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Abstract— Many Internet multicast applications such as tele-
conferencing and remote diagnosis have Quality-of-Service (QoS)
requirements. It is a challenging task to build QoS constrained
multicast trees with high performance, high success ratio, low
overhead, and low system requirements. This paper presents a
new scalable QoS multicast routing protocol (SoMR) that has
very small communication overhead and requires no state outside
the multicast tree. SoMR achieves the favorable tradeoff between
routing performance and overhead by carefully selecting the
network sub-graph in which it conducts the search for a path
that can support the QoS requirement, and by auto-tuning the
selection according to the current network conditions. Its early-
warning mechanism helps to detect and route around the real
bottlenecks in the network, which increases the chance of finding
feasible paths for additive QoS requirements. SoMR minimizes
the system requirements; it relies only on the local state stored at
each router. The routing operations are completely decentralized.

I. INTRODUCTION

Multicast is an efficient way to deliver content to a large
group of receivers by using a tree structure embedded in the
network. Given a QoS requirement such as bounded end-to-
end delay, a feasible multicast tree is one that satisfies the re-
quirement. A feasible tree branch (path) is a path that connects
a new group member to a multicast tree and has the resources
to support the required QoS. The task of QoS multicast routing
is to find feasible tree branches for new group members. A
survey in this research area can be found in [1]. Finding
feasible tree branches is difficult in very large networks such
as the Internet because it is impractical to maintain the global
QoS state at any single node. A brute-force flooding algorithm
that searches all possible paths in the network guarantees to
find a feasible branch if one exists. However, the excessive
overhead of full-scale flooding deems to be impractical for all
but small networks. Thus, for applications that require QoS
guarantees, recent research focuses on distributed multicast
routing algorithms that search a selected subset of the network
to find feasible tree branches for new group members [2], [3],
[4], [5].

A good QoS routing protocol achieves a favorable tradeoff
between the routing overhead and the ability of finding a
feasible path (often quantified as success ratio or success
probability). In addition, a good protocol exhibits or optimizes
other characteristics, such as minimizing the extra state infor-
mation the protocol maintains in the network; decentralizing

the routing operations to spread the workload; and adapting the
routing activity according to the current network condition and
avoiding the area where traffic congestion occurs. QMRP [2]
is a protocol that exhibits a very good tradeoff between
the routing overhead and the success probability. In addi-
tion, QMRP has many of the good merits mentioned above.
However, QMRP suffers from two probloms. Firstly, QMRP
deposits temporary state in the routers for each join request.
It is highly desired that the routers only maintain per group
information but not per-group-per-join information. Secondly,
QMRP was designed for applications with non-additive QoS
requirements such as bandwidth and buffer space. It lacks the
mechanism to handle additive QoS requirements such as delay.
While spanning join [3] and QoSMIC [5] do not have the
above problems, they have higher overhead and lower success
probability [2]. Hence, a further study for a scalable, efficient
QoS multicast routing protocol is under call.

This paper suggests a scalable QoS multicast routing pro-
tocol, SoMR, that shares the adaptive path-branching idea of
QMRP, but eliminates the temporary use of per-group-per-join
routing state. In QMRP, each new member initiates a search
tree, which grows towards the multicast tree. The search tree is
per join state information. In SoMR, the multicast tree grows
towards the new members. The protocol does not require to
store any extra routing state other than the multicast tree itself.
It not only gets rid of per join routing state but also allows the
dynamic aggregation of multiple join requests, where a single
tree branch may grow toward multiple new members. By
eliminating the search tree, SoMR removes the state machine
in QMRP that governs the construction of the search tree, and
therefore simplifies the implementation. SoMR uses a novel
early-warning (EW) mechanism that takes the additive nature
of the delay requirement into account and attempts to identify
the most appropriate point to explore alternative paths in order
to maximize the chance of success.

The rest of the paper is organized as follows. Section II
presents our network model. Section III describes the routing
protocol. Analysis and simulation results are provided in
Section IV and Section V, respectively. Section VI draws the
conclusion.

