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Abstract—Computing constrained shortest paths is fundamental
to some important network functions such as QoS routing, MPLS
path selection, ATM circuit routing, and traffic engineering. The
problem is to find the cheapest path that satisfies certain con-
straints. In particular, finding the cheapest delay-constrained path
is critical for real-time data flows such as voice/video calls. Because
it is NP-complete, much research has been designing heuristic
algorithms that solve the s-approximation of the problem with
an adjustable accuracy. A common approach is to discretize (i.e.,
scale and round) the link delay or link cost, which transforms the
original problem to a simpler one solvable in polynomial time.
The efficiency of the algorithms directly relates to the magnitude
of the errors introduced during discretization. In this paper, we
propose two techniques that reduce the discretization errors,
which allows faster algorithms to be designed. Reducing the
overhead of computing constrained shortest paths is practically
important for the successful design of a high-throughput QoS
router, which is limited at both processing power and memory
space. Our simulations show that the new algorithms reduce the
execution time by an order of magnitude on power-law topologies
with 1000 nodes. The reduction in memory space is similar.

Index Terms—Approximation algorithms, constrained shortest
paths, QoS routing.

1. INTRODUCTION

MAJOR obstacle against implementing distributed

multimedia applications (e.g., web broadcasting, video
teleconferencing, and remote diagnosis) is the difficulty of en-
suring quality of service (QoS) over the Internet. A fundamental
problem that underlies many important network functions such
as QoS routing, MPLS path selection, and traffic engineering,
is to find the constrained shortest path—the cheapest path that
satisfies a set of constraints [1]-[10]. For interactive real-time
traffic, the delay-constrained least-cost path has particular
importance [11]. It is the cheapest path whose end-to-end delay
is bounded by the delay requirement of a time-sensitive data
flow. The additional bandwidth requirement, if there is one, can
be easily handled by a pre-processing step that prunes the links
without the required bandwidth from the graph.

The algorithms for computing the constrained shortest paths
can be used in many different circumstances, for instance,
laying out virtual circuits in ATM networks, establishing wave-
length-switching paths in fiber-optics networks, constructing
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label-switching paths in MPLS based on the QoS requirements
in the service contracts, or applying together with RSVP. There
are two schemes of implementing the QoS routing algorithms
on routers. The first scheme is to implement them as on-line
algorithms that process the routing requests as they arrive.
In practice, on-line algorithms are not always desired. When
the request arrival rate is high (major gateways may receive
thousands or tens of thousands of requests every second), even
the time complexity of Dijkstra’s algorithm will overwhelm
the router if it is executed on a per-request basis.! To solve
this problem, the second scheme is to extend a link-state pro-
tocol (e.g., OSPF) and periodically pre-compute the cheapest
delay-constrained paths for all destinations, for instance, for
voice traffic with an end-to-end delay requirement of 100 ms.
The computed paths are cached for the duration before the
next computation. This approach provides support for both
constrained unicast and constrained multicast. The computation
load on a router is independent of the request arrival rate. More-
over, many algorithms, including those we will propose shortly,
have the same time complexity for computing constrained
shortest paths to all destinations or to a single destination. This
paper studies the second scheme.

A path that satisfies the delay requirement is called a feasible
path. Finding the cheapest (least-cost) feasible path is NP-com-
plete. There has been considerable work in designing heuristic
solutions for this problem. Xue [12] and Juttner et al. [13] used
the Lagrange relaxation method to approximate the delay-con-
strained least-cost routing problem. However, there is no theo-
retical bound on how large the cost of the found path can be.
Korkmaz and Krunz used a nonlinear target function to approx-
imate the multi-constrained least-cost path problem [14]. It was
proved that the path that minimizes the target function satis-
fies one constraint and the other constraints multiplied by v/,
where )\ is a predefined constant and k is the number of con-
straints. However, no known algorithm can find such a path
in polynomial time. Ref. [14] proposed a heuristic algorithm,
which has the same time complexity as Dijkstra’s algorithm. It
does not provide a theoretical bound on the property of the re-
turned path, nor provide conditional guarantee in finding a fea-
sible path when one exists. In addition, because the construction
of the algorithm ties to a particular destination, it is not suitable
for computing constrained paths from one source to all destina-
tions. For this task, it is slower than the algorithms proposed in
this paper by two orders of magnitude based on our simulations.

