
Two Techniques for Fast Computation of
Constrained Shortest Paths

Shigang Chen Meongchul Song Sartaj Sahni
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611, USA
{sgchen, msong, sahni}@cise.ufl.edu

Abstract

Computing constrained shortest paths is fundamental to
some important network functions such as QoS routing, which
is to find the cheapest path that satisfies certain constraints.
In particular, finding the cheapest delay-constrained path is
critical for real-time data flows such as voice calls. Because it
is NP-complete, much research has been designing heuristic al-
gorithms that solve the ε-approximation of the problem with an
adjustable accuracy. A common approach is to discretize (i.e.,
scale and round) the link delay or link cost, which transforms
the original problem to a simpler one solvable in polynomial
time. The efficiency of the algorithms directly relates to
the magnitude of the errors introduced during discretization.
In this paper, we propose two techniques that reduce the
discretization errors, which allows faster algorithms to be
designed. Reducing the overhead of the costly computation
for constrained shortest paths is practically important for the
design of a high-throughput QoS router, which is limited by
both processing power and memory space. Our simulations
show that the new algorithms reduce the execution time by
an order of magnitude on power-law topologies with 1000
nodes. The reduction in memory space is similar. When there
are multiple constraints, the improvement is more dramatic.

I. INTRODUCTION

A major obstacle against implementing distributed multi-
media applications (e.g., web broadcasting, video teleconfer-
encing, and remote diagnosis) is the difficulty of ensuring
QoS (Quality of Service) over the Internet. Besides the issues
of packet scheduling, admission control, resource reservation,
and traffic engineering, the QoS routing is a critical element
for QoS provision. It is to find a constrained shortest path
— a network path that satisfies a given set of constraints
(e.g., minimum bandwidth requirement and bounded end-to-
end delay) [1], [2]. For interactive real-time traffic, the delay-
constrained least-cost path has particular importance. It is the
cheapest path whose end-to-end delay is bounded by the delay
requirement of a time-sensitive data flow such as a voice call.
The additional bandwidth requirement, if there is one, can be
easily handled by a pre-processing step that prunes the links
without the required bandwidth from the graph.

A path that satisfies the delay requirement is called a
feasible path. Finding the cheapest (least-cost) feasible path is
NP-complete. There has been considerable work in designing
heuristic solutions for this problem. Let m and n be the
number of links and the number of nodes in the network,
respectively. Juttner et al. applied the Lagrange relaxation
method on the delay-constrained least-cost routing problem
with a time complexity O(m2 log4 m) [4]. There is no theo-
retical bound on how large the cost of the found path will
be, comparing with the optimal path. Korkmaz and Krunz
proposed a heuristic algorithm with the same time complexity
as Dijkstra’s algorithm [5]. However, it does not provide a
theoretical bound on the property of the returned path, nor pro-
vide conditional guarantee in finding a feasible path when one
exists. In addition, because the construction of the algorithm
ties to a particular destination, it is not suitable for computing
constrained paths from one source to all destinations. For this
task, it is slower than the algorithms proposed in this paper
by two orders of magnitude based on our simulations.

Another thread of research in this area is to design poly-
nomial time algorithms that solves the NP-complete problem
with an accuracy that is theoretically bounded. Given a small
constant ε, Hassin’s algorithm [6] has a time complexity of
O(mn

ε log log UB
LB), where UB and LB are the costs of the

fastest path and the cheapest path from the source node to the
destination node, respectively. The algorithm finds a feasible
path if there exists one. The cost of the path is within the cost
of the cheapest feasible path multiplied by (1 + ε). Chen and
Nahstedt solved a similar problem in time O((m+n log n)x),
where x = O(n/ε) in order to achieve the ε-approximation
[7]. Goel et al.’s algorithm [8] has the best-known complexity
of O((m + n log n)L

ε), where L is the length (hops) of the
longest path in the network. It computes a path whose cost is
no more than the cost of the cheapest feasible path, while the
delay of the path is within (1 + ε) of the delay requirement.

