
Slowing Down Internet Worms

Shigang Chen Yong Tang
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611
{sgchen, yt1}@cise.ufl.edu

Abstract

An Internet worm automatically replicates itself to vulner-
able systems and may infect hundreds of thousands of servers
across the Internet. It is conceivable that the cyber-terrorists
may use a wide-spread worm to cause major disruption to
our Internet economy. While much recent research concen-
trates on propagation models, the defense against worms is
largely an open problem. We propose a distributed anti-worm
architecture (DAW) that automatically slows down or even
halts the worm propagation. New defense techniques are de-
veloped based on behavioral difference between normal hosts
and worm-infected hosts. Particulary, a worm-infected host
has a much higher connection-failure rate when it scans the
Internet with randomly selected addresses. This property al-
lows DAW to set the worms apart from the normal hosts. We
propose a temporal rate-limit algorithm and a spatial rate-
limit algorithm, which makes the speed of worm propagation
configurable by the parameters of the defense system. DAW is
designed for an Internet service provider to provide the anti-
worm service to its customers. The effectiveness of the new
techniques is evaluated analytically and by simulations.

1. Introduction

Ever since the Morris worm showed the Internet commu-
nity for the first time in 1988 that a worm could bring the In-
ternet down in hours [4], new worm outbreaks have occurred
periodically even though their mechanism of spreading was
long well understood. On July 19, 2001, the code-red worm
(version 2) infected more than 250,000 hosts in just 9 hours
[6]. Soon after, the Nimbda worm raged on the Internet [7].
As recently as January 25, 2003, a new worm called SQL-
Slammer [8] reportedly shut down networks across Asia, Eu-
rope and the Americas.

There are few answers to the worm threat. One solution
is to patch the software and eliminate the security defects
[6, 7, 8]. That did not work because (1) software bugs seem
always increase as computer systems become more and more
complicated, and (2) not all people have the habit of keep-
ing an eye on the patch releases. Intrusion detection systems

and anti-virus software may be upgraded to detect and re-
move a known worm, routers and firewalls may be config-
ured to block the packets whose content contains worm sig-
natures, but those happen after a worm has spread and been
analyzed.

Most recent research on Internet worms concentrates on
propagation modeling [2, 3, 5, 10]. The defense against
worms is still an open problem. Moore et al. has recently
studied the effectiveness of worm containment technologies
(address blacklisting and content filtering) and concluded
that such systems must react in a matter of minutes and in-
terdict nearly all Internet paths in order to be successful [3].
Williamson proposed to modify the network stack so that the
rate of connection requests to distinct destinations is bounded
[9]. The main problem is that this approach becomes effec-
tive only after the majority of all Internet hosts is upgraded
with the new network stack. For an individual organization,
although the local deployment may benefit the Internet com-
munity, it does not provide the anti-worm protection to its
own hosts, whose security depends on the rest of the Inter-
net taking the same action. This gives little incentive for the
upgrade without an Internet-wide coordinated effort.

In this paper, we propose a distributed anti-worm archi-
tecture (DAW), which is designed for an Internet service
provider (ISP) to provide the anti-worm service to its cus-
tomers. (Note that, from one ISP’s point of view, the neigh-
bor ISPs are also customers.) DAW is deployed at the ISP
edge routers, which are under a single administrative con-
trol. It incorporates a number of new techniques that monitor
the scanning activity within the ISP network, identify the po-
tential worm threats, restrict the speed of worm propagation,
and even halt the worms by blocking out scanning sources.

The proposed defense system separates the worm-infected
hosts from the normal hosts based on their behavioral differ-
ences. Particulary, a worm-infected host has a much higher
connection-failure rate when it scans the Internet with ran-
domly selected addresses, while a normal user deals mostly
with valid addresses due to the use of DNS (Domain Name
System). This and other properties allow us to design the
entire defense architecture based on the inspection of failed
connection requests, which not only reduces the system over-
head but minimizes the disturbance to normal users, who gen-
erate fewer failed connections than worms. With a temporal

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

rate-limit algorithm and a spatial rate-limit algorithm, DAW
is able to tightly restrict the worm’s scanning activity, while
allowing the normal hosts to make successful connections at
any rate. One important contribution of DAW is to make the
speed of worm propagation configurable, no longer by the pa-
rameters of worms but by the parameters of DAW. While the
actual values of the parameters should be set based on the
ISP traffic statistics, we analyze the impact of those parame-
ters on the performance of DAW and use simulations to study
the suitable value ranges.

2. Modeling Worm Propagation

The worm propagation can be roughly characterized by
the classical simple epidemic model [1, 3, 5].

di(t)
d(t)

= βi(t)(1 − i(t)) (1)

where i(t) is the percentage of vulnerable hosts that are in-
fected with respect to time t, and β is the rate at which a
worm-infected host detects other vulnerable hosts.

