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Abstract—Application-level multicast is a promising alternative to IP multicast due to its independence from the IP routing infrastructure

and its flexibility in constructing the delivery trees. The existing overlay multicast systems either support a single data source or have high

maintenance overhead when multiple sources are allowed. They are inefficient for applications that require any-source multicast with

varied host capacities and dynamic membership. This paper proposes ACOM, an any-source capacity-constrained overlay multicast

system, consisting of three distributed multicast algorithms on top of a non-DHT overlay network with simple structures (random overlay

with a non-DHT ring) that are easy to manage as nodes join and depart. The nodes have different capacities, and they can support

different numbers of direct children during a multicast session. No explicit multicast trees are maintained on top of the overlay. The

distributed execution of the algorithms naturally defines an implicit, roughly balanced, capacity-constrained multicast tree for each

source node. We prove that the system can deliver a multicast message from any source to all nodes in expectedOðlogc nÞ hops, which is

asymptotically optimal, where c is the average node capacity and n is the number of members in a multicast group.

Index Terms—Any-source overlay multicast, peer-to-peer networks, distributed multicast algorithms.

Ç

1 INTRODUCTION

THE deployment of router-based IP multicast has been
slow due to the requirement for global deployment of

multicast-capable routers, the lack of ISP support, and the
state scalability problem caused by a large number of
multicast groups. Application-level multicast becomes a
promising alternative that can be quickly deployed without
the dependency on the router infrastructure [1], [2], [3], [4].
Recent papers [5], [6], [7], [8], [9], [10] studied overlay
multicast from different aspects. However, they are
insufficient in supporting applications that require any-
source multicast with varied host capacities and dynamic
membership.

Many works focus on designing an optimized overlay
multicast tree for a single data source [11], [12], [13], [14].
They are suitable for video or software distribution but not
for distributed games, teleconferencing, virtual classrooms
(discussion sessions), or multimedia chat groups, where
many or all nodes can potentially be the data sources at any
time. A multicast tree that is optimal for one source may be
bad for other sources. On the other hand, one tree per
member will be too costly.

To add to the problems, member hosts may vary widely
in their capacities in terms of upload bandwidth, memory,
and CPU power. Some are able to support a large number
of direct children, but others support few. Furthermore,
members may join and leave at any time, which makes the
maintenance of the overlay network and the multicast trees

a critical issue. Finally, the system should be fully
distributed and scalable to a large Internet group.

The goal of this paper is to study low-maintenance
overlay systems that support distributed applications
requiring any-source capacity-constrained multicast with
dynamic membership. None of the existing systems to be
surveyed in the next section meets all these requirements.

In order to handle any-source multicast in dynamic
groups, novel proposals were made to implement multicast
on top of structured P2P networks [15], [16], [17]. However,
the overhead of maintaining DHT-based multicast overlays
is a major design concern [18]. Moreover, these systems
assume each node has the same number of children. Host
heterogeneity is not addressed. Even though overlay
multicast can be implemented on top of overlay unicast,
they have very different requirements. In overlay unicast,
low-capacity nodes affect only traffic passing through them
and, therefore, they create bottlenecks of limited impact. In
overlay multicast, all traffic will pass all nodes in the group
and the multicast throughput is decided by the node with
the smallest throughput, particularly in the case of reliable
delivery. The strategy of assigning an equal number of
children to each intermediate node is far from optimal. If
the number of children is set too big, the low-capacity
nodes will be overloaded, which slows down the entire
session. If the number of children is set too small, the high-
capacity nodes will be underutilized. CAM-Chord [19], a
multicast extension of Chord, allows nodes to have a
different number of neighbors. It achieves roughly balanced
multicast trees, which helps reduce both delay and delay
jitter, but its maintenance overhead is large for highly
dynamic multicast groups.

This paper proposes ACOM, an any-source capacity-
constrained overlay multicast service, consisting of three
distributed multicast algorithms on top of a non-DHT overlay
network with simple structures (random overlay with a non-
DHT ring) that are easy to manage as nodes join and depart.
At runtime, the distributed execution of a proposed algo-
rithm naturally defines an implicit, roughly balanced,
capacity-constrained multicast tree for delivering a message

1188 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007

. S. Chen is with the Network Center, University of Shanghai for Science
and Technology, Shanghai, 200093, China. E-mail: chensp@usst.edu.cn.

. B. Shi is with the Department of Computer and Information Technology,
FuDan University, Shanghai, 200433, China. E-mail: bshi@fudan.edu.cn.

. S. Chen and Y. Xia are with the Department of Computer and Information
Science and Engineering, University of Florida, Gainesville, FL 32611.
E-mail: {sgchen, yx1}@cise.ufl.edu.

Manuscript received 2 Nov. 2005; revised 7 June 2006; accepted 10 July 2006;
published online 9 Jan. 2007.
Recommended for acceptance by Y. Pan.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0459-1105.
Digital Object Identifier no. 10.1109/TPDS.2007.1037.

0098-5589/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society



from an arbitrary source node. No explicit multicast trees are
built and maintained. In ACOM, the nodes may have
different capacities and the numbers of direct children that
they can support in a multicast session may vary. Each node
keeps a number of random neighbors equal to its capacity. We
prove that the system can deliver a multicast message from
any source to all nodes in an expectedOðlogc nÞhops, which is
asymptotically optimal, where c is the average node capacity
and n is the number of members in a multicast group. In
comparison, CAM-Chord requires Oðlogc nÞ times more
neighbors per node. Our observation is that the DHT-based
overlay structures designed for file lookup are not optimal for
multicast; other, simpler structures should be explored. We
perform extensive simulations to evaluate the performance of
the proposed system, and we provide detailed discussions on
a variety of implementation issues, including how to
maintain the overlay, how to measure the system parameters,
and how to handle low-capacity nodes, proximity, as well as
dynamic capacities.

The rest of the paper is organized as follows: Section 2
discusses the related work. Section 3 defines the problem
and the network model. Section 4 motivates our approach,
gives a basic version of the distributed multicast algorithm,
and provides a thorough analysis. Section 5 discusses the
implementation issues. Section 6 describes two improved
multicast algorithms. Section 7 presents the simulation
results. Section 8 draws the conclusion.

2 RELATED WORK

Shi et al. proved that constructing a minimum-diameter
degree-limited spanning tree is NP-hard [20]. Note that the
terms “degree” and “capacity” are interchangeable in the
context of this paper. Centralized heuristic algorithms were
proposed to balance multicast traffic among multicast
service nodes (MSNs) and to maintain low end-to-end
latency [20], [21]. The algorithms do not address the
dynamic membership problem, i.e., MSN join/departure.

A number of overlay multicast systems have been
proposed to optimize a single-source multicast tree. Bullet
[11] is designed to improve the throughput of data dissemina-
tion from one source to a group of receivers. An overlay tree
rooted at the source is first established. Disjoint data objects
aredeliveredfromthesourcevia thetree todifferent receivers.
The receivers then communicate among themselves to
retrieve the missing objects. The direct communication
between receivers adds more bandwidth to the tree
dissemination. Overlay Multicast Network Infrastructure
(OMNI) [12] dynamically adapts its degree-constrained
multicast tree to minimize the latencies to the entire client
set. Riabov and Zhen Liu proposed a centralized constant-
factor approximation algorithm for the problem of con-
structing a single-source degree-constrained minimum-
delay multicast tree [13]. Yamaguchi et al. described a
distributed algorithm that maintains a degree-constrained
delay-sensitive multicast tree for a dynamic group [14]. The
above algorithms are designed for a single source. They are
not suitable for multisource scenarios (e.g., distributed
games and multimedia chat groups), which are the target
applications of this paper. Building one tree for each
possible source is too costly. Using a single tree for all
sources is also problematic. First, a minimum-delay tree for
one source may not be a minimum-delay tree for other
sources. Second, the single-tree approach concentrates the
traffic on the links of the tree. Third, a single tree may be
partitioned beyond repair for a dynamic group.

