
Distributed Quality-of-Service Routing in High-Speed Networks Based on

Selective Probing �

Shigang Chen, Klara Nahrstedt

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL 61801

fs-chen5, klarag @cs.uiuc.edu

Abstract

We propose an integrated QoS routing framework based
on selective probing for high-speed packet-switching net-
works. The framework is fully distributed and depends only
on the local state maintained at every individual node. By
using controlled di�usion computations, the framework cap-
tures the common messaging and computational structure of
distributed QoS routing, and allows an e�cient implementa-
tion due to its simplicity. Di�erent distributed routing algo-
rithms (DRAs) can be quickly developed by specifying only a
few well-de�ned constraint-dependent parameters within the
framework. Our simulation shows that the overhead of the
proposed algorithms is stable and modest.

1 Introduction

Distributed multimedia applications have quality-of-
service (QoS) requirements speci�ed in terms of constraints
on various metrics such as bandwidth, delay, delay jitter,
cost, etc. The task of QoS routing is to �nd a path from
the source node to the destination node which has su�cient
resources to support the required end-to-end QoS.

The recent work in QoS routing has been following two
main directions: source routing and distributed routing. In
the source routing, each node maintains an image of the
global network state, based on which a routing path is cen-
trally computed at the source. The global network state
is typically updated periodically by a link-state algorithm.
In the distributed routing, the path is computed by a dis-
tributed computation during which control messages are ex-
changed among the nodes and the state information kept at
each node is collectively used in order to �nd a path.

The source routing scheme [4, 6, 8] has several problems.
First, the global network state has to be updated frequently
enough to cope with the dynamics of network parameters

�This work was supported by the Airforce grant under contract
number F30602-97-2-0121 and the National Science FoundationCareer
grant under contract number NSF CCR 96-23867.

such as bandwidth and delay, which makes the communica-
tion overhead excessively high for large scale networks. Sec-
ond, the link-state algorithm commonly used in the source
routing can only provide approximate global state due to
the overhead concern and non-negligible propagation delay
of state messages. The inaccuracy in the global state may
cause the QoS routing fail. Third, the link-state algorithm
has the scalability problem [1]. It is impractical for any sin-
gle node to have access to detailed state information about
all nodes and all links in large networks. The hierarchical
routing is used as a solution [5]. However, the state ag-
gregation increases the level of inaccuracy [6]. Fourth, the
computation overhead at the source is excessively high, es-
pecially when multiple constraints are involved, considering
that the QoS routing is typically done on a per-connection
basis.

In the distributed routing, the path-selection computa-
tion is distributed among the intermediate nodes between
the source and the destination. Hence, the routing response
time can be made shorter and the algorithm is more scal-
able. However, most existing distributed routing algorithms
[9, 11] still require each node to maintain a global network
state, based on which the routing decision is made on a hop-
by-hop basis. The routing performance heavily depends on
the accuracy of the global state. Therefore, these algorithms
more or less share the same problem of the source routing.

Multimedia applications tend to have diverse QoS re-
quirements on bandwidth, delay, delay jitter, cost, path
length, etc. From a network designer's point of view, it
would be bene�cial to accommodate di�erent QoS routing
algorithms in a single integrated framework, which captures
the common messaging and computational structure. The
framework should be simple, which enables an e�cient im-
plementation, and extensible, so that new QoS metrics can
be easily added without a�ecting the existing ones. It should
also support both unicast and multicast. Besides, a dis-
tributed framework whose correctness depends only on local
states is preferred. To the best of our knowledge, all exist-
ing algorithms are tailored towards speci�c problem classes
with a single or multiple speci�c routing constraints, and

none of them provides a framework with the above features.
In this paper, we present an integrated QoS routing

framework, from which a family of fully distributed algo-
rithms for unicast routing are derived. The framework is
presented in the form of a generic algorithm based on se-
lective probing. Every node in the network maintains its
own local state and no global state is required. The al-
gorithm uses a distributed computation to collectively uti-
lize the most up-to-date local state at each node to �nd a
path. It requires a single pass of messages to �nd a rout-
ing path which is always loop-free. A family of concrete
unicast routing algorithms is derived from the generic al-
gorithm by specifying a few well-de�ned open parameters
that are constraint-dependent. We show the
exibility of
our framework by discussing various algorithms on band-
width, delay, cost and their combinations. We also discuss
several optimization techniques which improve the routing
performance. In addition, we describe a heuristic solution to
the NP-complete multi-constrained routing problem. Our
framework supports multicast routing as well, which was
presented in [3].

The most related work is done by Shin and Chou [10] and
by Hou [7]1. Their
ooding-based distributed algorithms
also rely on local states for routing, but only the delay metric
is considered and a large number of routing messages are
required. Our framework provides an integrated approach
to route connections with many di�erent QoS constraints
and improves the routing performance by optimizations such
as topology-based routing table and iterative routing.

The rest of the paper is organized as follows. The network
and QoS models are given in Section 2. A distributed QoS
routing framework is proposed in Section 3, from which a
family of unicast routing algorithms are derived in Section
4. Simulation results are presented in in Section 5. Finally,
Section 6 concludes the paper. An early version of this paper
can be found in [2].

2 Network and QoS Models

A network is modeled as a set V of nodes that are intercon-
nected by a set E of communication links. Each node i has
a routing table that has an entry Ri(t) for every possible
destination t. The routing table is constructed based on the
connectivity (topology) of the network. For example, Ri(t)
can be fj j di;t = dj;t + 1 _ di;t = dj;t; 8(i; j) 2 Eg, where
8x; y 2 V , dx;y is the distance between node x and node y.
Ri(t) consists of a subset of adjacent nodes of i.