Another thread of research in this area is to design polyno-
mial time algorithms that solves the NP-complete problem with

Note that path caching does not eliminate the problem of finding constrained
shortest paths because those paths must be calculated before being cached.
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an accuracy that is theoretically bounded. Let m and n be the
number of links and the number of nodes in the network, re-
spectively. Given a small constant ¢, Hassin’s algorithm [15]
has a time complexity of O((mn/e) loglog(UB/LB)), where
UB and LB are the costs of the fastest path and the cheapest path
from the source node to the destination node, respectively. The
algorithm finds a feasible path if there exists one. The cost of the
path is within the cost of the cheapest feasible path multiplied
by (1 + ). Lorenz and Raz improved the time complexity to
O(mn(1/e+logn)) [16]. Chen and Nahrstedt solved a similar
problem in time O((m+nlogn)z), where z = O(n/e) in order
to achieve the e-approximation [17]. Goel et al.’s algorithm
[18] has the best-known complexity of O((m+mnlogn)(L/e)),
where L is the length (hops) of the longest path in the network.
However, its approximation model is different. It computes a
path whose cost is no more than the cost of the cheapest fea-
sible path, while the delay of the path is within (1 + ¢) of the
delay requirement. The algorithms proposed in this paper follow
Goel’s model.

One common technique of the above algorithms [15], [17],
[18] is to discretize the link delay (or link cost). Due to the dis-
cretization, the possible number of different delay values (or
cost values) for a path is reduced, which makes the problem
solvable in polynomial time. The effectiveness of this technique
depends on how much error is introduced during the discretiza-
tion. The existing discretization approaches have either positive
discretization error for every link or negative error for every
link. Therefore, the discretization error on a path is statistically
proportional to the path length as the errors on the links along
the path add up. In order to bound the maximum error, the dis-
cretization has to be done at a fine level, which leads to high
execution time of the algorithms.

Given the limited resources and ever-increasing tasks of the
routers, it is practically important to improve the efficiency of
the network functions. While QoS routing is expensive due
to its nonlinear nature, it has particular significance to reduce
the router’s overhead in computing the constrained shortest
paths. In this paper, we propose two techniques, randomized
discretization and path delay discretization, which reduce the
discretization errors and allow faster algorithms to be designed.
The randomized discretization cancels out the link errors along
a path. The larger the topology, the greater the error reduction.
The path delay discretization works on the path delays instead
of the individual link delays, which eliminates the problem
of error accumulation. Based on these techniques, we design
fast algorithms to solve the e-approximation of the constrained
shortest-path problem. We prove the correctness and complex-
ities of the algorithms. Although the new algorithms have the
same worst-case complexity as Goel et al.’s algorithm [18],
we believe (and our simulations suggest) that they run much
faster on the average case. The simulations show that the new
algorithms are faster than Goel ef al.’s algorithm by an order of
magnitude on power-law topologies with 1000 nodes.

The rest of the paper is organized as follows. Section II re-
views the existing approaches. Section III describes the random-
ized discretization, and Section IV describes the path delay dis-
cretization. Sections V and VI provide analytical and simulation
results, respectively. Section VII draws the conclusion.
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II. PROBLEM DEFINITION AND EXISTING
DISCRETIZATION APPROACHES

Consider a network G(V, E), where V' is a set of n nodes and
FE is a set of m directed links connecting the nodes. The delay
and the cost of a link (u,v) € E are denoted as d(u,v) and
¢(u, v), respectively. The delay and the cost of a path P are de-
noted as d( P) and ¢(P), respectively. d(P) = Y, »yepd(u,v),
and ¢(P) = Xy vyepc(u,v). Let [(P) be the length (number
of hops) of P, and L be the length of the longest path in the
network.

Given a delay requirement r, P is called a feasible path if
d(P) < r. Given a source node s, let V; be the set of nodes
to which there exist feasible paths from s. For any ¢ € V, the
cheapest feasible path Py ; from s to t is defined as

d(Ps )
¢(Ps,¢) = min {c¢(P)|d(P) < r,V path P from s to ¢}

IN

T

The delay-constrained least-cost routing problem (DCLC) is
to find the cheapest feasible paths from s to all nodes in Vj,
which is NP-complete [19]. However, if the link delays are all
integers and the delay requirement is bounded by an integer
A, the problem can be solved in time O((m + nlogn))) by
Joksch’s dynamic programming algorithm [20] or the extended
Dijkstra’s algorithm [17].

Joksch’s algorithm is described as follows. Vo € V, ¢ €
[0..A], let w(v, i] be a variable storing the cost of the cheapest
path P from s to v with d(P) < i, and 7[v, 7] storing the last
link of the path. Initially, w(v, ] = 0o, Vv # s, and w[s,i] = 0.
m[v,4] = NIL. Assuming that all link delays are positive, the
dynamic programming is given below.

wlv,i] = min {wlv,i — 1], w [u,i — d(u, v)]

+c(u,v),Y(u,v) € E,d(u,v) < i}

Now suppose the link delays are allowed to be zero. We need
to add one more step. Let G, be the subgraph consisting of all
zero-delay links. Foreach i € [0..)], immediately after Joksch’s
algorithm calculates w[v,],Yv € V, Dijkstra’s algorithm is
executed on G, to improve wv, 7] on zero-delay paths [18].

