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Abstract—A wireless sensor network is constrained by computation capability, memory space, communication bandwidth, and above

all, energy supply. When a critical event triggers a surge of data generated by the sensors, congestion may occur as data packets

converge toward a sink. Congestion causes energy waste, throughput reduction, and information loss. However, the important problem

of congestion avoidance in sensor networks is largely open. This paper proposes a congestion-avoidance scheme based on light-

weight buffer management. We describe simple yet effective approaches that prevent data packets from overflowing the buffer space

of the intermediate sensors. These approaches automatically adapt the sensors’ forwarding rates to nearly optimal without causing

congestion. We discuss how to implement buffer-based congestion avoidance with different MAC protocols. In particular, for CSMA

with implicit ACK, our 1=k-buffer solution prevents hidden terminals from causing congestion. We demonstrate how to maintain near-

optimal throughput with a small buffer at each sensor and how to achieve congestion-free load balancing when there are multiple

routing paths toward multiple sinks.

Index Terms—Sensor networks, network communication.

Ç

1 INTRODUCTION

1.1 Motivation

WIRELESS sensor networks have a wide range of
applications in habitat observation [1], [2], health

monitoring [3], object tracking [4], [5], battlefield sensing,
etc. They are different from traditional wireless networks in
many aspects [6]. For example, the sending rate of a sensor
is determined not only by the channel capacity but also by
the activity of the neighbor sensors as well as the lifetime
requirement (due to limited energy supply). Intense study
has been carried out in recent years on physical layer [7],
[8], MAC layer [9], [10], [11], and network layer [12], [13],
[14], [15]. However, the important problem of congestion
avoidance in sensor networks remains largely open. When a
sensor receives more data than it can forward, the excess
data has to be buffered. Congestion occurs when the limited
buffer space is full and, consequently, the received data has
to be dropped. Congestion control studies how to recover
from a congestion. Congestion avoidance studies how to
prevent congestion from happening, which is the subject of
this paper.

A different type of congestion occurs when an area is

densely populated with sensors, causing frequent radio

collision if many sensors attempt to send simultaneously.

The classical solutions for this problem are exponential

random backoff and virtual carrier sensing. While the

proposed techniques can also greatly reduce the chance of

radio collision (Section 3.6), the main focus of this paper is

on buffer-based congestion, which can easily happen in a
sensor network where the packets converge towards a sink.
As shown in Fig. 1, an intermediate sensor x close to the
sink is likely to have multiple upstream sensors. With
CSMA, the upstream sensors collectively have more chance to
forward packets to x than x can send out. The excessive packets
received by x will eventually cause buffer overflow.
Consequently, hotspots may form around the bottleneck
sensors.

Congestion causes many problems. When a packet is
dropped, the energy spent by upstream sensors on the packet
is wasted. The further the packet has traveled, the more the
waste is. When the buffer at a sensor x is already full, if the
upstream neighbors attempt to send data to x, their efforts
(and energy) are deemed to be wasted and, worse yet,
counter-productive. For instance, their RTS packets may
collide with nearby transmissions, causing throughput
reduction of other sensors. Finally, and above all, the data
loss due to congestion may jeopardize the mission of the
application.

1.2 Related Work

Sensor networks typically operate under light load and
suddenly become active in response to certain important
events such as fire outbreak, earthquake, or enemy move-
ment. This sudden surge of data from hundreds or even
thousands of sensors must be delivered to a small number
of sinks, which may cause congestion especially near the
sinks. While fusion techniques [14] can be used for data
aggregation, applications may require some specific infor-
mation (e.g, the exact locations of reporting sensors) to be
kept [6], which sets a limit on how much the fusion can do.

Experiments [16] showed that maintaining an operating
point that does not exceed the capacity of a sensor network
is critical to improving performance in both networking and
application metrics. However, congestion control in sensor
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networks had not received serious study until recently.
Most current control mechanisms are rate-based.

In directed diffusion [13], interests are propagated from
sinks to data sources; the reverse paths are used for
forwarding data packets to the sinks. Based on the quality
of data delivery, a sink reinforces certain paths by sending
new interests, which increase the data rates on those paths.
Although it is not designed specifically for congestion
control, directed diffusion may adapt for this task (to some
degree) by reinforcing paths with small delays, but this
strategy will penalize distant data sources. In addition, the
sink-initiated control reacts slower than the on-the-spot
localized congestion control.

In ESRT [17], a sensor sets a congestion-notification (CN)
bit in the packet header if its buffer is about full. The sink
periodically computes a new reporting rate (at which each
source is supposed to report data) based on a reliability
measurement, the received CN bits, and the previous
reporting rate. It then broadcasts the new reporting rate to
all data sources. Treating all sources equally is suboptimal.
To remove all congestions, the reporting rate has to be set
according to the worst hotspot in the network. In that case,
the noncongested sources will be constrained by a con-
servative reporting rate.

CODA [18] provides a comprehensive discussion on
congestion control and proposes an open-loop hop-by-hop
backpressure mechanism and a close-loop multisource
regulation mechanism. For hop-by-hop backpressure, each
sensor detects congestion by monitoring the channel
utilization and the buffer-occupancy level. In response to
congestion, it sends backpressure messages to neighbors,
which may drop packets, reduce its sending rate, and
further propagate backpressure. For multisource regulation,
if a source sensor reports data at a rate greater than a
preconfigured threshold, the sensor must receive a con-
tinuous stream of ACKs from the sink in order to maintain
that rate. This provides the sink a means to regular the
source rates by deciding how many ACKs to broadcast. The
above mechanisms are reactive. They do not prevent
congestion from happening.

The work by Ee and Bajcsy [19] assumes a tree routing
structure from all data sources to a sink. Each sensor
receives and forwards packets from its upstream neighbors;
each upstream neighbor is the root of an upstream subtree.
The sensor learns the number of data sources in each of
those upstream subtrees, measures its own downstream
forwarding rate, computes per-source fair rate, which is
propagated upstream such that the data sources do not
send packets beyond the rate.

