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Abstract

The goal of a distributed denial of service (DDoS) attack is to completely tie up certain resources

so that legitimate users are not able to access a service. It has long been an open security problem of

the Internet. In this paper, we identify a class of stateful DDoS attacks that defeat the existing

cookie-based solutions. To counter these attacks, we propose a new defense mechanism, called

targeted filtering, which establishes filters at a firewall and automatically converges the filters to the

flooding sources while leaving the rest of the Internet unblocked. We prove the correctness of the

proposed defense mechanism, evaluate its efficiency by analysis and simulations, and establish its

worst-case performance bounds in response to stateful DDoS attacks. We have also implemented a

Linux-based prototype with experimental results that demonstrate the effectiveness of targeted

filtering.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The open design of the Internet is fundamental to its phenomenal success, but the
universal accessibility, anonymous nature, and complexity also make the public networks
subject to various network-based attacks. Distributed denial of service (DDoS) is among
the most-threatening Internet security problems. There are a variety of DDoS attacks
(Northcutt and Novak, 2002). A few examples are the smurf attack (CERT, 1998), the
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SYN flooding attack (Schuba et al., 1997), and the UDP flooding attack (Gibson, 2002).
Besides the one-packet kills, most DoS attacks flood the servers with an overwhelming
number of packets, which tie up the limited resources and prevent the servers from
performing their normal functions. To make the problem worse, it is often difficult to
distinguish the attacking traffic from the normal traffic. When the server drops the
excessive incoming packets, the legitimate packets are dropped as well.
Moore, Voelker, and Savage’s work demonstrated that DoS attacks was widespread in

the Internet. By using a novel traffic-monitoring technique, called ‘‘backscatter analysis’’,
they observed 12,805 attacks against over 5000 distinct Internet hosts belonging to more
than 2000 organizations during a 3-week period (Moore et al., 2001). In February, 2000,
Yahoo web servers were temporarily brought down by a brute-force DDoS attack, and
during the following week, CNN, Ebay, Amazon, and other popular web sites were
attacked. If these sites could be shut down, few could claim immune to DoS attacks, which
continues to be true today (Gibson, 2002). Another source of DDoS is through Internet
worms, which can direct tens of thousands of compromised machines to flood a server. In
addition, the worm scan activities can cause widespread congestion, leading to de facto

DoS attacks against network communication. In 2001, the CodeRedv2 worm was
programmed to launch a DoS attack against the White House web server from the 20th
through the 27th of each month. In yet another example, the W32. Blaster worm (CERT,
2003) of 2003 was scheduled to attack the windowsupdate.com server for certain days of
each month.
Much research against DDoS attacks has been carried out in recent years. Defense

mechanisms are designed to be implemented on routers (Ferguson and Senie, 1998; Park
and Lee, 2001a; Wang et al., 2002; Wu et al., 2001; Sung and Xu, 2003; Mahajan et al.,
2002), servers (Bernstein, 1997; Xu and Lee, 2003), or both servers and clients (Juel and
Brainard, 1999; Aura et al., 2000; Dean and Stubblefield, 2001; Wang and Reiter, 2003).
They will be surveyed shortly. Most of them require Internet-wide deployment, which has
not been and may never be achieved. On the other hand, the cookie-based defense
mechanisms (Bernstein, 1997; Kaufman et al., 2002; Xu and Lee, 2003) require the
modification only to the local server, and therefore can be readily deployed, which makes
them particularly useful. The purpose of using cookies is to prevent source-address
spoofing, but they also have vulnerability. In this paper we point out that all cookie-based
approaches are subject to stateful DDoS attacks, with the attackers residing on the routing
paths from the server to the forged addresses and thus able to intercept the cookies.
Furthermore, as a generalization, any anti-DoS mechanism based on restricting the source
address space that can be forged (Ferguson and Senie, 1998; Park and Lee, 2001a; Wang
et al., 2002) is subject to a similar problem.
We then propose a new defense mechanism, called targeted filtering, that blocks out

stateful DoS attacks. Targeted filtering is complementary to the cookie-based defense or
other mechanisms that restrict the forged address space. It is locally deployed at a firewall
protecting a server behind. The basic idea is to use the attack packets themselves to drive a
master blocking list to converge towards the forged address space and block out packets
from there, which allows the rest of the Internet to access the server. We design a fast
algorithm for updating the master blocking list in order to support on-line operations. We
analyze the properties of the system and establish the worst-case bounds on the
convergence time, i.e., how long it takes the firewall to block out the attack traffic after the
attack starts. The effectiveness and the performance of targeted filtering are studied by
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extensive simulations that cover various combinations of system configurations and attack
configurations. We also implemented a targeted-filtering prototype in the Linux kernel
space and performed experiments.