The above polynomially solvable special case with integer
delays points out a heuristic solution for the general NP-com-
plete problem with arbitrary delays. The idea is to discretize
(scale and then round) arbitrary link delays to integers [15],
[17], [18], [21]. There are two existing discretization ap-
proaches, round to ceiling [17] and round to floor [18]. Both
approaches map the delay requirement 7 to a selected integer
A, and then discretize the link delays as follows.

Round to ceiling (RTC): For every link (u,v), the delay
value is divided by r/A. If the result is not an integer, it is
rounded to the nearest larger integer.

0, ) = {MA} (1)

r
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Round to floor (RTF): For every link (u, v), the delay value
is divided by r/A. If the result is not an integer, it is rounded to
the nearest smaller integer.

df (u,v) = {@/\J )

The value of A controls the rounding error (up to r/)\) in-
troduced by discretization. With a larger A, the rounding error
accounts for a smaller portion of the link delay. When X is large
enough and thus the discretization error is small enough, we can
approximate the DCLC problem by a new problem with integer
delays after discretization. The solution to the new problem will
serve as the solution of the original problem. However the com-
putation overhead is directly related to \.

After discretizing the link delays by RTC or RTF, either
Joksch’s algorithm or the extended Dijkstra’s algorithm can
solve the e-approximation of DCLC, which is to find a path P
for every node t € Vj, such that

d(P)
c(P)

(1+e)r
c(Ps.t)

INIA

where ¢ is a small percentage. The delay of the path is allowed to
exceed the requirement by a percentage of no more than ¢, while
the cost should be no more than that of the cheapest feasible
path P, ;. Using RTF, the delay scaling algorithm (DSA) pro-
posed by Goel et al. achieves the best time complexity O((m +
nlogmn)L/e) among all existing algorithms [18].

The discretization error of a link (u, v) is defined as

A(u,v) =d(u,v) — d(u,v) 3)

“

Sl s> 3

A (u,v) = d(u,v) — d (u,v)

The discretization error of a path P is defined as

AC(P)= > Au,v) ®)
(u,v) on P

Al(Py= > Af(u,v) ©)
(u,v) on P

By (1), we know that A°(u,v) < 0 is true for all links (u, v).
Therefore, A¢(P) < 0 is true for all paths P. Similarly, by (4),
A (u,v) > 0and AF(P) > 0 are always true.

III. RANDOMIZED DISCRETIZATION

RTC creates negative rounding errors on links. The error ac-
cumulates along a path. The accumulated error is proportional to
the path length. The larger the topology, the longer a path, the
larger the accumulated error. The same thing is true for RTF,
which has positive rounding errors on links. In order to achieve
e-approximation, the accumulated error on a path cannot be too
large. To reduce the error on a path, the existing algorithms
based on RTC or RTF must reduce the discretization errors on
the links by using a large A value. Given the time complexity

O((m + nlogn))), the computation time is increased in pro-
portion to A.

The insight is that if we can reduce the error introduced by
discretization without using a larger A, we can improve the per-
formance of the algorithm. We develop two new techniques. The
first one is called randomized discretization. It rounds to ceiling
or to floor according to certain probabilities. The idea is for some
links to have positive errors and some links to have negative er-
rors. Positive errors and negative errors cancel out one another
along a path in such a way that the accumulated error is mini-
mized statistically. We will prove that, when the following dis-
cretization approach is used, the mean of the accumulated error
on a path P is zero and the standard deviation is bounded by
r4/1(P) /2. In comparison, the mean of the accumulated error
is —(r/2X)I(P) for RTC and (r/2X)I(P) for RTF.

Round randomly (RR): For every link (u, v), the delay value
is divided by r/A. If the result is not an integer, it is rounded
to the nearest smaller integer or to the nearest larger integer
randomly such that the mean error is zero.

T

d" (u,v)=
L@)\J with prob. pa=1—p1

(N
The discretized delay of a path P is

d'(P)y=> d(u,v) 8)

(u,w)EP

The discretization error of a link (u,v) is

Ar(u,’u) = d(u,v) - dr(u,v)g 9
and the discretization error of a path P is
r
"(P) = A" =d(P)—-d"(P)~-
AT(P)= 7 A(wu)=d(P)=d"(P)y  (10)

(u,v) on P

We design the randomized discretization algorithm (RDA),
which is based on Dijkstra’s algorithm but considers two addi-
tive metrics, delay and cost. It uses RR to discretize the link de-
lays. We will prove that it solves the e-approximation of DCLC.

The pseudo code of RDA is given below. A two-dimensional
array, wlv, 1], Vv € V, ¢ € [0..)], stores the cost of the cheapest
path P from s to v with d"(P) = i. Another two dimensional
array, 7[v, 1], stores the last link of the path. An auxiliary two-di-
mensional array, §[v, 7], keeps track of the minimum discretiza-
tion error on paths whose discretized delays are ¢ from node s
to node v.

