distributed algorithm
that iteratively computes the aggregate flow weights of all nodes
and all links. Let F̄i, F̄k,i, and F̄i,j be the variables at sensor i stor-
ing the values of Fi, Fk,i, and Fi,j , respectively. Initially sensor i
sets F̄i = 0, F̄k,i = 0, ∀k ∈ Ui, and F̄i,j = 0, ∀j ∈ Di. Peri-
odically i computes F̄i based on (8) and then F̄i,j , j ∈ Di, based
on (10). After that, i sends F̄i,j to j such that j knows the aggre-
gate flow weight of its upstream link (i, j), which is needed by the
next iteration of computation. Similarly, i learns F̄k,i from its up-
stream neighbor k. Below we show that, after a certain number of
iterations of computing (8)-(10) and exchanging the link weights
between neighbors, F̄i and F̄i,j will stabilize to the correct val-
ues. The links in E form an acyclic routing graph from all data
sources to the base stations. The furthest data sources that do not
have upstream nodes will learn their aggregate flow weights after
the first iteration by computing (8). And then by (10) they will cal-
culate the aggregate flow weights of their downstream links, which
are the upstream links for the next layer of sensors that are one
hop closer to the base stations. These next-layer sensors will learn
their aggregate flow weights after the following iteration. The pro-
cess repeats until the aggregate flow weights of all nodes/links are
known. The maximum number of iterations before all variables
stabilize is bounded by the length of the longest routing path.

278

5. ACHIEVING AGGREGATE FAIRNESS
We first describe a congestion avoidance mechanism, based on

which we design a distributed algorithm that achieves the aggregate
fairness.

5.1 Congestion Avoidance
We present a congestion avoidance mechanism to solve the buffer

congestion problem described in Section 2. The basic idea is to
make sure that a sensor k sends a packet to a sensor i only when
i has the buffer space to hold the packet. Assume all data packets
have the same size and the buffer space is slotted with each slot
holding one packet. The residual buffer of i changes when i re-
ceives a packet from a sensor in Ui or forward a packet to a sensor
in Di. To keep the upstream neighbors updated with i’s buffer
state, whenever i sends out a packet (RTS/CTS/DATA/ACK), it
piggybacks its current buffer state in the frame header, for exam-
ple, using one bit to indicate whether the buffer is full. When an
upstream neighbor k receives or overhears a packet from i, it caches
the buffer state of i. Note that, even if RTS/CTS are not used, the
bit piggybacked in DATA/ACK is sufficient to keep the neighbors
updated.

When k has a packet to forward, if there exists a sensor i ∈ Dk

whose buffer is not full, k forwards the packet to i. Otherwise, k
has to hold the packet until it overhears a packet from a sensor in
Dk, piggybacking a non-full buffer state.

Sensor k may not overhear packets from i due to temporary radio
interference or sleeping. In this case, its knowledge about i’s buffer
may be stale. It may falsely think i’s buffer is full and block itself
forever. One solution is to piggyback the one-bit buffer state in
the neighbor discovery messages that are exchanged periodically
between neighbors. Therefore, the buffer-state information will be
resynchronized between k and i as long as they remain neighbors of
each other. An alternative solution is for k to attempt transmitting
if it does not overhear i’s buffer state for a period of time.

The above congestion avoidance mechanism prevents packet drops
due to buffer overflow because the sender of a packet makes trans-
mission only when the receiver has buffer to hold the packet. There-
fore, over the long term, the rate at which a node fills up its buffer
(i.e., the combined incoming rate from all upstream links) will be
equal to the rate at which the node empties the buffer (i.e., the com-
bined outgoing rate to all downstream links). This approach elimi-
nates the complicated rate-based signaling that is required by many
existing congestion control approaches [2, 4]. It naturally adapts
the sending rates of upstream sensors to the forwarding rates of
the downstream sensors by buffer-based backpressure. Suppose the
data sources initially send as fast as they can. When the buffer at
an intermediate sensor i is filled, with the above congestion avoid-
ance mechanism, the forwarding rates of its upstream neighbors
are forced to slow down, in accordance to i’s forwarding rate. This
may cause the upstream neighbors’ buffers to fill up. Once their
buffers are full, the further upstream sensors are forced to slow
down. This process repeats towards the furthest sensors and even-
tually the whole network adapts toward the maximum congestion-
free throughput.