Fusion [20] consists of three congestion mitigation
techniques. The first technique is called hop-by-hop flow

control, which resembles backpressure [18] but replaces the
explicit control packets with a piggybacked congestion bit
carried by all packets. When overhearing the congestion bit
to be set, the upstream neighbors (virtually) stop transmit-
ting until the congestion bit is unset. The second technique
is called rate limiting, which meters traffic being admitted
to the network to prevent unfairness. The third technique is
called prioritized MAC, which ensures that congested
nodes receive prioritized access to the channel.

One common problem of rate-based congestion control
in sensor networks is the difficulty for an upstream sensor
to determine the right amount of rate deduction in response
to a downstream congestion. The prior work has largely
avoided the discussion of this problem. The traditional
AIMD approach (additive increase multiplicative decrease)
relies on periodic rate adjustment. Due to environmental
dynamics (e.g., background radio interference, multipath
fading, and a change in the number of active neighbors), the
bandwidth available to a congested sensor changes all the
time, which would constantly cause upstream sensors to
perform rate adjustment. It is much desired to have a new
approach that allows the upstream sensors to quickly adapt
their rates to near-optimal ones without explicit, slow-
converging rate-based control.

1.3 Our Contributions

This paper attempts to answer the following questions: Can
we eliminate buffer-based congestion in a sensor network?
How to maintain near-optimal throughput without conges-
tion? Does the buffer size have to be large? Can we avoid
explicit rate signaling between sensors? How to ensure
fairness in buffer access? How to achieve congestion-free
load balancing through multipath routing?

First proposed by Kung et al. [21] for flow control in
ATM networks, the basic idea is that a sender should
transmit a packet only when it knows that the receiver has
the buffer to store the packet. We describe how this idea can
be used for congestion avoidance in a sensor network. We
design simple yet effective approaches that prevent data
packets from overflowing the buffer space of the down-
stream sensors, and discuss how to implement them with
various MAC protocols. In particular, for CSMA with
implicit ACK, one has to overcome the hidden-terminal
problem. We propose a 1=k-buffer solution that ensures
hidden terminals do not cause congestion. Through
Markov-chain analysis and simulations, we demonstrate
that the proposed approaches automatically adapt the
sensors’ forwarding rates to nearly optimal without causing
congestion. They can produce much larger network
throughput than the rate-based approaches. We also
address the fairness issue when multiple sensors try to
access the buffer space of the same downstream sensor, and
study how to achieve congestion-free load balancing when
there are multiple routing paths towards multiple sinks.

The rest of the paper is organized as follows: Section 2
defines the sensor network model and discusses radio
collision. Section 3 proposes our congestion avoidance
scheme. Section 4 describes the congestion avoidance
algorithms and Section 5 analyzes the impact of buffer size
on throughput. Section 6 presents the simulation results.
Section 7 draws the conclusion.
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Fig. 1. CSMA causes buffer overflow.



2 BACKGROUND

2.1 Network Model

A sensor network consists of a set of sensors and a set of base

stations (also called sinks) for data collection. Two sensors are

neighbors if they are in the transmission range of each other

and can directly communicate with certain reliability. We

assume there exists a neighbor discovering protocol. For

example, each sensor periodically transmits a beacon packet

identifying itself, so that every sensor knows the set of its

neighbors. The sensors share the same wireless media, and

each packet is transmitted as a local broadcast in the

neighborhood. We assume the existence of a MAC protocol,

e.g., based on CSMA or TDMA, which resolves the media

contention and ensures that only the intended receiver keeps

the packet and other neighbors discard the packet. Although

there may exist asymmetric communication links, only

symmetric ones are used for sending data. That is because

for x to transmit a packet to y, xmust know the existence of y

as a neighbor, which means that x can hear y’s beacon.

Moreover, some MAC protocols such as CSMA/CA can only

work with symmetric communication links.
The sensors are statically located after deployment. We

do not consider mobile sensors that form a dynamic ad hoc

network. We study data packets sent from sensors to sinks.

While there may be a subset of sensors generating data, all

sensors will serve to relay the packets toward the sinks.

Assume that the sinks are connected via an external

network to a data collection center. It makes no difference

which particular sink a packet is delivered to. Suppose all

data packets have the same size. The size of a buffer space is

counted as the number of packets that the buffer can store.

2.2 Collision and Congestion

Radio collision and buffer overflow are two main types of

congestion in a sensor network. Solutions against collision

include CSMA, TDMA, CDMA, etc. In [22], we use

simulations to show that, with an appropriate size of

minimum contention window, the classical approach of

exponential random backoff can effectively control the

radio collision problem to an insignificant level. But, solving

media contention does not necessarily mean solving

congestion. The shared media access among sensors brings

a new congestion scenario that is not present in a wired

network. More specifically, CSMA’s “fair” media access

directly contributes to buffer overflow. Refer to Fig. 1,

where data sources y, z, and w send packets to the sink via

x. If y, z, w, and x each obtain a fair share of channel

capacity, x will receive three packets for every packet it

sends out. Consequently, its internal packet queue will

build up and eventually overflow. Therefore, it is not

sufficient for the data sources to slow down to a level that

does not cause serious collision. They must slow down

further such that x is able to send at a higher rate that

matches the combined rate of y, z and w. How to achieve

this in a dynamic environment where the channel capacity

and the contention from neighbors may change at any time?

This is the question that the paper wants to answer.

3 BUFFER-BASED CONGESTION AVOIDANCE

3.1 Basic Scheme

The key for congestion avoidance is to make sure that a
sensor y sends a packet to another sensor x only when x has
the buffer space to hold the packet. Below, we describe a
basic congestion avoidance scheme.

Let Nx be the set of neighbor nodes of x. The residual
buffer of x changes when x receives a packet from or
forward a packet to a neighbor sensor. To keep Nx updated
with x’s buffer size, whenever x sends out a packet, it
piggybacks its current buffer state in the frame header, for
example, using one bit to indicate if the buffer is full or
using a few bits to store the size of the residual buffer. Note
that both data and control packets sent by x can piggyback
the buffer state.

Consider a neighbor sensor y 2 Nx. When y receives or
overhears a packet from x, it caches the buffer state of x.
When y has a packet to forward x, only if x’s buffer is not
full, y forwards the packet. Otherwise, y withholds the
packet until it overhears a packet from x, piggybacking a
nonfull buffer state.