The rest of the paper is organized as follows. Section 2 surveys the related work. Section
3 describes the stateful DDoS attacks. Section 4 presents our new targeted-filtering defense
mechanism. Section 5 discusses the simulation results. Section 6 describes a prototype and
presents experimental results. Section 7 draws the conclusion.

2. Related work

DoS attacks have received considerable attention in the research community. Lot of
work has been done on the SYN flooding attack (Bernstein, 1997), where a server’s listen
queue is kept full by faked connection requests (SYN requests), which causes the rejection
of legitimate requests. The SYN-cookie solution allows new connections to be established
even when the listen queue is full (Bernstein, 1997). Without using the listen queue, the
server encodes the state information of a half-opened connection in the sequence-number
field (cookie) of the SYN/ACK response, and later recovers the information from the ACK
packet. The drawback is that not all TCP options (maximum segment size, window scale
factor, etc.) can be encoded in the cookie. The recent work by Xu and Lee embedded
cookies in the http redirection messages; this approach does not require any modification
of the TCP implementation on the web servers (Xu and Lee, 2003). The SYN cache
solution minimizes the amount of state information for a half-opened connection at the
server side (Lemon, 2002). It alleviates but not eliminates the SYN flooding problem. The
client-puzzle solution requires the clients to solve cryptographic puzzles before making
TCP connections (Juel and Brainard, 1999; Aura et al., 2000; Dean and Stubblefield, 2001;
Wang and Reiter, 2003). To achieve high-level security, it incurs significant computation
overhead to the clients, which can be undesirable for certain applications, especially when
mobile devices are involved.

Attackers use forged source addresses to conceal their identities. Much work against
DoS is on anti-address-spoofing. Ferguson and Senie (1998) proposed ingress filtering,
which requires the routers of stub networks to inspect outbound packets and discard those
packets whose source addresses do not belong to the stub networks. Park and Lee (2001a)
pioneered with the concept of route-based distributed packet filtering. The idea is for a
router to drop a packet if the packet is received from a link that is not on any routing path
from the packet’s source to the packet’s destination. The paper demonstrated that a partial
deployment (on 18% of Internet AS’s) can effectively prevent spoofed IP packets from
reaching their victims. Wang et al. (2002) presented a simple and effective mechanism,
called SYN-dog, to identify SYN flooding sources. It is a software agent installed at leaf
routers connecting to stub networks. The agent detects SYN flooding from the attached
networks by monitoring the differences between outbound SYN packets and inbound
SYN/ACK packets. The major problem of the above approaches is that their effectiveness
of preventing DoS comes only after the filters or the software are widely deployed across
the Internet. An Internet-wide deployment can be difficult to achieve due to political,
financial, and administrative reasons, or different technology preferences.

In recent years there has been a flourish of research work on IP traceback based on
packet audit or route inference, whose goal is to find the origins of packets that have
spoofed source addresses (Bellovin, 2000; Burch and Cheswick, 2000; Savage et al., 2000;
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Stone, 2000; Schnackenberg et al., 2000; Park and Lee, 2001b; Snoren et al., 2001; Song
and Perrig, 2001; Wu et al., 2001). IP traceback is a reactive approach, which does not
prevent spoofed packets from harming their victims. Sung and Xu (2003) used IP
traceback to identify the network links that carry attack traffic and then preferentially filter
out packets that are inscribed with the marks of those links. Yaar, Perrig, and Song
proposed path identifier (Pi), a novel approach that assigns the same mark to packets
traversing the same path and different marks to packets traversing different paths. Because
the attack packets from the same source always carry the same mark, the victim is able to
filter out those packets based on the mark. The effectiveness of these approaches also
require wide deployment in order for most legitimate traffic to be marked differently from
the attack traffic.
Mahajan et al. (2002) proposed aggregate-based congestion control (ACC) to rate-limit

the identified attack traffic. A congested router starts with local rate limit, and
progressively pushes the rate limit to some neighbor routers and further out, forming a
dynamic rate-limit tree. Routers in the tree perform filtering based on their shares of the
rate limit. Chen and Song (2005) designed a class of perimeter-based defense mechanisms,
which allows Internet service providers (ISP) to protect the communication between their
customers against DoS attacks.
Keromytis et al. (2002) proposed a novel architecture called Secure Overlay Services

