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Abstract— We propose an Internet-worm early warning sys-
tem, which integrates a set of novel techniques that automatically
detect the concerted scan activity of an on-going worm attack. It
is able to issue warning at the early stage of worm propagation
and to provide necessary information for security analysts to
control the damage. The system monitors a “used” address
space. Unlike the traditional approach that keeps track of SYN
packets, it relies on RESET packets to find the scan sources,
which has greater accuracy and less overhead. The system is
resilient to anti-monitor measures. Particularly, a sophisticated
protocol is designed to distinguish faked scan sources from real
scan sources. We provide an analytical study on the properties
and effectiveness of this early warning system, and back up our
claims by numerical results.

I. INTRODUCTION

A worm exploits software security loopholes (often the
buffer-overflow problem) to compromise vulnerable systems,
which are then used to scan the Internet for more victims.
As more and more machines are compromised, more and
more copies of the worm are working together to reproduce
themselves. An explosive epidemic is therefore developed
across the Internet. Most recent research on Internet worms
concentrates on propagation modeling [1]–[4]. The defense
against worms is still an open problem. Moore et al. has
recently studied the effectiveness of worm containment tech-
nologies (address blacklisting and content filtering) and con-
cluded that such systems must react in a matter of minutes
and interdict nearly all Internet paths in order to be successful
[4]. Williamson proposed to modify the network stack so that
the rate of connection requests to “new” hosts is bounded [5].
The idea is to slow down the worm propagation by bounding
the maximum scanning rate of any worm-infected host. The
main problem is that the effectiveness of this approach requires
universal deployment.

Chen, Gao, and Kwiat proposed a sophisticated worm
propagation model (called AAWP [6]) based on discrete times.
In the same work, the model is applied to monitor, detect, and
defend against the spread of worms under a rather simplified
setup, where a set of unused addresses are monitored and
a connection made to those addresses triggers a worm alert.
There are two problems with this approach. First, as noted in
the paper, the attackers can easily overwhelm such a system
with false positives by sending packets to those addresses.
Second, to achieve good response time, the number of “unused
addresses” has to be large, but addresses are scarce resources
in the IPv4 world, and only few has the privilege of estab-
lishing such a system. A monitor/detection system based on

“used addresses” will be much more attractive. It allows more
institutes or commercial companies to participate in the quest
of defeating Internet worms.

An early warning system is essential in fighting against
natural disasters such hurricanes, floods, wildfires, etc. Even
for less-predictable tornados or earthquakes, a just-in-time
warning can be invaluable in saving lives and limiting dam-
ages. Similarly, in the Internet world, a worm early warning
system is extremely important due to the enormous harm
that a worm can potentially cause [1]. Such a system is
also practically feasible, given the worm’s unique behavioral
characteristics that have been well established, thanks to the
flourish of recent research results in worm modeling.

In this paper, we propose WEW, an Internet-worm early
warning system, which integrates a set of novel techniques
that automatically detect the concerted scan activity of an on-
going worm attack. Our contributions are listed below.
• The proposed worm-detection methods do not require

unused address space. Unlike the traditional approach that
keeps track of TCP SYN, we rely on TCP RESET packets
to find the scan sources, which has greater accuracy and less
overhead.
• We propose an anti-spoof protocol that filters out the false

scan sources and identify the possible worm-infected hosts.
The protocol covers various cases that may happen according
to the TCP protocol. It remains stateless by using cookies,
which makes it robust against denial-of-service (DoS) attacks.
• We provide an analytical study of the system and propose

a new performance metric, system sensitivity, to capture the
responsiveness of an early warning system in reporting an on-
going worm. We also demonstrate the numerical results of the
system to support our claims.

II. INTERNET-WORM EARLY WARNING

SYSTEM

A. Normal Activity vs. Worm Activity

We study the behavial differences between a normal user
and a worm-infected host for common applications such as
web browsing.
• A normal user accesses a server by a domain name. The

domain name is resolved for an IP address via DNS (Domain
Name System). If the domain name cannot be resolved, no
TCP connection will be made. On the other hand, a worm
attempts TCP connections to random addresses no matter
whether these addresses are alive or not, which results in a
large number of connection failures.
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Fig. 1. WEW: Sampling the Internet worm activity

• Comparing with worm-infected hosts that scans hundreds
of addresses per second, normal users connect to different
servers at much slower rates due to manual operations and
reading time.
• A user typically has a favorite server list. Those servers

are visited most often and they are known to be up most of
the time.