First we formly deduce the value of β. Some notations
are defined as follows. r is the rate at which an infected host
scans the address space. N is the size of the address space. V
is the total number of vulnerable hosts.

At time t, the number of infected hosts is i(t) · V , and the
number of vulnerable but uninfected hosts is (1−i(t))V . The
probability for one scan message to hit an uninfected vul-
nerable host is p = (1 − i(t))V/N . For an infinitely small
period dt, i(t) changes by di(t). During that time, there are
n = r ·i(t)·V ·dt scan messages and the number of newly in-
fected hosts is n × p = r · i(t) · V · dt · (1 − i(t))V/N =
r · i(t) · (1 − i(t))V 2

N dt.1 Therefore,

V · di(t) = r · i(t) · (1 − i(t))
V 2

N
dt

di(t)
dt

= r
V

N
i(t)(1 − i(t))

(2)

Solving the equation, we have

i(t) =
er V

N (t−T)

1 + er V
N (t−T)

Let the number of initially infected hosts be v. i(0) = v/V ,
and we have T = − N

r·V ln v
V −v . The time it takes for a per-

centage α (≥ v/V) of all vulnerable hosts to be infected is

t(α) =
N

r · V (ln
α

1 − α
− ln

v

V − v
) (3)

If v = 1, We have

t(α) =
N

r · V ln
α(V − 1)

1 − α
(4)

1 When dt → 0, the probability of multiple scan messages hitting the
same host becomes negligible.

Practically it is important to slow down the worm propa-
gation in order to give the Internet community enough time
to react. Eq. (4) points out two possible approaches: decreas-
ing r causes t(α) to increase inverse-proportionally; increas-
ing N causes t(α) to increase proportionally. In this paper,
we use the first approach to slow down the worms, while re-
lying on a different technique to halt the propagation. The
idea is to block out the infected hosts and make sure that the
scanning activity of an infected host does not last for more
than a period of ∆T . Under such a constraint, the propaga-
tion model becomes

di(t)
dt

= r
V

N
(i(t) − i(t − ∆T))(1 − i(t)) (5)

The above equation can be derived by following the same
procedure that derives Eq. (2), except that at time t the num-
ber of active infected hosts is (i(t) − i(t − ∆T)) · V instead
of i(t) · V .

Theorem 1 If ∆T < (1− v
αV) N

rV , the worm will be stopped
before a percentage α of all vulnerable hosts are infected.

The proof of all theorems in this paper is omitted due to
space limitation. �

3. Failure Rate

This paper studies the worms that spread via TCP, which
accounts for the majority of Internet traffic. We present a new
approach that measures the potential scanning activities by
monitoring the failed connection requests.

When a source host makes a connection request, a SYN
packet is sent to a destination address. The connection re-
quest fails if the destination host does not exist or does not
listen on the port that the SYN is sent to. In the former case,
an ICMP host-unreachable packet is returned to the source
host; in the latter case, a TCP RESET packet is returned. We
call an ICMP host-unreachable or TCP RESET packet as a
connection-failure reply (or simply failure reply). The rate of
failed connection requests from a host s is called the failure
rate, which can be measured by monitoring the failure replys
that are sent to s.

The failure rate measured for a normal host is likely to be
low. For most Internet applications (www, telnet, ftp, etc.),
a user normally types domain names instead of raw IP ad-
dresses to identify the servers. Domain names are resolved
by Domain Name System (DNS) for IP addresses. If DNS
can not find the address of a given name, the application will
not issue a connection request. Hence, mistyping or stale web
links do not result in failed connection requests. An ICMP
host-unreachable packet is returned only when the server is
off-line or the DNS record is stale, which are both uncom-
mon for popular or regularly-maintained sites (e.g., Yahoo,
Ebay, CNN, universities, governments, enterprises, etc.) that
attract most of Internet traffic. Moreover, a frequent user typ-
ically has a list of favorite sites (servers) to which most con-
nections are made. Since those sites are known to work most

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

of the time, the failure rate for such a user is likely to be low.
If a connection fails due to network congestion, it does not
affect the measurement of the failure rate because no ICMP
host-unreachable or RESET packet is returned.