Bayeux [15] and Borg [16] were proposed to support
application-level multicast based on Tapestry [22] and
Pastry [23], respectively, and CAN-based Multicast [17]
was implemented on top of CAN [24]. El-Ansary et al.
studied efficient broadcast in a Chord network, and their
approach can be adapted for the purpose of multicast [25].
Castro et al. compares the performance of tree-based and
flooding-based multicast in CAN-style versus Pastry-style
overlay networks [18]. One of the conclusions is that the
overhead of maintaining DHT-based multicast overlays is a
major design concern. With each node having the same
number of children, the above systems do not consider the
heterogeneity in host capacities.

3 MODEL

Consider a multicast group G of n nodes. Each node x 2 G
has a capacity cx, specifying the number of direct child
nodes to which x is willing to forward the received
multicast messages. The value of cx should be made
roughly proportional to the upload bandwidth of node x.
The upload bandwidth is likely to be the bottleneck because
the common cable-modem or DSL links are highly asym-
metric and biased against upload. Moreover, a node x may
have to forward cx copies for each received message.1 In a
heterogeneous environment, the capacities of different
nodes may vary in a wide range. The capacity of the same
node may also change over time (Section 5.6). We want to
construct a multicast service, which meets the capacity
constraints of all nodes, allows frequent membership changes,
and delivers multicast messages from any source to the
group members via a dynamic, balanced multicast tree.

To achieve this goal, an overlay network is established
for each multicast group, which transforms the multicast
problem to a broadcast one within the scope of the overlay.
A single delivery tree for all data sources is not a good idea
because it concentrates traffic on a small number of overlay
links. On the other hand, one tree per source is too costly to
maintain for highly dynamic groups. An ideal approach is
to use “implicit” per-source multicast trees that are not
explicitly built and thus incur no maintenance overhead.
These implicit trees change naturally at zero cost as the
overlay topology changes. Before presenting how this can
be achieved, we shall describe the non-DHT (Distributed
Hash Table) overlay network that we use.

The overlay network consists of two components. One is
an “unrestricted” ring that connects all nodes. The other is a
random graph among the nodes. The unrestricted ring is
fundamentally different from the DHT-based ring found in
many structured P2P networks. In the DHT-based ring,
each node has a specific location, which makes the
maintenance of the ring difficult when a new node joins
the network. In the unrestricted ring, a node can be
anywhere in the ring. The ring maintenance is trivial. Each
node keeps the next node on the ring as one of its neighbors,
called the successor. As long as a new node x knows another
node z that is already in the ring, it informs z to set x as the
successor, and then it sets its own successor to be
z’s previous successor. In addition to the successor, a node
x has cx or more other neighbors randomly selected from
the set of nodes. Details about topology maintenance and
proximity will be discussed later in Section 5. We assume
that x is willing to support both the successor and the
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1. These copies follow different Internet paths to their respective
destinations, which makes the upload link of x the only shared bottleneck.



cx random neighbors as its children in a multicast session. A
TCP connection is established between two neighbors for
data and control communication. When there is no data
communication, TCP transmits keep-alive segments. The
departure of a neighbor is detected when the TCP
connection times out due to the lack of keep-alive segments.

To prevent the ring from being broken after an abrupt node
departure, each node should also know a number of nodes
after the successor down the ring. It also knows the previous
node on the ring, called the predecessor. However, these nodes
will not be used as neighbors for data communication.

In the existing literature, the structured P2P networks all
use DHT, and the unstructured P2P networks do not use
DHT. In this sense, our overlay network belongs to the
unstructured category. On the other hand, it does have (non-
DHT) structures, a ring, and a random network. We may
reclassify P2P networks in three categories, DHT-based
structured, non-DHT structured, and unstructured, with
the second category including all P2P networks that do not
use DHT but have topological structures, and the third
category including all P2P networks that assume arbitrary
topologies.

4 ANY-SOURCE CAPACITY-CONSTRAINED

OVERLAY MULTICAST

4.1 Motivation

Random Walk, Limited Flooding, and Probabilistic Flooding. An
overlay network for multicast is fundamentally different
from an overlay network for file sharing such as Gnutella or
Kazaa. In file-sharing applications, the existing approaches
of random walk, limited flooding, and probabilistic flood-
ing work well when the searched object has many copies
stored in dispersed locations of the network. Searching only
a small portion of the nodes will turn up the object with a
good probability. Missing an existing object with a small
probability is not considered to be a serious problem. For
multicast, the requirement is different. An overlay network
is constructed among the nodes of a multicast group.
Multicast is implemented as broadcast. Every node of the
group is supposed to receive a copy of every message,
which neither random walk nor limited flooding can
guarantee. By forwarding a message (received for the first
time) to neighbors with a certain probability, the approach
of probabilistic flooding also cannot guarantee reaching
every node, even when the overlay topology itself is
connected. Efficient broadcasting in a non-DHT overlay
has been a challenging problem.

Hop Complexity and Communication Complexity. We intro-
duce two performance metrics for overlay multicasting with
nodes having different capacities. Let c be the average node
capacity. Other performance considerations will be dis-
cussed later. The hop complexity is defined as the expected
number of overlay hops it takes for a multicast message to
reach any node. The communication complexity is the
expected number of copies of a multicast message that are
transmitted in order to ensure that the message is delivered
to all nodes. Whenever a node forwards a message to a
neighbor, that counts as one copy. A smaller hop complex-
ity means a more balanced multicast tree and a smaller
average delivery latency. A smaller communication com-
plexity means less network bandwidth consumed. In the
following, we use two multicast schemes to demonstrate a
trade-off between these two complexities. One complexity
can be optimized at the expense of the other.

Full Flooding. In this scheme, each node forwards a
message to its random neighbors when the message is
received for the first time. It can be shown that 1) the hop
complexity is Oðlogc nÞ, which is optimal because flooding
follows the shortest paths, and 2) the communication
complexity is cn, with each node x forwarding cx copies.

Ring Traversal. On the other end of the spectrum, we can
achieve the best communication complexity of n by
forwarding a message along the ring that serially connects
all nodes. However, the hop complexity is n=2, which is the
worst among all schemes.

ACOM. We demonstrate that there are other alternatives
between these two extremes. In particular, we design a
multicast scheme, called ACOM, that realizes a favorable
trade-off between the hop complexity and the communica-
tion complexity. It achieves asymptotically optimal hop
complexity of Oðlogc nÞ at suboptimal communication
complexity of nþOð n

logc n
Þ.

A quick reference to the complexity comparison is given
Table 1.

4.2 Idea

Given the overlay topology defined in Section 3, we want to
design a multicast routine such that

1. it can deliver a message from any source to every
node,

2. its hop complexity is Oðlogc nÞ, which is asymptoti-
cally optimal,

3. its communication complexity is close to n, which is
optimal, and

4. it does so without building and maintaining explicit
multicast trees on top of the overlay.

The idea is to perform two-phase multicast. Phase one is
partial random distribution, and phase two is segmented
ring traversal. Combined, they define implicit per-source
trees that are embedded in the structure of the existing
overlay without additional cost. These implicit trees are
roughly balanced and capacity-constrained. They are
different for each source and, consequently, spread the
workload to as many overlay links as possible. Because we
do not establish any explicit multicast tree, we avoid the
problem (and the overhead) of tree maintenance on top of
the underlying overlay network.