Given any value of A, RDA Dijkstra(G, s, A) computes
wlv, 1] and 7[v, i]. For any destination v, the function finds the
cheapest paths at different path delays, d"(P) € [0..)]. Let P?
be the cheapest among these paths. RDA (G, s) iteratively calls
RDA_Dijkstra with an increasing A until the delay of P" is
smaller than (1 + ¢)r for all v.

RDA assumes a preprocessing step that removes all nodes to
which there are no feasible paths from s. This step can be done
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by calling Dijkstra’s algorithm because only one metric (delay)
is considered.

Initialize(V, s, A)
1. for each vertex v € V, each ¢ € [0..A] do
2. wlv,i] := oo, w[v, 1] := NIL, §[v,i] := oo

3. w[s,0] := 0, 8[s,7] := 0

Relax RDA(u, v, 1, A)
4. =i+ d"(u,v)
5. error := 8[u,i] + A" (u,v)
6. if error < 0 then
7. error :=error+1/A
8. =i -1
9. if ¢/ < Xand w(v, '] > wlu, 7] + c(u,v) then
10.  wlv,?] := wlu,i] + c(u,v)
1. 7wv,i] :=u
12.  6[v,4'] := min{é[v, ], error}

RDA Dijkstra(G, s, \)
13. Initialize(V, s, )
14. for i = 0 to A do

15. Q@ :=V

16. while Q # 0 do

17. u := Extract_Min(Q)

18. if wlu,i] = co then

19. break out of the while loop
20. for every adjacent node v of u do
21. Relax RDA(u, v, 1, A)
RDA(G, s)

22. )\ = )\0

23. do

24. A= 2A

25. RDA Dijkstra(G, s, \)

26. while v € V,d(P") > (1 +¢)r,
where PV is the path with min{w]v, 7]||7 € [0..\]}

The correctness of the algorithm is given in the theorem
below. The proof can be found in Appendix L.

Theorem 1: RDA solves the e-approximation of DCLC in
time O((m + nlogn)L/e).

RDA has the same worst-case time complexity as DSA [18],
which uses RTF. The reason is that, in the worst case, it could
happen that d”(u,v) = df(u,v) for all links (u,v), which
makes RR identical to RTF. But such occurrence is extremely
unlikely. More important than the worst-case complexity is the
average-case running time of the algorithm. By its nature, RR is
a statistical approach. It does not improve the performance of the
algorithm for the rare worst case when round-to-floor happens
at all links, but it improves for an average case where round-to-
floor and round-to-ceiling happen probabilistically as specified
in (7). Because positive errors and negative errors cancel out
each other along a path, RDA requires a much smaller A to com-
plete than DSA, which accumulates positive errors on a path.
Consequently, RDA runs much faster than DSA on average,
which will be evident from our analytical and simulation results.
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IV. PATH DELAY DISCRETIZATION

Each unit of discretized delay represents the amount r/\ of
real delay. Due to rounding, each time discretization is per-
formed, a discretization error up to /A is introduced between
the discretized delay and the real delay. The maximum dis-
cretization error of a path is determined by the number of times
that discretization is performed on the path. RTF, RTC, and RR
perform discretization at the link level. Because discretization
is carried out on each link, the maximum error on the path is
linear to the path length. In order to achieve e-approximation,
the accumulated error on a path cannot be too large. There are
two ways to reduce the error. One is to use a larger A, which in-
creases the execution time of an algorithm whose complexity is
linear to \. The other way is to reduce the number of discretiza-
tions performed on the path.

Our second technique to control error is to perform discretiza-
tion on the path level, using the interval partitioning method for
combinatorial approximation [22]. For a path P, ideally, dis-
cretization is performed once as follows.

)= [0

r

Y

Because only one discretization is performed, the maximum dis-
cretization error on any path is bounded by /), independent of
the path length.

Below we design the path discretization algorithm (PDA)
based on the above intuition. The algorithm solves the e-approx-
imation with the same worst-case complexity as RDA. However,
its average execution time is better than RDA according to our
simulations. An auxiliary two-dimensional array, z[v, 7], keeps
track of the minimum delay of paths whose discretized delays
are ¢ from node s to node v.

PDA_Dijkstra is omitted because it is identical to RDA_Dijk-
stra except that it calls Relax_PDA.

Initialize(V, s, A)
1. for each vertex v € V, each i € [0..A] do
2. wlv,i] ;= oo, w[v, 1] := NIL, z[v, ] := oo
3. w[s,0] := 0, z[s,4] := 0

Relax PDA(u,v,4, A)
4. i = |(z[u, 1] + d(u,v)/r)\]
5. ifi" < Xand wlv,i'] > w(u,i] + c(u,v) then
6.  wlv, ] = wlu,i] + c(u,v)
7. wv,i]i=u
8. z[v,?]:= min{z[v, ], z[u, 1] + d(u,v)}

PDA(G, 5)

9. \:= /\0
10. do

1. A :=2)\

12. PDA Dijkstra(G, s, A)
13. while v € V,d(P") > (1 +¢)r,
where PV is the path with min{w][v, #]|7 € [0..\]}

The correctness of the algorithm is given in the theorem
below. The proof can be found in Appendix II.