5.2 Distributed Aggregate Fairness Algorithm
(AFA)

We now present the distributed aggregate fairness algorithm (AFA).
When a sensor i receives more than it can forward, its data queue
will build up. If the buffer fills up, according to the above con-
gestion avoidance mechanism, the upstream neighbors will have to
frequently wait for buffer release, which means they are sending at
reduced rates. Now the question is how to determine the amount of

rate reduction each upstream neighbor should take. We know it is
not fair for them to reduce equally (Section 2). Based on the def-
inition of aggregate fairness, we should make the weighted mean
rates of all upstream links equal whenever possible. This means
the actual rate from an upstream link should be proportional to the
link’s aggregate flow weight.

When sensor i is congested,1 it computes a rate limit for each
upstream neighbor k as follows

lk,i =
Fk,i

Fi
ri (12)

where the values of Fk,i and Fi are updated periodically by the
distributed algorithm in the previous section and ri is the current
throughput of i, which is measured locally. It then advertises lk,i to
k, possibly by piggybacking in an ACK packet to k. After receiving
lk,i, k uses a token-bucket algorithm to enforce the rate limit. Let
c be a counter, which is initialized to zero. Let t be a time variable,
which is initialized to the system-clock value. Let b be the bucket
size. A packet at k can be scheduled for transmission to i only if it
passes the following test.

Rate Limit Test()
(1) c ← min{c + (current clock value − t) × lk,i, b}
(2) t ← current clock value
(3) if (c ≥ packet size)
(4) schedule the packet for transmission
(5) c ← c − packet size
(6) else
(7) wait for (packet size −c)/lk,i before

trying the test again

The actual rate of an upstream link will be bounded by the rate
limit. If i itself is a data source, it will assign a local rate limit as
follows

li =
w(i)

Fi
ri (13)

i uses the token-bucket algorithm to make sure that the locally-
generated data rate is bounded by the limit.

After an upstream neighbor enforces a rate limit, it may become
congested because it now sends less. If its buffer is kept full, it will
enforce rate limits in a similar way on its upstream neighbors. This
process repeats towards the data sources. Eventually all affected
data sources will adjust their rates to the fair bandwidth shares de-
fined by the rate limits that are progressively pushed from the bot-
tlenecks to the sources. Collectively, these rate limits reflect the
network load on the congested paths and the number of competing
flows on different paths, as well as the weights of those flows. Note
that only congested sensors enforce rate limits on upstream links,
and the rate limits are updated periodically.

After a congested sensor i enforces rate limits on upstream links,
the congestion condition may change either because some upstream
data sources cease to produce data or because some downstream
sensors gain additional bandwidth (due to the dynamics of envi-
ronmental interference). When i is able to forward more than it
receives, its packet queue will clear up. If the buffer space keeps
going back to empty whenever some packets are received, i will ar-
tificially increase the rate limits to use up the available bandwidth.
In our simulations, when the length of the packet queue at i is be-
low a threshold, the upstream rate limit is set to 1.1 × lk,i, where
lk,i is computed by (12), and the local rate limit is set to 1.1 × li,

1Congestion is signaled when the sensor’s buffer is full. Note
that radio collision is dealt with by the exponential backoff of
CSMA/CA.

279

where li is computed by (13). When the buffer space at i becomes
almost empty, the upstream rate limit is set to 2 × lk,i and the lo-
cal rate limit is set to 2 × li. As the rate limits are increased, ri

(the throughput of i) may become larger, which in turn further in-
creases the rate limits when (12) and (13) are computed next time.
However, the increase of rate limits must stop when the congestion
condition returns to i or when the congestion conditions of all up-
stream sensors are removed. The former case happens when the
rate limits are raised too high and exceed the maximum rate that i
is able to send downstream.2 i learns the return of congestion by
observing the buffer’s fullness, and when that happens, it sets the
rate limits to be lk,i and li, instead of over-setting them. The latter
case is identified by the buffer emptiness of upstream neighbors.
When that happens, i stops enforcing rate limits on upstream links.