Phase one. It forwards the message via random neighbors
to nodes within K hops from the source, where K is a
system parameter that will be determined later. This phase
delivers the message to a subset of nodes that are randomly
located across the network. They are called phase-one nodes.
An illustration is given by the first two plots of Fig. 1.
Suppose the capacity of the source node s is 3 and the
capacities of nodes i, j, and l are 2, 2, and 3, respectively. In
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phase one, the message is delivered to 10 nodes in a tree
structure, where the number of children of a node is
constrained by its capacity.

Phase two. Each phase-one node will deliver the message
to its “neighborhood.” If we had used the traditional
concept of a neighborhood consisting of nodes within a
certain number of hops away, phase two would become
distributed limited flooding performed by all phase-one
nodes. In order to cover the entire network, the phase-one
nodes would have to flood the messages deep enough in
their neighborhoods, causing overlaps where some nodes
would receive multiple copies of the message. To avoid this
problem, we use the unrestricted ring instead. The phase-
one nodes partition the ring into segments. As illustrated in
the third plot of Fig. 1, each phase-one node is responsible
for one adjacent segment. It forwards the message to its
successor, which further forwards the message to the
successor’s successor, . . . , until the message reaches a node
that has already received the message.

The two phases are completely decentralized with no
global coordination. Together, they deliver a message in a
tree structure, as illustrated in the fourth plot of Fig. 1. The
tree follows the fabric of the underlying overlay network
and does not need maintenance. Phase one restricts flood-
ing in K hops. The problem with full flooding is at its final
stage when most nodes forward the message to neighbors
that have already received the message. The segmented ring
traversal in phase two avoids such collisions while still
ensuring that every node receives a copy of the message.

If the value of K is small enough, the partial random
distribution in phase one is likely to deliver the message to
distinctive random nodes, and the probability of a node
receiving more than one copy will be small, which helps to
reduce the communication complexity. If the value of K is
large enough, there will be enough phase-one nodes to
partition the ring into small segments, which reduces the hop
complexity in phase two. These two conflicting requirements
on K lead to an interesting question. Can we choose a right
value for K such that the hop complexity is asymptotically
optimal, Oðlogc nÞ, and the communication complexity is
close to n? Nodes are allowed to have different numbers of
neighbors, which makes the question more interesting and
more realistic, but also much harder. Below, we first give a
basic version of the algorithm. Its simple structure serves the
purposes of bringing out the idea and alleviating analysis
from optimization details. We then analyze the properties of
the algorithm, address the implementation issues, and,
finally, discuss two improved versions of the algorithm.

4.3 Basic Algorithm (ACOM-1)

A multicast message is denoted as Mðk; idÞ, where M is the
message, k is the TTL field whose initial value is K, and id is
a globally unique identifier, consisting of the source ID (e.g.,
IP address) and a sequence number. To deliver a multicast

message, the source node s begins by forwarding MðK; idÞ
to cs random neighbors. When a node x receives Mðk; idÞ, if
it has not received M with id before and k > 0, it decreases k
by one and forwards the message to cx random neighbors. If
k ¼ 0, it only forwards the message to its successor. The
pseudocode of the algorithm is given in Fig. 2. The key
question is how to determine the value of K. For this
purpose, we introduce some notations below that will also
be used in the analysis.

In phase one, when a node receives a multicast message for
the first time, it forwards the message to its random
neighbors. Collectively, the message is delivered in a tree
structure, called the phase-one tree, formed by random
neighbors. The depth of the tree is K. The source node s is
at level 0. Let qi be the number of nodes at level i. q0 ¼ 1,
q1 ¼ cs, and qi, i 2 ½2::K�, is a random number because the
random neighbors of nodes at level ði� 1Þ may overlap at
level i. The number of nodes at levels zero through i in the
phase-one tree is Qi ¼

Pi
j¼0 qj. The total number of nodes in

the phase-one tree is QK .

All of the leaves of the phase-one tree are at level K. The

number of internal nodes is QK�1. The number of children

of an internal node is bounded by its capacity. Let ci;1, ci;2,

. . . , and ci;qi be the capacities of the nodes at level i. The

summation of the capacities of all internal nodes, plus one

for the source, i.e., 1þ
PK�1

i¼0

Pqi
j¼0 ci;j, gives an upper

bound for the tree size QK . To avoid excessive duplicate
receipts of the same message, our design philosophy is for
phase one to reach only a small fraction of nodes in the
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Fig. 1. Two-phase multicast.

Fig. 2. Basic algorithm (ACOM-1).



multicast group. From those nodes, the message is
delivered in a circular fashion to reach all other nodes in
phase two. Therefore, we want to choose K conservatively
such that the tree size QK is far smaller than n. Define a
system parameter � as follows:

XK
i¼0

ci ¼ �n: ð1Þ

� characterizes the “intended” percentage of nodes in N

that are covered by the phase-one tree. We emphasize that �

is a system parameter that we pick. After we pick the value of

�, the value of K can be calculated from (1). Hence, the

problem of determining an appropriate value for K

becomes the problem of determining an appropriate value

for �. In the following, we show that, if we choose

� ¼ �ð 1
logc n
Þ, the hop complexity will be Oðlogc nÞ and the

communication complexity will be nþOð n
logc n
Þ. How to

measure n and c will be addressed in Section 5.

4.4 Analysis

The main analytical results are given below. The node
capacities are not fixed but, instead, are treated as random
variables, which makes the analysis considerably tougher.
The proofs can be found in the Appendix.

Theorem 1 (Hop Complexity). The expected number of overlay
hops for a multicast message to reach any node is bounded by

logcð�nÞ þ
1

2 1� 1
c

� �
1� �c

c�1

� �
�
:

Corollary 1 (Hop Complexity). If � ¼ �ð 1
logc n
Þ and c � 2, then

the expected number of overlay hops for a multicast message to

reach any node is Oðlogc nÞ.
Theorem 2 (Communication Complexity). The expected

number of copies of a multicast message that are transmitted
is bounded by ð1þ �Þn.

Corollary 2 (Communication Complexity). If � ¼ �ð 1
logc n
Þ,

then the expected number of copies of a multicast message that

are transmitted is bounded by nþOð n
logc n
Þ.

5 IMPLEMENTATION ISSUES

5.1 Maintaining the Ring

Unlike Chord [26], in our overlay network, there is no
restriction on where a node should be placed on the ring.
When a new node x joins the multicast group, it must know
a node z that is already in the group.2 x joins as z’s
successor, and z’s previous successor becomes x’s succes-
sor. In comparison, Chord or most other DHT networks
must perform a lookup in order to determine the specific
location where x can join in the network.

As we discussed in Section 3, each node knows a number
of nodes after the successor down the ring to prevent the
ring from being broken after the successor’s abrupt
departure. This method was used by Chord to keep its
successor ring from being broken, and it was inherited by
other systems [27], [19] that used Chord’s network main-
tenance protocols.

In the rare case that all of those nodes depart abruptly
together, a broadcast is performed to identify the nodes that
do not have predecessors or successors so that they can be
connected to form a ring.