The topology of the network can change, which however
is relatively infrequent comparing to those QoS parameters
such as bandwidth, delay and delay jitter. We assume that
the topology information is updated by the distance-vector
or link-state algorithm, which can be the same one used
for non-QoS data-packet routing. That is, QoS routing and
non-QoS routing are allowed to share state information and

1Hou's algorithm works in the context of the virtual path layout in
an ATM network.

even routing tables. Throughout this paper, we only con-
sider the logical network de�ned by the combination of the
routing tables at all nodes. Those paths that are made
possible by the underlying network but not by the routing
tables are excluded.

De�nition 1 Concave and additive QoS metrics: Let
m(i; j) be a QoS metric for link (i; j). For a path
P = (s; i; j; :::; l; t), metric m is concave if m(P) =
minfm(s; i);m(i; j); :::;m(l; t)g. Metric m is additive if
m(P) = m(s; i) +m(i; j) + :::+m(l; t).

Bandwidth is concave; delay, delay jitter and cost are
additive. A connection request is represented by a tuple
(Qos; s; t; cid), where Qos, s, t and cid are the quality-
of-service requirement, the source, the destination and a
system-wide unique identi�er, respectively. cid consists of
the source IP address, the port number and a sequence num-
ber. When an unsuccessful connection request is retried, a
di�erent sequence number is assigned.

The quality-of-service requirement (Qos) consists of a set

of constraints,
nS

i=1
fmi � Mig, where mi is a metric and Mi

is a constant. The purpose of routing is to �nd a path P
which satis�es, 8i 2 [1::n]; mi(P) R Mi, where R is
<;�; > or �. Wang and Crowcroft [11] proved that if Qos
contains at least two additive metrics then the routing is a
NP-complete problem.

3 Distributed QoS Routing Framework

Our distributed QoS routing framework de�nes a protocol
for exchanging routing messages among nodes, and provides
a common basis for distributed QoS routing regardless the
speci�c metrics involved. We have two goals in mind when
designing the framework: (1) It must be general enough to
accommodate various QoS metrics, and (2) it must be sim-
ple enough to enable a relatively easy implementation with
acceptable overhead in the context of high-speed networks.

We present the framework in the form of a generic algo-
rithm which implements the following two-phase protocol.

3.1 Two-phase connection establishment protocol

The connection establishment protocol used in this paper
consists of two phases: probing phase and acknowledgement
phase. The probing phase does the QoS routing and the
routing path it selects is called the tentative path. The ac-
knowledgement phase does the resource reservation. Three
types of control messages, probe, ack and failure, are used.

The probing phase is started when a connection request
(Qos; s; t; cid) arrives. Probes are sent from the source s to-
ward the destination t to select a tentative routing path.
There are three problems: (1) detecting the eligible paths
that have su�cient resources to support the required Qos,
(2) selecting a tentative path from the eligible paths based

on certain optimization criteria, and (3) minimizing the
routing overhead introduced by probes. Our solution to
the above problems is selective probing, in which probes are

ooded selectively only along those paths which satisfy the
Qos and the optimization requirements. Since a probe pro-
ceeds only when the nodes and the links on the way have suf-
�cient resources, every probe arriving at t detects an eligible
routing path, which is the one the probe has just traversed
from s to t. Upon receipt of probes, the destination t selects
a tentative path among the detected eligible paths based on
the optimization information carried by the probes.

In the acknowledgement phase, an ack message is sent
back along the tentative path from t to s, and reserves re-
sources along the way. When s receives the ack, the connec-
tion is successfully established. However, since the available
resources of every link or node are dynamically changing, an
intermediate node on the tentative path may not be able to
reserve the required amount of resources at the time when it
receives the ack. In such a case, the ack is turned around as
a failure message and sent back to t to release the reserved
resources.

3.2 Data Structures

A simpli�ed data structure for a control (probe, ack or
failure) message is [k;Qos; s; t; cid], where k is the sender
of the message, which can be the source or an intermediate
node. For example, probe[k;Qos; s; t; cid] represents a probe
sent by k for connection cid whose source, destination and
QoS requirement are s, t and Qos, respectively. When de-
tails are not of interest, we simply use probe[cid] to refer to
a probe for connection cid. Messages belonging to di�erent
connection requests may be sent over the network simulta-
neously. They are distinguished by their cids and thus no
message interference will occur among di�erent requests.

As a probe is sent from the source to the destination, we
want to record the path the probe traverses. There are two
approaches: one is to record the path in the probe itself, and
the other is to record the path at the intermediate nodes on
a hop-by-hop basis. The �rst approach requires larger size
probes, and thus consumes more communication bandwidth
and more memory space to store the probes when they are
waiting in the queues. The second approach, however, re-
quires memory space at the intermediate nodes to store the
path. We choose the second approach, which is appropriate
for an ATM network where a probe with a constant, smaller
size is more likely to be able to �t into a single cell. Table
1 shows the variables declared at a node i. The variables
for a connection cid are created upon the receipt of the �rst
probe[cid]. The obsolete variables are deleted by a timeout
mechanism.

3.3 Generic DRA

The function genericDRA() de�ned in the following im-
plements the proposed two-phase protocol. It has two im-

�i(cid) The node from which i receives a probe of con-
nection cid. It is called the predecessor of i.

ni(cid) The node from which i receives an ack of con-
nection cid. It is called the successor of i.

fi(cid) A boolean variable whose initial value is false.
Whenever an intermediate node i forwards a
received probe[cid], fi(cid) is set to be true.

Ri(t) The routing-table entry indexed by t. Ri(t)
stores a subset of the adjacent nodes of i, to
which data packets for t may be forwarded.