One common technique of the above algorithms [6]–[8]
is to discretize the link delay (or link cost). Due to the
discretization, the possible number of different delay values
(or cost values) for a path is reduced, which makes the
problem solvable in polynomial time. The effectiveness of this
technique depends on how much error is introduced during the
discretization. The existing approaches either generate positive
discretization errors for all links or generate negative errors

Globecom 2004 1348
IEEE Communications Society

U.S. Government work not protected by U.S. copyright

for all links. Therefore, the discretization error on a path is
statistically proportional to the path length as the errors on the
links along the path add up. In order to bound the maximum
error, the discretization has to be done at a fine level, which
leads to high execution time of the algorithms.

Given the limited resources and ever-increasing tasks of the
routers, it is practically important to improve the efficiency
of network functions, particularly, the efficiency of expensive
operations such as computing the constrained shortest paths. In
this paper, we propose two techniques, randomized discretiza-
tion and path-delay discretization, which reduce the discretiza-
tion errors and allow faster algorithms to be designed. The ran-
domized discretization cancels out the link errors along a path.
The larger the topology, the greater the error reduction. The
statistic mean of the discretization error on a path P is zero and
the standard deviation is proportional to

√
l(P), where l(P) is

the length of P . The path-delay discretization works on path
delays instead of individual link delays, which eliminates the
problem of error accumulation. Based on these techniques,
we design fast algorithms for the constrained shortest-path
problem. We prove the correctness of the algorithms, and
demonstrate their efficiency by simulations.

II. PROBLEM DEFINITION AND EXISTING

DISCRETIZATION APPROACHES

Consider a network G〈V,E〉, where V is a set of n nodes
and E is a set of m directed links connecting the nodes.
The delay and the cost of a link (u, v) ∈ E are denoted
as d(u, v) and c(u, v), respectively. The delay and the cost
of a path P are denoted as d(P) and c(P), respectively.
d(P) = Σ

(u,v)∈P
d(u, v), and c(P) = Σ

(u,v)∈P
c(u, v). Let l(P)

be the length (number of hops) of P , and L be the length of
the longest path in the network.

Given a delay requirement r, P is called a feasible path if
d(P) ≤ r. Given a source node s, let Vs be the set of nodes
to which there exist feasible paths from s. For any t ∈ Vs, the
cheapest feasible path Ps,t from s to t is defined as

d(Ps,t) ≤ r

c(Ps,t) = min{c(P) | d(P) ≤ r,∀path P from s to t}
The delay-constrained least-cost routing problem (DCLC) is
to find the cheapest feasible paths from s to all nodes in Vs,
which is NP-complete [9]. However, if the link delays are all
integers and the delay requirement is bounded by an integer
λ, the problem can be solved in time O((m + n log n)λ) by
Joksch’s dynamic programming algorithm [10] or the extended
Dijkstra’s algorithm [7].
∀v ∈ V, i ∈ [0..λ], let w[v, i] be a variable storing the cost

of the cheapest path P from s to v with d(P) ≤ i, and π[v, i]
storing the last link of the path. Initially, w[v, i] = ∞,∀v �= s,
and w[s, i] = 0. π[v, i] = NIL. Assuming that all link delays are
positive integers, Joksch’s dynamic programming algorithm
can be described as follows.

w[v, i] = min{w[v, i − 1], w[u, i − d(u, v)] + c(u, v),
∀(u, v) ∈ E, d(u, v) ≤ i}

Goel et al. enhenced the approach by allowing zero link
delays [8]. Let Gz be the subgraph consisting of all zero-
delay links. For each i ∈ [0..λ], immediately after Joksch’s
algorithm calculates w[v, i],∀v ∈ V , Dijkstra’s algorithm is
executed on Gz to improve w[v, i] on zero-delay paths.

The above integer-delay special case points out a heuristic
solution for the general NP-complete problem, which is to
discretize (scale and then round) arbitrary link delays to
integers [6]–[8], [11]. There are two existing discretization
approaches, round to ceiling [7] and round to floor [8]. Both
approaches map the delay requirement r to a selected integer
λ, while the link delays are discretized as follows.