5.2 Establishing Random Neighbors

After a new node x joins the ring, it can ask a multicast
source s to help find its cx random neighbors. When s
multicasts a message, it attaches cx tokens, containing x’s IP
address. Each token, piggybacked in the message, indepen-
dently chooses a random path in the phase-one tree, and
then traverses a ring segment in phase two, during which it
will pick a random node from the segment. More
specifically, the token tentatively picks the first node of
the segment, sets L ¼ 1, and begins the segment traversal.
At each hop, L is increased by one and the token has a
probability of 1=L of replacing the previously picked node
with the current node. At the end of the ring segment, the
node that is picked last is reported to x as a random
neighbor. Because a multicast message is received by every
node in the group, every node will have a chance to be
x’s neighbor. As a low-probability special case in phase one,
when a message carrying a token arrives at a node that has
already received the message, the node discards the
message and reports itself to x.

Without the knowledge of a multicast source, when x
joins as z’s successor, it can ask z’s help to find random
neighbors. z sends out cx tokens. Each token independently
performs a random walk of Oðlogc nÞ hops and then reports
the reached node to x. In total, the tokens travel Oðcx logc nÞ
hops to find cx random neighbors.

When a node loses a random neighbor (that departs), it
adds a new neighbor by random walk.

The neighbor links are directed, which means, even if y is a
random neighbor ofx,xmay not be a random neighbor ofy. In
a random network, each node is expected to serve as a
neighbor for roughly the same number of other nodes. Based
on this observation, we design a simple optimization method
to improve the randomness in neighbor selection. Let Ix be the
set of nodes for which x is a random neighbor. x has the
knowledge of Ix. Periodically x exchanges jIxj with its
neighbors. If jIxj is greater than the smallest jIyj value that x
receives from neighbors y, x will inform a node in Ix to use y
(with the smallest jIyj value) instead of x as a random
neighbor. This will gradually equalize jIxj and jIyj. In
addition, x selects an arbitrary neighbor z and swaps a node
in Ix with a node in Iz. All of the above communication can be
piggybacked in the keep-alive messages between neighbors.

5.3 Estimating n and c

Because a multicast message will reach every node, the
measurement of n can be carried out during the process of
multicast. Periodically, a multicast source piggybacks a flag
in a multicast message. As the message with the flag is
distributed, each node temporarily remembers who the
parent is. The node count information is propagated
backward from the end nodes of the Phase-two ring
segments back to the source node, where the value of n is
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with a number of existing nodes.



determined. The source node then distributes n to all other
nodes, piggybacked in the next multicast message.

To guard against some nodes leaving the network during
the process, when a node x finds the connection to a child
node is broken or it hasn’t received the node count from the
child after a timeout period, it will artificially assign that
child the average node count reported by other children
minus one (due to the departure of that child). x will then
report the total node count from all children plus one to its
parent. To further improve the accuracy, the source may
perform a number of measurements of n in a period of time.
It may also receive the measurements from other sources. It
will take the average measured value of n during that
period as the new estimation of n.

The value of c is measured along with n. Together with the
node count, the information of the average node capacity will
also be propagated backward from the nodes to the source.

5.4 Group Members with Very Small Upload
Bandwidth

A node xwith very small upload bandwidth should only be a
leaf in the implicit multicast trees unless it is the data source. In
order to make sure that we do not select x as an intermediate
node in any phase-one tree, x should not be a regular member
of the overlay network. Instead, it joins as an external member.
xasksa nodeyknownto be in the overlay to perform arandom
walk of Oðlogc nÞ hops to identify a random node z. x then
attempts to join z as an external member. If z cannot supportx,

z forwards x to successorðzÞ. If z admits x as an external
member, zwill forward the received multicast messages to x
and xwill multicast its messages via z. If z leaves the group, x
must rejoin via another node in the overlay.

5.5 Proximity

The purpose of phase one is to spread a message across the
entire network such that each region is likely to receive a copy.
Therefore, random neighbors are desirable. In phase two, the
message travels along ring segments. There is no restriction
on where a node should be located on the ring. Hence,
proximity measures can come into play. We want to reduce
the latency of the overlay links on the ring. One approach uses
virtual coordinates [28]. When a new nodex joins the overlay,
it pings a set of landmark machines. From the delays to the
landmarks, a set of virtual coordinates are calculated. When
cx random walks are performed to identify x’s random
neighbors (Section 5.2), x’s virtual coordinates are carried. As
a random-walk control message travels around, it finds the
node on its path that is closest to x based on the distance
calculated from the virtual coordinates. This node is reported
to x at the end of the random walk. Among all reports, xpicks
the best one to join as its successor.

5.6 Dynamic Capacities

The capacity of a node does not have to be fixed. It may change
as the node’s upload bandwidth changes. According to the
algorithms in Figs. 2, 3, and 4, a node x forwards a multicast
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message to cx selected random neighbors based on the current
value of cx, which may be different for future messages. If cx
becomes greater than the current number m of random
neighbors, then x will only forward the message to the
mneighbors. If cx is consistently greater thanm for a period of
time, x will perform random walks to add more neighbors.

5.7 Terminating Duplicate Copies

Consider a node x forwarding a message to a neighbor y.
Once y receives the message header, it knows whether the
message has already been received based on the message
identifier id. If this is a duplicate copy and the message is
very long, y immediately sends a control message to x and
asks x to stop forwarding, which significantly reduces the
overhead.

6 IMPROVED ALGORITHMS (ACOM-2 AND

ACOM-3)

By the design of the algorithm ACOM-1, a source node first
chooses a value for � in the order of 1

logc n
. For an estimated

phase-one tree size in the order of �n, we calculate K from
(1) as follows:

K ¼ logcð�nðc� 1Þ þ 1Þ � 1: ð2Þ

Because K may not be an integer, the source has to send

either MðbKc; idÞ or MðdKe; idÞ to initiate the execution of

the distributed algorithm ACOM-1 in Fig. 2. The rounding

introduces inaccuracy. If MðbKc; idÞ is used, the estimated

size of the phase-one tree is no longer �n. Instead, it isPbKc
i¼0 c

i, which can be as small as 1
c �n. On the other hand, if

MðdKe; idÞ is used, the estimated size of the phase-one tree

is
PdKe

i¼0 c
i, which can be as large as c�n. To keep the tree size

around �n, the phase-one tree should have levels 0 through

bKc þ 1, but the ðbKc þ 1Þth level should have been only

partially populated. Not all nodes at level ðbKc þ 1Þ will be

included in the tree. Instead, each node at this level only has

a probability p of being included. p is calculated below.

XbKc
i¼0

ci

 !
þ cbKcþ1p ¼ �n;

p ¼
�n� cbKcþ1�1

c�1

cbKcþ1
:

The source s sends out MðbKc; p; idÞ with an additional
field p. When a node x receives a message Mð0; p; idÞ, it
forwards the message to each of its cx random neighbors
with a probability p. This algorithm, called ACOM-2, is
given in Fig. 3.

Alternatively we can use a different concept, called
tickets, to control the phase-one tree size. Instead of using a
k field to carry the depth of the tree, we use a t field to carry
the size of the tree. The message format is Mðt; idÞ, where t
is the number of tickets, each representing the permission of
including one node in the subtree rooted at the receiver of
the message. The source node sends out Mð�n� 1; idÞ.
When a node x receives Mðt; idÞ, it consumes one ticket by
subtracting one from t. It then evenly distributes the
remaining tickets among its cx children at the next level of
the tree. The algorithm is called ACOM-3 and is given in
Fig. 4. Whereas �n gives an upper bound on the expected
size of the phase-one tree in ACOM-1 and ACOM-2
according to Lemma 5, it sets the upper bound on the
actual tree size in ACOM-3.