Table 1. Variable definition

portant parameters, forward condition in Line 8 and �t

in Line 9, which are constraint-dependent and thus left open.
In Section 4, various concrete DRAs will be derived by spec-
ifying these parameters di�erently. The forward condition is
a boolean function with three arguments (i; j; Qos), where
i is the node with the DRA running, j is an adjacent node
of i, and Qos is the quality-of-service requirement. A probe
received by i is forwarded to j only when the forward con-
dition is satis�ed, which implements the selective probing.
�t is called the probe waiting-time. Let us assume it to
be zero for the time being, which means that the probe is
sent immediately to j without an arti�cially introduced de-
lay. When we discuss the additive DRAs in Section 4.2,
assigning non-zero values to �t becomes crucial.

genericDRA() at node i

1. while true do
2. block until receiving a message;
3. switch (the received message)
4. case 1: probe[k;Qos; s; t; cid]
5. if i 6= t and fi(cid) = false then

/* i has not forwarded a probe[cid] before. */
6. �i(cid) := k; /* record the predecessor */
7. for every node j 2 Ri(t); j 6= k do
8. if forward condition (i; j; Qos) is true then
9. send j a probe[i; Qos; s; t; cid] after a delay �t;
10. fi(cid) := true;
11. endif

12. endfor

13. else if i = t and ft(cid) = false then
/* start the acknowledgement phase */

14. send k an ack[i; Qos; s; t; cid];
15. ft(cid) := true;
16. else

17. discard the probe;
18. endif

19. case 2: ack[k;Qos; s; t; cid]
20. if node i has the required resources then
21. reserve resources for connection cid;
22. ni(cid) := k; /* record the successor */
23. if i 6= s then
24. send �i(cid) an ack[i; Qos; s; t; cid];

25. else

26. connection cid is successfully established;
27. endif

28. else

29. send k a failure[i; Qos; s; t; cid];
30. endif

31. case 3: failure[k;Qos; s; t; cid]
32. release resources reserved at i for connection cid;
33. if i 6= t then
34. send ni(cid) a failure[i; Qos; s; t; cid];
35. endif

36. endswitch

37.endwhile

Case 1 describes the probing phase and cases 2 and 3 de-
scribe the acknowledgement phase. When a new connection
request arrives, a probe is sent to the source to initiate the
probing phase. By lines 5-12, an intermediate node i for-
wards only the �rst received probe that satis�es the forward
condition. Lines 13-15 do the path selection. If two or more
probes arrive at t, i.e., two or more paths satisfy the QoS re-
quirement, only the �rst received probe counts and its path
is selected as the tentative path, which is recorded by the
�i(cid) variables at the intermediate nodes. Optimizing the
path selection is discussed in Section 4. The probing phase
terminates and the acknowledgement phase starts at Line
14.

The algorithm successfully establishes a connection when
the source receives an ack and reserves the required re-
sources successfully. If the source does not receive an ack
during a timeout period, the rejection of the connection is
assumed. The timeout period is set based on the time com-
plexity of the algorithm (Section 3.4). An alternative ap-
proach for rejection indication is to send back a negative
acknowledgement (nack) for each probe dropped. When an
intermediate node receives a nack for every probe sent, it
sends a nack to its predecessor. When the source receives
a nack for every probe sent, it signals the rejection of the
connection.

Theorem 1 If the generic DRA establishes a connection,
the path of the connection must be loop-free.

Due to space limitation, we leave out the proof of all
theorems. Interested readers can �nd the proof in [2].

3.4 Complexity analysis

The algorithm takes a single message round-trip time to
establish a connection. If we assume that in normal con-
ditions it takes at most one unit of time for a message to
traverse one link including the bu�ering and processing time
at nodes, then the time-complexity is O(2l) units of time,
where l is the length of the tentative path.2

2According to Lines 13-15 of genericDRA(), only the �rst probe re-
ceived by t counts for the time complexity. It de�nes the tentative path

The algorithm sends at most one probe per link in the
sub-net consisting of all paths from the source to the desti-
nation. The total number of probes sent is thus bounded by
e, where e is the total number of links in the sub-net. There
are at most one ack and one failure message for each link
on the tentative path. The total number of ack and failure
messages is thus bounded by 2l, where l is the length of the
tentative path. Hence, the message complexity (number of
control messages) of the algorithm is O(e + 2l) for a single
connection request.3 The average message overhead is sub-
stantially lower than the worst-case one when optimization
techniques are applied, which is shown by the simulation
results in Section 5.

4 Distributed Unicast Routing Algorithms

From the generic DRA, we derive various concrete DRAs
for di�erent QoS metrics such as bandwidth, delay, cost,
delay jitter, path length, etc. Concrete DRAs are classi�ed
into three categories: concave-metric DRAs, additive-metric
DRAs and multiple-metric DRAs.

4.1 Concave-metric DRAs

We use the bandwidth metric as an example. DRAs on
other concave metrics such as bu�er space or CPU time can
be de�ned similarly. For all concave DRAs, �t = 0. The
forward condition is speci�ed as follows.

4.1.1 Bandwidth DRA

Let bandwidth(i; j) be the residual (unused) bandwidth of
link (i; j). Let B be the bandwidth requirement of a con-
nection. The forward condition is

forward condition (i; j; Qosfbandwidth �Bg) :
bandwidth(i; j) � B

The resulting routing algorithm is called DRA(bandwidth).

It is hard to analyze the performance of a routing algo-
rithm in a dynamic network where the bandwidth of each
link may change at any time. For simplicity, we assume
for the following theorem that the local states at nodes do
not change during the process of routing a connection. The
same assumption is made also for Theorems 3-4

Theorem 2 Given a connection request (Qosfbandwidth�
Bg; s; t; cid), DRA(bandwidth) �nds a tentative path P
from s to t such that bandwidth(P) � B, if such a path
exists.

and terminates the probing phase. All probes received by t successively
are simply discarded and do not add up to the time complexity.