The proposed basic scheme avoids packet drop due to
buffer overflow. It quickly adapts the data rates at the
sources and the forwarding rates at the immediate sensors
to near-optimal values. For example, suppose an object
entering a field triggers a large number of sensors to track
its movement. How fast should those sensors send data to
the sink? If the sending rate is too small, the system may
lose track of the object amidst other moving objects. If the
sending rate is too large, it may cause congestion and be
counter-productive. Suppose the sensors initially attempt to
send as fast as they can. When the buffer at an intermediate
sensor x is filled, by our scheme the forwarding rates of its
upstream sensors are forced to slow down, in accordance to
x’s forwarding rate. When the buffers at the upstream
sensors are filled up, the further upstream sensors are
forced to slow down. This process repeats towards the
furthest sensors and eventually the whole network adapts
toward the maximum congestion-free throughput.

Our buffer-based scheme is simple but effective. It
eliminates the complicated rate-based signaling that is
required by many existing congestion control approaches,
yet it can produce much larger network throughput (Sec-
tion 6) and, unlike the rate-based approaches, it does not drop
packets. In the following, we describe how to implement the
basic scheme with various MAC protocols. We do not intend
to exhaustively discuss all MAC protocols, but rather choose
a few examples to show in principle how the problems can be
solved.

3.2 CSMA/CA and CSMA with ACK

First, we consider CSMA/CA. Virtual carrier sensing is
used to reduce the probability of radio collision due to
hidden terminals. Data transmission requires RTS-CTS-
DATA-ACK exchange between two neighboring sensors.
One bit in each packet is used to piggyback whether the
sender’s buffer is full. A sensor y forwards a data packet to
a neighbor x only when it learns that x’s buffer is not full.
Now, consider the following two cases:
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. Case 1: y may not overhear packets sent by x due to
temporary radio interference. Therefore, its knowledge
about x’s buffer may be stale.

. Case 2: When y wakes up from the sleeping mode, its
knowledge about x’s buffer may be stale.

There are two approaches that handle the above cases:

. Approach 1: The one-bit buffer state can be piggy-
backed by the neighbor discovery messages that are
exchanged periodically between neighbors. The state
information will be resynchronized between x and y
as long as they remain neighbors of each other. The
time for resynchronization is determined by the
frequency at which the neighbor discovery messages
are transmitted.

. Approach 2: y attempts to transmit if it has not overheard
x’s buffer state for a period of timeT (Case 1) or if it has not
overheard x’s buffer state since it wakes up from a sleep
period of at least T (Case 2), where T is a system
parameter. Under these two conditions, y thinks that
its knowledge of x’s buffer state may be stale. If y has a
data packet to send, it transmits a RTS packet to x,
which replies with a CTS packet, piggybacking its
current buffer state. Upon receipt of CTS, y sends
DATA packet(s) if the buffer is not full. Basically, the
RTS/CTS exchange resynchronizes the buffer state
before DATA is sent. If y does not receive CTS due to
collision, it performs the exponential random backoff
as usual.

Congestion avoidance in CSMA with ACK is handled
similarly. For Approach 2, because there is no RTS, a
DATA packet is transmitted when the buffer information
is suspected to be stale. If the receiver drops the packet
due to buffer overflow, without hearing the ACK the
sender performs exponential random backoff and retrans-
mit, the packet later.

3.3 CSMA with Implicit ACK and TDMA with
Fixed Schedule

For a sensor network with small packet size, the control
packets in RTS-CTS-DATA-ACK exchange constitute a
significant overhead. Woo and Culler suggested that RTS
and CTS should be used only when the media contention
level is high. In addition, the acknowledgement can be free
when the sender of the packet overhears the transmission of
the same packet by the receiver [10], which saves ACK at
the cost of slightly increased holding time of the packet at
the sender. This is called implicit ACK. Therefore, when the
media contention level is not high, CSMA can be reduced to
DATA packets only for the purpose of energy efficiency. An
alternative approach of implementing implicit ACK is for
data packets to carry an one-byte acknowledgement field in
their headers, such that a data packet forwarded by a
downstream sensor acknowledges a (different) packet just
received from an upstream neighbor.

Another scenario that has only DATA packets is TDMA
with fixed transmission schedule, where each sensor is
assigned fixed time slots. Far from optimal in terms of total
throughput, a simple TDMA may still be a viable choice for
low-cost sensor networks that have very limited on-board
resources (e.g., energy, CPU, and memory), which make
simplicity a higher priority than network throughput.

For the above two MAC protocols, only DATA packets are
available to piggyback the buffer state. Without ACK packets
piggybacking, we have to modify the basic scheme as follows:
When a sensor x sends out a DATA packet, it piggybacks its
residual-buffer size in the frame header. When a neighbor
y 2 Nx overhears a frame from x, it caches the residual-buffer
size of x. When y overhears a packet that is sent by another
sensor to x, it reduces the residual-buffer size of x by one.1 In
addition,y’s knowledge aboutx’s residual buffer may be stale
when it misses packets due to radio interference or sleeping.
The approaches that handle these cases in Section 3.2 should
be applied here as well.

Even with the above modification, y may still lose track
of the accurate size of x’s residual buffer due to the hidden
terminal problem. Fig. 2 gives an example. The transmission
ranges of three sensors (x, y, and z) are shown by three
circles, respectively. Suppose x advertises (by piggybacking
on a DATA packet) that it can hold one more packet. Both y
and z want to send x a packet. Suppose z sends its packet
first. Because y is outside of z’s transmission range, it will
not overhear the packet and still think that x can hold a
packet. When y sends its packet to x, congestion happens
and the packet must be dropped.

To better illustrate our idea, we consider an idealized
network with each sensor having the same circular
transmission range, and propose a 1=6-buffer solution for
the hidden-terminal problem, i.e., every sensor advertises
only one sixth of its residual-buffer size. The general case
with irregular transmission ranges will be studied in the
next section.

Theorem 1. Suppose all sensors have the same circular
transmission range. Hidden terminals do not cause buffer
congestion when the 1=6-buffer solution is used.