On the other hand, the failure rate measured for a worm-
infected host is likely to be high. Unlike normal traffic, most
connection requests initiated by a worm fail because the des-
tination addresses are randomly picked, which are likely ei-
ther not in use or not listening on the port that the worm tar-
gets at. Consider the infamous code-red worm. Our exper-
iment shows that 99.96% of all connections made to ran-
dom addresses at TCP port 80 fails. That is, the failure rate
is 99.96% of the scanning rate. For worms targeting at soft-
ware that is less popular than web servers, this figure will be
even higher. Let V ′ is the number of hosts that listen on the at-
tacked port(s). Suppose V ′ << N . The relation between the
scanning rate rs and the failure rate rf of a worm is

rf = (1 − V ′

N
)rs ≈ rs (6)

Hence, measuring the failure rate of a worm gives a good idea
about its scanning rate. Given the aggressive behavior of a
worm-infected host, its failure rate is likely to be high, which
sets it apart from the normal hosts. More importantly, an ap-
proach that restricts the failure rate will restrict the scanning
rate, which slows down the worm propagation.

4. A Distributed Anti-Worm Architecture

4.1. Objectives

This section presents a distributed anti-worm architecture
(DAW), whose main objectives are

• Slowing down (or even stopping) the worm propagation
to allow human reaction time. It took the code red just
hours to achieve wide infection. Our goal is to prolong
that time to tens of days.

• Detecting potential worm activities and identify-
ing likely offending hosts, which provides the security
management team with valuable information in analyz-
ing and countering the worm threat.

• Minimizing the performance impact on normal hosts
and routers. A normal host should be able to make suc-
cessful connections at any rate, and the processing and
storage requirements on a router should be minimized.

4.2. Assumptions

Most businesses, institutions, and homes access the Inter-
net via Internet service providers (ISPs). An ISP network in-
terconnects its customer networks, and routes the IP traffic
between them. The purpose of DAW is to provide an ISP-
based anti-worm service that prevents Internet worms from
spreading among the customer networks. DAW is practically

Internet Service Providercustomer
network

customer
network

edge routers
with DAW agent

neighbor ISP

management station

Figure 1: Distributed Anti-Worm Architecturer

feasible because its implementation is within a single ad-
ministrative domain. It also has strong business merit since
a large ISP has sufficient incentive to deploy such a system in
order to gain marketing edge against its competitors.

We assume that a significant portion of failure replys are
not blocked within the ISP. If the ISP address space is densely
populated, then it is required that a significant portion of TCP
RESET packets are not blocked, which is normally the case.
If the ISP address space is sparsely populated, then it is re-
quired that ICMP host-unreachable packets from a signifi-
cant portion of addresses are not blocked, which can be eas-
ily satisfied. Because there are many unused addresses, the
ISP routers will generate ICMP host-unreachable for those
addresses. Hence, the ISP simply has to make sure its own
routers do not filter ICMP host-unreachable until they are
counted.

If some customer networks block all incoming SYN pack-
ets except for a list of servers, their filtering routers should
either generate ICMP host-unreachable for the dropped SYN
packets or, in case that ICMP replys are undesirable, send
log messages to an ISP log station. Upon receipt of a log
message, the log station sends an ICMP host-unreachable to-
wards the sender of the SYN packet. When an ISP edge router
receives an ICPM host-unreachable packet from the log sta-
tion, it counts a connection failure and drops the packet.

4.3. DAW Overview

As illustrated in Figure 1, DAW consists of two soft-
ware components: a DAW agent that is deployed on all edge
routers of the ISP and a management station that collects data
from the agents. Each agent monitors the connection-failure
replys sent to the customer network that the edge router con-
nects to. It identifies the potential offending hosts and mea-
sures their failure rates. If the failure rate of a host exceeds
a pre-configured threshold, the agent randomly drops a min-
imum number of connection requests from that host in or-
der to keep its failure rate under the threshold. A temporal
rate-limit algorithm and a spatial rate-limit algorithm are used
to constrain any worm activity to a low level over the long
term, while accommodating the temporary aggressive behav-
ior of normal hosts. Each agent periodically reports the ob-
served scanning activity and the potential offenders to the
management station. A continuous, steady increase in the
gross scanning activity raises the flag of a possible worm at-
tack. The worm propagation is further slowed or even stopped
by blocking the hosts with persistently high failure rates.

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

Each edge router reads a configuration file from the man-
agement station about what source addresses S and what des-
tination ports P that it should monitor and regulate. S con-
sists of all or some addresses belonging to the customer net-
work. It provides a means to exempt certain addresses from
DAW for research or other purposes. P consists of the port
numbers to be protected such as 80/8080 for www, 23 for tel-
net, and 21 for ftp. It should exclude the applications that
are not suitable for DAW; for example, a hypothetical appli-
cation runs with an extremely high failure rate, making nor-
mal hosts undistinguishable from worms targeting at the ap-
plication. While DAW is not designed for all services, it is
particularly effective in protecting the services whose clients
involve human interactions such as web browsering, which
makes greater distinction between normal hosts and worm-
infected hosts.

Throughout the paper, when we say “a router receives a
connection request”, we refer to a connection request that en-
ters the ISP from a customer network, with a source address
in S and a destination port in P . When we say “a router re-
ceives a failure reply”, we refer to a failure reply that leaves
the ISP to a customer network, with a destination address in
S and a source port in P if it is a TCP RESET packet.