II. NETWORK MODEL

We make the following assumptions about the network.
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1) There exists an underlying unicast routing protocol
which can deliver a message between any two connected
nodes in the network. A node knows the length (number
of hops) of the unicast routing path to any destination.
Many widely used unicast routing protocols such as RIP
and OSPF provide this information.

2) Every node maintains its up-to-date local state, such
as the delay of each outgoing link, which includes the
processing time, buffering delay, and link propagation
delay. Assume that once resources are committed, such
delay can be assured during the lifetime of data com-
munication. How to make resource reservation [6] and
what packet scheduling algorithms are used [7] are out
of the scope of this paper.

We assume that any new member is able to map a multicast
group address to the root node of the tree on demand possibly
by a query/response Session Directory [8].

We define the notations in the following. Let k and i be two
on-tree nodes. The path in the multicast tree connecting them
is called the in-tree path, denoted by Pk,i. The guaranteed
delay bound of this path is called the in-tree delay, denoted
by delay(Pk,i). Let T be the set of on-tree nodes and r be
the root of the tree. A delay-constrained multicast tree satisfies
that, ∀i ∈ T, delay(Pr,i) ≤ D. We require each on-tree node
i to know delay(Pr,i). In fact, our protocol makes sure that
any node joining the tree will have this value.

We assume that each link (i, j) can ensure certain delay
bound (which might be infinity) for the Class of Service (CoS)
with which the multicast group is associated. This bound of
the link delay is denoted as delay(i, j).

III. A NEW QOS MULTICAST ROUTING PROTOCOL

A. Protocol Description

SoMR consists of two phases. The first phase is similar
to shortest path routing (SPR), in which a JOIN message
is sent from the new member t to the root r along the
unicast routing path. The JOIN message accumulates the path
it traverses. It also accumulates the delay of the path in the
reverse direction. When the JOIN message reaches an on-tree
node k, if the accumulated delay plus the in-tree delay from r
to k does not violate the delay requirement, a feasible tree
branch is detected, which is the traversed unicast path. A
CONSTRUCTION message is then sent back along the path
(source routing) to construct a tree branch connecting the new
member. Since the new member joins the tree successfully, the
second phase will not be activated.

On the other hand, if the delay requirement is violated at
k, the JOIN message continues travelling to the root r. When
the root receives the message, it starts the second phase, which
employs multi-path routing. The root sends GROW messages
to its neighbors. These GROW messages will then travel along
the unicast routing paths towards the new member. As they
travel, they try to construct new tree branches hop by hop along
the way. Each GROW message carries the delay requirement
D. It also accumulates the delay of the constructed tree branch.

Hence, when an intermediate node i receives GROW, it knows
the in-tree delay from r to i, delay(Pr,i).

Below we describe the actions that i will take after receiving
GROW. First, i does an EW (Early Warning) test to see
how likely the proceeding unicast path will satisfy the delay
requirement D. If the EW test passes, routing continues along
the unicast path towards t; Otherwise, i attempts multi-path
routing which may result in multiple downstream paths to be
constructed. Let j be the next hop on the unicast path. The
EW test accepts four parameters, D, delay(Pr,i), delay(i, j),
and l, which is the length of the unicast path from i to the
new member t. The EW test is defined as follows.

if delay(i, j) > (D − delay(Pr,i))/l
then warning
else pass

D − delay(Pr,i) is the remaining slack of the delay re-
quirement that further tree construction is allowed to have.
(D − delay(Pr,i))/l is the ”fair share” of this slack for each
link on the path from i to t. The above EW test states that if the
delay of the link is larger than the fair share, a warning should
be triggered; otherwise, the test is passed. More sophisticated
EW test can be used, but are not considered here. In our
simulation, the above EW test worked well.

If the EW test is passed, which means that the proceeding
path is likely to satisfy the QoS requirement, i adds link (i, j)
into the multicast tree and forwards the GROW message to
the next hop j. If every intermediate node passes the EW test,
a feasible branch is established for the new member.