Proof. Consider an arbitrary sensor x. We can prove the
theorem by showing that no congestion will occur at x
between any two consecutive transmissions by x. Without
losing generality, suppose two consecutive transmissions
are made at times t0 and t1. Let L be the residual-buffer
size that x advertises at t0. The actual residual-buffer size
at the time is 6L. We prove that, before the next
transmission by x, the data sent to x will not exceed 6L
and, consequently, no congestion will occur.

Refer to Fig. 3, where transmission ranges are shown
by circles. Only neighbor sensors in the solid circle can
send data to x. The solid circle can be divided into six
convex regions, A, B, C, D, E, and F , which overlaps
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partially. For example, A partially overlaps with B and
F . The sensors in each region can overhear each other’s
transmission and, therefore, the number of data packets
sent from the region to x cannot exceed L, based on the
above congestion avoidance scheme. There are six such
regions. Hence, the total number of packets sent from all
neighbors to x cannot exceed 6L before x makes another
buffer advertisement at t1. tu

One may ask why we choose to advertise 1=6 of the
residual buffer, instead of 1=4, 1=5, 1=7, etc. As shown in
Fig. 3, the neighborhood of x can be divided into six convex
regions with the sensors of each region able to overhear each
other, which is a key property needed by the proof of
Theorem 1. The property is not true for any less number of
regions. On the other hand, any larger number of regions
will also support the proof but lead to unnecessarily low
buffer advertisement, e.g., a 1=7-buffer solution would
advertise one seventh of the residual buffer.

In practice, it is likely that a sensor can advertise more
than one sixth of its residual buffer. Refer to Fig. 3. Assume
that the sink is to the right side of x and geographic routing
[23], [24], [12], [25] is used. Because a packet is always
routed to a neighbor that is closer to the sink, only sensors
in three regions to the left of x (i.e., A, F , and E) will send
packets to x. Following the same argument used in the
proof, x is able to advertise one third of its residual buffer
without causing congestion, i.e., a 1=3-buffer solution.

3.4 Adaptive 1/k-Buffer Solution

Our derivation of the value 1=6 is based on an idealized
assumption that all sensors have the same circular
transmission range. In reality, the radio transmission range
is highly irregular. It not only depends on the power level,
but also on environmental dynamics such as radio inter-
ference and physical obstacles. To handle the general case,
we propose an adaptive 1=k-buffer solution, where k is
modified dynamically by the sensor who advertises its
residual buffer. On one hand, k can be as low as three when
geographic routing is used. On the other hand, k can be
larger than 6 in the worse case where the radio transmission
range is highly irregular. Our adaptive 1=k-buffer solution
works as follows. Each sensor initializes k to be 6. If there is
no buffer overflow for a long time, the sensor concludes that
k is set too conservatively and it reduces k by one.

Whenever there is buffer overflow, the sensor knows that
k is set too aggressively and it increases k by one. The idea is
to dynamically adjust k to a minimum value that does not
cause buffer overflow. Due to traffic dynamics, periodic
packet drops may happen as k is cyclically increased and
then decreased. Although a small amount of packet drops
can be tolerated by many applications, it is desirable to
minimize data loss. One approach is to enlarge the no-
overflow time period for k’s reduction to be large enough
such that the packet overflow rate becomes negligibly small.
Another approach is to (at least temporarily) stop decreas-
ing k when k’s value keep oscillating up and down.

It may seem underperformed to advertise just one kth of
the residual buffer, and it might appear that ðk� 1Þ=k of the
whole buffer could be left unused. That is not true because a
sensor always makes revised advertisement through pig-
gybacking. If ðk� 1Þ=k of the whole buffer is left unused,
then 1=k of the unused will be advertised. Eventually, most
buffer space will be utilized even in the worst case where all
upstream sensors come from one convex region in Fig. 3.
Only when x’s residual-buffer size becomes ðk� 1Þ or less,
it advertises zero, which stops all upstream sensors from
transmitting to x.

Furthermore, our simulations demonstrate that a sensor
only needs to allocate a small buffer in order to achieve high
throughput and avoid congestion. Intuitively, a large buffer
would be needed to absorb busty traffic that would
otherwise be lost, but it is not necessarily essential for
achieving good long-term average throughput for periodic
CBS traffic that will not be lost due to buffer overflow,
thanks to the congestion avoidance scheme. As an illus-
trative example, even one buffer slot may achieve good
throughput if the two nodes take turn to send. Confirming
this intuition, we found in our simulations that conservative
buffer advertisement by the 1=k solution has negligible
impact on data throughput. For a buffer of just 12 slots
(each holding one packet) and using only two header bits to
piggyback the buffer state (0, 1, or 2), our congestion
avoidance scheme considerably outperforms the existing
congestion control schemes.

3.5 Fairness in Buffer Access

As shown in Fig. 4, if CSMA is used, all upstream sensors
(y, z, and w) compete fairly for transmission and each is
statistically guaranteed a fair share of bandwidth for
sending data to x. On the other hand, TDMA may result
in extreme unfairness. In the lower plot of Fig. 4, suppose all
sensors are in each other’s transmission range, x runs the
1=6-buffer solution with just six buffer slots, and the
periodic transmission schedule is in the order of x, y, z,
and w. Every time when x advertises one residual slot, y
may immediately send its packet. Overhearing the packet, z
and w think the buffer at x is now full and will not send
their packets. The order of transmission gives y priority
over z and w, allowing the former to starve the latter.

The basic idea of our solution is to provide a mechanism for
the first node in the transmission schedule that cannot send to
reserve the next available buffer slot at the receiver. After this
node sends a packet, the next node in the schedule has the
opportunity to reserve, and this process continues such that
the nodes take turn to reserve the buffer slots at the receiver in
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the order that they appear in the schedule. We use the
previous example to explain our reservation mechanism.
Based on the transmission schedule, when z has its turn to
send a packet, if it finds that x’s buffer is full because y just
transmitted a packet, z will instead transmit a control
message called NEXT(z, x) if nobody else has done so. The
message is to announce that z should get the next available
buffer slot of x. When the next node w in the schedule hears
NEXT(z,x), it will keep silent without sending its NEXT(w,x).
y also hears NEXT(z, x) and records the message. When x

advertises a residual slot again, although y is still scheduled
ahead of z, it will give up the chance of transmission and
remove the recorded NEXT(z,x). znow has the chance to send
x its packet. Overhearing z’s packet, w learns that x’s buffer
becomes full and it cannot send a packet to x. It will instead
send NEXT(w, x) to reserve the next available buffer slot of x.
The message will be recorded by both y and z, which will give
up their chance in the following round. Afterw sends, yhas its
chance to send and then the above reservation process
repeats. The lifetime of a recorded NEXT message is one
round of the TDMA schedule. This is to prevent a dead node
from indefinitely holding the right of transmitting to x.