In summary, a worm-infected host will generate a persistent
stream of failed connections, often at a high rate, while a
normal user generates failed connections occasionally, at a
much slower rate that does not persist. By observing the
behavioral differences, we can distinguish normal users from
worm-infected hosts.

We focus on worms that spread by randomly scanning the
Internet. Worms that perform targeted scanning [1], which may
infect the Internet in seconds, are beyond the scope of this
paper.

B. Monitoring Scan Sources

The system architecture of our Internet-worm early warning
system (WEW) is shown in Fig. 1. It samples the Internet
scan activities by monitoring a portion of the IPv4 address
space. With the assistance of the gateway, the monitor detects
potential worm outbreak by analyzing the pattern of increase
in scan sources and comparing their similarity.

Let A be the monitored address space, which can be a
used address space. A gateway separates A from the Internet.
The primary task of the monitor station is to profile all scan
sources from the Internet. One naive approach is to keep
track of the inbound TCP SYN packets. If the number of
SYN packets from an external host exceeds a threshold value
within a period time, the host is thought to be scanning.
Although this approach is commonly used in commercial
intrusion-detection systems, it is however neither accurate nor
efficient. The number of TCP connections through a major
router can be hundreds of thousands per second. Monitoring
all TCP SYN incurs significant overhead because it spends
computation/storage resources on all TCP connection attempts,
even though only a small fraction may come from scan
sources.

A better approach is to monitor TCP RESET packets that
indicate failed connection attempts. A connection fails if the
destination host does not exist or the destination port is not
open. An ICMP host-unreachable packet is returned if a SYN
packet is sent to a non-existing host; a TCP RESET packet is
returned if a SYN packet is sent to an existing host with the

targeted port closed. Our experiment shows that random scan
for web servers fails over 99.6% times. The percentage will
be even higher for less popular services. Hence, Monitoring
TCP RESET and ICMP host-unreachable catches a majority
of the scan traffic. If A is densely populated, then monitoring
RESET alone will suffice. We address the problem of sparsely
populated A in Section II-E.

As we argued previously, a normal user does not persistently
generate a large volume of failed connections. Note that
connection failures caused by network congestion or server
downtime do not generate TCP RESET and will not be
counted. Therefore, by monitoring RESET packets, we can
set scan sources apart from normal users.

C. Identifying False Scan Sources

An adversary may defeat the above system by generating
false scan sources to cover its activity. Moreover, if the number
of false sources is overwhelmingly large, it can degrade the
performance of the monitor system or even constitute a denial-
of-server attack.

As an example, a hostile host may cause WEW to generate
a false-positive by simulating a worm attack. It starts with
connections to random destination addresses from a single
forged source address. As time passes, it makes random
connections from more and more forged source addresses with
the number growing exponentially. The system that monitors
failed connections will detect a worm-like increase in scan
sources, and consequently raise a false alarm.

We propose the following solution to the above problem.
Consider a connection attempt from an Internet host to a host
in A. Let addr I and port I be the address and the port of
the Internet host, respectively. Let addr A and port A be
the address and the port of the host in A, respectively. Let
ackNum and seqNum be the acknowledgement number and
the sequence number of a TCP segment, respectively. Let key
be a secret known only by the gateway. To distinguish different
messages of the same type, we use a subscribe number after
the type.

When the gateway receives a TCP RESET1 packet from A
to the Internet, it neither notifies the monitor station imme-
diately nor forwards the packet. Instead, it constructs a TCP
SYN/ACK1 packet with addr I , addr A, port I , port A, and
ackNum copied from the RESET1 packet, with seqNum
being a keyed hash, hash(addr I | addr A | port I | port A,
key), and with the other header fields properly set, where “|”
is the concatenation operator. The keyed hash (using SHA1 or
MD5) serves as the authentication code for the concatenation
of the source/destination address/port. The above constructed
SYN/ACK1 packet is sent out, and the RESET1 packet is
dropped by the gateway. The possible outcomes from the
SYN/ACK1 are listed below. The first three cases assume the
RESET1 packet is caused by a SYN1 packet from the Internet.

Case 1: If the initial SYN1 packet carries a forged source
address that does not exist, then SYN/ACK1 will result in an
ICMP host-unreachable packet being returned.
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Case 2: If the initial SYN1 packet carries a forged source
address that exists, then SYN/ACK1 will result in a RESET2

packet being returned.
Case 3: If the initial SYN1 packet is from a real source, then

SYN/ACK1 will result in an ACK2 packet being returned to
complete the connection.