This paper does not address the worm activity within a
customer network. A worm-infected host is not restricted in
any way to infect other vulnerable hosts of the same customer
network. DAW works only against the inter-network infec-
tions. The scanning rate of an infected host s is defined as the
number of connection requests sent by s per unit of time to
addresses outside of the customer network where s resides.

If a customer network has m(> 1) edge routers with the
same ISP, the DAW agent should be stalled on all m edge
routers. If some edge routers are with different ISPs that do
not implement DAW, the network can be infected via those
ISPs but then are restricted in spreading the worm to the cus-
tomer networks of the ISPs that do implement DAW. For the
purpose of simplicity, we do not consider multi-homed net-
works in the analysis. We discuss the details of DAW below.

4.4. Measuring Failure Rate

Each edge router measures the failure rates for the ad-
dresses belonging to the customer network that the router
connects to.

A failure-rate record consists of an address field s, a fail-
ure rate field f , a timestamp field t, and a failure counter field
c. The initial values of f and c are zeros; the initial value of
t is the system clock when the record is created. Whenever
the router receives a failure reply for s, it calls the follow-
ing function, which updates f each time c is increased by
100. β is a parameter between 0 and 1.

Update Failure Rate Record()
(1) c ← c + 1
(2) if (c is a multiple of 100)
(3) f ′ ← 100/(the current system clock − t)
(4) if (c = 100)

(5) f ← f ′
(6) else
(7) f ← β × f + (1 − β) × f ′
(8) t ← the current system clock

It is unnecessary to create individual failure-rate records
for those hosts that occasionally make a few failed connec-
tions. Each edge router maintains a hash table H . Each table
entry is a failure-rate record without the address field. When
the router receives a failure reply, it hashes the destination ad-
dress to a table entry and calls Update Failure Rate Record()
on that entry. Each entry therefore measures the combined
failure rate of roughly A/|H | addresses, where A is the size
of the customer network and |H | is the size of the hash ta-
ble.

Only when the rate of a hash-table entry exceeds a thresh-
old λ (e.g., one per second), the router creates failure-rate
records for individual addresses of the entry. If there are too
many records, it retains those with the largest counters. A
failure-rate record is removed if its counter c registers too
few failed connections in a period of time.

4.5. Basic Rate-Limit Algorithm

If the failure rate of an address s is larger than λ, there
must be a failure-rate record created for s because the hash-
table entry that s maps to must have a rate exceeding λ, which
causes records for individual addresses to be created.

Let Fλ be the set of addresses whose failure rates are
larger than λ. For each s ∈ Fλ, the router attempts to reduce
its failure rate below λ by rate-limiting the connection re-
quests from s. A token bucket is used. Let size be the bucket
size, tokens be the number of tokens, and time be a times-
tamp whose initial value is the system clock when the algo-
rithm starts.

Upon receipt of a failure reply to s
(1) tokens ← tokens − 1

Upon receipt of a connection request from s
(2) ∆t ← the current system clock − time
(3) tokens ← min{tokens + ∆t × λ, size}
(4) time ← the current system clock
(5) if (tokens ≥ 1)
(6) forward the request
(7) else
(8) drop the request

It should be emphasized that the above algorithm is not a
traditional token-bucket algorithm that buffers the oversized
bursts and releases them at a fixed average rate. The purpose
of our algorithm is not to shape the flow of incoming fail-
ure replys but to shape the “creation” of the failure replys. It
ensures that the failure rate of any address in S stays below
λ, which effectively restricts the scanning rate of any worm-
infected host (Eq. 6).

This and other rate-limit algorithms are performed on in-
dividual addresses. They are not performed on the failure-

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

rate records in the hash table; that is because otherwise many
addresses would have been blocked due to one scan source
mapped to the same hash-table entry.

One fundamental idea of DAW is to make the speed of
worm propagation no longer determined by the worm pa-
rameters set by the attackers, but by the DAW parameters set
by the ISP administrators. Below we propose more advanced
rate-limit algorithms to give the defenders greater control.

4.6. Temporal Rate-Limit Algorithm

A normal user behaves differently from a worm that scans
the Internet tirelessly, day and night. A user may generate
a failure rate close to λ for a short period of time, but that
can not last for every minute in 24 hours of a day. While we
set λ large enough to accommodate temporary aggressiveness
in normal behavior, the rate over a long period can be tight-
ened. Let Ω be the system parameter that controls the maxi-
mum number of failed connection requests allowed for an ad-
dress per day. Let D be the time of a day. Ω can be set much
smaller than λD.