7 SIMULATION

7.1 Setup

An overlay network is constructed among 10,000 nodes. We
assume the nodes come from all over the Internet, rather than
being clustered in a few places. In [29], Mukherjee found that
the end-to-end packet delay on the Internet can be modeled by
a shifted Gamma distribution, which is a long-tail distribu-
tion. The shape parameter varies from approximately 1.0
during low loads to 6.0 during high loads on the backbone. In
this paper, we set the shape parameter to be 4.0 and the
average packet delay to be 50 ms.3 Because every node can be a
potential data source, we do not maintain one explicit
multicast tree per node. Instead, the multicast is performed
(as broadcast) directly on top of the overlay network,
consisting of a random graph and an optional augmented
ring, as described in Section 3. No central element is available
to coordinate the overlay construction or the multicast
procedure. Nodes have different capacities. When the
average node capacity is set to be c, the node capacities are
taken from ½2; 2ðc� 1Þ� with uniform probabilities. If not
specified otherwise, c ¼ 6by default. We will vary the value of
c in a wide range in some simulations.

We implement seven multicast algorithms and their
variants. The algorithms are flooding, probabilistic flooding,
limited-degree (LD) flooding, ACOM-1 with bKc, ACOM-2,
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Fig. 4. Ticket algorithm (ACOM-3).

3. Changing the average packet delay in the simulation will proportion-
ally scale the curves in the latency comparison, but will not change the
shape of the latency curves.



ACOM-3, and CAM-Chord [19]. Flooding is one of the most
popular broadcast algorithms on the IP networks; reverse
path forwarding is one example. In our case, each node
forwards a copy of a message to all random neighbors when it
receives the message for the first time. In order to control the
overhead, probabilistic flooding forwards a copy of the
message to a random neighbor with a certain probability,
which means not all neighbors of a node will receive the
message forwarded by the node. On the other hand, LD
flooding only forwards a copy of the message to a fixed
number of random neighbors. ACOM-1 with bKc is the
algorithm in Fig. 2 with K calculated from (2). Because
ACOM-2 and ACOM-3 are better algorithms (Section 6), we
only present their results in most cases. Proximity on the ring
is implemented by default. The above six algorithms are all
designed based on a random network. CAM-Chord is
designed based on a more complex DHT network. It has
Oðlogc nÞ times more neighbors per node, which means
multiple times higher overhead for maintaining the network,
but it is more efficient in delivering a multicast message.
ACOM and CAM-Chord represent a trade-off between
cheaper network maintenance and more efficient multi-
casting (Section 7.6).

The performance metrics that we study include

1. the traffic volume for delivering one message, which is
measured by the number of copies that are for-
warded by all nodes,

2. the average length of the delivery paths, which is
measured by the average number of overlay hops
it takes a message to reach a node,

3. the average delivery latency, which is measured by the
average time it takes a message to reach a node,

4. hop distribution, which is the distribution of the
delivery-path lengths for all nodes,

5. delay distribution, which is the distribution of the
latency values for all nodes, and

6. the maintenance overhead, which is the average
number of control messages sent for each node
join/departure.

7.2 Performance Evaluation

The first set of simulations compares the average perfor-
mance of various algorithms in delivering messages. Fig. 5
shows the traffic volumes caused by these algorithms with
respect to the average node capacity. In probabilistic

flooding, the probabilistic for a node to forward a message
to a neighbor is 30 percent. In LD flooding, each node
forwards a message to two neighbors. In ACOM-2 and
ACOM-3, � ¼ 0:25. According to the figure, flooding is the
clear loser because of too much traffic. The traffic volume of
probabilistic flooding is small when the average node
capacity is small. The traffic volume of LD flooding is
modest and insensitive to the node capacity. The problem is
that neither of them ensures that a message will reach all
nodes, as demonstrated in Fig. 6. One way to solve this
problem is to incorporate the segmented ring traversal
proposed in this paper. A ring is augmented to the overlay
network. When a node receives a message for the first time,
it not only forwards the message to random neighbors but
also starts traversing the adjacent ring segment until
reaching a node that has also received the message. But,
the segmented ring traversal comes with a cost; it forwards
nð¼ 10;000Þ copies of the message, which brings up the
traffic volume as shown in Fig. 7. In comparison, the traffic
volumes caused by ACOM-2 and ACOM-3 are both much
smaller.

Fig. 8 compares the average lengths of the delivery paths. It
takes the least number of hops for flooding to reach the nodes.
ACOM-2 performs slightly better than ACOM-3. Both
ACOM-2 and ACOM-3 perform better than LD flooding,
but worse than flooding. Probabilistic flooding performs well
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Fig. 5. Comparison of different algorithms of traffic volume for delivering

one multicast message.

Fig. 6. Number of nodes reached by a multicast message. Not all

algorithms deliver the message to all nodes.

Fig. 7. Comparison on traffic volume for delivering one message. All

algorithms perform segmented ring traversal.



when the average node capacity is large, but that comes with a
large overhead, shown in Fig. 7.

Due to the proximity measure that is implemented on the
ring (Section 5.5), ACOM-2 and ACOM-3 perform closer to
flooding in terms of latency than in terms of hops. As
shown in Fig. 9, proximity has less impact on LD flooding
because it traverses on shorter ring segments than ACOM-2
and ACOM-3. The average latency values of ACOM-2 and
ACOM-3 are slightly worse than that of flooding but much
better than that of LD flooding.

We also perform scalability evaluation with the number
of nodes in the network ranging from 2,000 to 20,000.
Fig. 10 shows that the traffic volume increases linearly
with the network size for all four algorithms under
comparison. Fig. 11 shows that, except for probabilistic
flooding, the average latency values of the algorithms are
not very sensitive to the network size.

7.3 Performance Trade-off in ACOM

The second set of simulations studies the performance of
ACOM with respect to the value of �. Figs. 12, 13, and 14
demonstrate a trade-off in ACOM between communication
complexity (traffic volume) and hop complexity (number of
hops and latency). By increasing �, ACOM can reduce the
latency at the cost of higher traffic volume, and vice versa.

In Fig. 12, a larger � value means a larger phase-one
tree, which increases the traffic volume that constructs the

tree. Note that the traffic volume of phase two is always

nð¼ 10; 000Þ forwarded copies. On the other hand, a larger

phase-one tree means smaller ring segments, which reduces

the number of hops and, thus, latency in phase two, also

causing overall hop/latency decrease (Figs. 13 and 14). The

performance curve of ACOM-1 with bKc is a staircase with

respect to�. That is because changing�does not continuously

change the value of bKc, according to (2).
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Fig. 8. Comparison of the algorithms on average length of delivery

paths.

Fig. 9. Comparison of the algorithms on average latency of delivering a

message.

Fig. 10. Scalability comparison on traffic volume for delivering one

message with respect to network size.

Fig. 11. Comparison of the algorithms on average length of delivery

paths with respect to network size.

Fig. 12. Comparison of ACOM algorithms on traffic volume with respect

to �.



7.4 Delay and Proximity

The third set of simulations studies the impact of proximity.

Our ring is an “unrestricted” ring, where a node can be

located anywhere. This gives us the freedom of moving

nearby nodes adjacent on the ring (Section 5.5), which

reduces the latency of performing the segmented ring

traversal in phase two. Fig. 14 shows that the impact of

proximity is greater when � is smaller. That is because a

smaller value for � means a smaller phase-one tree and,

consequently, larger ring segments in phase two, which

gives proximity more impact.