THEOREM 1. After AFA stabilizes the data rates on all routing
links, the resulting rate assignment on the whole network achieves
the aggregate fairness.

Proof: Consider an arbitrary congested sensor i. Let U ′
i be the

set of upstream neighbors whose forwarding rates are constrained
by the rate limits imposed by i.

∀k ∈ U ′
i , rk,i = lk,i

If lk,i is increased, rk,i will also be increased. ∀k ∈ U ′
i , Rk,i =

rk,i

Fk,i
=

lk,i

Fk,i
= ri

Fi
, by (12).

Let U ′′
i be the set of upstream neighbors whose forwarding rates

are not constrained by the rate limits imposed by i. It means that
congestion further upstream restricts the rates even more.

∀k ∈ U ′′
i , rk,i ≤ lk,i

If lk,i is increased, rk,i will not be increased. ∀k ∈ U ′′
i , Rk,i =

rk,i

Fk,i
≤ lk,i

Fk,i
= ri

Fi
.

Only the rate from an upstream neighbor k ∈ U ′
i can be in-

creased by relaxing the rate limit. Rk,i = ri
Fi

, which is the largest
weighted mean rate among all upstream neighbors. Now if we in-
crease rk,i, then rk′,i for another upstream neighbor k′ must be
decreased, in order for the combined rate from all upstream neigh-
bors to remain the same. Consequently Rk′,i (≤ Rk,i) must be
decreased, which satisfies the condition for aggregate fairness. �

5.3 Optimizations
Various optimizations can be made to improve the performance

of AFA. We give a few examples below. Suppose each node i pe-
riodically advertises its weighted mean rate Ri to the neighbors. It
also learns the weighted mean rates of its neighbors.
• When i has a packet to forward, if two or more downstream

neighbors do not violate the rate limits and their buffers are not
full, i always forwards the packet to the neighbor with the largest
weighted mean rate.
• When i is congested and computes a rate limit lk,i for an up-

stream neighbor k by (12), if Rk is smaller than Ri, i will increase
the rate limit lk,i by a factor of Ri/Rk, which allows k to send
more traffic to i in an effort to equalize Rk and Ri.
• If i has the smallest weighted mean rate in the neighborhood,

it reduces its minimum congestion window to acquire a large por-
tion of the channel capacity. On the contrary, if it has the largest

2Other than filling i’s buffer, no harm will be done because the
congestion avoidance mechanism will prevent packet drops by re-
stricting upstream neighbors from overflowing i’s buffer.

weighted mean rate, it increases its minimum congestion window
to give up some bandwidth. Different optimization schemes can
be designed based on this idea. The one used in our simulations is
described as follow. We define the range of window variations to
be

range = max{(Rmax − Rmin)/Ω, 1}
where Rmax is the largest weighted mean rate in the neighborhood,
Rmin is the smallest weighted mean rate in the neighborhood, and
Ω is the largest allowed rate of any data source, which is a system
parameter. The minimum congestion window at sensor i is adjusted
by the following formula.

factor = 1 − range

2
+

Ri − Rmin

Rmax − Rmin
range

min cong win = def win × factor

where def win is the default minimum congestion window.

6. SIMULATION
We have performed extensive simulations to evaluate the per-

formance of AFA. We compare AFA with prior works in terms of
end-to-end fairness, energy efficiency, and packet drops. We also
study how well AFA achieves weighted fairness and how fast it
converges.

The simulation parameters are described as follows. 500 sen-
sors are randomly placed in a 1000 × 1000 area. The transmission
range of the sensors is 100. The transmission rate is 512 kilobits
per unit of time. The minimum congestion window is 40 units of
time. 8 base stations are evenly spaced along one edge of the de-
ployment area. There are 100 data sources randomly selected from
the 500 sensors. A source generates up to 25 data packets per unit
of time. However, the actual rate will be lower if the routing paths
are congested. Each data packet is 30 bytes long. CSMA/CA with
exponential backoff is fully implemented to resolve radio collision
between contending nodes. Each control packet (RTS/CTS/ACK)
is 3 bytes long. The buffer at each sensor can hold 30 data packets.
The following four schemes are implemented.