Theorem 2: PDA solves the e-approximation of DCLC in
time O((m + nlogn)L/e).
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Fig. 1. Comparison of the average discretization errors of RTF, RTC, and RR with respect to different path lengths. The vertical axis is the average of |[Af(P)],
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Fig. 2. Comparison of the average discretization errors of RTF, RTC, and RR with respect to different A values. The vertical axis is the average of |[Af(P)|,

|Ac(P)]|, or |A™(P)| over 10000 sample paths.

V. ANALYSIS

When RTF is used, all links have non-negative discretization
errors with a tight upper bound of r/ A. Hence, the discretization
errors on links of a path P will add up to a non-negative value
with a tight upper bound of (r/A)I(P), which is linear to the
path length. Statistically, the longer the path, the larger the error.
For instance, if A/ (u,v), V(u,v) € P, is uniformly distributed
in [0, (r/))), the mean of Af(P) is (r/2\)I(P).

When RTC is used, all links have non-positive discretiza-
tion errors with a tight lower bound of —(r/\). If A¢(u,v),
V(u,v) € P, is uniformly distributed in (—(r/A), 0], the mean
of A°(P) is —(r/2)N)I(P).

The error of the proposed path-delay discretization is always
non-negative with a tight upper bound of 7/, independent of
the path length.

To study RR, we model d(u,v), V(u,v) € E, as a random
variable. For any path P, A"(P) is also a random variable. As-
suming the delays of different links are independent, we prove
the following theorem in Appendix III.

Theorem 3: Given a path P, the mean of A"(P) is zero and
the standard deviation of A”(P) is at most rv/I(P) /2, regard-
less of the probability distributions of the link delays.

We also perform simulations to compare the discretization er-
rors of different approaches. Fig. 1 shows how the discretization
errors of RTF, RTC and RR grow with the path length. The link
delay is randomly generated, following an exponential distribu-
tion with a mean at 100 ms. The discretization errors of RTF and

RTC grow linearly with the path length,? while the error of RR
grows sublinearly. Fig. 2 shows that, in order to achieve certain
discretization error goal, RR requires much smaller A than RTF
and RTC, which means that algorithms based on RR are likely
to have less execution time.

VI. SIMULATION

A. Simulation Setup

The simulation uses two types of network topologies that are
generated based on the Power-Law model [23] and the Waxman
model [24]. In a Power-Law topology, the degrees of 10% nodes
are one, and the degrees of other nodes follow a power law dis-
tribution, i.e., the frequency fy of a degree is proportional to the
degree d(> 2) raised to the power of a constant O = —2.2.

faocd®

After each node is assigned a degree according to the power
law distribution, a spanning tree is formed among the nodes to
ensure a connected graph. Additional links are inserted to ful-
fill the remaining degrees of every node with the neighbors se-
lected according to probabilities proportional to their respective
unfulfilled degrees. A Waxman topology is formed as follows:

2When the link delay follows an exponential distribution, the average error
caused by RTF is smaller than that caused by RTC. However, when the link
delay follows a uniform distribution, the average error by RTF is the same as
that by RTC.
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the nodes are randomly placed in a one-by-one square, and the

probability of creating a link between node v and node v is
p(u, ’U) x efd(u,v)//i’L

where d(u,v) is the distance between u and v, 3 = 0.6, and L

is the maximum distance between any two nodes. The average

node degree is 3.

The default simulation parameters are: The link delays (costs)
are randomly generated, following the exponential distribution
with a mean of 100. ¢ = 0.1. Ay = 3. Each data point is the
average over 1000 randomly generated routing requests. More
specifically, we randomly generate ten topologies. On each
topology, 100 routing requests are generated with the source
node randomly selected from the topology. We run DSA, RDA,
and PDA to find a cheapest feasible path to every destination
for which a feasible path exists. All simulations were done on
a PC with PIV 2 GHz CPU and 512 Megabytes memory.

The performance metrics used to evaluate the routing algo-
rithms are defined as follows.

avg execution time
_ total execution time for all requests

total number of routing requests
avg cost
_ total cost of returned paths

number of returned paths
success rate
number of returned paths that are feasible

number of returned paths

All algorithms under simulation guarantee that the delay of
any returned path is bounded by (1 + ¢)r.

B. Comparing RDA and PDA With DSA

We compare RDA and PDA with DSA [18], which is the
best known e-approximation algorithm for DCLC. Fig. 3
shows the simulation results on Power-Law topologies with
500 nodes. Both RDA and PDA are much faster than DSA,
with PDA achieving the best execution time. The average costs
of the three algorithms are comparable. The success ratio of
RDA is slightly better than the other two. Because the three
algorithms are close in terms of average cost and success rate in
all simulations, we shall focus on execution time in the sequel.