(SOS), which proactively prevents DoS attacks. It is designed for emergency services. A
certificate for accessing a protected server must be issued to each authorized client. Client
requests are first authenticated and then routed via a Chord overlay network (Stoica et al.,
2001) to one of the servlets, which forward the requests to the target site. The defense
against DoS relies on client authentication and the secrecy of the servlets’ locations.
Mayday by Andersen (2003) is a generalization of SOS. It studies a variety of choices for
authentication, routing, and filtering.

3. Stateful DDoS attacks

A successful DoS attack achieves two objectives: overpowering the victim and
concealing the attacker’s identity. To overpower the victim, the attacker needs a strategy
that small resource consumption at the attacker side causes much larger resource
consumption at the victim side. For example, a small packet generated by the attacker
causes a buffer space to be held for an extended period of time T at the victim. While the
attacker can generate a large number of packets during T , the buffer space at the victim is
going to overflow, which underlines the SYN flooding attack and the connection table
overflow attack. To conceal the attacker’s identity, forged source addresses must be used in
the packets sent from the attacker.
The problem of address-spoofing can be partially solved by cookie exchange (Bernstein,

1997; Kaufman et al., 2002; Xu and Lee, 2003), which forces an attacker (or a
compromised host) to use its real address in order to receive and return a cryptographic
cookie before accessing any resource. The cookie approach fails under a stateful DDoS
attack. As shown in Fig. 1, an attacker keeps state information about each forged
connection request and sniffs the network traffic for the responding cookie from the server,
which allows it to complete the exchange even though forged source addresses are used. In
order to perform a stateful DoS attack, an attacker (or zombie) has to reside on the routing
path from the server to those forged addresses, which limits the address space that can be
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Fig. 1. Stateful DoS, with the attacker intercepting the cookie.
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forged. Specifically, the attacker can forge source addresses belonging to the same LAN or
downstream LANs. The combined address space that can be forged by all attackers and
their zombies in a stateful DDoS attack is called the attack address space and denoted as A.
The attackers may also simply use their real addresses or those of Zombies to launch
DDoS attacks. This is a special case with A being the attackers’ addresses.

All cookie-based approaches [such as SYN cookie (Bernstein, 1997) and http redirect
cookie (Xu and Lee, 2003)] that only modify the server side are subject to the stateful
DDoS attacks. The client-side address restriction approaches [such as ingress filtering
(Ferguson and Senie, 1998) and route-based packet filtering (Park and Lee, 2001a)] are
subject to a similar problem where the attackers are still able to forge source addresses
from a restricted address space. We design a new defense mechanism to handle both.

4. Targeted filtering

Assume an existing defense mechanism has been implemented to restrict the attack
address space A. For example, either a cookie-based approach is implemented on the
server side or an address restriction approach is implemented on the client side. This
section presents targeted filtering, which is deployed on a firewall to mitigate stateful DDoS
attacks by automatically identifying and blocking the client requests from A, while letting
the requests from the rest of the Internet go through. The system architecture is shown in
Fig. 2.

We will first describe the key element of targeted filtering, which is the maintenance of a
master blocking list. We will then derive the upper bound on how fast our defense system
can block out the attack packets, which is followed by optimization and algorithmic issues.

4.1. Master blocking list

When a server is under a DDoS attack, an anti-DoS request is sent to the firewall,
including the description of the service under attack and a rate limit for the client requests.
The anti-DoS request may be generated by the management console, by the server, or by
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the firewall itself based on pre-configured policies. The firewall samples the incoming
requests (e.g., SYN packets in case of SYN flooding attack), extracts the source addresses,
inserts them to a master blocking list (MBL), and blocks the requests from those addresses.
Note that the firewall should only sample among the requests that have passed MBL. Once
a source address is in MBL, all requests from that address are blocked and thus not
sampled. Therefore, any address may be inserted to MBL only once. The expansion of
MBL continues until the rate of requests is reduced under the desired limit.
MBL cannot exceed a maximum number of entries, denoted as l. If the maximum

number of entries have been reached, an additional address x to be blocked will be merged
with the existing entries M by the following basic algorithm: Find two entries in M [ fxg