However, if the EW test warns that the proceeding path may
violate the QoS requirement, extra effort needs to be taken.
Searching multiple downstream paths will increase the chance
of success. Namely, the tree construction needs to branch out.
We call i a branching point. GROW messages are sent to a
subset of adjacent nodes x that satisfy the following QoS test:

if delay(i, x) > D − delay(Pr,i)
then fail
else pass

Apparently, x can be the node j that just failed the EW test, but
x should not be the adjacent node from which the GROW was
previously sent to i. For the purpose of overhead reduction,
we also might select only some of the nodes that pass the QoS
test (see section III-C).

If the QoS test is failed for every adjacent node, a BREAK
message is sent back to trim the partially constructed tree
branch. When a node k receives a BREAK message from a
node i, it first deletes link (k, i) from the multicast tree, and
then if k becomes a leaf node and is not a member of the
multicast group, it will delete itself from the multicast tree
and propagate the BREAK message to its parent node. As
BREAK travels back to r, the new tree branch is deleted.

There is a difference between the EW test and the QoS
test. The EW test tries to make early guess on whether the
proceeding path is likely to satisfy the delay constraint. If
it sees signs of trouble, it triggers branching to improve
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the chance of success. The QoS test is to check if the
delay constraint has already been violated. If it is, no further
construction will be done towards this direction.

At the beginning of the second routing phase, our protocol
requires the root to be a mandatory branching point (an EW
test is not necessary). Our simulations consistently show that
SoMR performs better this way. The reason is that an early
branching widens the search range and gives the subsequent
tree construction more flexibility.

Whenever a GROW message reaches t, a feasible tree
branch is successfully established. t may receive multiple
GROW messages from different branches. In this case, it sends
back BREAK messages to tear down all but the best branch.
t can use the information (delay, bottleneck bandwidth, etc.)
collected by the received GROW messages to determine which
branch should be kept. Therefore, although multiple GROW
messages can grow multiple tree branches temporarily for the
same new member, only one branch will remain and the other
extra ones will be detected and pruned automatically.

Although a single join can result in multiple temporary tree
branches, one important point is that, no matter how many
simultaneous joins there are, each node keeps only a multicast
entry (one per group), and it does not keep any information
about a particular join like the state machine in QMRP. So
the maximum memory consumed by a multicast group on a
router is constant (an entry in the multicast routing table),
independent of the number of simultaneous joins.

B. Breaking loops

As tree branches are constructed towards the new member,
loops may form in the multicast tree. Fig. 1 gives one example.
Before we provide a general solution to the looping problem,
we need to study GROW messages more closely. Consider a
GROW message that constructs a tree branch along a unicast
path P to the new member. Some of the links on P may
be already in the multicast tree while the others are not.
When a GROW message travels along a link that is already
in the multicast tree, we assign a color of blue to the GROW
message. When a GROW message travels along a link that
is not in the multicast tree, we assign green to the message.1

Only green-GROW messages may form loops, because green-
GROW messages join new links to the tree while blue-GROW
messages follow existing tree links.

The sender of a GROW message can determined the color
of the message as follows. When a node i sends a GROW to
an adjacent node j, if j is the parent or a child of i in the
multicast tree, i marks the GROW to be blue; otherwise, it
marks the GROW to be green.

Using the coloring scheme, loop detection is easy. When
an on-tree node receives a green-GROW message, a loop is
formed. In Fig. 1, the on-tree node i detects a loop when it
receives a green-GROW message from b. A BREAK message
is sent back to break the loop, while the GROW message
continue constructing a tree branch towards the new member.

1The green-GROW message will join this link to the multicast tree.

Arriving at i, the GROW message has the in-tree delay of
the new tree branch (r → a → b → i). i knows the in-
tree delay of the old tree branch (r → a → c → i). The
BREAK message can be sent to tear down the new branch, in
which case the in-tree delay in the GROW message needs to
be updated to equal that of the old tree branch. Or the BREAK
message can be sent to break the old branch based on certain
optimization criteria (e.g., the in-tree delay of the new branch
is smaller), and in this case the in-tree delay stored at i needs
to be updated.