7.5 Hop and Delay Distributions

The fourth set of simulations studies the hop distribution

and the delay distribution, which are shown in Fig. 13 and

Fig. 14, respectively. Because the average delay of an

overlay link is 50 ms, 20 hops in Fig. 15 corresponds to

1,000 ms in Fig. 16. The value of � is chosen to be 0.25. In

Fig. 15, over 93.2 percent of all nodes receive the message

within twice the average number of hops, which is 9.43 for

ACOM-2 and 8.14 for ACOM-3. The delay distribution is

more concentrated. In Fig. 16, over 96.4 percent of all nodes

receive the message within twice the average latency, which

is 327.17 ms for ACOM-2 and 309.62 ms for ACOM-3.

7.6 Network Maintenance Overhead and ACOM
versus CAM-Chord

The algorithms evaluated so far are all based on random
overlay networks. Because these algorithms use the same
underlying overlay topology in the simulations, the net-
work maintenance overhead is the same for them.

The goal of ACOM is to support any-source capacity-
constrained multicast with dynamic membership. We have
elaborated in the introduction and the related work that most
existing systems do not meet these requirements. CAM-
Chord is an exception, but it is DHT-based and requires
Oðc logc nÞ neighbors per node, which isOðlogc nÞ times more
than ACOM. The fifth set of simulations compares CAM-
Chord and CAM in terms of multicast efficiency and
network maintenance overhead.

Thanks to its more complex topological structure, CAM-
Chord forwards only one copy of a multicast message to each
node. Therefore, it is more efficient in terms of multicasting
(Fig. 17), but less efficient in terms of network maintenance
(Fig. 18). Assume a TCP connection is established between
two neighbors. The maintenance overhead is the summation
of 1) the number of control messages used to identify the
neighbors, 2) the number of control messages for establishing
new TCP connections between neighbors, and 3) the number
of control messages for tearing down the TCP connections
between nodes that cease to be neighbors. The maintenance
overhead of ACOM increases slowly with the network size,
and it is far less than that of CAM-Chord.
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Fig. 13. Comparison of ACOM algorithms on average length of delivery

paths with respect to �.

Fig. 14. Comparison of ACOM algorithms on average latency with and

without implementing proximity.

Fig. 15. Hop distribution.

Fig. 16. Delay distribution.



CAM-Chord and ACOM represent a trade-off between
topology maintenance overhead and multicast overhead.
They provide different options for practitioners to choose
based on the system requirements that may be in favor of
more efficient multicasting or low overhead maintenance.
The average latency values of CAM-Chord and ACOM are
comparable and the simulation results are omitted.

8 CONCLUSION

This paper proposes an any-source overlay multicast service
on top of a random overlay network with an augmented ring.
It is able to deliver a multicast message from any source with a
hop complexity ofOðlogc nÞand a communication complexity
of nþ n

logc n
. Remarkably, this is achieved without maintain-

ing any explicit multicast trees. We provide a rigorous
analysis and perform extensive simulations to evaluate the
performance of the system. We present three distributed
multicast algorithms and address a variety of issues,
including overlay maintenance, parameter measurement,
low-capacity nodes, proximity, and dynamic capacities.

APPENDIX

PROOFS

We first give the upper and lower bounds of QK and then
derive the hop complexity and the communication com-
plexity of the algorithm. The definitions for QK and other
symbols can be found in Section 4.3 and Section 3.

Lemma 1. EðQiÞ �
Pi

j¼0 c
j.

Proof. The number of nodes at level i is bounded by the
summation of the capacities of all nodes at level ði� 1Þ.
Namely,

qi �
Xqi�1

j¼1

ci�1;j:

The expected value of qi, under the condition that there are
qi�1 nodes at level ði� 1Þ, is calculated below. ci�1;j,
j 2 ½1::qi�1�, is a random variable whose expected value is c.

E qi j qi�1ð Þ � E
Xqi�1

j¼1

ci�1;j

 !
¼
Xqi�1

j¼1

E ci�1;j

� �
¼ qi�1c:

Take the expected value on both sides with respect to
qi�1 and, because EðEðqijqi�1ÞÞ ¼ EðqiÞ, we have

EðqiÞ � Eðqi�1Þc:
By recursively applying the above inequality, we have

EðqiÞ � ciEðq0Þ ¼ ci:
It follows that

EðQiÞ ¼ E
Xi
j¼0

qj

 !
�
Xi
j¼0

cj:

ut

Lemma 2. For any set S of conditions, it must be true that

E QijSð Þ � E Qi j Qi �
Xi
j¼0

cj; S

 !
:

Proof. E Qi j Sð Þ is the expected value of Qi among all
possible multicast instances that satisfy S.

E Qi

�� Qi �
Xi
j¼0

cj; S

 !

is the expected value of Qi among all possible multicast

instances that not only satisfy S but alsoQi �
Pi

j¼0 c
j. The

difference between them is that EðQi Qi �
Pi

j¼0 c
j; SÞ

excludes allQi instances that are greater than
Pi

j¼0 c
j. Since

it excludes large values, we certainly have that

E Qi j Sð Þ � E Qi

�� Qi �
Xi
j¼0

cj; S

 !
:

tu
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Fig. 17. CAM-Chord forwards one copy of the multicast message for
each node, which is optimal. In total, ACOM forwards about 24 percent
more copies than necessary due to its random structure. CAM-Chord
achieves the optimality at the cost of Oðlogc nÞ times more neighbors per
node and the more complex DHT-based network structure, which is
harder to repair once it is fractured.

Fig. 18. CAM-Chord has many more neighbors per node than ACOM. Its
overhead, in terms of number of control messages per node join/
departure, is much higher than that of ACOM, which is a structurally-
simpler non-DHT network. Therefore, CAM-Chord and ACOM represent
a trade-off between topology maintenance overhead and multicast
overhead.



Lemma 3. For any set S of conditions that place no artificial

restriction on a node’s capacity, it must be true that

E Qi j Qi �
Xi
j¼0

cj; S

 !
>

c 1� �

CK�i

� �
E Qi�1

�� Qi �
Xi
j¼0

cj; S

 !
:

Proof. LetTi be the subtree that consists of levels 0 through iof

a phase-one tree. The size of Ti isQi. During the formation

of Ti, each node x at levels 0 through ði� 1Þ makes

cx attempts to include its random neighbors in the tree at

the next level. Because there are less than Qi nodes in the

tree, each attempt has a probability of at least ð1� Qi

n Þ of

finding that a random neighbor is outside the tree and thus

can be brought in, which increases the tree size by one.

There are, in total,
Pi�1

l¼0

Pql
j¼1 cl;j attempts at levels 0

through ði� 1Þ. Therefore,

Qi >
Xi�1

l¼0

Xql
j¼1

cl;j 1�Qi

n

� �
: ð4Þ

One may be puzzled by the above inequality among

random variables. The correct interpretation is that the

inequality will hold for any given multicast instance.
Given any set of values, ql, l 2 ½1::i� 1�, which appears

in fq1; . . . ; qijQi �
Pi

j¼0 c
j; Sg, we compute the condi-

tional expected value of Qi.

E Qi j ql; l 2 ½1::i� 1�; Qi �
Xi
j¼0

cj; S

 !

> E

 Xi�1

l¼0

Xql
j¼1

cl;j
1�Qi

n

� � �� ql; l 2 1::i� 1½ �;

Qi �
Xi
j¼0

cj; S

!
by ð4Þ

� E
 Xi�1

l¼0

Xql
j¼1

cl;j 1�
Pi

j¼0 c
j

n

 ! �� ql; l 2 ½1::i� 1�;

Qi �
Xi
j¼0

cj; S

!
by condition Qi �

Xi
j¼0

cj

¼ 1�
Pi

j¼0 c
j

n

 !Xi�1

l¼0

Xql
j¼1

E

 
cl;j
�� ql; l 2 ½1::i� 1�;

Qi �
Xi
j¼0

cj; S

!