3Only a single run of the algorithm is considered in the complexity.
The overhead of failure-and-retry is not included.

4.1.2 Optimization

When there exist many paths that satisfy the QoS require-
ment, the shortest path in terms of delay or number of hops
or the widest path in terms of residual bandwidth [11] is
often preferred. However, DRA(bandwidth) �nds a tenta-
tive path blindly through the competition among probes.
Whichever probe reaching the destination �rst de�nes the
path. This scheme does not guarantee that the shortest
or widest path is always selected as the tentative path, al-
though we argue that our algorithm is statistically in favor
of the shortest path, because a probe sent along a shorter
path will be more likely to reach the destination earlier than
a probe sent along a longer path when the two paths have
similar congestion conditions. In the following, we discuss
some optimization techniques, which are also applicable to
all DRAs proposed later.

We de�ne the age of a probe as the number of hops
it has traversed. When a node i receives and forwards a
probe[k;B; s; t; cid], it not only keeps k in �i(cid) as its pre-
decessor but also records the age of the probe. If another
probe with a less age is received from k0, i changes the value
of �i(cid) to k0 so that when an ack is received by i later, the
ack is forwarded to k0 instead of k and thus follows a shorter
path to the source. The above scheme can also be applied to
bandwidth. We de�ne the bandwidth of a probe as the min-
imum bandwidth of all links it has traversed so far. When i
receives a probe from k0 with a larger bandwidth than that
of the previously received probe, i changes its predecessor
to k0 which leads to a path with larger residual bandwidth.

Instead of keeping a single predecessor, a node i can de-
clare �i(cid) as a set which keeps a group of predecessors.
For every received probe[k;B; s; t; cid], i adds k to its prede-
cessor set.4 When i receives an ack, it chooses a predecessor
from the set to forward the ack. If i receives a failure mes-
sage from that predecessor, it chooses another predecessor
from the set to forward the ack again. Only after i receives
a failure message from every one in the set, it passes the
failure message to ni(cid). Multiple predecessors improve
the chance for the connection to be successfully established
when the network state dynamically changes. Further im-
provement on the above approach can be done as follows.
When i receives a probe, information besides the predeces-
sor, such as the age and/or the bandwidth of the probe, is
also recorded. Such information can help i make a better
choice on which one in the predecessor set should be selected
to forward the ack.

In DRA(bandwidth), the destination sends an ack im-
mediately after it receives the �rst probe even though suc-
cessive probes may suggest better paths. We can improve
the algorithm as follows. When the destination receives a
probe, it checks the age and the bandwidth of the probe. If
the quality of the corresponding path is good, for example,
the age is equal to the shortest distance from the source to

4Still, only the �rst probe which satis�es the forward condition is
forwarded.

the destination or the bandwidth is greater than some large
value, an ack is replied immediately. Otherwise, the desti-
nation waits for a short period of time for more probes and
then chooses the best one to reply.

4.2 Additive-metric DRAs

We de�ne an abstract additive metric, length, which can
be delay, delay jitter, cost or number of hops. Let p be a
probe and P be the path which p has traversed so far. We
de�ne length(p) = length(P) = �

(i;j)2P
length(i; j).

We extend the structure of a probe and add a new �eld
to keep length(p), so that the receiver of p knows the value
of length(p). Initially, length(p) := 0. Whenever p proceeds
for another link (i; j), length(p) := length(p) + length(i; j).
The forward condition for length is speci�ed as

forward condition (i; j; Qosflength �Mg) :
length(i; j) + length(p) < M

where p is the received probe and M is a constant.

4.2.1 Discussion of �t

Besides the forward condition, specifying an appropriate
non-zero �t (Line 9 of genericDRA() in Section 3.3) is also
important for an additive-metric DRA. If we let �t be zero
as we did for a concave-metric DRA, the algorithm does
not work well sometimes. See Figure 1 for an example. The
length of each link is labeled beside the link. Figure 1 (a)
shows that the path P = s ! i ! k ! h ! t satis�es
the connection request (Qosflength � 5g; s; t; cid) because
length(P) = 4 and the length requirement is 5. In Figure
1 (b), suppose probe 2 arrives at node k earlier than probe
1. Probe 2 traverses s ! j ! k ! h, and is dropped
by node h because length(h; t) + length(probe 2) > 5 and
thus the forward condition is violated, where length(probe
2) = length(s; j)+ length(j; k)+ length(k; h) = 5 as de�ned
previously. Probe 1 traverses s! i! k and is dropped by
node k because k has already forwarded probe 2.5 Hence, no
probe can reach t and the algorithm fails to �nd a tentative
path.

We want probe 1 to arrive at node k earlier than probe
2. More generally, it should take less time for a probe to
traverse a shorter path than a longer path. A simple ap-
proach is to introduce extra delay for each probe to traverse
a link; the longer the length of the link, the longer the de-
lay. That can be done by assigning an appropriate value
for �t (see Line 9 of genericDRA() in Section 3.3). How
to specify �t as well as the implementation issues will be
discussed shortly when we study the delay DRA and the
cost DRA. A performance advantage of doing so is that the
shortest path will always be selected as the tentative path
because the probe traversing the shortest path arrives at the

5By the construction of the algorithm, node k forwards at most one
probe. After k forwards probe 2, it discards all successively received
probes including probe 1.

s

1

2

1

2
kj

i

1

h

1

t
s

1
i

1

h
1

tk

probe 2

22 j

probe 1

(a) (b)

1

dropped

dropped

Figure 1. (a) There exists an eligible path for the request
(Qosflength � 5g; s; t; cid). (b) An additive-metric DRA
fails in finding the path if �t = 0.

destination �rst. The message (or computation) overhead
for �nding the shortest path is O(e),6 which is remarkably
lower than O(ve) of the distributed Bellman-Ford algorithm,
where v is the number of nodes and e the number of links.
However, the cost we pay is the time complexity, which is
increased by the extra delay of the probes. Fortunately, as
we will see shortly, the increase on the time complexity is
controllable and can be adjusted to a modest range. In the
following, we will use delay and cost as examples to show
how to choose �t.