Round to ceiling (RTC): For every link (u, v), the delay
value is divided by r

λ . If the result is not an integer, it is
rounded to the nearest larger integer.

dc(u, v) = �d(u, v)
r

λ	 (1)

Round to floor (RTF): For every link (u, v), the delay
value is divided by r

λ . If the result is not an integer, it is
rounded to the nearest smaller integer.

df (u, v) =
d(u, v)
r

λ� (2)

The discretization error of a link (u, v) is defined as

∆f (u, v) = d(u, v) − df (u, v)
r

λ
(3)

∆c(u, v) = d(u, v) − dc(u, v)
r

λ
(4)

The discretization error of a path P is defined as

∆f (P) =
∑

(u,v) on P

∆f (u, v) (5)

∆c(P) =
∑

(u,v) on P

∆c(u, v) (6)

With either Joksch’s algorithm or Geol’s algorithm, both
RTC and RTF can solve the ε-approximation of DCLC, which
is to find a path P for every node t ∈ Vs, such that

d(P) ≤ (1 + ε)r
c(P) ≤ c(Ps,t)

where ε is a small percentage. The delay of the path is
allowed to exceed the requirement by a percentage of no
more than ε, while the cost should be no more than that of
the cheapest feasible path Ps,t. Using RTF, the delay scaling
algorithm (DSA) proposed by Goel et al. achieves the best
time complexity O((m + n log n)L/ε) among all existing
algorithms [8].

III. RANDOMIZED DISCRETIZATION

RTC creates positive rounding error on every link. The
error accumulates along a path. The larger the topology, the
longer a path, the larger the accumulated error. The same
thing is true for RTF, which has negative rounding error on
every link. The insight is that if we can reduce the error
introduced by discretization, we can improve the performance

Globecom 2004 1349
IEEE Communications Society

U.S. Government work not protected by U.S. copyright

of the algorithm. With a smaller error, the new problem after
discretization is closer to the original problem. The solution
to the new problem will also be closer to the solution of the
original problem.

Our first approach is randomized discretization. It rounds to
ceiling or to floor according to certain probabilities. The idea
is for some links to have positive errors and some links to have
negative errors. Positive errors and negative errors cancel out
one another along a path in such a way that the accumulated
error is minimized statistically.

Round randomly (RR): For every link (u, v), the delay
value is divided by r

λ . If the result is not an integer, it is
rounded to the nearest smaller integer or to the nearest larger
integer randomly such that the mean error is zero.

dr(u, v) =

{
�d(u,v)

r λ	 with prob. p1 = d(u,v)
r λ −
d(u,v)

r λ�

d(u,v)

r λ� with prob. p2 = 1 − p1

(7)

The discretization error of a link (u, v) is

∆r(u, v) = d(u, v) − dr(u, v)
r

λ
(8)

and the discretization error of a path P is

∆r(P) =
∑

(u,v) on P

∆r(u, v) = d(P) − dr(P)
r

λ
(9)

Following the iterative approach of [8], the randomized
discretization algorithm (RDA) is described below. Let λ0 be
a small constant. We use the extended Dijkstra’s shortest path
algorithm (EDSP), which is equivalent to Joksch’s algorithm,
except that w[v, i] stores the cost of the cheapest path P from
s to v with dr(P) = i.

The algorithm assumes a preprocessing step that removes
all nodes to which there are no feasible paths from s.

Initialize(V, s, λ)
1. for each vertex v ∈ V , each i ∈ [0..λ] do
2. w[v, i] := ∞, π[v, i] := NIL, δ[v, i] := ∞
3. w[s, 0] := 0, δ[s, i] := 0

Relax RDA(u, v, i, λ)
4. i′ := i + dr(u, v)
5. error := δ[u, i] + ∆r(u, v)
6. if error < 0 then
7. error := error + r/λ
8. i′ := i′ − 1
9. if i′ ≤ λ and w[v, i′] > w[u, i] + c(u, v) then
10. w[v, i′] := w[u, i] + c(u, v)
11. π[v, i′] := u
12. δ[v, i′] := min{δ[v, i′], error}

EDSP RDA(G, s, λ)
13. Initialize(V, s, λ)
14. for i = 0 to λ do
15. Q := V
16. while Q �= ∅ do
17. u := Extract Min(Q)
18. if w[u, i] = ∞ then
19. break out of the while loop