that share the longest common prefix and replace the two entries by the common prefix
(which represents a network).
Although the above algorithm works very well in our simulations, it takes OðjAj=rÞ time

in the worst case to converge on A and stop the attack, where jAj is the size of the attack
address space and r is the sampling rate. In order to improve the worst-case performance,
we design a revised algorithm: Let c be a constant greater than one. Find two entries in
M [ fxg that share the longest common prefix, denoted as P. Remove zero or more least-
significant bits from P until the size of P is at least the combined size of the two entries
multiplied by c. Replace the two entries by P.
With targeted filtering, the attacking traffic itself drives MBL to converge to those

network addresses that stateful DDoS utilizes. If a DDoS attack is launched from a large
number of compromised machines using their real addresses, targeted filtering defeats the
attack in the same way: MBL converges to these addresses and blocks them out.
It is possible that the IP addresses of some normal users will be mistakenly placed in

MBL. We will address this issue shortly.
4.2. Convergence time

We analyze the convergence time of targeted filtering, which is the time it takes to
stabilize MBL and block out all attack addresses. In particular, we show that the
convergence time is

O
X
a2A

lðlogc jaj þ 1Þ

ð1� aÞr

 !
,

which is proportional to the size l of MBL, inverse proportional to the sampling rate r,
and proportional to the summation of the logarithm over the sizes of all network addresses
a in A.
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The size of a network address (prefix) is denoted as jaj. Suppose a has l bits. Then
jaj ¼ 232�l . If a belongs to the attack address space A, after an entry in MBL (or multiple
entries combined) grows big enough to cover a, all requests from a will be blocked and will
not be sampled.

Lemma 1. Let a ð2 AÞ be a network address from which the attackers can forge addresses.

After lðlogc jaj þ 1Þ different addresses from a are inserted into MBL, there must exist one

entry in MBL that fully contains a.

Proof. Because there are only l entries in MBL, after lðlogcjaj þ 1Þ different addresses
in a are inserted into MBL, there must exist one entry of MBL in which at least
ðlogcjaj þ 1Þ addresses from a are merged. The size of the entry grows at least by a
factor of c ð41Þ after each merge. Therefore, it becomes no less than cðlogcjajþ1Þ�1 ¼ jaj.
Both this entry and a are network addresses. Due to the construction of address space
in IPv4, if two network addresses share at least one address, one of them must fully
contain the other. Since the MBL entry has the same size as a or bigger, it must fully
contain a. &

Lemma 2. Let a ð2 AÞ be a network address from which the attackers can forge addresses.

The number of addresses from a that are inserted to MBL cannot exceed lðlogc jaj þ 1Þ.

Proof. By Lemma 1, after lðlogc jaj þ 1Þ addresses from a are inserted to MBL, there exists
one entry in MBL that fully contains a. This entry blocks all requests from a, and thus no
subsequent request from a will be sampled. &

Let a ðo1Þ be the server’s utilization, defined as the arrival rate of legitimate requests
divided by the server’s capacity.1

Theorem 1. Suppose A consists of a single network address. The convergence time of the

revised algorithm is no more than

lðlogc jAj þ 1Þ

ð1� aÞr
.

Proof. For the attack to persist, the rate of attack requests passing through MBL must be
no less than ð1� aÞ of the server’s capacity. Hence, the rate of attack requests being
sampled is no less than ð1� aÞr. Once a request is sampled, all other requests from
the same address are blocked. Hence, all sampled requests have different source add-
resses. Suppose after T units of time MBL covers A and thus stops the attack. During T

there are at least m ¼ ð1� aÞrT addresses from A that are inserted into MBL. Because A

consists of a single network address, by Lemma 2, m must not be greater than
lðlogc jAj þ 1Þ. Hence,

Tp
lðlogc jAj þ 1Þ

ð1� aÞr
: &
1ao1 is required by Theorems 1 and 2 but not by the approach of targeted filtering. During temporary

legitimate-traffic overload, targeted filtering can be triggered to block out a portion of legitimate traffic

temporarily.



ARTICLE IN PRESS
S. Chen et al. / Journal of Network and Computer Applications 30 (2007) 823–840830
Theorem 2. Suppose A consists of multiple network addresses. Let P be the common prefix of

all network addresses in A. The convergence time of the revised algorithm is no more than

min
lðlogc jPj þ 1Þ

ð1� aÞr
;
X
a2A

lðlogc jaj þ 1Þ

ð1� aÞr

( )
.