• No Congestion/Fairness Control: Neither do the data sources
adjust their packet generation rates, nor the intermediate sensors
adapt their forwarding rates.

• Backpressure: This is CODA’s hop-by-hop congestion control
mechanism [2]. If a sensor x is congested (based on channel utiliza-
tion and buffer level), it periodically sends backpressure messages
to its neighbors, which reduce their forwarding rates to x by 50%.
If an upstream neighbor is a data source, the neighbor reduces the
rate at which it generates new data by the same percentage.

• Fairness Routing Tree (FRT): It is based on the work of [3],
which addresses end-to-end fairness but assumes single-path rout-
ing. Each data source has a single routing path to the closest base
station. To each base station, the routing paths form a routing tree
rooted at the station. A sensor in the tree learns the number of
upstream sources within the subtree rooted at itself. Based on the
available bandwidth and other information, the sensor calculates
the average rate an upstream source can send. If the sensor is con-
gested, it allocates the available bandwidth to upstream neighbors
proportional to the number of flows traversing that neighbor.

• Aggregate Fairness Algorithm (AFA): It performs both con-
gestion avoidance and distributed rate limit based on aggregate flow
weights, as proposed in this paper.

Rate limits are used in Backpressure, FRT, and AFA. After a rate
limit is installed, it can be increased if the downstream traffic con-
dition is improved. If the number of packets in the buffer of a pre-
viously congested sensor drops below 10, the forwarding rates of

280

0

5

10

15

20

25

30

35

0 20 40 60 80 100

de
liv

er
ed

 p
ac

ke
t r

at
e

data source id

(a) No Congestion/Fairness Control

per-source rate
average rate

0

5

10

15

20

25

30

35

0 20 40 60 80 100

de
liv

er
ed

 p
ac

ke
t r

at
e

data source id

(b) Backpressure

per-source rate
average rate

0

5

10

15

20

25

30

35

0 20 40 60 80 100

de
liv

er
ed

 p
ac

ke
t r

at
e

data source id

(c) Fairness Routing Tree

per-source rate
average rate

0

5

10

15

20

25

30

35

0 20 40 60 80 100

de
liv

er
ed

 p
ac

ke
t r

at
e

data source id

(d) Aggregate Fairness Algorithm

per-source rate
average rate

Figure 4: Packet rates of 100 data sources under different schemes

the upstream neighbors will be increased by 10% periodically until
the buffer has more than 10 packets; if the sensor itself is a data
source, its data generation rate will also be increased by 10%. If
the buffer of a previously congested sensor is almost empty (fewer
than 5 packets), the forwarding rates of the upstream neighbors will
be doubled; if the sensor itself is a data source, its data generation
rate will also be doubled.

No Control, Backpressure and AFA use multi-path routing. Each
sensor has a set of downstream links that move one hop closer
to the closest base station(s). In order to limit the level of media
contention, when there are more than two candidate downstream
neighbors, we only use two that are furthest away from each other.
When a sensor forwards a packet, for No Control, it randomly picks
a downstream link; for Backpressure, it randomly picks a down-
stream link that does not violate the rate limit if one exists; for
AFA, the optimizations in Section 5.3 are applied. FRT uses tree-
based routing.

6.1 Fairness Comparison
The first set of simulations demonstrates that AFA is able to

achieve much better end-to-end fairness than other schemes. The
performance metric is called delivered packet rate (or packet rate
for brevity), which is the average number of packets that are suc-
cessfully delivered from a data source to the base station(s) per
unit of time. Figure 4 (a) shows the delivered packet rates of 100
data sources when no congestion/fairness control is applied. The
rates are widely distributed between zero to 25 packets per unit of
time. Figure 4 (b) shows that Backpressure, as a congestion con-
trol scheme, does not achieve good fairness among different data
sources. When a sensor is congested, it reduces the forwarding