3.6 Collision Reduction

The proposed congestion-avoidance scheme stops upstream
sensors from transmitting when the downstream neighbors
do not have the required buffer to hold the packets, which
would be dropped anyway if they were transmitted. By
eliminating unhelpful transmission and keeping the up-
stream sensors silent, it not only saves energy but also helps
reducing radio collision with other sensors transmitting in the
neighborhood. As an example, refer back to Fig. 3. Consider
the radio transmissions to x and assume that x has six buffer
slots. According to the 1=6-buffer solution, when y sends a
packet to x, it will silence all neighbors of x in regions A and
B,2 which covers 39 percent of x’s neighborhood. If y is closer
to x, instead of locating at the perimeter, then an even larger
portion of x’s neighbors will overhear y’s packet and stop
transmitting to x. After at most six packets are sent to x, all
neighbors will stop transmitting for a period beforex empties
its buffer and makes a new advertisement. During this period,

not only the neighbors avoid wasting energy in transmitting
to x, but their silence reduces the chance of collision with
parallel transmissions (to sensors other than x) and, thus,
helps to improve the overall throughput.

4 CONGESTION AVOIDANCE ALGORITHMS

4.1 Congestion Avoidance with Multiple Paths

We first consider the case of multipath routing to one sink.
Suppose each sensor x knows a list of neighbor sensors,
denoted as Rx, which can be used to forward packets to the
sink. The first sensor in the list Rx has the highest
preference to be used, the second sensor has the second
highest preference, and so on. As described in the previous
section, each sensor advertises its residual-buffer size
(based on the 1=k-buffer solution in case of CSMA with
implicit ACK). x records the residual-buffer sizes adver-
tised by the nodes in Rx. When x overhears a packet sent to
y 2 Rx, it reduces y’s residual-buffer size by one. When x
has a packet to be sent to the sink, it executes a congestion-
free multipath forwarding routine (CFMF). The routine
attempts to find the first sensor in the list Rx whose buffer is
not full. If none in Rx can hold the packet and TDMA is
used, it attempts to reserve the next available buffer slot of a
sensor in Rx by sending a NEXT message.

x.CFMF(packet)

1. iterate y 2 Rx in the order of preference do

2. if y’s residual buffer is not full then

3. forward the packet to y

4. return

5. if (TDMA)
6. iterate y 2 Rx in the order of preference do

7. if NEXT(*, y) has not been recorded then

8. send NEXT(x, y)

9. return

10. re-execute upon receipt of new buffer advertisement

from Rx

If geographic routing [23], [24], [25] is used, Rx is
defined as

Rx ¼ fy j dðyÞ < dðxÞ; y 2 Nxg: ð1Þ

The nodes in Rx are sorted in the ascending order of the
distance to the sink. When some communication links
become unreliable, the corresponding nodes in Rx should
be removed or given lower preference until the links regain
reliability. If jRxj is large, we only keep the first k sensors in
the list, where k is a system parameter. The void problem is
resolved by the right-hand rule [24].

Without geographic routing, Rx may be constructed as
follows. The sink periodically broadcasts a beacon, which
carries a unique identifier s and a hop counter c initialized
to be zero. When a sensor x receives a beacon for the first
time (from a neighbor y), it increases the hop counter by
one, records this hop count as dx, inserts y to Rx, and
broadcast the beacon with dx to its neighbors. When x
receives a subsequent beacon with du from a neighbor u, it
checks if du þ 1 � dx.3 If so, x inserts u to Rx together with
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Fig. 4. Fairness among upstream sensors.

2. Those neighbors keep silence without transmitting to x, but may
transmit to other sensors in their neighborhoods.

3. The number of nodes in Rx can be increased by allowing all u nodes
with dðuÞ � dðxÞ ^ u < x to be inserted to Rx. The condition u < x is to
prevent a routing loop from being formed.



the value of du. The beacon is then discarded. Using nodes
in Rx as the next hops makes sure that the packets do not
travel backward away from the sink. The nodes u in Rx are
sorted in the ascending order of their du values with the
exception that nodes with low link reliability are given low
preference.

The sink increases the broadcast identifier s by one for
each subsequent broadcast. Each sensor keeps the largest
identifier that it has seen. It resets Rx when receiving a
beacon with a larger identifier, and discards all received
beacons with smaller identifiers.

4.2 Congestion Avoidance with Multiple Sinks

We now consider the case of multipath routing to multiple
sinks. Let B be the set of sinks. A separate routing structure
is constructed for each sink. Specifically, every sensor x
maintains a separate list Rb

x of next hops for every b 2 B in
the same way as described previously. It also creates a
single preference list Rx for all sinks. Rx is sorted based on
the (geographical or hop) distance from a neighbor to its
closest sink. More specifically, Rx is a list of tuples, hy; b; di,
sorted in the ascending order of d, where y is a next-hop
neighbor, b is the closest sink to y, and d is the distance from
y to b.

When x is ready to send a locally originated packet, it
first executes the following routine to identify a sink to
which the packet will be delivered.

x.Target_Sink()

1. iterate hy; b; di 2 Rx in the order of preference do

2. if y’s residual buffer is not full then

3. return b

4. if (TDMA)

5. iterate hy; bi 2 Rx in the order of preference do

6. if NEXT(*, y) has not been recorded then

7. send NEXT(x, y)

8. return b

9. re-execute upon receipt of new buffer advertisement from

Rx

The above algorithm attempts to identify the closest sink
to which the routing path is not congested. Consider a path
from x through a neighbor y to a sink b0. If the path is
persistently congested, all the intermediate sensors includ-
ing y will eventually fill up their buffers, and Target_Sink()
will avoid selecting b0 (Lines 2-3). After a sink is identified,
the problem is reduced to the case of multipath routing for a
single sink, which has been addressed previously. Rx is
used by a source sensor x to select a target sink. Rb

x is used
by an intermediate sensor x to route a packet to a selected
sink b.