At the start of each day, the counters (c) of all failure-rate
records and hash-table entries are reset to zeros. The value of
c always equals the number of failed requests that have hap-
pened during the day. A hash-table entry creates failure-rate
records for individual addresses when either f > λ or c > Ω.

A temporal rate-limit algorithm is designed to bound the
maximum number of failed requests per day. Let FΩ be the
set of addresses with individual failure-rate records and ∀s ∈
FΩ, either the failure rate of s is larger than λ or the counter
of s reaches Ω/2. It is obvious that Fλ ⊆ FΩ.

Upon receipt of a failure reply to s
(1) tokens ← tokens− 1

Upon receipt of a connection request from s
(2) ∆t ← the current system clock − time
(3) if (c ≤ Ω/2)
(4) tokens ← min{tokens + ∆t × λ, size}
(5) else
(6) λ′ ← Ω − c − tokens

the end of the day − time

(7) tokens ← min{tokens + ∆t × λ′, size}
(8) time ← the current system clock
(9) if (tokens ≥ 1)
(10) forward the request
(11) else
(12) drop the request

The temporal rate-limit algorithm constrains both the
maximum failure rate and the maximum number of failed re-
quests. When it is used, the basic rate-limit algorithm is
not necessary. Before c reaches Ω/2, the failure rate can
be as high as λ. After that, the algorithm spreads the re-
maining “quota” (Ω − c − tokens) on the rest of the day,
which ensures that connections will be forwarded through-
out the day. Particularly, a host can make successful
connections at any rate at any time of the day (e.g., brows-

ing the favorite web sites that are up) because the constraint
is on failure replys only.

Theorem 2 When the temporal rate-limit algorithm is used,
the number of failure replys for any address does not exceed
2Ω+ rT in a day, where r is the rate at which the host makes
connection requests and T is the round trip delay in the ISP.

rT is normally small because the typical round trip de-
lay across the Internet is in tens or hundreds of milliseconds.
Hence, if Ω = 300, the average scanning rate of a worm is
effectively limited to about 2Ω/D = 0.42/min. In compar-
ison, Williamson’s experiment showed that the scanning rate
of the code red was at least 200 / second [9], which is more
than 28,000 times faster. Yet, it took the code red hours to
spread, suggesting the promising potential of using the tem-
poral rate-limit algorithm to slow down worms.

Additional system parameters that specify the maximum
numbers of failed requests in longer time scales (week or
month) can further increase the worm propagation time.

4.7. Recently Failed Address List

If a major web server such as Yahoo or CNN is down, an
edge router may observe a significant surge in failure replys
even though there is no worm activity. To solve this prob-
lem, each edge router maintains a recently failed address list
(RFAL), which is emptied at the beginning of each day. When
the router receives a failure reply from address d, it matches
d against the addresses in RFAL. If d is in the list, the router
skips all DAW-related processing. Otherwise, it inserts d into
RFAL before processing the failure reply. If RFAL is full, d
replaces the oldest entry in the list.

When a popular server is down, if it is frequently accessed
by the hosts in the customer network, the server’s address is
likely to be in RFAL and the failure replys from the server
will not be repetitively counted. Hence, the number of failed
requests allowed for a normal host per day can be much larger
than Ω. It effectively places no restriction on keeping trying
a number of favorite sites that are temporarily down. On the
other hand, given the limited size of RFAL (e.g., 1000) and
the much larger space of IPv4 (232), the random addresses
picked by worms have a negligibly small chance to fall in the
list.

4.8. Spatial Rate-Limit Algorithm

While each infected host is regulated by the temporal rate-
limit algorithm, there may be many of them, whose aggre-
gated scanning rate can be very high. DAW uses a spatial
rate-limit algorithm to constrain the combined scanning rate
of infected hosts in a customer network. Let Φ be the system
parameter that controls the total number of failed requests al-
lowed for a customer network per day. It may vary for differ-
ent customer networks based on their sizes. Once the number
of addresses inserted to RFAL exceeds Φ, the system starts to
create failure-rate records for all addresses that receive fail-
ure replys, and activates the spatial algorithm. If there are too

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

many records, it retains those with the largest counters. Let
FΦ (∈ S) be the set of addresses whose counters exceed a
small threshold τ (e.g., 50), which excludes the obvious nor-
mal hosts. The spatial rate-limit algorithm is the same as the
temporal algorithm except that s, Ω, and c are replaced re-
spectively by FΦ, Φ, and the total number of failure replys to
FΦ received after the spatial algoirthm is activiated.

For any address s in FΩ ∩ FΦ, the temporal rate-limit al-
gorithm is first executed and then the spatial rate-limit algo-
rithm is executed. The reason to apply the temporal algorithm
is to prevent a few aggressive infected hosts from keeping
reducing tokens to zero. On the other hand, if there are a
large number of infected hosts, which cause the spatial algo-
rithm to drop most requests, then the router should temporar-
ily block the addresses whose failure-rate records have the
largest counters.