C. Optimization

Whenever the EW test generates a warning at an interme-
diate node, the node becomes a branching point and multiple
tree branches may grow out from this node towards the new
member.2 The number of branching points, if not restricted,
can potentially be large, which will result in large routing
overhead. We define two protocol parameters that are used to
restrict the number of constructed tree branches.

Maximum Branching Level (MBL): An easy way to control
the number of branching points is to maintain an assertion:
between the root and any on-tree node, there are at most m
branching points. In other words, the maximum number of
branching points is bounded by

∑m−1
i=0 (d−1)i, where d is the

maximum degree of a node. When d = 2,
∑m−1

i=0 (d−1)i = m;
when d > 2,

∑m−1
i=0 (d − 1)i = (d−1)m−1

d−2 . Such a restricted
version of SoMR is denoted as SoMR-m. This number m is
called the maximum branching level. An illustration of SoMR-
3 is given in Fig. 2. SoMR-m can be easily implemented by
augmenting the GROW messages with a counter.

Directivity can be implemented to discourage tree branches
growing away from the new member t. When a GROW is
sent from i to j, if the distance from j to t is not shorter
than the distance from i to t, the counter for MBL is set to
zero, indicating that there is no branching point allowed for
this GROW message.

Maximum Branching Degree (MBD): A branching point
may have a large number of adjacent links, which can also
cause excessive overhead. SoMR-m can be further argumented
with an additional parameter, maximum branching degree,
which specifies the maximum number of GROW messages that
are allowed to be sent by a branching point. If the maximum
branching degree x is smaller than the node degree minus
one,3 the node selects x outgoing links (based on distance to
the new member or randomly) from which GROW has not
been received, and sends GROW messages out along these
links.

We suggest both MDL and MBD to be implemented. With
MDL = m and MBD = x, the maximum number of branching
points is Σm−1

i=0 xi = xm−1
x−1 . Therefore, the overhead can be

controlled by these two parameters.

2The BREAK messages will cut all but one branch. Hence, there will be
only one tree branch connecting the new member eventually.

3The node should not send GROW to a link from which a GROW message
has been received previously.
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IV. ANALYSIS

Due to the space limitation, we omit the proof of the
following theorems.

Theorem 1: SoMR never forms a persistent loop in the
multicast tree.

Theorem 2: SoMR never partitions the tree.
Theorem 3: SoMR-m terminates in finite time.
Theorem 4: Suppose the unicast routing paths are the short-

est paths in terms of hops. For SoMR-m, a tree branch from
the root to a member is at most 2m hops longer than the
shortest path. If the directivity is implemented, a tree branch
is at most two hop longer than the shortest path.

In the following, we compare the worst case overhead
of three protocols: spanning join, QoSMIC, and SoMR. To
simplify the problem, we consider a network of n uniformly
connected nodes. Let the diameter of the network be 2ω hops.
Assume the number of nodes in the k-neighborhood of a
node, Nk, grows quadratically with k, i.e., Nk = αk2. Thus,
the diameter is given by αω2 = n. When the spanning join
protocol broadcasts in a neighborhood with a radius of k hops,
the number of messages sent is αk2. Hence, in the worst case
the total number of messages sent in consecutive broadcasts
are

ω

Σ
k=1

(αk2) = α
ω(ω + 1)(2ω + 1)

6
≈ n(2ω + 1)

6
∈ O(nω)

The local search of QoSMIC broadcasts in a small neighbor-
hood with a constant radius. The message overhead of this
part can be considered as a constant. Let T be the size of

the multicast tree. The worst case overhead of the tree search
is O(T ). For a dense tree that populates the entire network,
O(T ) = O(n).

Consider SoMR-m with MBD = x. The maximum number
of branching points is xm−1

x−1 (Section III-C). The maximum
number of branches is xxm−1

x−1 . Note that x and m are
both small constants. The length of any branch is bounded
by O(2ω). Therefore, the total number of messages sent is
bounded by O(xxm−1

x−1 2ω) = O(ω) in the worst case. We
shall do a more detailed study on overhead in Section V by
simulation. What the above analysis tells us is that, as the
network size increases, the worst case overhead of spanning
join, QoSMIC, and SoMR increases in the order of nω, n,
and ω, respectively. For a perfect uniformly-connected network
with every node degree being d, ω = O( d/2

√
n). Among the

three, SoMR is the least sensitive to the size of the network,
which means better scalability.