Fig. 4 compares DSA, RDA, and PDA on Waxman topologies
with 1000 nodes. Both RDA and PDA again outperform DSA
significantly.

Fig. 5 compares the scalability of the three algorithms with
respect to the network size. The performance gap between
RDA/PDA and DSA increases for larger topologies. The
improvement exceeds an order of magnitude for 1000-node
networks.

Fig. 6 compares the algorithms with different € values. The
performance gap between RDA/PDA and DSA increases when
€ is smaller, i.e., the e-approximation is performed at the finer
level.

In summary, the simulation results confirmed our basic idea
that the execution time could be greatly improved by reducing
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Fig. 3. Compare DSA, RDA, and PDA on Power-Law topologies. Both RDA
and PDA run much faster than DSA. They run slower than Dijkstra’s algorithm,
but achieve much smaller average path cost. The success rates of DSA, RDA,
and PDA are comparable, with RDA slightly better.
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Fig. 4. Compare DSA, RDA, and PDA on Waxman topologies. Both RDA and
PDA run much faster than DSA. PDA is slightly better than RDA.

the discretization error, which was achieved very effectively by
RDA and PDA. With 1000 nodes and one constraint, RDA and
PDA computes the constrained shortest paths within 38 mil-
liseconds and 25 milliseconds, respectively, which makes them
practical solutions for routers to compute the QoS routing paths
periodically.



CHEN et al.: TWO TECHNIQUES FOR FAST COMPUTATION OF CONSTRAINED SHORTEST PATHS 111

Power-Law
2 250 — ™ ——————
2 DSA ——
= 200 IRDA ----%--- 4
g PDA -
g 150 .
§ 100 | .
2
g e R *—--;;;—::’f.’if-'f
gﬁ 0 i, Skt M I
<

100 200 300 400 500 600 700 800 900 1000

network size

Waxman
,§ 300 A ! T T T T T T
= DSA ——
E 250 -RDA I ]
o 200 | PDA - -
g
= 150 | -
§
§ 100 -
A I e e
gf) 0 “.—.—n-.a‘—e.‘.::‘:*-_r:_—:? ______ o ¥ :
] 100 200 300 400 500 600 700 800 900 1000

network size

Fig. 5. Scalability comparison. The delay requirement is 1500. Both RDA and
PDA scale much better than DSA, with PDA the best.
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Fig. 6. Compare DSA, RDA, and PDA with respect to different € values. The
delay requirement is 1500, and the network size is 500. Both RDA and PDA run
much faster than DSA. PDA is slightly better than RDA.

C. Comparing RDA and PDA With H_MCOP

We compare RDA and PDA with a fast heuristic algorithm
H_MCOP [14], whose time complexity is the same as that of
Dijkstra’s algorithm. H_MCOP does not solve the e-approxi-
mation of DCLC. Its goal is to use heuristics to greatly reduce
the computation time. To construct a feasible path with low cost
from a particular source node to a particular destination node,
H_MCOP requires building a shortest-path tree from all nodes
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Fig. 7. Compare RDA and PDA with H_MCOP.

to the destination node and a tree from the source node to all
nodes. By the algorithm’s two-tree design, it is efficient in com-
puting a low-cost feasible path from one source to one destina-
tion, but it is not suitable to find low-cost paths from one source
to all destinations. To solve this problem, H_MCOP would have
to repeat n times, one for each destination and with a total time
complexity of O(nm + n*logn). In comparison, RDA and
PDA solve the e-approximation of DCLC, and they find con-
strained shortest paths for all destinations with the same com-
plexity O((m+mnlogn)(L/¢)) as finding a constrained shortest
path for a single destination.

The comparison of RDA/PDA and H_MCOP is made under
two scenarios. The first scenario is to use them as on-line
algorithms that process delay-constrained least-cost unicast
routing requests as they arrive. The results are shown in Fig. 7.
H_MCOP has also a parameter called lambda for a different
purpose, which is however insignificant when there is only
one constraint (for delay). H_MCOP significantly outperforms
RDA/PDA in average execution time, RDA/PDA are better in
terms of average cost and success rate because they relax the
delay requirement by a factor of (1 + ). H_MCOP is a more
efficient on-line algorithm than RDA/PDA.
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TABLE I
EXECUTION TIME (MILLISECONDS) OF FINDING DELAY-CONSTRAINED
LEAST-COST PATHS FROM A SOURCE TO ALL DESTINATIONS ON
POWER-LAW TOPOLOGIES

no. of nodes | RDA | PDA | H.MCOP

100 1.3 0.8 35.2

200 3.1 2.2 159.4
300 5.8 3.8 369.5
400 8.3 6.9 673.4
500 13.3 9.4 1092.2
600 19.6 | 12.6 1615.6
700 253 | 17.0 2285.9
800 32.1 | 20.8 3024.2
900 404 | 26.5 3946.1
1000 482 | 32.0 4964.8