4.2.2 Delay DRA

A quality-of-service requirement Qosfdelay � Dg requires
the end-to-end delay to be bounded by D. The end-to-
end delay of a path is the summation of the node-delay at
every node and the link-delay at every link on the path.
node-delay(i; j) includes the protocol-processing time and
the queueing delay of a normal data packet at node i for
link (i; j). link-delay(i; j) is the propagation delay on link
(i; j). The delay metric is de�ned as

delay(i; j) = node-delay(i; j) + link-delay(i; j)

Let p be a probe and suppose the path that p has traversed
so far is P = s! k! :::! i! j.

delay(p) = delay(s; k) + :::+ delay(i; j)

The forward condition for delay is

forward condition (i; j; Qosfdelay �Dg) :
delay(i; j) + delay(p) < D

Let �t = node-delay(i; j), and the resulting DRA is called
DRA(delay). Line 9 of genericDRA() becomes

send j a probe[i; Qosfdelay �Dg; s; t; cid]

after a delay of node-delay(i; j)
(1)

The probe has to be forwarded after a period of node-
delay(i; j). This can be easily implemented by treating

6O(e) is the message complexity of the probing phase. See Section
3.4.

probes as normal data packets whose processing and queue-
ing delay at node i is node-delay(i; j) by de�nition. How-
ever, this approach is applicable only to DRA(delay) but
not to other additive-metric DRAs where a value other than
node-delay(i; j) is assigned to �t, as we shall see shortly in
DRA(cost). A more general implementation is described as
follows: Two queues, data packet queue and control message
queue, are maintained at node i for link (i; j). The control
message queue has a higher priority than the data packet
queue. The statement (1) is non-blocking. It completes by
inserting the probe with a timestamp �t into the control
message queue, in which probes are placed in the order of
increasing timestamps. A timer is set appropriately for the
�rst probe in the queue. When the timer is timed out, the
probe is transmitted immediately.

Since probes travel at speeds according to the delays, a
probe traveling along the minimum-delay path arrives �rst.
The time complexity of the probing phase is bounded by
minfD; delay(Pm

s;t)g, where P
m
s;t is the minimum-delay path

from s to t. After time D, delay(p) � D for every existing
probe p of the connection and thus none of the probes can
satisfy the forward condition any more. After delay(Pm

s;t),
the probe traversing Pm

s;t has already arrived at the destina-
tion, which terminates the probing phase by selecting Pm

s;t

as the tentative path.

Theorem 3 Given a connection request (Qosfdelay �
Dg; s; t; cid), (1) DRA(delay) �nds a tentative path P such
that delay(P) < D, if such a path exists; (2) the tentative
path must be the minimum-delay path from s to t.

4.2.3 Cost DRA

A quality-of-service requirement Qosfcost �Cg requires the
end-to-end cost to be bounded by C. Let cost(i; j) be the
cost of link (i; j) in dollars or by some other measurement,
and cost(p) be the accumulated cost on the path that a
probe p has traversed. The forward condition for cost is

forward condition (i; j; Qosfcost �Cg) :
cost(i; j) + cost(p) < C

Let �t = f(cost(i; j)) where f is a monotonic non-
decreasing function, and the resulting DRA is called
DRA(cost). An example f is

f(cost(i; j)) = maxf
cost(i; j)

C
� T � link-delay(i; j); 0g

where T is a time constant. The time for a probe to traverse
link (i; j) is

f(cost(i; j)) + link-delay(i; j)

= maxf
cost(i; j)

C
� T; link-delay(i; j)g

Ideally, we want to choose T such that cost(i;j)
C

� T �
link-delay(i; j), which makes the probing delay over (i; j)

directly proportional to cost(i; j). However, there exists a
tradeo� since a larger T makes the routing time longer. Let
P be the tentative path. The time complexity of the probing
phase can be measured by

�
(i;j)2P

maxf
cost(i; j)

C
� T; link-delay(i; j)g

= maxf

�
(i;j)2P

cost(i; j)

C
� T; �

(i;j)2P
link-delay(i; j)g

� maxfT; �
(i;j)2P

link-delay(i; j)g

Generally, the value of T can be selected based on the esti-
mated end-to-end delay from s to t.

4.3 Multiple-metric DRAs

We use two examples. The �rst one has one concave
metric and one additive metric, and the second one has two
additive metrics.

4.3.1 Bandwidth and delay DRA

We consider Qosfbandwidth�B; delay�Dg where the band-
width requirement is B and the end-to-end delay require-
ment is D. The forward condition is

forward condition (i; j; Qosfbandwidth �B; delay �Dg) :
bandwidth(i; j) � B ^ delay(i; j) + delay(p) < D

Let �t = node-delay(i; j) and the resulting DRA is called
DRA(bandwidth; delay).

Theorem 4 Given a connection request (Qosfbandwidth�
B; delay � Dg; s; t; cid), (1) DRA(bandwidth; delay) �nds
a tentative path P such that bandwidth(P) � B and
delay(P) < D, if such a path exists; (2) the tentative path
has the minimumdelay among all eligible paths from s to t.