The edge routers may be configured independently with
some running both the temporal and spatial algorithms but
some running the temporal algorithm only. For example, the
edge routers for the neighbor ISPs should have large Φ val-
ues or not run the spatial algorithm.

Theorem 3 When the spatial rate-limit algorithm is used,
the total number of failure replys per day for all infected hosts
in a customer network is bounded by 2Φ + mr′T , where m
is the number of addresses in FΦ, r′ is the scanning rate of
an infected host after the temporal rate-limit algorithm is ap-
plied, and T is the round trip delay of the ISP.

mr′T is likely to be small because both r′ and T are
small. The following analysis is based on a simplified model.
A more general model will be used in the simulations. Sup-
pose there are k customer networks, each with V/k vulnera-
ble hosts. Once a vulnerable host is infected, we assume all
other vulnerable hosts in the same customer networks are in-
fected immediately because DAW does not restrict the scan-
ning activity within the customer network. Based on Theo-
rem 3, the combined scanning rate of all vulnerable hosts in
a customer network is (2Φ + mr′T)/D ≈ 2Φ/D. Let j(t)
be the percentage of customer networks that are infected by
the worm. Following a similar process that derives Eq. 2, we
have

dj(t)
dt

=
2V Φ
ND

j(t)(1 − j(t))

j(t) =
e

2V Φ
ND (t−T)

1 + e
2V Φ
ND (t−T)

Assume there is one infection at time 0. We have T =
− ND

2V Φ ln 1
k−1 . The time it takes to infect α percent of all net-

works is

t(α) =
ND

2 · V Φ
ln

α(k − 1)
1 − α

Suppose an ISP wants to ensure that the time for α percent
of networks to be infected is at least γ days. The value of Φ
should satisfy the following condition.

Φ ≤ N

2 · V γ
ln

α(k − 1)
1 − α

which is not related to how the worm behaves.

4.9. Blocking Persistent Scanning Sources

The edge routers are configured to block out the addresses
whose counters (c) reach Ω for n consecutive days, where n is
a system parameter. If the worm-infected hosts perform high-
speed scanning, they will each be blocked out after n days of
activity. Hence the worm propagation may be stopped before
an epidemic materializes, according to Eq. (5).

The worm propagates slowly under the temporal rate-limit
algorithm and the spatial rate-limit algorithm. It gives the ad-
ministrators sufficient time to study the traffic of the hosts to
be blocked, perform analysis to determine whether a worm
infection has occurred, and decide whether to approve or dis-
approve the blocking. Once the threat of a worm is confirmed,
the edge routers may be instructed to reduce n, which in-
creases the chance of fully stopping the worm.

Suppose a worm scans more than Ω addresses per day.
The worm propagation can be completely stopped if each in-
fected customer network makes less than one new infection
on average before its infected hosts are blocked. The number
of addresses scanned by the infected hosts from a single net-
work during n days is about 2nΦ by Theorem 3. Each mes-
sage has a maximum probability of V/N to infect a new host.
Hence, the condition to stop a worm is

2nΦ
V

N
< 1

The expected number of infected networks is bounded by

∞
Σ

i=0
(2nΦ

V

N
)i =

1
1 − 2nΦ V

N

On the other hand, when 2nΦ V
N ≥ 1, the worm may not

be stopped by the above approach alone. However the sig-
nificance of blocking infected hosts should not be under-
estimated as it makes the worm-propagation time longer and
gives human or other automatic tools more reaction time.

If the scanning rate of a worm is below Ω per day, the in-
fected hosts will not be blocked. DAW relys on a different
approach to address this problem. During each day, an edge
router reports the total number of connection requests and
the total number of failure replys to the management station,
which watches for the global trend of scan activities and takes
actions accordingly. The details are omitted due to space lim-
itation.

4.10. Warhol Worm and Flash Worm

The Warhol worm and the Flash worm are hypothetical
worms studied in [5], which embodied a number of highly
effective techniques that the future worms might use to in-
fect the Internet in a very short period of time, leaving no
room for human actions.

In order to improve the chance of infection during the ini-
tial phase, the Warhol worm first scans a pre-made list of

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

(e.g., 10000 to 50000) potentially vulnerable hosts, which
is called a hit-list. After that, the worm performs permuta-
tion scanning, which divides the address space to be scanned
among the infected hosts. One way to generate a hit-list is
to perform a scan of the Internet before the worm is released
[5]. With DAW, that will take about N/2Ω days. Suppose
Ω = 300 and N = 232. That would be 19611 years. Even
if the hit-list can be generated by a different means, the per-
mutation scanning is less effective under DAW. For instance,
even after 1000 vulnerable hosts are infected, they can only
probe about 1000 × 2Ω = 6 × 105 addresses a day. Consid-
ering the size of IPv4 is 232 ≈ 4.3 × 109, duplicate hits are
not a serious problem, which means the gain by permutation
scanning is small. Without DAW, it will be a different mat-
ter. If the scanning rate is 200/second, it takes less than 36
minutes for 10000 infected hosts to make 232 probes, and du-
plicate hits are very frequent.