In practice, on-line algorithms are not always desired. When
the request arrival rate is high (major gateways may receive
thousands or tens of thousands of requests every second), even
the time complexity of Dijkstra’s algorithm (executed on a per-
request basis) will overwhelm the router. One typical approach
to solve this problem is to extend a link-state protocol (e.g.,
OSPF) and periodically pre-compute delay-constrained least-
cost paths for all destinations. In this way, the computation load
on a router is independent of the request arrival rate. Under such
scenario, RDA/PDA significantly outperforms H_MCOP by or-
ders of magnitude when the number of nodes is large, as shown
in Table L.

Therefore, H_MCOP is more suitable as an on-line algo-
rithm, while RDA/PDA are more suitable to calculate DCLC
paths from one source to all destinations so that a routing table
for certain QoS service class can be established. In addition,
RDA/PDA are the choice when a constrained multicast tree is
calculated centrally.

VII. CONCLUSION

In this paper, we proposed two techniques, randomized dis-
cretization and path delay discretization, to design fast algo-
rithms for computing constrained shortest paths. While the pre-
vious approaches (RTF and RTC) build up the discretization
error along a path, the new techniques either make the link errors
to cancel out each other along the path or treat the path delay as
a whole for discretization, which results in much smaller errors.
The algorithms based on these techniques run much faster than
the best existing algorithm that solves the e-approximation of
DCLC.

APPENDIX
PROOF OF THEOREM 1

Refer to Section III for the lines of the pseudo code of RDA
(randomized discretization algorithm).

Lemma 1: Tt always holds that 6[u,i] > 0,Vu € V,i €
[0..A].

Proof: 1t holds initially. The value of § changes only
at Line 12. Suppose 6[u,i] > 0 and 6[v,7'] > 0 before
Relax RDA(...) is called. Because —(r/A) < A"(u,v) <
r /A, Lines 6-7 make sure that error > 0. Hence, 6[v,i'] > 0
after Line 12. The lemma remains true after the call. |

Lemma 2: Let P! be the path stored by =[u,i]. It always
holds that d(P}*) > i(r/A) + 6[u, ], Vu € V, i € [0..A].
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Proof: Suppose it holds before Relax RDA(. . .) is called.
P > i(r/A) + 6[u,i]. The new path under consideration is
P + (u,v).

d (P +

(u,v)) =d(P") + d(u,v)

2i§+ﬂmﬂ+d%mm§

= (i+d(w,0)) 5

+ A" (u,v)

+ 6[u, 1] + A" (u,v)

After Lines 4-8, d(P" + (u,v)) > 4'(r/\) + error. After
Line 12, 6[v,4'] < error. Hence, d(P! + (u,v)) = d(P}) >
i'(r/\) + 6[v,']. The lemma holds after the call. d
Lemma 3: Let P! be the path stored by =[u,4]. It always
holds that d(P*) < (¢ + I(P/))(r/A), Yu € V,i € [0..A],
where [(P}*) is the length (hops) of P}*.
Proof: Suppose it holds before Relax RDA(. . .) is called.
PP < (i + I(P*))(r/\). The new path under consideration is
P! + (u,v).

d (P! + (u,v)) =d (P") —I—d(u v)
< (L—I—l(P“)) )\ +d" (u, v) + A"(u,v)
= (i + d" (u,v)) - +Awum+u )§

A
<P+ (P +1) -
A
After Line 12, d(P/* + (u,v)) = d(P}) < (' + (P}))(r/\).
The lemma holds after the call. ]

Theorem 1: RDA solves the e-approximation of DCLC in
time O((m + nlogn)L/e).

Proof: We first prove that if RDA terminates, it solves
the e-approximation of DCLC. Consider an arbitrary node t.
Let P ; be the cheapest feasible path. Assume this is the only
path from s to ¢. Consider Relax_ RDA(...) is called on a link
(u,v) of P;4. After Lines 4-5, i = i + d"(u,v) = i+
(d(u, v)=A" (u, v))(A/r)= i+(d(u, v)—error+6[u, i) (A/r).
After Lines 6-8, because error > 0,4 < i+ é[u,i](N/r) +
d(u,v)(A\/r).By Lemma?2, i+6[u,i|(A/r) < d(P*)(A/r). We
have i’ < (d(P}") + d(u,v))(A/r) < d(Ps)(A/r) < A. Lines
9—12 will be executed. Eventually, P, ; will be stored by 7[t, ]
for some ¢ < A.

Now if there exist other paths from s to ¢ and one of them
replaces P ; during the relaxation, the path must have a smaller
cost than P, ;. Hence, when RDA terminates, let pt be the path
returned by RDA for ¢ with min{w][t,4]|¢ € [0..A]}. We must
have ¢(p") < ¢(Ps ), and d(P") < (1 + €)r because otherwise
RDA will not terminate.