Some optimization may be done. Let b be the sink
selected by the source of a packet. Suppose after receiving
the packet an intermediate sensor x finds that none of the
neighbors in Rb

x can hold the packet. According to
x.CFMF(), the packet has to wait until Rb

x releases some
buffer, even though a sensor in Rb0

x currently has the
required buffer space, where b0 is a different sink. A naive
optimization is to allow any intermediate sensor to switch
the destination sink of a packet. This may, however, cause
routing loops. A compromise is to allow a packet to switch

its destination sink only for a small number of times. It can

be easily implemented by a TTL field in the packet header,

whose value is decreased by one for each switch.

5 ANALYSIS

We analyze the throughput of a sensor when the proposed

congestion avoidance scheme is implemented with CSMA/

CA or CSMA with ACK, where the information piggy-

backed in ACK from a sensor ensures that all neighbors

know its current residual-buffer size. To simplify the

analysis, we do not consider the two cases that cause stale

buffer information (Section 3.2).
We model the change of a sensor x’s residual-buffer size

as a discrete-time finite-state Markov chain. The possible

states are f0; 1; 2; . . . ;mg, where m is the maximum buffer

size. There are only two types of events that changes the

state of x’s residual buffer:

. Event 1: x successfully transmits a data packet.

. Event 2: One of x’s upstream neighbors successfully
transmits a data packet to x.

Event 1 increases x’s residual buffer by one. Event 2

decreases x’s residual buffer by one. Event 1 and Event 2 do

not happen at the same time because x cannot receive while

transmitting. Other events (i.e., transmissions with neither

sender nor receiver being x) may also occur in the

neighborhood. They are irrelevant to and, thus, ignored in

the analysis.
If the current state is i 2 f1; 2; . . . ;m� 1g, let a be the

probability for the next event being Event 1, and ð1� aÞ be

the probability for the next event being Event 2. The value

of a is determined later. The transition probability from

state i to state i� 1 is therefore a, and the transition

probability from state i to state iþ 1 is ð1� aÞ. The

transition probability for state 0 (empty buffer) to state 1

is 100 percent, and the transition probability for state m (full

buffer) to state m� 1 is also 100 percent. The transition

probabilities between other states are zero. Let P ¼ ðpijÞ, for

i; j 2 ½0::m�, be the matrix of transition probabilities.

P ¼
0 1 0 0 0 . . . 0 0 0 0

a 0 1� a 0 0 . . . 0 0 0 0

0 a 0 1� a 0 . . . 0 0 0 0

0 0 a 0 1� a . . . 0 0 0 0

. . . . . . . . .

0 0 0 0 0 . . . a 0 1� a 0

0 0 0 0 0 . . . 0 a 0 1� a
0 0 0 0 0 . . . 0 0 1 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

:

Let � ¼ ð�0; �1; . . . :�mÞ be the stationary distribution of the

Markov chain, which satisfies �P ¼ �.
Pm

i¼0 �i ¼ 1, and �i is

the stationary probability for x’s residual-buffer size being i

in the stochastic process of the Markov chain. We have
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ð�0; �1; . . . :�mÞ�
0 1 0 0 . . . 0 0 0

a 0 1� a 0 . . . 0 0 0

0 a 0 1� a . . . 0 0 0

. . . . . . . . .

0 0 0 0 . . . a 0 1� a
0 0 0 0 . . . 0 1 0

0
BBBBBBBB@

1
CCCCCCCCA

¼ ð�0; �1; . . . :�mÞ:

It can be rewritten as

�0 � a�1 ¼ 0

ð1� aÞ�i � a�iþ1 ¼ 0; i 2 ½1::m� 1�
ð1� aÞ�m�1 � �m ¼ 0

Xm
i¼0

�i ¼ 1:

Solving the linear equations, we have

�0 ¼
am�1 � 2am

2ð1� aÞm � 2am

�i ¼
am�1 � 2am

2ð1� aÞm � 2am
1

a

1� a
a

� �i�1

; i 2 ½1::m� 1�

�m ¼
am�1 � 2am

2ð1� aÞm � 2am
1� a
a

� �m�1

:

Let nð� 1Þ be the expected number of upstream
neighbors that have data to transmit to x at any given time.
Let p be the probability that at least one sensor in Rx has a
nonfull buffer. According to our congestion avoidance
scheme, x will compete for media access only when at least
one neighbor in Rx has a nonfull buffer.4 When that is the
case, the conditional probability for the next event being
Event 1 is about 1

nþ1, which is the result of access
competition between x and its n upstream neighbors.
Consequently, a ¼ 1

nþ1 p. Note that we simplify the analysis
by using the expected number n, instead of the variable,
instantaneous number of upstream neighbors that have
nonempty buffers.

The possible value range of a is ð0; 1
2�. �0 is the probability

of x’s buffer size being zero. It is a function of a. For
a 2 ð0; 1

2�, it can be shown that �0 is monotonically increasing
with respect to a. Intuitvely, the chance for x’s buffer to be
empty is greater when x has more chance to send, i.e., a is
greater. Therefore, we have

�0ðaÞ ¼ �0
1

nþ 1
p

� �
� �0

1

nþ 1

� �
¼ 1

2
Pm�1

i¼0 ni
:

Sensor x achieves its maximum data throughput when
its buffer is always nonempty such that it competes for
media access whenever allowed. Now, with buffer-based
congestion avoidance, the probability for the buffer to be
empty is �0, which can also be interpreted as the percentage
of time when x does not compete for media access, i.e., an
upper bound on the percentage of lost throughput. In other
words, because the fraction of time that x competes for

media access is at least ð1� �0Þ, the fraction of maximum
possible throughput that is actually realized is at least
ð1� �0Þ. Therefore, with buffer-based congestion avoid-
ance, the ratio of the actual throughput to the maximum
throughput is at least

1� �0 � 1� 1

2
Pm�1

i¼0 ni
;

which is plotted in Fig. 5. The ratio is close to 100 percent
with a modest buffer size (� 12).

It is a much harder problem to analyze the 1=k-buffer
solution in CSMA with implicit ACK. We study it next by
simulations.