rates of upstream neighbors by the same percentage even through
the numbers of flows passing through them can be very different.
Figure 4 (c) shows that FRT significantly improves fairness. Some
sources can send at full rate (25 packets per unit of time) because
their flows do not pass the congested points in the tree. The prob-
lem of single-path routing is that it cannot fully exploit the capacity
of the network. When each flow is allowed to use multiple rout-
ing paths, if one path is congested, the packets can be redirected
to other paths, which not only increases the rate of this data source
but removes one flow from the congested path, helping improve the
rates of other sources. Figure 4 (d) shows that AFA considerably
improves fairness over FRT. The data sources fall in two groups.
One group consists of data sources whose routing paths are not
congested; their rates are about 25 packets per unit of time. The
other group consists of sources whose routing paths are congested;
their rates are mostly in the range of 11 to 12.5 packets per unit of
time. The average rate of AFA is 38.3% higher than that of FRT.
AFA not only produces a larger average rate per data source, but
also redistributes the bandwidth from high-rate sources to low-rate
sources. The reason is that, with multiple routing paths per source
in AFA, the paths of a low-rate source have a better chance to come
across the paths of a high-rate source, which allows the former to
acquire the bandwidth of the latter.

6.2 Energy Efficiency and Packet Drops
The second set of simulations compares the energy efficiencies

of the four schemes. After the rates stabilize, the energy efficiency
of a scheme is defined as

T

BH

281

0

0.5

1

1.5

2

2.5

3

232 234 236 238 240 242 244 246 248 250

en
er

gy
 e

ff
ic

ie
nc

y

time

No Congestion/Fairness Control
Backpressure

Fairness Routing Tree
Aggregate Fairness Algorithm

Figure 5: Backpressure, FRT, and AFA achieve much better
energy efficiency than No Control.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 50 100 150 200

nu
m

be
r

of
 d

ro
pp

ed
 p

ac
ke

ts

time

No Congestion/Fairness Control
Backpressure

Fairness Routing Tree
Aggregate Fairness Algorithm

Figure 6: AFA seldom drops any packets due to its congestion
avoidance mechanism.

0

5

10

15

20

25

30

35

0 20 40 60 80 100

de
liv

er
ed

 p
ac

ke
t r

at
e

data source id

Aggregate Fairness Algorithm

per-source rate
average rate

Figure 7: Data sources 1-50 have weight two. Data sources 51-
100 have weight one.

0

5

10

15

20

25

30

35

0 20 40 60 80 100

de
liv

er
ed

 p
ac

ke
t r

at
e

data source id

Aggregate Fairness Algorithm

per-source rate
average rate

Figure 8: Data sources 1-50 have weight three. Data sources
51-100 have weight one.

0

5

10

15

20

25

30

35

0 20 40 60 80 100

de
liv

er
ed

 p
ac

ke
t r

at
e

data source id

Aggregate Fairness Algorithm

per-source rate
average rate

Figure 9: Data sources 1-33 have weight three. Data sources
34-66 have weight one. Data sources 67-100 have weight two.

0

5

10

15

20

25

30

35

0 20 40 60 80 100

de
liv

er
ed

 p
ac

ke
t r

at
e

data source id

Aggregate Fairness Algorithm

per-source rate
average rate

Figure 10: Data sources 1-33 have weight three. Data sources
34-66 have weight two. Data sources 67-100 have weight one.

282

where T is the number of bytes transmitted in the whole network
during a period of time, B is the number of data bytes delivered
to the base stations during the same time, and H is the average
number of hops a delivered packet travels. Intuitively, it measures
how many bytes must be transmitted in order to move one byte of
data one hop towards a base station. A smaller value means better
efficiency. This measurement includes the actual transmission of
data, as well as the overhead of control packets, the energy waste
due to collision, and the energy waste due to packet drops (as a
result of buffer overflow).

Figure 5 compares the energy efficiencies of the four schemes
during 230-250 units of time into the simulations. We let the sim-
ulations run for a sufficiently long time (230 units) such that the
packet rates in all schemes are stabilized before we measure energy
efficiency. Backpressure, FRT, and AFA achieve much better en-
ergy efficiency than No Control. They reduce the amount of data
packets pumped from the sources into the network when congestion
occurs. The excess packets would not be able to get through the
network anyway but would instead be counterproductive by caus-
ing severe collisions and packet drops.