4.3.2 Delay and cost DRA

It is a NP-complete problem to �nd a path that satis�es
Qosfdelay �D; cost �Cg, which requires the end-to-end de-
lay and the end-to-end cost to be bounded by D and C,
respectively. DRA(delay; cost) provides a heuristic solution
for this problem. The forward condition is

forward condition (i; j; Qosfdelay �D; cost �Cg) :
delay(i; j) + delay(p) < D ^ cost(i; j) + cost(p) < C

Determining �t is tricky. A general form is

�t = maxf�� delay(i; j) + � � cost(i; j)�
link-delay(i; j); 0g

When the delay bound is hard to achieve but the cost
bound is easy to achieve, we let � = 1 and � = 0. �t
becomes the same as in DRA(delay). Hence, when probing
for a tentative path, the algorithm is in favor of paths with

short delays. When the cost bound is hard to achieve but
the delay bound is easy to achieve, let � = 0 and � =
T=C, where T is a constant. �t becomes the same as in
DRA(cost). When both delay and cost bounds are di�cult
to achieve, which means D (C) is close to the minimum
delay (cost) between the source and the destination, we let
� = 1 and � = D=C. 7 When the relative di�culties of
achieving the two bounds are unknown, a general way of
increasing the probability of �nding a tentative path is to
allow multiple executions of DRA(delay; cost) with di�erent
�t's. When a connection request (Qosfdelay � D; cost �
Cg; s; t; cid) arrives, two pseudo requests are created:

(Qosfdelay �D; cost �Cg; s; t; cid0)
(Qosfdelay �D; cost �Cg; s; t; cid00)

Hence, three instances of DRA(delay; cost) are executed and
each uses a di�erent �t. The three �t's are

�t = node-delay(i; j)

�t = maxf
cost(i; j)

C
� T � link-delay(i; j); 0g

�t = node-delay(i; j) +
D

C
� cost(i; j)

4.4 Iterative DRAs

We use DRA(�) as a general term referring to any of
the above concrete DRAs. DRA(�) �nds a tentative path
through the competition among probes. The �rst probe
reaching the destination de�nes the path, which however
may not be the optimal one. When there exist many paths
that satisfy the QoS requirement, the shortest path in terms
of number of hops is often desired due to a better statistical
performance [8]. We propose iterative DRAs to �nd the
shortest tentative path. As an example, let us design an
iterative version of DRA(bandwidth) �rst.

We de�ne the age of a probe p as the number of hops
it has traveled.8 Initially, age(p) := 0. Whenever p passes
a link, age(p) := age(p) + 1. We introduce a new forward
condition for DRA(bandwidth):

forward condition (i; j; Qosfbandwidth �Bg) :
bandwidth(i; j) � B ^ age(p) + dj;t + 1 � L

where dj;t is the distance from j to the destination t and L
is a constant no less than ds;t.

Should p be forwarded to j, the length of the shortest
possible path for p to reach t would be age(p) + dj;t + 1,
including the portion that p has already traversed from s
to i. Hence, the above forward condition allows a probe

7The reason for � to be D=C instead of 1 is to balance the impacts
of the two metrics on �t so as to avoid one metric dominating the
value of �t.

8In Section 4.1.2, the ages of probes are used as an optimization
technique for the intermediate nodes to choose their predecessors.
Here, the same ages are used in an end-to-end manner to constrain
the length of the tentative path by limiting the maximum number of
hops the probes can travel.

NET-1 NET-2

Figure 2. network topologies

to be forwarded only along those links which lead to paths
whose lengths are bounded by L. When L = ds;t, the al-
gorithm forwards probes only along the shortest paths and
the corresponding DRA is called

DRA(bandwidth) WITH L = ds;t

A general form of our iterative DRA is

DRA(bandwidth) ITERATIVE ON
fL = ds;t; L = ds;t + 1; :::; L= +1g

It executes DRA(bandwidth) iteratively each time with an
increasing value of L | ds;t; ds;t + 1, ..., and +1, in turn
| until the connection is established.

Though many iterations are allowable, we only use two
iterations in order to reduce the overhead. That is, we con-
sider DRA(bandwidth) ITERATIVE ON fL = ds;t; L =
+1g in this paper. DRA(bandwidth) WITH L = ds;t is
�rst executed, which tries to �nd a shortest path P with
bandwidth(P) � B. If it succeeds, the next iteration is
canceled. If it fails, DRA(bandwidth) WITH L = +1 is
executed to search all possible paths.

For an arbitrary DRA(�), let Fcondition(�) be its original
forward condition. A new forward condition is de�ned as

forward condition (i; j; Qos) :
Fcondition(�) ^ age(p) + dj;t + 1 � L

The corresponding iterative DRA is denoted as

DRA(�) ITERATIVE ON fL = ds;t; L = +1g

Comparing to their non-iterative counterparts, the iterative
DRAs not only �nd shorter routing paths but also reduce the
average overhead signi�cantly at the cost of longer routing
time, which will be shown by the simulation results in the
next section.

5 Simulation Results

5.1 Message overhead

The message overhead is one of the most important per-
formance metrics for distributed routing algorithms. It has
a direct impact on how applicable the algorithms are in the
real world. The worst-case message overhead of our DRAs
has been analyzed in Section 3.4. In this section, we study

by simulation the average overhead, namely, the average
number of probes sent per connection request.

Two network topologies, NET-1 and NET-2 (Figure 2),
were used in the simulation. NET-1 is based on the major
circuits in ANSNET and NET-2 increases the connectiv-
ity of NET-1 by additional links. Each link is full duplex
with a bandwidth capacity of 155Mbps(OC3). The nodes
are placed in a 3000 � 2400 Km2 rectangle, roughly the
size of USA, and the propagation speed through the links
is two thirds of the light speed. The message overhead of
DRA(bandwidth), DRA(delay) and their iterative versions
will be presented. The results for other DRAs can be found
in [2]. We use DRA(�) ITERATIVE as an abbreviation of
DRA(�) ITERATIVE ON fL = ds;t; L = +1g.