Proof. If the attackers could forge any address in P, by Theorem 1, the convergence time
would be no more than

lðlogc jPj þ 1Þ

ð1� aÞr
.

Now since the attackers can only forge addresses from A, which is a subset of P, it follows
that the worst-case convergence time will not exceed

lðlogc jPj þ 1Þ

ð1� aÞr
.

Next we prove the convergence time is no more thanX
a2A

lðlogc jaj þ 1Þ

ð1� aÞr
.

For each network prefix a 2 A, by Lemma 2, the number of addresses from a that are
inserted to MBL cannot exceed lðlogc jaj þ 1Þ. Hence, the total number of addresses from
A that are inserted to MBL cannot exceed

P
a2A lðlogc jaj þ 1Þ.

For the attack to persist, the rate of attack requests passing through MBL must be no
less than ð1� aÞ of the server’s capacity. Hence, the rate of attack requests being sampled is
no less than ð1� aÞr. Once a request is sampled, all other requests from the same address
are blocked. Hence, all sampled requests have different source addresses. Suppose after T

units of time MBL covers A and thus stops the attack. During T there are at least
ð1� aÞrT addresses from A that are inserted into MBL. Hence, we have

ð1� aÞrTp
X
a2A

lðlogc jaj þ 1Þ

Tp
X
a2A

lðlogc jaj þ 1Þ

ð1� aÞr
: &

Our simulations show that the average convergence time is much smaller than the upper
bound given by Theorem 2. Even with a small c such as 1.25, MBL converges quickly to A,
while the percentage of legitimate clients being mistakenly blocked is negligibly small (less
than 1%).
4.3. Optimization

The revised algorithm may expand an entry too large so that addresses adjacent to A are
also blocked. To alleviate the problem, an optimization can be done as follows: once an
entry reaches certain size s (e.g., Class B network), further merges involving this entry do
not require a minimal growth factor of c, namely, the basic algorithm will be used for
merging s with any other entry.
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If A does not contain any network address bigger than s, it is obvious that the previous
theorems still hold. Otherwise, we must use the following theorem.

Theorem 3. The convergence time of the revised algorithm with optimization is no more thanX
x2A

lðlogc jxj þ 1Þ

ð1� aÞr
,

where all network addresses in A whose sizes are larger than s are divided into subnets x

whose sizes are not greater than s.

Theorem 3 can be trivially proved, in a way similar to the proof of Theorem 2. Another
obvious optimization is to check whether one entry contains the other before the two are
merged. If so, we simply remove the smaller one.

4.4. Periodic updates of MBL

The MBL may take addresses from legitimate requests that happen to be sampled.
Consequently, some legitimate clients are blocked. To prevent legitimate clients from being
blocked indefinitely, if one entry in MBL is not matched by any arrival request for a
sufficiently long period of time (or the number of matched requests is under a small
threshold), the entry is removed.

Assume the attack traffic from A has a higher density (number of requests per address)
than the legitimate traffic from the entire Internet. We can use periodic update of MBL to
reduce the chance of legitimate clients being inserted into MBL. In this approach, the
sampled addresses are not merged into MBL immediately. Instead, they are placed in a
temporary blocking list. Any requests that match either MBL or the temporary blocking
list will be dropped. When the temporary blocking list is full, a new sample will replace an
existing entry that has blocked the least number of requests. If there is a tie, the older entry
is replaced. With such selection bias, the temporary blocking list is in favor of retaining the
attack addresses from A due to the higher request density.

The firewall periodically merges the temporary blocking list to MBL and then empties
the list for more addresses, until the rate of unblocked requests is under the desired limit.

4.5. An Oððlþ bÞ logðlþ bÞÞ algorithm for updating MBL

We present an algorithm that merges the temporary blocking list with MBL in time
Oððlþ bÞ logðlþ bÞÞ. It is an efficient implementation of the revised algorithm.