Figure 6 shows the accumulated number of dropped packets over
time. Without any congestion/fairness control, the packet drop
problem is severe for the reasons explained in Section 2.2. Back-
pressure has more packet drops than FRT because it is more aggres-
sive by using multiple routing paths to carry additional packets,
which also cause more frequent congestions. AFA seldom drops
any packets due to its congestion avoidance mechanism.

6.3 Achieving Weighted Fairness by AFA
The third set of simulations demonstrates that data sources can

acquire different rates by using different weights. In this set of
simulations, when we calculate the average rates, we do not include
those data sources whose routing paths are not seriously congested,
namely, those sources whose rates are above 20 packets per unit of
time.

In Figure 7, data sources 1-50 have weight two; their average
packet rate is 16.13. Sources 51-100 have weight one; their av-
erage packet rate is 8.05. The results confirm that, on average,
AFA allocates bandwidth to the flows proportional to their weights.
Note that some sources with weight one have larger rates than
some sources with weight two. The reason is that these weight-
one sources do not share routing paths with the weight-two sources.
When two nodes share a common congested routing path, the band-
width is allocated based on weights. However, if a source with
weight one has an uncongested routing path while another source
with weight two does not, the former will have higher rate than the
latter.

In Figure 8, data sources 1-50 have weight three; their average
packet rate is 18.35. Sources 51-100 have weight one; their average
packet rate is 6.55.

Figure 9 has three different weights. Data sources 1-33 have
weight three; their average packet rate is 17.41. Data sources 34-
66 have weight one; their average packet rate is 5.97. Data sources
67-100 have weight two; their average packet rate is 11.69. The
average rates are roughly proportional to the weights.

Figure 10 also has three different weights. The weight assign-
ment is made different from that in the previous figure to bring
out the contrast. Data sources 1-33 have weight three; their av-
erage packet rate is 18.18. Data sources 34-66 have weight two;
their average packet rate is 12.40. Data sources 67-100 have weight
one; their average packet rate is 6.67. The average rates are again
roughly proportional to the weights.

Now let’s consider the average rate among all 100 data sources.

In Figure 7, it is 16.19. In Figure 8, it is 16.23. In Figure 9, it is
15.87. In Figure 10, it is 16.13. The average rate among all sources
is kept about the same in these simulations, which means different
weight schemes do not change the overall system throughput.

6.4 Convergence
The fourth set of simulations compares the convergence speed of

AFA with that of FRT. We have performed extensively simulations,
which show that in general AFA and FRT have comparable con-
vergence speeds. They both converge reasonably fast. Multipath
routing does not seem to slow down the convergence of AFA. Fig-
ure 11 and Figure 12 show the packet rates under FRT and AFA,
respectively, after 30 units of time into the simulations. The rates
are clustered but have not been stabilized. After 60 units of time
into the simulations, the rates are fully converged as shown in Fig-
ure 13 and Figure 14. A distributed algorithm is suitable for a dy-
namic network only when the algorithm converges much faster than
the network changes. Each algorithm has its scope of applicability.
Although AFA converges reasonably fast, it seems not suitable for
highly-dynamic sensor networks with a large number of short-lived
flows that come and go.

7. CONCLUSION
This paper studies the end-to-end fairness problem in data-collection

sensor networks. We show that the fairness problem becomes con-
siderably harder when each packet flow is forwarded on multiple
routing paths. We formally define a new aggregate fairness model,
prove its properties, and propose a distributed algorithm that imple-
ments the model. The new fairness algorithm can work with any
routing protocol. The simulation results confirm the effectiveness
of the algorithm in achieving (weighted) fairness among competing
data flows.

8. REFERENCES
[1] S. Tilak, M. B. Abu-Ghazaleh, and W. Heinzelman,

“Infrastructure Tradeoffs for Sensor Networks,” Proc. of 1st
ACM Int’l Workshop on Wireless Sensor Networks and
Applications (WSNA’02), September 2002.

[2] C.-Y. Wan, S. B. Eisenman, and A. T. Campbell, “CODA:
Congestion Detection and Avoidance in Sensor Networks,”
Proc. of SenSys’03, November 2003.