We now prove that RDA terminates in time O((m +
nlogn)L/e). When A > L/e, by Lemma 3, Vt € V,
d(PY) < (A+1(PY))(r/X) < r+1(P*)(er/L) < (1+¢€)r. By
Line 26, RDA terminates.

The time complexity of each execution of
RDA Dijkstra(...) is O((m 4+ mnlogn)\). Since A
doubles each time, the time of the last execution is larger than
the combined time of all previous executions. Therefore, the
complexity of RDA is O((m + nlogn)L/e). O
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APPENDIX
PROOF OF THEOREM 2

Refer to Section IV for the lines of the pseudo code of RDA
(randomized discretization algorithm).

Lemma 4: Let P! be the path stored by =[u,i]. It always
holds that z[u,i] < d(PY),Yu € V,i € [0..A].

The proof is trivial based on Line 8.

Lemma 5: Let P* be the path stored by 7[u,i]. It always
holds that z[u, 3] > i(r/A), Vu € V,i € [0..]].

Proof: Suppose it holds before Relax_PDA(. . .) is called,

namely, z[u,:] > i(r/)\) and z[v,4'] > i'(r/)). The new path
under consideration is P + (u,v).

o | il + d(u,v) |
, <L[u,z’]+2(u7v) J

7

r
z[u, i) + d(u,v) >4

>3 >

After Line 8 is executed, z[v,'] > ¢'(r/\) remains true. O
Lemma 6: Let P be the path stored by 7[u,i]. It always
holds that d(P}) < (i + I(P/))(r/A),Yu € V,i € [0..A],
where [(PY) is the length (hops) of P.
Proof: Suppose it holds before Relax PDA(. . .) is called.
d(P?) < (i + I(P*))(r/A). The new path under consideration

is P* + (u,v).

d (P + (u,v)) =d (P}') + d(u,v)
< (i+U(P) § +d(u,v)
< 2fu,i] + d(u,v) + 1 (PF) 5
T T
< A u o
<i )\+(l(P1 )+1))‘
After Lines 5-8, d( P + (u,v)) = d(PY) < (i +1(P}))(r/ ).
The lemma holds after the call. O
Theorem 2: PDA solves the e-approximation of DCLC in
time O((m + nlogn)L/e).
The proof is similar to that for Theorem 1 in Appendix I.

APPENDIX
PROOF OF THEOREM 3

Theorem 3: Given a path P, the mean of A”(P) is zero and
the standard deviation of A"(P) is at most r+/l(P)/2\, regard-
less of the probability distributions of the link delays.

Proof: Consider an arbitrary link (u,v) on P.

A" (u,v)
T

= d(u,v) — d" (u, v) >

(0.0) " (.0)
d(u,0) = [1%2A] 5 with prob,

— p1= d(1;,v)A _ Ld('l:,q}) /\J

d(u,v) — LM)\J L withprob. po =1 —p;

The mean (or expected value) of A" (u,v) is

E (A" (u,v)) = <d(u,v) - [MAW %) p1

d(u,v) | r
+ <d(U7’U) - {—)\J X) D2
There are two cases.

* Case 1: If (d(u,v)/r)A is an integer, i.e., (d(u,v)/r)A =
[(d(u,v)/r)A] = [(d(u,v)/r)A], then it is clear that
E(A"(u,v)) = 0.

» Case 2: If (d(u,v)/r)\ is not an integer, then

oot )y |,
_ [d(u,v) AW d(u,0) |
E(A"(u,v)) = (d(u v) — [d(i’ v) )\W

=0 (12)

Denote F(A"(u,v)) as p for clarity. Since the probability
density function of d(u,v) is fu.(z), z € [0,400), the vari-
ance of A" (u,v) is

oo

V(Ar(u,v)):/ {(x_EA] g—u)Q-pl

[
“(Bm[22]) - Soctori
When d(u,v) = z, p1 = (z/r)X — [(z/r)A] by (7), and
p2 = [(z/r)A] — (z/r)A by (12). Hence,
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Because y(1 — y),y € [0,1), reaches its maximum value of
1/4 when y = 1/2, we have

r? (1
Vv (Ar(um)) S N2 qu,u(x)dx
0
7.2
T an

Therefore, given an arbitrary probability density function of
d(u,v), we showed that E(A"(u,v)) = 0 and V(A" (u,v)) <
r2/4)2, for every (u,v) on P. The mean and the variance of
A"(P) are

EA"(P)=E| >  A(uv)
(u,v) on P
= Z E(A"(u,v)) =0
(u,v) on P
VAT(P) =V Y A(u,wv)
(u,v) on P
. r?i(P)
= Z V(A (UW))SW
(u,v) on P
The standard deviation of A"(P) is
" rV/I(P)
o (AT(P) = VV (A7 (P)) < V2
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