V. SIMULATION

Two performance metrics, success ratio and average mes-
sage overhead, are defined as follows.

success ratio =
number of successful joins

total number of join requests

avg. msg. overhead =
total number of messages sent
total number of join requests

When the message overhead is calculated, sending a message
over a path of l hops is counted as l messages.

Four multicast routing protocols were simulated: SPR,
SoMR-3, QoSMIC, and spanning-joins. The maximum branch-
ing degree of SoMR-3 is 5, i.e., a branching point can send
at most 5 GROW messages to its neighbors. For QoSMIC
[5], the local search and the tree search are implemented as
sequential procedures; the tree search is executed only when
the local search fails. Directivity, local minima, and fractional
choice [5] were also implemented. For spanning joins [3],
we implemented its directed flooding version, called directed
spanning joins [3].

The major advantage of SoMR over QMRP [2] is that SoMR
does not maintain any per-group-per-join state information.
Note that the multicast tree is per-group information and has to
be there. QMRP needs to maintain the temporary search trees,
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Fig. 3. Power-Law topology, 600 nodes, 5% links saturated

which is per-group-per-join information. In this section, we
do not compare SoMR with QMRP because SoMR is mainly
designed for additive QoS requirements such as delay whereas
QMRP was designed for non-additive QoS requirements such
as bandwidth.

Our simulations were conducted on Power-Law network
topologies [9] with 600 nodes. In the simulation, five percents
of all links in the topology are randomly selected as saturated
links, which refuse to accept more QoS traffic due to the lack
of resources. The delays of these links are thus considered to
be infinite.4 When the unicast path has a link that is saturated
for QoS traffic, SPR will fail but the other protocols may still
succeed because they explore more paths than the unicast one.

In each simulation run, the delays of unsaturated links
are randomly generated in the range of [0, 200] units of
time. The root of the tree is randomly selected, and a delay
requirement for the multicast tree is set. Then, the nodes in
the network start to join the tree in a random order; each
node attempts once. Upon completion, the next simulation run
starts. Two hundred simulation runs are conducted on each of
six randomly generated topologies. The average result (success
ratio/message overhead) of all simulation runs yields one data
point in the figure.

Fig. 3 compare the success ratio and the message overhead
of the four routing protocols. The horizontal axis represents
different delay requirements of the multicast trees. The figure
shows that the success ratio of SoMR-3 is better than those of
QoSMIC and spanning joins. Remarkably, SoMR-3 achieves
better success ratio at much lower message overhead, as shown
in the right plot. When the delay requirement is small (i.e.,
100), the spanning joins protocol has very large overhead
(more than 600 messages per join request). That is because
the multicast tree is always small and most join requests result
in large scale flooding. Although the overhead of SoMR-3 is

4Each link typically has a ”quota” on the maximum amount of resources
allowed to be reserved for QoS traffic in order not to starve the best-effort
traffic. Once this quota is reached, the link refuses to accept more QoS traffic.
It is then a saturated link. Note that the delay of a saturated link is infinite
for new QoS traffic but is not infinite for the best-effort traffic. While the
underlying unicast routing algorithm works on the best-effort traffic, it may
select saturated links on its routing paths.

higher than that of SPR, it worth mentioning that for join
requests SPR is able to find feasible paths, SoMR-3 behaves
just like SPR and thus has the same overhead. Only for join
requests SPR is unable to find feasible paths, SoMR-3 sends
more control messages.

VI. CONCLUSION

We presented SoMR, a new QoS multicast routing protocol
that has a favorable tradeoff between the communication
overhead and the success probability. It was shown that the
protocol overhead is lower then previously suggested proto-
cols, spanning join and QoSMIC, while its success probability
is higher in most cases than other protocols (In some cases
QoSMIC has comparable success probability but with higher
overhead). The protocol maintains no state in the network and
works with both additive and non-additive QoS requirements.
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