[3] C. T. Ee and R. Bajcsy, “Congestion Control and Fairness for
Many-to-One Routing in Sensor Networks,” Proc. of ACM
SenSys 2004, November 2004.

[4] B. Hull, K. Jamieson, and H. Balakrishnan, “Mitigating
Congestion in Wireless Sensor Networks,” Proc. of ACM
SenSys 2004, November 2004.

[5] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong, “TAG: a Tiny AGgregation Service for Ad-Hoc
Sensor Networks,” Proc. of ACM Symposium on Operating
System Design and Implementation (OSDI),, December
2002.

[6] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“The Design of an Acquisitional Query Processor for Sensor
Networks,” in Proc. of ACM SIGMOD International
Conference on Management of Data, 2003.

[7] W. Ye, J. Heidemann, and D. Estrin, “An Energy-Efficient
MAC Protocol for Wireless Sensor Networks,” Proc. of IEEE
INFOCOM’02, June 2002.

[8] F. Kelly, A. Maulloo, and D. Tan, “Rate control in
communication networks: shadow prices, proportional

283

0

5

10

15

20

25

30

35

0 20 40 60 80 100

de
liv

er
ed

 p
ac

ke
t r

at
e

data source id

Fairness Routing Tree, after 30 units of time

per-source rate
average rate

Figure 11: Packet rates achieved by FRT after 30 units of time

0

5

10

15

20

25

30

35

0 20 40 60 80 100

de
liv

er
ed

 p
ac

ke
t r

at
e

data source id

Aggregate Fairness Algorithm, after 30 units of time

per-source rate
average rate

Figure 12: Packet rates achieved by AFA after 30 units of time

0

5

10

15

20

25

30

35

0 20 40 60 80 100

de
liv

er
ed

 p
ac

ke
t r

at
e

data source id

Fairness Routing Tree, after 60 units of time

per-source rate
average rate

Figure 13: Packet rates achieved by FRT after 60 units of time

0

5

10

15

20

25

30

35

0 20 40 60 80 100

de
liv

er
ed

 p
ac

ke
t r

at
e

data source id

Aggregate Fairness Algorithm, after 60 units of time

per-source rate
average rate

Figure 14: Packet rates achieved by AFA after 60 units of time

284

fairness and stability,” Journal of the Operational Research,
vol. 49, 1998.

[9] J. Mo and J. Walrand, “Fair End-to-End Window-based
Congestion Control,” IEEE/ACM Transactions on
Networking, October 2000.

[10] L. Massoulie and J. Roberts, “Bandwidth Sharing:
Objectives and Algorithms,” IEEE Transactions on
Networking, vol. 10, no. 3, June 2002.

[11] S. H. Low, “A Duality Model of TCP and Queue
Management Algorithms,” IEEE/ACM Transactions on
Networking, October 2003.

[12] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and
J. Zhao, “Habitat Monitoring: Application Drive for Wireless
Communications Technology,” ACM SIGCOMM Workshop
on Data Communications in Latin America and the
Caribbean, April 2001.

[13] L. Schwiebert, S. Gupta, and J. Weinmann, “Research
Challenges in Wireless Networks of Biomedical Sensors,”
Mobile Computing and Networking, pp. 151–165, 2001.

[14] E. Biagioni and K. Bridges, “The Applications of Remote
Sensor Technology to Assist the Recovery of Rare and
Endangered Species,” International Journal of High
Performance Computing Applications, Special Issue on
Distributed Sensor Networks, April 2003.

[15] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and
J. Anderson, “Wireless Sensor Networks for Habitat
Monitoring,” Proc. of ACM International Workshop on
Wireless Sensor Networks and Applications (WSNA’02),
September 2002.

[16] M. D. Yarvis, W. S. Conner, L. Krishnamurthy,
A. Mainwaring, J. Chhabra, and B. Elliott, “Real-World
Experiences with an Interactive Ad Hoc Sensor Network,”
Proc. of International Conference on Parallel Processing
Workshops, August 2002.

[17] Center for Embedded Networked Sensing, “Terrestrial
Ecology Observing Systems,” http://www.cens.ucla.edu/
portal/terrestrial ecology observing systems.html.