The Flash worm assumes a hit-list L including most
servers that listen on the targeted port. Hence, random scan-
ning is completely avoided; the worm scans only the
addresses in L. As more and more hosts are infected, L is re-
cursively split among the newly infected hosts, which scan
only the assigned addresses from L. The Flash worm re-
quires a prescan of the entire Internet before it is re-
leased. Such a prescan takes too long under DAW. In
addition, each infected host can only scan about 2Ω ad-
dresses per day, which limits the propagation speed of the
worm if L is large.

4.11. Forged Failure Replys

To prevent forged failure replys from being counted, one
approach is to keep a table of recent connection requests from
any source address in S to any destination port in P during
the past 45 seconds (roughly the MRTT of TCP). S and P are
defined in Section 4.3. Each table entry contains a source ad-
dress, a source port, a destination address, and a destination
port, identifying a connection request. Only those failure re-
plys that match the table entries are counted. An alternative
approach is to extend the failure-rate record by adding two
fields: one (x) counting the number of connection requests
from s and the other (y) counting the number of successful
connections, i.e., TCP SYN/ACK packets sent to s, where s
is the address field of the record. An invariant is maintained
such that the number of failed connections plus the number
of successful connections does not exceed the number of con-
nection requests, i.e., c + y ≤ x. A failure reply is counted
(c := c + 1) only when the invariant is not violated.

5. Simulation

We use simulations to evaluate the performance of DAW.
Figure 2 shows how the rate-limit algorithms slow down the
worm propagation. The simulation parameters are given as
follows. λ = 1/sec. Ω = 300. Φ = 3000. n = 7 days.
The number of customer networks are k = 10000. The av-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

i(
t)

t (days)

No Algorithm
Basic Rate-Limit

Temporal
Temporal + Spatial

DAW

Figure 2: worm-propagation comparison

erage number of vulnerable hosts per customer network is
z = 10. The numbers of vulnerable hosts in different cus-
tomer networks follow an exponential distribution, suggest-
ing a scenario where most customer networks have ten or less
public servers, but some have large numbers of servers. Sup-
pose the worm uses a Nimda-like algorithm that aggressively
searches the local-address space. We assume that once a vul-
nerable host of a customer network is infected, all vulnerable
hosts of the same network are infected shortly.

Figure 2 compares the percentage i(t) of vulnerable hosts
that are infected over time t in five different cases: 1) no al-
gorithm is used, 2) the basic rate-limit algorithm is imple-
mented on the edge routers, 3) the temporal rate-limit algo-
rithm is implemented, 4) both the temporal and spatial rate-
limit algorithms are implemented, or 5) DAW (i.e., Temporal,
Spatial, and blocking persistent scanning sources) is imple-
mented. Note that all algorithms limit the failure rates, not the
request rates, and the spatial rate-limit algorithm is applied
only on the hosts whose failure counters exceed a threshold
τ = 50. The shape of the curve for “No Algorithm” depends
on the worm’s scanning rate, which is 10/sec in the simu-
lation. The other four curves are independent of the worm’s
scanning rate; they depend only on DAW’s parameters, i.e.,
λ, Ω, Φ, and n. The figure shows that the basic rate-limit al-
gorithm slows down the worm propagation from minutes to
hours, while the temporal rate-limit algorithm slows down
the propagation to tens of days. The spatial rate-limit algo-
rithm makes further improvement on top of that — it takes
the worm 80 days to infect 5% of the vulnerable hosts, leav-
ing sufficient time for human intervention. Moreover, with
persistent scanning sources being blocked after 7 days, DAW
is able to stop the worm propagation at i(t) = 0.000034.