Let M be the master blocking list and B be the temporary blocking list. Let l be the
number of entries in M, b the number of entries in B, and c a constant greater than one.
jPj ¼ 232�l for an address prefix P with l bits. The following algorithm merges B into M.
UpdateMBLðM;BÞ

(1) M 0  sortðM ;BÞ
(2) compute common prefixes between adjacent entries in M 0

(3) Com the set of b longest common prefixes
(4) for each P 2 Com do

(5) let E1 and E2 be the two entries sharing P

(6) if E1 (or E2) is a prefix of E2 (or E1) then
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(7) remove E2 (or E1)
(8) else

(9) while (jPjpðjE1j þ jE2jÞ � c)
(10) remove the least-significant bit of P

(11) replace E1 and E2 by P

(12) M  M 0
The time complexity of Step 1 is Oððlþ bÞ logðlþ bÞÞ. The complexity of Step 2 is
Oðlþ bÞ. Step 3 can be done by sorting the common prefixes with a complexity of
Oððlþ bÞ logðlþ bÞÞ. The complexity of Lines 5–11 is constant. Without losing generality,
suppose E2 is removed at Line 7. E1 becomes adjacent to E2’s other neighboring entry in
M 0 and inherits the common prefix of E2 with that entry. After Line 11, P inherits the
common prefixes of E1 and E2 with their other adjacent entries in M 0. The inherited
common prefixes may be too long, but the future execution of Lines 9–10 will enlarge those
common prefixes to cover E1 or P entirely. The complexity of Lines 4–11 is OðbÞ. The total
complexity of the algorithm is thus Oððlþ bÞ logðlþ bÞÞ.
We will use this algorithm in our simulations and demonstrate that the overhead of

executing the algorithm is very small.

5. Simulations

We use simulations to study how well the targeted-filtering mechanism performs against
stateful DDoS attacks. Unless explicitly specified otherwise, the simulation parameters
take the following default values. The normal workload of a server is 2000 requests per
second on average, with �20% fluctuation over each second. The server’s capacity is 6000
requests per second;2 it triggers the firewall to perform targeted filtering when the
workload exceeds the capacity.3 The maximum number of entries in MBL (master
blocking list) is 5000. MBL is updated once every 10 s with the firewall randomly selecting
3000 unblocked requests and inserting their source addresses to the temporary blocking
list, which is then merged with MBL. There are 100 attack sources who coordinate a DDoS
attack on the server. Each source sends 400 requests per second on average. An attack
source represents all attach hosts on the same LAN, which have the same forged address
space.

5.1. Performance of targeted filtering

Fig. 3 shows the results of four simulation runs. In the first run (the curve of ‘‘100 Class-
C attack srcs’’), the attack sources perform a stateful DDoS attack, and each is able to
forge addresses from a Class C network. In the second run (‘‘100 Class-B attack srcs’’),
each source is able to forge addresses from a class B network. Note that an attack source
represents all (tens or even hundreds) Zombie hosts from the network it forges addresses.
2Suppose each connection lasts for 10 s with 10 kbps throughput on average. The server’s total throughput will

be around 600Mbps.
3In a normal overload, targeted filtering will also bring the workload under 6000 requests per second. A

temporarily-blocked legitimate user will be removed from the master blocking list once he stops accessing the

server for a period of time.
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In the third run (‘‘100 real-addr attackers’’), the attackers use their real addresses. In the
fourth run (‘‘mixed attack srcs’’), 33 attack sources are able to forge addresses from Class
C networks, 33 forge from Class B networks, and 33 use the real addresses. As shown in
the left-hand graph, the number of requests surged after the attack began. After the
firewall activated targeted filtering, the attack packets themselves drove MBL to block
them out. As more and more faked requests were blocked, the service was restored for
legitimate users. MBL stabilized when the rate of requests passing the firewall no longer
exceeded the server’s capacity. The right-hand graph shows that the percentage of
legitimate requests that were successfully processed by the server dropped sharply after
the attack began, but it recovered quickly to almost 100% after the firewall filtered most
faked requests.

5.2. Convergence time with respect to firewall configuration

The convergence time measures how long it takes for MBL to stabilize, i.e., from when
the attack starts to when the traffic is reduced within the server’s capacity. For example,
the convergence time for ‘‘100 Class-C Attack srcs’’ in Fig. 3 is 50 s (from 50 to 100 on the
time axis). In the following we study how the firewall configuration affects the convergence
time. Since the case of real-addr attackers is trivial, our explanation will focus on the other
three cases.