Case 4: If the dropped RESET1 was not in response to a
SYN packet, then SYN/ACK1 is not expected by its receiver
and thus a RESET2 packet will be returned.

For Case 3, the gateway should verify the keyed hash,
which is now in the acknowledge field. If the verification
is successful, it resets the connection and reports a failed-
connection attempt to the monitor station. This is the only
case that indicates a possible real scan source.

For Case 1, the result is the same as if RESET1 was
forwarded (instead of being dropped). The gateway does not
do anything. The gateway cannot distinguish Case 2 and
Case 4 because it receives the same RESET2 packet in both
cases. Hence it treats them in the same way by sending back
a RESET3 after verifying the keyed hash. Most fields in
RESET3 can be copied from RESET2.

The hash verification is performed as follows.
For each ACK or RESET packet received from
the Internet, the gateway checks if ackNum equals
hash(srcAddr | dstAddr | srcPort | dstPort, key), where
srcAddr, dstAddr, srcPort, and dstPort are the source
address, destination address, source port, and destination port
of the packet, respectively. The chance for an arbitrary packet
to satisfy this condition is 1/232, which is negligibly small.
Even if that happens, there is no serious damage other than
that the connection to be completed by ACK is mistakenly
terminated.

If the hash verification fails, i.e., ackNum �= hash
(srcAddr | dstAddr | srcPort | dstPort, key), then the
packet is forwarded normally. Otherwise, the packet must be
the response to a previously constructed SYN/ACK1. The
gateway does one of the following.

1. If the packet is an ACK2 (Case 3), the gateway replies
back a RESET3 to terminate the connection, reports a failed-
connection attempt to the monitor station, and drops the ACK2.

2. If the packet is a RESET2 (Case 2 or 4), the gateway
replies back a RESET3 and drops the RESET2.

The handling of the four cases is illustrated in Fig. 2.

D. Blocking Persistent Scan Sources and Issuing Alert

Based on the connection-failure reports from the gateway,
the monitor station generates a list of possible scan sources,
denoted as Ω, consisting of external addresses x that have
attempted failed connections to more than k addresses in A
during the day, where k is a system parameter defined by a
pre-configured policy. Further connections initiated from the
addresses in Ω will be blocked by the gateway.

Some external hosts may temporarily behave abnormally,
resembling a scan source. In order to release these addresses
that are mistakenly placed into the scan list, each address in
the list is associated with a timer, which is reset to T at the

beginning of each day. The address is removed from the list
after timeout. Every time an address is re-inserted into the list,
its timer is doubled. Therefore, normal users with temporary
abnormal behavior will be removed from the blocking list,
while persistent scanning sources will be punished.

For scan sources in Ω, some of their connection attempts
will be directed to a honeypot, which completes the connec-
tions and records the session data for analysis. An increasing
number of scan sources sharing a similar traffic signature is
an indication of worm activity. WEW generates a worm alert
when the number of similar scan sources reaches a threhold
n0. We want to stress that, although widespread scan activity is
not necessarily due to worm attack, a large-scale coordinated
scan effort warrants a checkout. The progressive increase in
the scan sources points towards a likely worm attack.

E. Sparsely Populated Address Space

WEW works better in a densely populated address space.
If most of Ax is empty, then ICMP host-unreachable packets,
instead of TCP RESET, are replied for most failed connection
attempts. ICMP host-unreachable packets do not carry the
information that is needed to create SYN/ACK1. To solve
this problem, the gateway must be configured with a list
of unused address prefixes, which is matched against the
incoming SYN packets. If there is a match, the SYN is dropped
and SYN/ACK1 is created.

III. ANALYSIS

A. Basics

The worm propagation can be roughly characterized by the
classical simple epidemic model [1], [4], [7], [8].

di(t)
d(t)

= r
V

N
i(t)(1 − i(t)) (1)

where i(t) is the percentage of vulnerable hosts that are
infected with respect to time t, r is the rate at which an
infected host scans the address space, N is the size of the
address space, and V is the total number of vulnerable hosts.
Suppose the worm starts with one infected host at t = 0.
Solving (1), the number of hosts that are infected at time t is

n(t) = V i(t) = V
er V

N (t−c)

1 + er V
N (t−c)

(2)

where c = − N
r·V ln 1

V −1 . The time it takes for n vulnerable
hosts to be infected is

t(n) =
N

r · V ln
n

V − n
+ c (3)

B. System Sensitivity

Recall that WEW issues a worm alert when it detects n0

similar scan sources, where n0 is a system parameter. A
performance metric, called system sensitivity, is defined as nw

n0
,

where nw is the actual number of infected hosts at the time
when the alert is issued. It is likely that nw �= n0 because there
may be some infected hosts that have not yet been detected
by WEW at the time of alert. The new metric indicates how
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fast the system responds when the worm-like activities cross
the “red” line and measures the gap between the number of
actual infected hosts and the targeted goal (n0). Ideally, we
want the system sensitivity to be close to one.