¼ c 1�
Pi

j¼0 c
j

n

 ! Xi�1

l¼0

Xql
j¼1

1

 !
by lemma assumption;

S places no restriction on cl;j

¼ c 1�
Pi

j¼0 c
j

n

 !
Qi�1

> c 1� �

cK�i

� �
Qi�1 by ð1Þ:

Basedontheaboveinequality, take theexpectedvalueofQi

over ql, l 2 ½1::i� 1�, under the condition of Qi �
Pi

j¼0 c
j

and S.

E Qi j Qi �
Xi
j¼0

cj; S

 !
>

cð1� �

CK�iÞEðQi�1 j Qi �
Xi
j¼0

cj; SÞ:

tu

Lemma 4. EðQiÞ > ð1� �
cK�i�1ðc�1ÞÞci.

Proof. By Lemma 2,

EðQiÞ � E Qi j Qi �
Xi
j¼0

cj

 !
:

Let S0 ¼ ;. By Lemma 3,

EðQiÞ > c 1� �

CK�i

� �
E Qi�1

�� Qi �
Xi
j¼0

cj; S0

 !
:

Let S1 ¼ S0 þ fQi �
Pi

j¼0 c
jg. By Lemmas 2 and 3,

EðQiÞ

> c 1� �

CK�i

� �
E Qi�1

�� S1

� �

� c 1� �

CK�i

� �
E Qi�1

�� Qi�1 �
Xi�1

j¼0

cj; S1

 !

> c2 1� �

CK�i

� �
1� �

CK�iþ1

� �
E Qi�2

�� Qi�1 �
Xi�1

j¼0

cj; S1

 !
:

Repeat this process by recursively applying Lemmas 2

and 3. We have

EðQiÞ > ci
Yi
j¼1

1� �

cK�j

� �
Eðq0Þ

¼ ci
Yi
j¼1

1� �

cK�j

� �
:

It can be shown by induction that
Qi

j¼1ð1� �
cK�jÞ > 1�

�
cK�i�1ðc�1Þ . Therefore,

EðQiÞ > 1� �

cK�i�1ðc� 1Þ

� �
ci:

tu

Lemma 5. ð1� 1
cÞð1� �c

c�1Þ�n < EðQKÞ � �n.

Proof. By Lemma 1, EðQKÞ �
PK

i¼0 c
i ¼ �n. By Lemma 4,

EðQKÞ > 1� �c

c� 1

� �
cK: ð5Þ

From (1), cK ¼ �nðc�1Þþ1
c > �nðc�1Þ

c . Applying this to (5), we

have
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EðQKÞ > 1� 1

c

� �
1� �c

c� 1

� �
�n:

tu

Theorem 1 (Hop Complexity). The expected number of hops
for a multicast message to reach any node is bounded by

logcð�nÞ þ
1

2ð1� 1
cÞð1� �c

c�1Þ�
:

Proof. By (1),
PK

i¼0 c
i ¼ �n. Hence, cK < �n. K < logcð�nÞ,

which means that phase one terminates in no more than
logcð�nÞ hops. By Lemma 5, after phase one, the ring is
partitioned into more than ð1� 1

cÞð1� �c
c�1Þ�n segments.

Phase two delivers the message in parallel along these
segments. The expected length of a segment is bounded by

n

1� 1
c

� �
1� �c

c�1

� �
�n
¼ 1

1� 1
c

� �
1� �c

c�1

� �
�
:

In phase two, the average number of hops for the
message to reach a node is half of the segment length.
Combining phase one and phase two, the expected
number of hops for a multicast message to reach any
node is bounded by

logcð�nÞ þ
1

2 1� 1
c

� �
1� �c

c�1

� �
�
:

tu

Corollary 1 (Hop Complexity). If � ¼ � 1
logc n

� �
and c � 2,

then the expected number of hops for a multicast message to reach

any node is Oðlogc nÞ.
Proof. By Theorem 1, the upper bound on the expected

number of hops is

logcð�nÞ þ
1

2 1� 1
c

� �
1� �c

c�1

� �
�

¼ logc n�� logc logc nð Þð Þ þ
1

2 1� 1
c

� �
1�� 1

logc n

� �
c
c�1

� �
� 1

logc n

� �
¼ � logc nð Þ þ 1

� 1
logc n

� �
¼ �ðlogc nÞ þ�ðlogc nÞ ¼ �ðlogc nÞ:

tu

Theorem 2 (Communication Complexity). The expected
number of copies of a multicast message that are transmitted
is bounded by ð1þ �Þn.

Proof. The number X of copies that are transmitted in phase
one is equal to the summation of the capacities of all
nodes at levels zero through K � 1.

X ¼
XK�1

i¼0

Xqi
j¼1

ci;j:

X is the summation of QK�1 independent random
variables, where Qk�1 ¼

PK�1
i¼0 qi. QK�1 is itself a random

variable. Given a value of QK�1, the conditional expected
value of X is

E X
�� QK�1

� �
¼
XK�1

i¼0

Xqi
j¼1

E ci;j
� �

¼
XK�1

i¼0

Xqi
j¼1

c ¼ cQK�1:

Take the expected value on both sides with respect to

QK�1. By (3) and (1), we have

EðXÞ ¼ cE QK�1ð Þ � c
XK�1

i¼0

ci < �n:

Phase two sends a fixed number of n copies in the

segmented ring traversal. Therefore, the expected num-

ber of copies that are transmitted for a multicast message

is ð1þ �Þn. tu

Corollary 2 (Communication Complexity). If � ¼ �ð 1
logc n
Þ,

then the expected number of copies of a multicast message that

are transmitted is bounded by nþOð n
logc n
Þ.

Proof. Directly from Theorem 2. tu

ACKNOWLEDGMENTS

This work is in part supported by the National Natural

Science Foundation of China under grant 60573142 and by

Shanghai Leading Academic Discipline Project (Project

Number T0502).

REFERENCES

[1] G. Banavar, M. Chandra, B. Nagarajaro, R. Strom, and C. Sturman,
“An Efficient Multicast Protocol for Content-Based Publish-
Subscribe System,” Proc. Int’l Conf. Distributed Computing Systems
(ICDCS ’98), May 1998.

[2] Y.H. Chu, S. Rao, S. Seshan, and H. Zhang, “A Case for End
System Multicast,” IEEE J. Selected Areas in Comm., vol. 20, no. 8,
Oct. 2002.

[3] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O’Toole,
“Overcast: Reliable Multicasting with an Overlay Network,” Proc.
Symp. Operating Systems Design and Implementation (OSDI ’00), Oct.
2000.

[4] C.K.S. Banerjee and B. Bhattacharjee, “Scalable Application Layer
Multicast,” Proc. ACM SIGCOMM ’02, Aug. 2002.

[5] B. Zhang, S. Jamin, and L. Zhang, “Host Multicast: A Framework
for Delivering Multicast to End Users,” Proc. INFOCOM ’02, June
2002.

[6] G.-I. Kwon and J.W. Byers, “ROMA: Reliable Overlay Multicast
with Loosely Coupled TCP Connections,” Proc. INFOCOM ’04,
Mar. 2004.

[7] P.M. Zhi Li, “Impact of Topology on Overlay Routing Service,”
Proc. INFOCOM ’04, Mar. 2004.