20. Q := Q − {u}
21. for every adjacent node v of u do
22. Relax RDA(u, v, i, λ)

RDA(G, s)
23. λ := λ0

24. do
25. λ := 2λ
26. EDSP RDA(G, s, λ)
27. while ∃v ∈ V, d(P v) > (1 + ε)r,

where P v is the path with min{w[v, i] | i ∈ [0..λ]}

Due to space limit, we omit all proofs.
Lemma 1: It always holds that δ[u, i] ≥ 0,∀u ∈ V, i ∈

[0..λ].
Lemma 2: Let Pu

i be the path stored by π[u, i]. It always
holds that d(Pu

i) ≥ i r
λ + δ[u, i], ∀u ∈ V, i ∈ [0..λ].

Lemma 3: Let Pu
i be the path stored by π[u, i]. It always

holds that d(Pu
i) ≤ (i + l(Pu

i)) r
λ , ∀u ∈ V, i ∈ [0..λ], where

l(Pu
i) is the length (hops) of Pu

i .
Theorem 1: RDA solves the ε-approaximation of DCLC in

time O((m + n log n)L/ε).
It is easy to see why RDA has the same worst-case

time complexity as DSA. It could happen that dr(u, v) =
df (u, v),∀(u, v) ∈ E, which makes RDA identical to DSA.
However, with much larger probabilities, dr(u, v) follows a
distribution with positive errors and negative errors cancelling
out each other along a long path, which allows RDA to run
much faster than DSA on an average case. For an arbitrary
routing instance, it can be proved that if DSA can terminate
with a λ value, then RDA must be able to terminate with the
same λ value; the opposite statement is not true. RDA usually
terminates with a smaller λ value than DSA.

IV. PATH DELAY DISCRETIZATION

RTF, RTC, and RR all perform discretization at the link
level. Each link carries certain amount of error, which may
accumulate along a path. Another way to control the total
error is to perform discretization on the path level, using the
interval partitioning method for combinatorial approximation
[12]. Given a path P ,

d′(P) =
d(P)
r

λ� (10)

The error is independent of the path length. The path dis-
cretization algorithm (PDA) is shown below. EDSP PDA is
omitted because it is identical to EDSP RDA except that it
calls Relax PDA.

Initialize(V, s, λ)
1. for each vertex v ∈ V , each i ∈ [0..λ] do
2. w[v, i] := ∞, π[v, i] := NIL, z[v, i] := ∞
3. w[s, 0] := 0, z[s, i] := 0

Relax PDA(u, v, i, λ)
4. i′ := � z[u,i]+d(u,v)

r
λ�

5. if i′ ≤ λ and w[v, i′] > w[u, i] + c(u, v) then
6. w[v, i′] := w[u, i] + c(u, v)
7. π[v, i′] := u

Globecom 2004 1350
IEEE Communications Society

U.S. Government work not protected by U.S. copyright

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40

di
sc

re
tiz

at
io

n
er

ro
r

(m
s)

path length (hops)

Comparing RTF, RTC and RR. lambda: 10

RTF
RTC

RR

Fig. 1. Compare the average discretization errors of RTF, RTC and RR with
respect to different path lengths. The vertical axis is the average of |∆f (P)|,
|∆c(P)|, or |∆r(P)| over 10000 sample paths.

8. z[v, i′] := min{z[v, i′], z[u, i] + d(u, v)}

PDA(G, s)
9. λ := λ0

10. do
11. λ := 2λ
12. EDSP PDA(G, s, λ)
13. while ∃v ∈ V, d(P v) > (1 + ε)r,

where P v is the path with min{w[v, i] | i ∈ [0..λ]}

Lemma 4: Let Pu
i be the path stored by π[u, i]. It always

holds that z[u, i] ≤ d(Pu
i), ∀u ∈ V, i ∈ [0..λ].

Lemma 5: Let Pu
i be the path stored by π[u, i]. It always

holds that z[u, i] ≥ i r
λ , ∀u ∈ V, i ∈ [0..λ].