Figure 3 presents the results of four experiments: running
DRA (bandwidth) and DRA(bandwidth) ITERATIVE on
NET-1 and NET-2. The message overhead is plotted with
respect to the average tra�c load in the network. The source
node, the destination node and the bandwidth requirement
B of each connection request are randomly generated. B is
uniformly distributed between 64Kbps � 1.5Mbps. For each
request, the background tra�c load on every link is ran-
domly generated from the range of [0.0, 155.0Mbps]. Each
point in Figure 3 is taken by averaging the overhead of one
thousand independent connection requests.

Both DRA(bandwidth) and DRA(bandwidth) ITERA-
TIVE have higher overhead on NET-2 than on NET-1,
because NET-2 is better connected and more probes are

ooded during the routing. DRA(bandwidth) has a much
higher average overhead than DRA(bandwidth) ITERA-
TIVE though its worst-case overhead is lower (see Section
4.4). This can be explained by the following reasoning:
When the network is not congested (average tra�c load
less than 145 Mbps in our simulation), DRA(bandwidth)
ITERATIVE succeeds in its �rst iteration and thus probes
are
ooded only along the shortest paths. The overhead is
certainly lower than DRA(bandwidth) which does a much
broader
ooding. When the tra�c load grows heavier, the
overhead of DRA(bandwidth) ITERATIVE may increase
due to the second iteration.9 However, the more the second
iterations are required, the more the network is congested,
which further implies that satisfying the forward condition
becomes harder and harder due to the lack of bandwidth.
The immediate result is more and more probes are discarded
instead of being forwarded. Therefore, when the second iter-
ations can not compensate the discarded probes, the average
number of probes sent decreases, as observed in Figure 3.
When the network is fully congested, hardly can any probes
be sent out from the source nodes and the overhead reaches
zero.

Figure 4 shows the results of running DRA(delay) and
DRA(delay) ITERATIVE on NET-1 and NET-2. The de-

9The overhead increase is not observed for DRA(bandwidth) ITER-
ATIVE on NET-1. This is becauseNET-1 is much sparser than NET-2
and thus the number of probes resulted from the second iterations are
not many enough to o�set the increasing number of discarded probes
due to heavier background tra�c.

0
2
4
6
8

10
12
14
16
18
20
22
24

110 115 120 125 130 135 140 145 150 155

av
g.

 n
o.

 o
f

pr
ob

es
 p

er
 r

eq
ue

st

avg. link traffic load (Mbps)

DRA(bandwidth) and DRA(bandwidth) ITERATIVE, NET-1 and NET-2

DRA(bandwidth), NET-1
DRA(bandwidth), NET-2

DRA(bandwidth) ITERATIVE, NET-1
DRA(bandwidth) ITERATIVE, NET-2

Figure 3. Average message overhead of
DRA(bandwidth) and DRA(bandwidth) ITERATIVE

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60

av
g.

 n
o.

 o
f

pr
ob

es
 p

er
 r

eq
ue

st

avg. node-delay (ms)

DRA(delay) and DRA(delay) ITERATIVE, NET-1 and NET-2

DRA(delay), NET-1
DRA(delay), NET-2

DRA(delay) ITERATIVE, NET-1
DRA(delay) ITERATIVE, NET-2

Figure 4. Average message overhead of DRA(delay)
and DRA(delay) ITERATIVE

lay requirements of the experimental connection requests
are uniformly distributed in the range of [0.0, 200.0ms].
The node-delay of each link is randomly generated from
[0.0,125.0ms]; experiments show that larger node-delay's
make the forward condition hardly satis�ed and thus of little
interest to our simulation. Similar to Figure 3, the overhead
of DRA(delay) ITERATIVE does not increase signi�cantly
with respect to the average node-delay. The reason is that
although an increasing node-delay results in more second
iterations, it also results in more discarded probes because
the forward condition is harder to be saitis�ed. On Net-2,
DRA(delay) ITERATIVE has a much lower overhead than
that of DRA(delay) when the average node-delay is rela-
tively low. Experiments on other DRAs also reveal that the
iterative DRAs have a better overall performance.

The average source-destination distance of all connection
requests is 3.2 hops in our simulation. The average number
of probes per request is always under 6.5 for any iterative
DRA and any background tra�c condition. Such a result
indicates that the selective probing provides an e�cient dis-
tributed routing approach, which has low overhead and does
not rely on accurate global state.

5.2 Routing time

In this section, we use DRA(delay) and DRA(delay) IT-
ERATIVE to study how long it takes to make the rout-
ing. For those connections that are successfully estab-
lished, we measure the average time to �nd a tentative
path, called the average probing time. For those connections
that are rejected, we measure the average time to timeout
and signal the rejection, called the average rejection time.
DRA(delay) rejects a connection after a timeout period of
2D if no ack is received, where D is the delay requirement.10

DRA(delay) ITERATIVE has two iterations: DRA(delay)

10Recall that the time complexity of the probing phase is bounded
by D (Section 4.2.2). A timeout period of 2D leaves enough margin
for the ack to travel back in time.

WITH L = ds;t and DRA(delay) WITH L = 1. Both of
them have a timeout period of 2D. Therefore, a connection
will be rejected after 4D.