[8] Y. Shavitt and T. Tankel, “On the Curvature of the Internet and Its
Usage for Overlay Construction and Distance Estimation,” Proc.
INFOCOM ’04, Mar. 2004.

[9] F. Baccelli, A. Chaintreau, Z. Liu, A. Riabov, and S. Sahu,
“Scalability of Reliable Group Communication Using Overlays,”
Proc. INFOCOM ’04, Mar. 2004.

[10] V. Pappas, B. Zhang, A. Terzis, and L. Zhang, “Fault-Tolerant
Data Delivery for Multicast Overlay Networks,” Proc. Int’l Conf.
Distributed Computing Systems (ICDCS ’04), Mar. 2004.

[11] J.A. Dejan Kosti, A. Rodriguez, and A. Vahdat, “Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh,” Proc.
Symp. Operating Systems Principles (SOSP ’03), Oct. 2003.

1200 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2007



[12] S. Banerjee, C. Kommareddy, B.B.K. Kar, and S. Khuller,
“Construction of an Efficient Overlay Multicast Infrastructure
for Real-Time Applications,” Proc. INFOCOM ’03, Mar. 2003.

[13] A. Riabov and L.Z. Zhen Liu, “Overlay Multicast Trees of Minimal
Delay,” Proc. Int’l Conf. Distributed Computing Systems (ICDCS ’04),
Mar. 2004.

[14] H. Yamaguchi, A. Hiromori, T. Higashino, and K. Taniguchi, “An
Autonomous and Decentralized Protocol for Delay Sensitive
Overlay Multicast Tree,” Proc. Int’l Conf. Distributed Computing
Systems (ICDCS ’04), Mar. 2004.

[15] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz,
“Bayeux: An Architecture for Scalable and Fault-Tolerant Wide-
Area Data Dissemination,” Proc. 11th Int’l Workshop Network and
Operating System Support for Digital Audio and Video (NOSSDAV
’01), June 2001.

[16] R. Zhang and Y.C. Hu, “Borg: A Hybrid Protocol for Scalable
Application-Level Multicast in Peer-to-Peer Networks,” Proc. Int’l
Workshop Network and Operating System Support for Digital Audio
and Video (NOSSDAV ’03), 2003.

[17] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application-
Level Multicast Using Content-Addressable Networks,” Proc. Int’l
Workshop Networked Group Comm. (NGC ’01), 2001.

[18] M. Castro, M. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer,
H. Wang, and A. Wolman, “An Evaluation of Scalable Applica-
tion-Level Multicast Built Using Peer-to-Peer Overlays,” Proc.
INFOCOM ’03, Apr. 2003.

[19] Z. Zhang, S. Chen, Y. Ling, and R. Chow, “Capacity-Aware
Multicast Algorithms in Heterogeneous Overlay Networks,” IEEE
Trans. Parallel and Distributed Systems, special section on algorithm
design and scheduling techniques (realistic platform models) for
heterogeneous clusters, vol. 17, no. 2, pp. 135-147, Feb. 2006.

[20] S. Shi, J. Turner, and M. Waldvogel, “Dimensioning Server Access
Bandwidth and Multicast Routing in Overlay Networks,” Proc.
Int’l Workshop Network and Operating System Support for Digital
Audio and Video (NOSSDAV ’01), June 2001.

[21] S. Shi and J. Turner, “Routing in Overlay Multicast Networks,”
Proc. INFOCOM ’02, June 2002.

[22] B.Y. Zhao, J.D. Kubiatowicz, and A.D. Joseph, “Tapestry: An
Infrastructure for Fault-Tolerant Wide-Area Location and Rout-
ing,” Univ. of California Berkeley Technical Report UCB/CSD-01-
1141, Apr. 2001.

[23] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer
Systems,” Proc. Middleware ’01, Nov. 2001.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A Scalable Content Addressable Network,” Proc. ACM SIG-
COMM ’01, Aug. 2001.

[25] S. El-Ansary, L.O. Alima, P. Brand, and S. Haridi, “Efficient
Broadcast in Structured P2P Networks,” Proc. Int’l Workshop Peer-
to-Peer Systems (IPTPS ’03), Feb. 2003.

[26] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. ACM SIGCOMM ’01, pp. 149-160, Aug. 2001.

[27] M. Kaashoek and D. Karger, “Koorde: A Simple Degree-Optimal
Distributed Hash Table,” Proc. Second Int’l Workshop Peer-to-Peer
Systems (IPTPS ’03), Feb. 2003.

[28] T.S.E. Ng and H. Zhang, “Predicting Internet Network Distance
with Coordinates-Based Approaches,” Proc. IEEE INFOCOM ’02,
June 2002.

[29] A. Mukherjee, “On the Dynamics and Significance of Low
Frequency Components of Internet Load,” Internetworking: Re-
search and Experience, vol. 5, no. 4, pp. 163-205, 1994.

Shiping Chen received the BS degree in
electrical engineering from JiangXi University
of China in 1984. He received the MS and PhD
degrees in computer science from the Institute
of Computing Technology of the Chinese Acad-
emy of Sciences and Fudan University in 1990
and 2006, respectively. He joined the University
of Shanghai for Science and Technology in 1990
and is currently a full professor in the Computer
Science Department. He is also the director of

the network center of the university. His research interests include peer-
to-peer networks, network communications, and database systems.

Baile Shi joined the Department of Computer and
Information Technology of Fudan University in
1975. He was promoted to an associate and then
a full professor in 1980 and 1985, respectively. He
was the department chair from 1985 to 1996. His
research field is database theories and applica-
tions. He has published more than 70 papers in
the top Chinese journals and written more than
10 textbooks. He has won numerous awards,
including one national science and technology

advancement award, one Guanghua award, nine Shanghai science and
technology advancement awards, and four textbook awards.

Shigang Chen received the BS degree in
computer science from the University of Science
and Technology of China in 1993. He received
the MS and PhD degrees in computer science
from the University of Illinois at Urbana-Cham-
paign in 1996 and 1999, respectively. After
graduation, he worked with Cisco Systems for
three years before joining the University of
Florida as an assistant professor in 2002. His
research interests include network security,

peer-to-peer networks, and sensor networks. He received an IEEE
Communications Society Best Tutorial Paper Award in 1999. He was a
guest editor of the ACM/Baltzer Journal of Wireless Networks (WINET)
and the IEEE Transactions on Vehicle Technologies. He served as a
technical program committee cochair for the Computer and Network
Security Symposium of IEEE IWCCC 2006, a technical program
committe vice chair for IEEE MASS 2005, a vice general chair for
QShine 2005, a technical program committee cochair for QShine 2004,
and a technical program committee member for many conferences
including IEEE ICNP, IEEE INFOCOM, IEEE SANS, IEEE ISCC, IEEE
Globecom, etc.

Ye Xia received the PhD degree from the
University of California, Berkeley, in 2003, the
MS degree in 1995 from Columbia University,
and the BA degree in 1993 from Harvard
University, all in electrical engineering. He
became an assistant professor in the Computer
and Information Science and Engineering de-
partment at the University of Florida in August
2003. Between June 1994 and August 1996, he
was a member of the technical staff at Bell

Laboratories, Lucent Technologies in New Jersey. His research
interests are in the computer networking area, including performance
evaluation of network protocols and algorithms, congestion control,
resource allocation, and load balancing on peer-to-peer networks.
He is also interested in probability theory, stochastic processes, and
queuing theory.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHEN ET AL.: ACOM: ANY-SOURCE CAPACITY-CONSTRAINED OVERLAY MULTICAST IN NON-DHT P2P NETWORKS 1201



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