Suppose A is a small fraction of the IPv4 address space.
Blocking scan sources by the gateway of WEW has negligible
global impact on the worm propagation. The time it takes for
the worm to infect n0 hosts is therefore

t(n0) =
N

r · V ln
n0

V − n0
+ c

Among the n0 hosts, let x be the last to be infected. Let ∆t
be the time between x being infected and x being inserted by
WEW into the scan list. x attempts r∆t random connections
during ∆t. Among those connections, r∆t A

N are made to
A. Let α be the percentage of connections that fail and are
counted by the gateway of A. As we discussed previously, α
is likely to be large if A is densely populated or the gateway
catches SYNs that are sent to unreachable addresses. The
gateway inserts x into the scan list if αr∆t A

N = k. We have

∆t =
kN

αrA

x is detected by WEW at time t(n0) + ∆t. The n0 − 1 hosts
that are infected before x must be detected before this time.
Therefore, the response time for WEW to detect n0 similar
scan sources and issue an alert for an on-going worm is about

t(n0) + ∆t.

t(n0) + ∆t =
N

r · V ln
n0

V − n0
− N

r · V ln
1

V − 1
+

kN

αrA

=
N

r · V ln
n0(V − 1)
V − n0

+
kN

αrA

At the time when the alert is issued, the number of infected
hosts is

nw = n(t(n0) + ∆t) = V
er V

N (t(n0)+∆t−c)

1 + er V
N (t(n0)+∆t−c)

= V
n0e

kV
αA

V − n0 + n0e
kV
αA

≤ n0e
kV
αA

(4)

Therefore, we have an upper bound on system sensitivity.

nw

n0
≤ e

kV
αA

A nice property is that the system sensitivity is independent
of the scan rate of a worm. A sufficient condition to achieve
a target sensitivity of γ is

A ≤ kV

α ln γ

For example, suppose V = 106, k = 10, α = 0.6, and n0 =
300. If the size of A is 1.52 × 107 < 224, WEW achieves a
system sensitivity of at least 3.
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Fig. 3. system sensitivity

IV. SIMULATION RESULTS

This section presents the preliminary simulation results. The
default simulation parameters are V = 106, N = 232, A =
224, k = 10, and α = 0.8. The default parameters are always
assumed unless the figures indicate otherwise.

Fig. 3 presents the system sensitivity with respect to n0 and
A. The left plot shows that the system sensitivity changes little
with respect to n0. For example, with A = 224, the sensitivity
is around 2.1, descreasing only slightly as n0 increases. On
the other hand, it increases significantly when A decreases.
Hence, WEW works better when it monitors a larger address
space. The right plot shows that n0 affects nw almost linearly.
Even if A is relatively small and thus the sensitivity value is
big, as long as n0 is small, then nw will still be small and
account for only a small percentage of V . For example, if
A = 222 and n0 = 300, nw accounts for just 0.4 percent of
V .

Fig. 4 shows the time it takes WEW to report an on-going
worm attack, with respect to the worm scanning rate r and n0.
For comparison, we also plot t(500, 000), the time it takes the
worm to infect half of all vulnerable hosts. The propagation of
the code-red worm [9] roughly corresponds to the data point
at r = 65/min. The figure shows that, when n0 = 300, it
takes less than half of t(500, 000) to issue an alert. The code
red took about 9 hours to infect 250,000 hosts. The different
between t(250, 000) and t(500, 000) is rather small. Hence,
based on the figure, WEW would have given a warning at
the 4th hour when only less than 1000 hosts are infected,
and it would have also given a list that contains many of
those infected hosts. When an automated (or semi-automated)
defense system is introduced in the future, WEW can be a
valuable component that activates the defense measures and
provides information about the attack traffic and the hosts that
need to be disinfected.

V. CONCLUSION

This paper proposes an Internet-worm early warning system
(WEW), designed as a component for a future worm defense
system. It issues a warning about an on-going worm attack
before it is fully propagated across the Internet.
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