Lemma 6: Let Pu
i be the path stored by π[u, i]. It always

holds that d(Pu
i) ≤ (i + l(Pu

i)) r
λ , ∀u ∈ V, i ∈ [0..λ], where

l(Pu
i) is the length (hops) of Pu

i .
Theorem 2: PDA solves the ε-approaximation of DCLC in

time O((m + n log n)L/ε).
Both RDA and PDA can be easily extended to handle more

than one constraints.

V. ANALYSIS

For RTF, the discretization error of every link is non-
negative with a tight upper bound of r

λ . Hence, the discretiza-
tion errors of links on a path P will add up to a non-negative
value with a tight upper bound of r

λ l(P), which is linear to
the path length. Statistically, the longer the path, the larger
the error. For instance, if ∆f (u, v), ∀(u, v) ∈ P , is uniformly
distributed in [0, r

λ), the mean of ∆f (P) is r
2λ l(P).

For RTC, the discretization error of every link is always
non-positive with a tight lower bound of − r

λ . If ∆c(u, v),
∀(u, v) ∈ P , is uniformly distributed in (− r

λ , 0], the mean of
∆c(P) is − r

2λ l(P).
The error of the path delay discretization is always non-

negative with a tight upper bound of r
λ , independent of the

length of the path.
To study RR, we model d(u, v),∀(u, v) ∈ E, as a random

variable, whose probability density function is fu,v(x), x ∈

[0,+∞). For any path P , ∆r(P) is also a random variable.
Assume the delays of different links are independent.

Theorem 3: Given a path P , the mean of ∆r(P) is zero and

the standard deviation of ∆r(P) is at most
r
√

l(P)

2λ , regardless
of the probability distributions of the link delays.

Fig. 1 shows how the discretization errors of RTF, RTC and
RR grow with the path length. The link delay is randomly
generated, following an exponential distribution with a mean
at 100 ms. As shown in the figure, the discretization errors of
RTF and RTC grow linearly with the path length,1 while the
error of RR grows sublinearly.

VI. SIMULATION

A. Simulation Setup

The simulation uses network topologies generated based on
the Power-Law model [13]. The default simulation parameters
are: The link delays (costs) are randomly generated, following
the exponential distribution with a mean of 100. ε = 0.1.
λ0 = 3. Each data point is the average over 1000 randomly
generated routing requests. More specifically, we randomly
generate ten topologies. On each topology, 100 routing re-
quests are generated with the source node randomly selected
from the topology. We run DSA, RDA, and PDA to find a
cheapest feasible path to every destination for which a feasible
path exists. All simulations were done on a PC with PIV 2GHz
CPU and 512 Megabytes memory.

The performance metrics used to evaluate the routing algo-
rithms are defined as follows.

avg execution time =
total execution time for all requests

total number of routing requests

avg cost =
total cost of returned paths
number of returned paths

success rate =
number of returned paths that are feasible

number of returned paths

All algorithms under simulation guarantee that the delay of
any returned path is bounded by (1 + ε)r.

B. Comparing RDA and PDA with DSA

Fig. 2 compares DSA, RDA, and PDA on Power-Law
topologies with 500 nodes. Both RDA and PDA are much
faster than DSA, with PDA achieving the best execution time.
The average costs of the three algorithms are comparable. The
success ratio of RDA is slightly better than the other two.
Because the three algorithms are close in terms of average
cost and success rate in all simulations, we shall focus on
execution time in the sequel.

Fig. 3 compares the scalability of the three algorithms with
respect to the network size. The gains by RDA and PDA
increase for larger topologies. The improvement exceeds an
order of magnitude for 1000-node networks.

1When the link delay follows an exponential distribution, the average error
caused by RTF is smaller than that caused by RTC. However, when the link
delay follows a uniform distribution, the average error by RTF is the same as
that by RTC.