6 SIMULATION RESULTS

We perform extensive simulations to evaluate the proposed
congestion avoidance scheme (including the 1=k-buffer
solution) in sensor networks with CSMA. Packet collision
caused by random media access is resolved by exponential
random backoff. With a static or dynamic set of data
sources, we compare our scheme with others in terms of the
following performance metrics: accumulated packet loss,
achievable source rate, average routing distance per packet,
average routing delay per packet, and average energy expenditure
per packet.

The default simulation parameters are described as
follows. Five hundred sensors are randomly placed in a
1; 000� 1; 000 area. The transmission ranges of the sensors
are randomly chosen from ½100; 200�. The transmission rate
is 512 kbps. Due to limited energy supply, a sensor should
not send data continuously at a high rate because it shortens
its life time. The sustainable rate of a sensor is configured to
be 10 packets per second. Each data packet is 30 bytes long.
The buffer space at each sensor can hold 12 packets. Five
base stations (sinks) are evenly spaced along one edge of the
deployment area. There are 100 data sources, randomly
selected from the 500 sensors. Each data source generates
new data at an initial rate of four packets per second; it may
generate at a lower rate due to congestion control. Unless
explicitly specified otherwise, all parameters are assumed
to take their default values. We use the beacon-based
routing algorithm described in Section 4.1 to maintain the
shortest routing paths (stored by Rx at every sensor x). Note
that there may be multiple shortest paths from a sensor to
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4. If the buffers at x’s next-hop neighbors are all full, the packet sent by x
will be dropped and, consequently, does not contribute to data throughput
anyway.

Fig. 5. Ratio of actual throughput to optimal throughput.



the sinks. The following four congestion control/avoidance
schemes are implemented:

. Global Rate Control: If a sensor is congested, it sets a
congestion-notification bit in the packet header. A
base station periodically (once per second) broad-
casts a reporting rate at which each source sensor
should generate new data. Initially, the reporting
rate is equal to the initial data rate of a source (four
packets per second by default). If a base station
receives packets whose congestion-notification bits
are set, the next reporting rate will be reduced by a
percentage (25 percent in the simulations). After all
congestions in the network are removed, the report-
ing rate will stabilize.

. Backpressure: This is CODA’s hop-by-hop conges-
tion control mechanism. If a sensor x is congested
(based on channel utilization and buffer level), it
periodically sends backpressure messages to its
neighbors, which reduce their forwarding rates to
x by a percentage (25 percent or 50 percent in the
simulations). If an upstream neighbor is a data
source, the neighbor reduces the rate at which it
produces new data by the same percentage. After all
congestions in the network are removed, the rates at
all sensors will stabilize.

. Congestion Avoidance: It is the scheme proposed in
this paper.

. No congestion control: Data packets are dropped by
congested sensors and no further action is taken.

In the following, we first compare the above four
schemes in terms of packet loss and achievable source rate.
We then evaluate the properties of routing distance, routing
delay, and energy expenditure. We also compare the
schemes with a continuously changing set of data sources.
Finally, we study the impact of failed overhearing on our
buffer-based congestion avoidance scheme. For each data
point in the figures, we run the simulation on 50 randomly
created networks and then take the average result.

6.1 Packet-Loss Comparison

The first set of simulations confirms that our Congestion

Avoidance scheme seldom drops packets due to buffer

overflow, but other schemes do.

Fig. 6 shows the number of overflowed packets in the
network with respect to time. Backpressure (50 percent) and
Backpressure (25 percent) both refer to the Backpressure
scheme, but their percentages of reduction in a sensor’s data
rate in response to a backpressure message are 50 percent
and 25 percent, respectively. Both Global Rate Control and
Backpressure drop a significant number of packets during
the process of congestion control, whereas few packet drops
by Congestion Avoidance are observed during simulations.
Backpressure (50 percent) drops a less number of packets
than Backpressure (25 percent) because it reduces data rates
more aggressively and, thus, removes congestions more
quickly. Global Rate Control reduces data rates for all
sensors in response to congestion. It sharply reduces the
amount of traffic and removes the congestion more quickly
than Backpressure. Congestion Avoidance tries to prevent
congestion from being developed and therefore avoid
packet drops.

Fig. 7 compares the final number of dropped packets
(when all congestions are removed) with respect to the
initial rate at which the sources generate new data.
Intuitively, when the initial source rate is higher, it takes
more reduction cycles (and, thus, more time) to reduce the
rate to an appropriate level, which means more packet
drops. This is evident for Global Rate Control, whose
number of dropped packets is roughly proportional to the
initial source rate. On the other hand, Backpressure is less
sensitive to the initial source rate because its localized
control reacts more precisely against congestion and is more
flexible in directing excessive traffic to other paths.

Fig. 8 compares the final number of dropped packets
(when all congestions are removed) with respect to the
number of data sources. A larger number of data sources
means more traffic in the network, an increased likelihood
of congestion, and consequently more dropped packets. The
number of packets dropped by Global Rate Control is
roughly proportional to the number of data sources. The
same thing is also true for Backpressure but with a much
smaller slope, demonstrating the advantage of localized
congestion control. On the other hand, while both are
localized, our proposed buffer-based congestion avoidance
has advantage over the rate-based Backpressure because it
takes a preventive approach instead of a reactive one.

942 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2006
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6.2 Source-Rate Comparison

The second set of simulations demonstrates that our
Congestion Avoidance scheme is able to automatically
adapt the sensors’ data rates according to the network
conditions and achieve better congestion-free rates than
other schemes.

The total source rate is defined as the total number of data
packets generated by the data sources per second. Fig. 9
compares the total source rates of the schemes with respect to
time. During the course of congestion control/avoidance, the
total source rates are reduced. At around time = 200 seconds,
congestions are removed in all schemes (except for No
Congestion Control) and the total source rates stabilize.
Congestion Avoidance achieves the best source rate due to its
capability of redirecting traffic towards other downstream
paths that are not congested, which is implemented by the
distributed execution of x.CFMF(. . . ), particularly Lines 1-4,
at all sensors x. Global Rate Control has the worst source rate
because it treats all sources in the same way as it treats the one
whose downstream paths are most congested. Backpressure
falls in the middle. The final source rates of Backpressure
(50 percent) and Backpressure (25 percent) are similar with
the latter slightly better. Combining with the results in Fig. 6,
we see a tradeoff between the number of dropped packets and
the total source rate. By more aggressively reducing the rates

in response to congestion, Backpressure (50 percent) has a
lower number of dropped packets but a smaller source rate
than Backpressure (25 percent).