Before presenting the simulation results, we make a sim-
ple analysis on the probing time of DRA(delay) �rst. Let
� be the set of connection requests used in the simulation.
Among the requests, the set of successful (accepted) ones is
�s and the set of rejected ones is �r. Recall that probes in
DRA(delay) travel at speeds according to the delays of their
paths (Section 4.2.2). The probe traversing the minimum-
delay path arrives at the destination �rst. Therefore, for
a request fD; s; t; idg in �, the probing time is delay(Pm

s;t),
where Pm

s;t is the minimum-delay path. The average probing
time of successful requests is

� =

�
fD;s;t;idg2�

delay(Pm
s;t)

j�j

Suppose s and t are uniformly selected from all nodes. If
�s = �, � is expected to be equal to the average end-to-end
delay between two nodes in the network, which is de�ned as

� =

�
s;t2V;s6=t

delay(Pm
s;t)

�
s;t2V;s6=t

1

Now, let us consider the case �s � �. A request fD; s; t; idg
with a large delay(Pm

s;t) is more likely to be rejected, because
given the same D the constraint delay(Pm

s;t) < D is harder
to be satis�ed. Therefore, �s tends to have requests with
smaller delay(Pm

s;t) and �r tends to have requests with larger
delay(Pm

s;t), and hence � can be less than �, as we shall see
in the simulation results.

The node-delay of a link is randomly generated from
[0:0; 60:0ms]. Figure 5 shows the average probing times
of DRA(delay) and DRA(delay) ITERATIVE with respect
to the average delay requirement D. The probing time of
DRA(delay) is bounded by �, 88.38ms in the �gure. It con-
verges to � as D increases. DRA(delay) ITERATIVE has

20

40

60

80

100

120

50 100 150 200 250 300

tim
e

(m
s)

avg. delay requirement D (ms)

average time for find a tentative path, NET-2

DRA(delay) ITERATIVE
DRA(delay)

average end-to-end delay

Figure 5. Average time to find a connection

0

50

100

150

200

250

20 40 60 80 100 120 140 160 180

tim
e

(m
s)

avg. delay requirement D (ms)

average time to reject a connection, NET-2

DRA(delay) ITERATIVE
DRA(delay)

average end-to-end delay

Figure 6. Average time to reject a connection

a larger probing time than DRA(delay) due to its two iter-
ations. As D increases, the timeout between the two itera-
tions increases and thus the probing time increases. On the
other hand, larger D's allow more connections to be estab-
lished by the �rst iterations, and less second iterations (less
timeouts) are necessary. When the decrease in the num-
ber of timeouts compensates the increase in the length of
timeout periods, the average probing time stops increasing.
The probing time of DRA(delay) ITERATIVE goes slightly
higher than � as shown in the �gure.

Figure 6 shows the rejection times of DRA(delay) and
DRA(delay) ITERATIVE. As D increases, the average re-
jection times increase due to longer timeouts. However, af-
ter D passes certain threshold (80ms in the �gure), the av-
erage rejection times become stable and do not increase fur-
ther. This is because connections with too large D will not
be rejected and thus will not contribute to the rejection-time
average. The rejection time of DRA(delay) ITERATIVE is
about twice that of DRA(delay), which is comparable to the
average end-to-end delay � between two nodes in the net-
work. This can be illustrated by the followingmuch simplied
analysis. Consider a �ctitious ideal simulation run where all
connections with their delay requirements Dr less than � are
rejected and all other connections are accepted. Suppose
Dr 's of the rejected connections are uniformly distributed
in [0::�]. The average of Dr 's will be Dr = 1

2
�. Hence, it

takes about 4Dr = 2� on average for DRA(delay) ITERA-
TIVE to timeout and signal the rejection, and it takes about
2Dr = � on average for DRA(delay) to timeout.

In the actual simulation, not all Dr's fall in [0::�]. Some
rejected connections have delay requirements larger than �,
which makes Dr and thus the average rejection time larger
than those in the above ideal case. In Figure 6, the rejection
times of DRA(delay) ITERATIVE and DRA(delay) can go
up to 2.4 and 1.2 times �, respectively.

6 Conclusion

In this paper, we described in detail a unique integrated
and distributed QoS routing framework presented in the

form of a generic DRA. From the framework, we derived
three classes of unicast routing algorithms: concave-metric
DRAs, additive-metric DRAs and multiple-metric DRAs.
Each DRA has its iterative version. Simulations revealed
that the iterative DRAs have a better overall performance
than the non-iterative counterparts. The stable and modest
overhead of the iterative DRAs makes them practical.

References

[1] J. Behrems and J. Garcia-Luna-Aceves. Distributed, scal-
able routing based on link-state vectors. SIGCOMM, pages
136{147, August 1994.

[2] S. Chen and K. Nahrstedt. Distributed qos routing.
Tech. Report UIUCDCS-R-97-2017, Department of Com-
puter Science, University of Illinois at Urbana-Champaign,
July 1997.

[3] S. Chen and K. Nahrstedt. Distributed quality-of-service
routing in high-speed networks based on selective prob-
ing. Technical Report, University of Illinois at Urbana-
Champaign, Department of Computer Science, 1998.

[4] S. Chen and K. Nahrstedt. On �nding multi-constrained
paths. IEEE International Conference on Communications,
June 1998.

[5] A. Forum. Private network network interface (pnni) v1.0
speci�cations. May 1996.

[6] R. Guerin and A. Orda. Qos-based routing in networks
with inaccurate information: Theory and algorithms. Info-
com'97, Japan, April 1997.

[7] C. Hou. Routing virtual circuits with timing requirements
in virtual path based atm networks. INFOCOM'96, 1996.

[8] Q. Ma and P. Steenkiste. Quality-of-service routing with
performance guarantees. Proceedings of the 4th Interna-
tional IFIP Workshop on Quality of Service, May 1997.

[9] H. F. Salama, D. S. Reeves, and Y. Viniotis. A distributed
algorithm for delay-constrained unicast routing. INFO-
COM'97, Japan, April 1997.

[10] K. G. Shin and C.-C. Chou. A distributed route-selection
scheme for establishing real-time channel. Sixth IFIP Int'l
Conf. on High Performance Networking Conf. (HPN'95),
pages 319{329, Sep. 1995.

[11] Z. Wang and J. Crowcroft. Qos routing for supporting re-
source reservation. JSAC, September 1996.