Globecom 2004 1351
IEEE Communications Society

U.S. Government work not protected by U.S. copyright

0

10

20

30

40

50

60

70

500 1000 1500 2000

av
g

ex
ec

ut
io

n
tim

e
(m

ill
i s

ec
)

delay requirement (r)

Power-Law, network size = 500

DSA
RDA
PDA

Dijkstra

200

250

300

350

400

450

500

550

600

650

700

500 1000 1500 2000

av
g

co
st

delay requirement (r)

PowerLaw, network size = 500

DSA
RDA
PDA

Dijkstra

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

500 1000 1500 2000

su
cc

es
s

ra
te

delay requirement (r)

Power-Law, network size = 500

DSA
RDA
PDA

Fig. 2. Compare DSA, RDA, and PDA on Power-Law topologies

0

50

100

150

200

250

100 200 300 400 500 600 700 800 900 1000

av
g

ex
ec

ut
io

n
tim

e
(m

ill
i s

ec
)

network size

Power-Law, delay requirement = 1500

DSA
RDA
PDA

Fig. 3. Scalability comparison

In summary, the simulations confirmed our prediction that
the execution time could be greatly improved by reducing the
discretization error, which was achieved very effectively by
RDA and PDA. Even with 1000 nodes and one constraint,
RDA and PDA computes the constrained shortest paths within
38 milliseconds and 25 milliseconds, respectively, which
makes them practical solutions for routers to compute the QoS
routing paths periodically.

The last iteration of DSA, RDA, or PDA dominates in
terms of both execution time and memory usage, which are
O((m + n log n)λ) and O(nλ), respectively. Therefore, the
memory usage is proportional to the execution time. The
previous comparison on execution time thus provides a relative
comparison on memory usage as well.

VII. CONCLUSION

We proposed two techniques, randomized discretization and
path delay discretization, to design fast algorithms for the
delay-constrained least-cost routing problem. Our simulations
showed that the new algorithms ran significantly faster than
the best existing algorithm.

REFERENCES

[1] S. Chen and K. Nahrstedt, “An Overview of Quality-of-Service Routing
for the Next Generation High-Speed Networks: Problems and Solutions,”
IEEE Network, Special Issue on Transmission and Distribution of Digital
Video, December 1998.

[2] R. Guerin and A. Orda, “QoS-based Routing in Networks with Inaccu-
rate Information: Theory and Algorithms,” IEEE INFOCOM’97, Japan,
April 1997.

[3] H. F. Salama, D. S. Reeves, and Y. Viniotis, “A Distributed Algorithm for
Delay-Constrained Unicast Routing,” IEEE INFOCOM’1997, pp. 84–91,
April 1997.

[4] A. Juttner, B. Szviatovszki, I. Mecs, and Z. Rajko, “Lagrange Relaxation
Based Method for the QoS Routing Problem,” IEEE INFOCOM’2001,
April 2001.

[5] T. Korkmaz and M. Krunz, “Multi-Constrained Optimal Path Selection,”
IEEE INFOCOM’2001, April 2001.

[6] R. Hassin, “Approximation Schemes for the Restricted Shortest Path
Problem,” Mathematics of Operations Research, vol. 17, pp. 36–42,
1992.

[7] S. Chen and K. Nahrstedt, “On Finding Multi-Constrained Paths,” IEEE
International Conference on Communications (ICC’98), June 1998.

[8] A. Goel, K. G. Ramakrishnan, D. Kataria, and D. Logothetis, “Efficient
Computation of Delay-Sensitive Routes for One Source to All Destina-
tions,” IEEE INFOCOM’2001, April 2001.

[9] M. Garey and D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: W.H. Freeman and Co., 1979.

[10] H. C. Joksch, “The Shortest Route Problem with Constraints,” Journal
of Mathematical Analysis and Applications, vol. 14, pp. 191–197, 1966.

[11] D. Lorenz and D. Raz, “A Simple Efficient Approximation Scheme for
the Restricted Shortest Paths Problem,” Bell Labs Technical Memoran-
dun, 1999.

[12] S. Sahni, “General Techniques for Combinatorial Approximation,” Op-
erations Research, vol. 26, no. 5, 1977.

[13] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-Law Relation-
ships of the Internet Topology,” ACM Proceedings of SIGCOMM ’99,
1999.

Globecom 2004 1352
IEEE Communications Society

U.S. Government work not protected by U.S. copyright

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