[18] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk,
A. Woo, E. Brewer, and D. Culler, “The Emergence of
Networking Abstractions and Techniques in TinyOS,” Proc.
of First USENIX/ACM Symposium on Network Systems
Design and Implementation (NSDI), 2004.

[19] J. Polastre, “Sensor Network Media Access Design,”
http://www.cs.berkeley.edu/∼culler/cs294-f03/finalpapers
/bmac.pdf, 2003.

[20] T. Nandagopal, T. Kim, X. Gao, and V. Bharghavan,
“Achieving MAC Layer Fairness in Wireless Packet
Networks,” Proc. of MobiCom’00, August 2000.

[21] X. L. Huang and B. Bensaou, “On Max-Min Fairness and
Scheduling in Wireless Ad-hoc Networks: Analytical
Framework and Implementation,” Proc. of MobiHoc’01,
Long Beach, California, October 2001.

[22] H. Luo, J. Cheng, and S. Lu, “Self-Coordinating Localized
Fair Queueing in Wireless Ad Hoc Networks,” IEEE
Transactions on Mobile Computing, vol. 3, no. 1, 2004.

[23] L. Tassiulas, “Adaptive Back-pressure Congestion Control
based on Local Information,” IEEE Transactions on
Automatic Control, vol. 40, no. 2, February 1995.

[24] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing
with Guaranteed Delivery in Ad Hoc Wireless Networks,”
Proc. of 3rd Int’l Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications
(DialM’99), August 1999.

[25] B. Karp and H. Kung, “GPSR: Greedy Perimeter Stateless
Routing for Wireless Networks,” Proc. of ACM
MobiCom’00, August 2000.

[26] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and
I. Stoica, “Geographic Routing without Location
Information,” Proc. of ACM Mobicom’03, April 2003.

[27] S. Chen, G. Fan, and J. Cui, “Avoid Void in Geographic
Routing for Data Aggregation in Sensor Networks,”
International Journal of Ad Hoc and Ubiquitous Computing
(IJAHUC), Special Issue on Wireless Sensor Networks, 2006.

[28] T. He, J. A.Stankovic, C. Lu, and T. F. Abdelzaher, “SPEED:
A Stateless Protocol for Real-Time Communication in
Sensor Networks,” Proc. of International Conference on
Distributed Computing Systems (ICDCS’03), May 2003.

[29] H. Luo, S. Lu, and V. Bharghavan, “A New Model for Packet
Scheduling in Multihop Wireless Networks,” Proc. of
MobiCom’00, August 2000.

[30] B. Bensaou, Y. Wang, and C. C. Ko, “Fair medium access in
802.11 based wireless ad-hoc networks,” Proc. of
MobiHoc’00, Boston, Massachusetts, July 2000.

[31] V. Gambiroza, B. Sadeghi, and E. W. Knightly, “End-to-End
Performance and Fairness in Multihop Wireless Backhaul
Networks,” Proc. of Mobicom’04, Philadelphia, PA, USA,
September-October 2004.

[32] Y. Sankarasubramaniam, O. Akan, and I. Akyildiz, “ESRT:
Event-to-Sink Reliable Transport in Wireless Sensor
Networks,” Proc. of MobiHoc’03, June 2003.

[33] Y. Yi and S. Shakkottai, “Hop-by-Hop Congestion Control
over a Wireless Multi-hop Network,” Proc. of IEEE
INFOCOM’04, Hong Kong, China, March 2004.

[34] L. Tassiulas and S. Sarkar, “Maxmin Fair Scheduling in
Wireless Networks,” Proc. of IEEE INFOCOM’02, June
2002.

[35] A. Sridharan and B. Krishnamachari, “Max-Min Fair
Collision-Free Scheduling for Wireless Sensor Networks,”
Proc. of Workshop on Multihop Wireless Networks
(MWN’04), April 2004.

[36] A. Woo and D. Culler, “A Transmission Control Scheme for
Media Access in Sensor Networks,” Proc. of MobiCom’01,
July 2001.

[37] J. M. Kleinberg, Y. Rabani, and E. Tardos, “Fairness in
Routing and Load Balancing,” IEEE Symposium on
Foundations of Computer Science, 1999.

285

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