Fig. 10 demonstrates, for the Congestion Avoidance
scheme, how the buffer size at each sensor affects the total
source rate over time. After time = 180 seconds, the source
rates of all simulations stabilize and they are very close to
one another, which means that a small buffer size (= 12) can
already achieve suboptimal performance and the gain by
further increasing the buffer size is not significant, agreeing
with our analytical results.

Fig. 11 compares the total source rates (after all
congestions are removed) with respect to the network size.
With a fixed number of data sources (100 by default), when
the network size increases, the total source rates increase for
all schemes. That is because a larger network has more
routing paths and is less likely to be congested. The gap in
source rate between Congestion Avoidance and other
schemes widens when the network is larger. Fig. 12
compares the total source rates (after all congestions are
removed) with respect to the number of data sources. With
a fixed network size (500 by default), when the number of
data sources increases, the total source rates also increase
for all schemes. That is simply because more data sources
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Fig. 8. Final packet loss (when all congestions are removed) with

respect to number of sources.

Fig. 9. How does the total source rate change over time?

Fig. 10. Congestion Avoidance: How does the buffer size affect the total

source rate?

Fig. 11. Total source rate (when all congestions are removed) with

respect to network size.



will utilize the available bandwidths of the network paths
more thoroughly.

6.3 Routing Distance, Routing Delay, and Energy
Expenditure

The four congestion control/avoidance schemes use the
same shortest-path routing algorithm. Hence, the routing
distance from the same data source to the sinks is always
the same for all schemes. If distant data sources send less,

then the average routing distance per packet will be smaller,
and vice versa. Global Rate Control is the fairest scheme
because all data sources send at the same rate. So, its
average routing distance sets a benchmark. For other
schemes, the less the distant nodes send, the smaller the
average routing distance will be. Fig. 13 shows that
Backpressure has the smallest routing distance, which
means nodes closer to the sink send much more than their

fair share. The routing distance of Congestion Avoidance is
much closer to that of Global Rate Control, which means
distant nodes are penalized much less.

Fig. 14 shows the average routing delay per packet after
the congestions are removed. The end-to-end routing delay
is mostly determined by the number of hops and per hop
queuing delay. Backpressure fully utilizes the buffer space.

Consequently, the average routing delay decreases when
the average routing distance decreases, which happens
when the number of data sources increases (Fig. 13). Due to
the k-buffer solution, the queue length in Congestion
Avoidance will be kept smaller than the buffer size, which
means it has smaller per-hop delay than Backpressure.
However, Backpressure still has a smaller end-to-end delay
due to its smaller routing distance (Fig. 13). Global Rate
Control has the largest routing delay due to its largest
routing distance.

The average energy expenditure is defined as the total
number of transmissions made in the network divided by
the number of packets delivered to the sinks. One
transmission moves a packet one hop closer to a sink.
Fig. 15 shows how the average energy expenditure changes
over time. Congestion Avoidance is more energy efficient
than Global Rate Control because the latter drops many
packets, which waste a lot of transmissions. Backpressure
has the lowest energy expenditure because it is not fair to
the distant sensors. More packets are generated from the
sensors close to the sinks, and it takes less numbers of
transmissions to deliver them to the sinks.

6.4 Performance with Dynamic Sources

The fourth set of simulations studies the performance of the
schemes when the set of data sources is dynamic. Starting
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Fig. 12. Total source rate (when all congestions are removed) with

respect to number of sources.

Fig. 13. Average routing distance indicates how much the distant nodes

are penalized.

Fig. 14. Routing delay is not proportional to routing distance due to

varied per-hop queuing delay.

Fig. 15. Energy expenditure per packet over time.



with 100 data sources, the set is continuously changing at a

rate of one every five seconds, meaning that during every

five seconds, on average one sensor in the set ceases to

produce new data while another sensor joins the set to

produce new data. Fig. 16 compares the total source rates

and Fig. 17 compares the numbers of packets dropped by

the schemes. The results are consistent with the previous

simulations. Congestion Avoidance achieves better source

rates with few packet drops. The source rate of Global Rate

Control is the worst, while Backpressure drops more

packets over time.

6.5 Impact of Failed Overhearing

Our last simulation studies Congestion Avoidance in a

noisy environment where overhearing for buffer advertise-

ment is unreliable. When a sensor x transmits a packet to a

next-hop neighbor y, y has a certain probability of not

hearing the packet due to noise interference, which causes a

packet drop. Independently, another neighbor z has the

same probability of not overhearing the packet, which

causes stale buffer information at z because it misses the

piggybacked buffer advertisement. Because of the stale

information, z may send a packet to y while y’s buffer is full,

causing a packet drop due to buffer overflow.

In summary, there are two types of packet drops. One is

due to noise interference, and the other is due to stale buffer

information that causes buffer overflow. The packet-drop

ratio is the total number of packet drops divided by the total

number of packets generated by the sources. We can

increase the packet-drop ratio in our simulation by

increasing the probability of noise interference. In Fig. 18,

the x axis shows the packet-drop ratio and the y axis shows

the portion of the packet-drop ratio due to stale buffer

information. From the figure, the stale buffer information

causes relatively insignificant packet drops. For example,

when the total packet loss is 19 percent (the first point to the

left of 0.2 at the x axis), the contribution by stale buffer

information is only 1.7 percent.

7 CONCLUSION

This paper proposes a buffer-based congestion avoidance

scheme. We discuss how to implement such a scheme with

various MAC protocols. For CSMA with implicit ACK and

TDMA with a fixed schedule, we propose the 1=k-buffer

solution for the hidden-terminal problem. We address the

fairness issue in buffer access and how to balance load over

multiple paths to multiple sinks based on the buffer

availability. We thoroughly evaluate the proposed scheme

by simulations. We show by analysis and simulations that a

small buffer per sensor can achieve near-optimal throughput.
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