The number of addresses inserted into MBL per update period equals the size of the
temporary blocking list, denoted as b. The upper graph of Fig. 4 shows that the average
convergence time decreases as b increases. The decrement is non-linear. The curve
demonstrates that, for the best performance/overhead tradeoff, b should not be too large—
around 3000 achieves a favorable tradeoff. The middle graph shows that the convergence
time increases linearly as the update period increases. The lower graph shows that the
convergence time increases as the size of MBL increases. That is because, in a larger MBL,
the addresses are closer to each other. Hence more address merges are needed to create
network prefixes that are large enough to cover the attack address space, which implies
more updates and thus longer convergence time. Another observation is that the increase
in the convergence time is considerably faster when there are Class-B attack sources, but
the exact number of Class-B sources does not matter much.
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Fig. 4. Convergence time with respect to firewall configuration.
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The update period is an ideal system parameter that can be tuned to control the
convergence time because of their linear relation. While fixing the other system parameters,
we can adjust the update period during run time to achieve a desirable convergence time.
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For example, we may cut the update period by half each time when the system does not
converge after a threshold time period.

For all simulations presented in Fig. 4, the success rate of legitimate requests (i.e., the
percentage that is not blocked) was above 99.5% after MBL stabilizes. The detailed results
on success ratio seem not to reveal additional information and therefore are omitted.

5.3. Impact of the size of MBL

We found that the success rate suffered only when the size of MBL was very small, as
demonstrated by Fig. 5. The left-hand graph shows that when the size of MBL is less than
1000, the success rate can be very bad. The dips between size 500 and size 1000 can be
explained as follows: Recall that during the last update MBL is merged with 3000 new
addresses from the temporary blocking list. If it happens that most flooding sources have
already been blocked by previous updates, then most of those 3000 addresses are in the
legitimate address space. When the size of MBL is small, each merge of two legitimate
addresses may create a large network prefix blocking a major portion of legitimate traffic,
which reduces the success rate. This problem is greatly alleviated when the size of MBL
becomes large (the small dip at size 1500). Therefore, in order to ensure high success rate,
the size of MBL should not be less than 1000. From the right-hand graph, we learn that the
average convergence time follows a staircase curve with respect to the size of MBL. This is
the natural result of the ‘‘discrete’’ updates of MBL, with 3000 new addresses each update.
When the size of MBL is around 500, 1500, or 2500, one more update becomes necessary.
Note that the staircase is not shown in the bottom graph of Fig. 4 due to coarser
granularity of the simulation.

5.4. Convergence time with respect to attack traffic characteristics

We now study how the attack traffic characteristics affect the convergence time. The left-
hand graph of Fig. 6 shows that the convergence time increases when the attackers send
forged requests at a faster rate. As the attack rate is higher, more forged requests will be
sampled. The attack addresses will occupy a larger portion of the temporary blocking list
in each update, which decreases the gaps between them. Hence, more merges (thus more
updates and longer convergence time) are needed to create network prefixes large enough
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to cover the attack address space. On the other hand, when the attack rate becomes
sufficiently large (e.g., 41400) such that the attack addresses already occupy most of the
temporary blocking list, then further increasing the attack rate will not significantly
increase the convergence time. The right-hand graph shows that the convergence time
increases as the number of attack sources increases for the same reason explained above.

5.5. Mixed attack sources

Fig. 7 presents the simulation results for a mix of Class-B/C attack sources. Generally
speaking, a larger number of Class C sources causes a larger convergence time. That is
because the addresses from Class C networks are closer to each other and will be merged
first in MBL. Before Class C networks are completely blocked out, the addresses from
Class B networks can be merged only when their gaps are comparable to those in Class C
networks, which means the common prefixes after the merges are relatively small.
Therefore, additional merges are needed to create those Class B networks in MBL.



ARTICLE IN PRESS
S. Chen et al. / Journal of Network and Computer Applications 30 (2007) 823–840 837
5.6. Execution time per MBL update

Table 1 shows the execution time for inserting the temporary blocking list to MBL
(Section 4.5). The insertion took less than 26ms on a DELL Inspiron 2650 with 1GHz
P-IV and 256M main memory. A more powerful firewall will take less time, which makes it
a practical solution, allowing a single firewall to support many servers simultaneously.
6. Prototype and experiment

We have implemented targeted filtering on a Linux-based prototype firewall. It consists
of three kernel modules: a targeted-filtering module, a control module, and a log module.
The targeted-filtering module registers to a hook point of the IPv4 protocol via Netfilter
(Linux Kernel V2.4), which allows it to inspect each passing packet, update MBL, and
drop packets that match MBL. The control module is a device driver, to which a user-level
process writes the control information, which is then read by the targeted-filtering module.
The log module is also a device driver, to which the targeted-filtering module writes
reports, which is then read by a user-level process.