Table 1 shows the time it takes the worm to infect 5%
of vulnerable hosts (called 5% propagation time) under var-
ious conditions with Temporal + Spatial implemented. De-
pending on the size (k and z) of the ISP, the propagation time
ranges from 10.0 days to 350.3 days. To ensure a large propa-
gation time, a very large ISP may partition its customers into
multiple defense zones of modest sizes. DAW can be imple-
mented on the boundary of each zone, consisting of the edge
routers to the customer networks of the zone and the inter-

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

k z Ω = 1000 = 3000 = 5000 = 7000
5000 10 350.3 116.8 69.6 50.2
5000 20 237.2 79.1 47.2 33.9

10000 10 190.1 63.5 38.1 27.1
10000 20 127.9 42.5 25.5 18.3
20000 10 103.3 34.2 20.6 14.6
20000 20 68.9 22.9 13.8 10.0

Table 1: 5% propagtion time (days) for “Temporal + Spa-
tial”

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700

5%
 p

ro
pa

ga
tio

n
tim

e
(d

ay
s)

Omega

k = 10,000 z = 5
k = 10,000 z = 10
k = 10,000 z = 20
k = 20,000 z = 10
k = 20,000 z = 20

Figure 3: effectiveness of the temporal rate-limit algo-
rithm

nal routers connecting to other zones.
Figure 3 shows the performance of the temporal rate-limit

algorithm with respect to the parameter Ω. As expected, the
propagation time decreases when Ω increases. The algorithm
performs very well for modest-size ISPs (or zones). When
k = 10000, z = 10 and Ω = 3000, the 5% propagation
time is 63.6 days. Figure 4 shows the performance of the spa-
tial rate-limit algorithm (alone) with respect to the param-
eter Φ. The algorithm works well for modest-size ISPs (or
zones) even for large Φ values. When k = 10000, z = 10 and
Φ = 7000, the 5% propagation time is 27.2 days. The perfor-
mance of the two algorithms is comparable when Φ = z×Ω,
where the total temporal rate limit of the local infected hosts
is equal to the spatial rate limit. As shown in the figures, if
Φ > z×Ω, the temporal algorithm works better; if Φ < z×Ω,
the spatial algorithm works better. Therefore, the two algo-
rithms are complementary to each other and they are both
adopted by DAW.

6. Conclusion

This paper proposes a distributed anti-worm architecture
(DAW), which integrates a number of new techniques that
detect, slow down, and even stop the worm propagation in an
internetwork. Our primary goal is to automate the anti-worm
defense, which is largely a manual process today. DAW en-
sures sufficient time for human reaction by the use of a tem-
poral rate-limiting algorithm that constrains the maximum
scanning speed of any infected host and a spatial rate-limit
algorithm that constrains the combined scanning rate of all

 0

 50

 100

 150

 200

 250

 300

 350

 0 1000 2000 3000 4000 5000 6000 7000

5%
 p

ro
pa

ga
tio

n
tim

e
(d

ay
s)

Phi

k = 10,000 z = 5
k = 10,000 z = 10
k = 10,000 z = 20
k = 20,000 z = 10
k = 20,000 z = 20

Figure 4: effectiveness of the spatial rate-limit algorithm

infected hosts in a network. We evaluate the performance of
DAW both analytically and by simulations, which demon-
strates that DAW is highly effective in damping the propaga-
tion of Internet worms.

References

[1] H. W. Hethcote. The Mathematics of Infectious Diseases.
SIAM Review, 42(4):599–653, 2000.

[2] M. Liljenstam, Y. Yuan, B. Premore, and D. Nicol. A Mixed
Abstraction Level Simulation Model of Large-Scale Internet
Worm Infestations. Proc. of 10th IEEE/ACM Symposium on
Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems (MASCOTS), October 2002.

[3] D. Moore, C. Shannon, G. M. Voelker, and S. Savage. Internet
Quarantine: Requirements for Containing Self-Propagating
Code. Proc. of IEEE INFOCOM’2003, March 2003.

[4] J. Rochlis and M. Eichin. With Microscope and Tweezers: The
Worm from MIT’s Perspective. Communication of the ACM,
32(6):689–698, June 1989.

[5] S. Staniford, V. Paxson, and N. Weaver. How to Own the Inter-
net in Your Spare Time. Proc. of 11th USENIX Security Sym-
posium, San Francisco, August 2002.

[6] C. E. R. Team. CERT Advisory CA-2001-23 ”Code Red”
Worm Exploiting Buffer Overflow In IIS Indexing Service
DLL. http://www.cert.org/advisories/CA-2001-23.html, July
2001.

[7] C. E. R. Team. CERT Advisory CA-2001-26 Nimda Worm.
http://www.cert.org/advisories/CA-2001-26.html, July 2001.

[8] C. E. R. Team. CERT Advisory CA-2003-04 MS-SQL Server
Worm. http://www.cert.org/advisories/CA-2003-04.html, Jan-
uary 2003.

[9] M. M. Williamson. Throttling Viruses: Restricting Propaga-
tion to Defeat Malicious Mobile Code. Proc. of Annual Com-
puter Security Application Conference (ACSAC’02), Decem-
ber 2002.

[10] C. C. Zou, W. Gong, and D. Towsley. Code Red Worm Propa-
gation Modeling and Analysis. Proc. of 9th ACM Conference
on Computer and Communication Security, November 2002.

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