The experiment testbed is shown in Fig. 8. H1 is responsible for generating legitimate
requests from random source addresses. H2 is responsible for generating forged requests.
The experimental parameters are chosen as follows. There are 150 attack sources, among
which 50 can forge addresses from Class B networks in a stateful DDoS attack, 50 can
forge from Class C networks, and 50 use their real addresses. The average attack rate per
source is denoted as r, which will be varied in the experiment. The server’s capacity is
10,000 requests per second, and the normal load is 5000 requests per second. The size of
MBL is 1500, and the size of the temporary blocking list is 1000. The result of a typical run
of the experiment is given in Table 2. It shows that, as the time progresses, most legitimate
requests are continuously accepted by the firewall, while more and more attack requests
Table 1

Execution time (in milliseconds) per MBL update

b Size of MBL 100 Class-C att. srcs 100 Class-B att. srcs Mixed att. srcs

1000 1000 1.30 1.69 0.91

1000 2000 1.13 2.17 1.14

1000 3000 3.70 3.47 3.07

1000 4000 6.27 5.67 4.17

1000 5000 7.92 8.18 5.38

2000 2000 2.47 3.39 2.47

2000 3000 5.52 3.23 2.88

2000 4000 6.94 6.87 4.34

2000 5000 9.15 8.92 6.38

2000 6000 12.38 11.86 8.74

4000 4000 9.24 10.03 7.68

4000 5000 12.89 12.42 9.48

4000 6000 16.77 15.00 11.93

4000 7000 21.25 19.27 13.89

4000 8000 25.54 23.36 16.23
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Table 2

Experiment on targeted-filtering implementation (no. of requests per second), r ¼ 100; 000=150

Elapsed time (s) Arrival rate

legitimate requests

at the firewall

Rate of legitimate

requests passing the

firewall

Arrival rate of

forged requests at

the firewall

Rate of forged

requests passing the

firewall

0 5001 5001 0 0

2 4975 4975 0 0

4 4988 4988 93,342 93,342

6 5156 5156 102,509 102,509

8 5252 5252 109,148 109,148

10 4807 4807 101,260 101,260

12 5095 5095 93,213 93,213

14 4714 4714 96,318 62,329

16 4824 4824 103,172 66,773

18 5066 5066 95,648 61,880

20 5214 5214 106,098 68,610

22 4542 4542 95,396 61,762

24 5088 5088 107,219 58,026

26 4919 4919 95,637 51,731

28 4635 4635 103,950 56,381

30 5227 5227 95,713 51,843

32 5054 5054 101,791 55,207

34 4570 4569 97,677 27,572

36 5568 5567 96,459 27,287

38 5339 5338 104,351 29,615

40 4694 4693 95,544 26,951

42 5120 5120 106,869 30,146

44 5046 5039 95,090 9579

46 4848 4839 101,873 10,282

48 5344 5335 100,600 10,079

50 5300 5292 94,764 9650

52 4960 4959 108,244 10,847

54 5226 5217 95,766 105

56 5403 5392 95,494 119

58 4968 4961 109,159 145

60 5224 5214 96,626 141

62 4722 4715 95,217 111

64 5050 5040 108,695 146

66 5087 5080 96,119 135

S. Chen et al. / Journal of Network and Computer Applications 30 (2007) 823–840838
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are blocked. The few blocked legitimate requests (e.g., when time ¼ 56) mostly come from
the attack address space, which makes them indistinguishable from the attack traffic.

Fig. 9 shows the results of experiment runs with different attack rates. During each
experiment run, the firewall reacts quickly to the attack and selectively blocks out the
attack traffic, while the legitimate traffic is virtually unaffected. The time it takes the
firewall to stabilize the traffic does not vary much for different attack rates.

7. Conclusion

We described a class of stateful DDoS attacks that defeat the existing cookie-based
solutions and proposed a new defense mechanism, called targeted filtering, to block such
attacks. One advantage of the new mechanism is that it can be deployed at a local firewall.
We thoroughly discussed various algorithms and optimizations, and proved the worst-case
convergence time with respect to a number of system/attack parameters. Both analytical
and simulation results showed the effectiveness of this mechanism in defending against
stateful DoS attacks. We also implemented a Linux-based prototype, demonstrating the
technical feasibility of operating such a defense mechanism in real time.
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