
Distributed QoS Routing with Imprecise State Information *

Shigang Chen, Klara Nahrstedt
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{ s-chen5, klara} @cs .uiuc. edu

Abstract

The goal of Quality-of-Service (QoS) routing is to find a
network path which has suficient resources to satisfy cer-
tain constraints on delay, bandwidth and/or other metrics.
The network state information maintained at every node is
often imprecise in a dynamic environment because of non-
negligible propagation delay of state messages, periodic up-
dates due to overhead concern, and hierarchical state aggre-
gation [6]. The information imprecision makes QoS rout-
ing dificult. The traditional shortest-path routing algorithm
does not provide satisfactory performance with imprecise
state information.

We propose a distributed routing scheme, called ticket-
based probing, which searches multiple paths in parallel for
a satisfactory one. The scheme is designed to work with
imprecise state information. It allows the dynamic trade-
off between the routing performance and the overhead. The
state information of intermediate nodes is collectively used
to guide the routing messages along the most appropriate
paths in order to masimise the success probability. The pro-
posed algorithm consider not only the QoS requirements but
also the cost optimality of the routing path. Extensive simu-
lations show that our algorithm achieve high call-admission
ratio and low-cost routing paths with modest overhead. The
algorithm can tolerate high degree of information impreci-
sion.

1 Introduction

The up-coming Gbps high-speed networks are expected to
support a wide range of communication-intensive, real-time
applications. The quality-of-service (QoS) requirements of
these applications raise new challenges for the development
of integrated-service network systems. One of the key issues
is QoS routing. The goal of routing solutions is two-folded:
(a) selecting network routes that have sufficient resources

*This work was supported by the Airforce grant under contract
number F30602-97-2-0121 and the National Science Foundation Career
grant under contract number NSF CCR 96-23867.

to meet the QoS requirements of every admitted connection
and (b) achieving global efficiency in resource utilization.

Routing consists of two basic tasks. The first task is to
collect the state information and keep it upto-date. The sec-
ond task is to find a satisfactory path for a new connection
based on the collected information. Most published rout-
ing algorithms [2, 8, 9, 111 require every node to maintain a
global network state either by a distance-vector protocol or
by a link-state protocol. However, such a global state is in-
heritly imprecise in a dynamic network where the traffic load
changes constantly. The imprecision is especially noticeable
in large wide-area networks due to the following reasons.
First, it takes non-negligible propagation delay for a local
state change to be broadcasted to other nodes. Second, a
distance-vector (or link-state) protocol updates the state in-
formation periodically or upon triggering when significant
state change is detected. There exists a tradeoff between
the update frequency and the overhead involved. For large
scale networks, the excessive communication overhead often
makes it impractical for the update frequency to be high
enough to cope with the dynamics of network parameters
such as bandwidth and delay. Third, the hierarchical ap-
proach is likely to be used to solve the scalability problem of
routing in large networks [4]. However, the state aggregation
in hierarchical routing increases the level of imprecision [6].

We propose a distributed QoS routing scheme that works
with imprecise state information. While in this paper
we only study the NP-complete delay-constmined least-cost
routing problem, our scheme can also be applied to other
routing problems such as bandwidth-constrained least-cost
routing [l]. A path which satisfies the delay (or bandwidth)
constraint is called a feasible path. The design goal of our
heuristic algorithm is to find a low-cost feasible path by us-
ing only the available imprecise information.

The most related work was done by Guerin and Orda [6]
and by Lorena and Orda [7]. There are several important
differences which distinguish our work from theirs.

First, the imprecision model in [6, 71 is based on the
probability distribution functions. For instance, every node
maintains, for every link 1, the probabilitypl(w) of link 1 hav-
ing a delay of d units, where d ranges from zero to maximum
possible value. The problem of how to maintain the prob-

0-8186-9014-3/98 $10.00 0 1998 IEEE
6 14

ability distribution was not discussed. If the distribution
is collected over time, it ignores the current, specific traffic
context, that may be very useful to find the best path. Our
imprecision model is much simpler. Take the delay metric
for example. A node i maintains two values for every possi-
ble destination 2 . They are (1) D;(t) , an estimation of the
end-to-end delay from i to t , and (2) AD;(t) , an estimation
of the maximumchange of D;(t) for the next update period.
AD;(t) can be easily computed from the recent state history.

Second, the goal of [6,7] is to maximize the probability of
finding a feasible path. The optimality of such a path, which
is probably equally important, is ignored. On the contrary,
the goal of our algorithms is to find a low-cost feasible path.

Third, the algorithms in [6, 71 are source routing algo-
rithms. The routing path is locally computed a t the source
node. Our algorithm does distributed routing. The path
is computed by a restricted diffusion computation [3]. It
avoids the expensive centralized computation at the source,
and collectively utilizes the state information kept a t inter-
mediate nodes to find a path. Multi-path parallel routing is
used to increase the probability of finding a low-cost feasi-
ble path. A technique, called ticket-based probing, is used to
flexibly bound the overhead.

2 System Models

2.1 Network model

A network is modeled as a set V of nodes that are inter-
connected by a set E of full-duplex, directed communication
links. Each node i keeps the up-to-date local state about all
outgoing links. The state information of link (i, j) includes
1) delay(i, j), consisting of the queueing delay at node i and
the propagation delay along the link, and 2) cost(i, j), which
can be simply one as a hop count or a function of the link uti-
lization. The delay and cost of a path P = i + j + ... k + 1
are defined as follows

delay(P) = d e l a y (i , j) + ... + delay(k,l)
cost(P) = cost(i , j) + ... + cost(k, I)

Given a source node s, a destination node t and a delay
requirement D , the problem of delay-constrained routing is
to find a feasible path P from s to t s.t. delay(P) 5 D .

When there are multiple feasible paths, we want to select
the one with the least cost. Finding the delay-constrained
least-cost path is NP-complete [5].

2.2 Imprecise state model

The following information is required to be maintained
a t every node i for every possible destination t. The infor-
mation is updated periodically either by a distance-vector
protocol or by a link-state protocol.

1) Connectivity: &(t) is a routing table entry, keeping
a subset of adjacent nodes that can be used to route data
traffic to t .

2) Delay: D;(t) keeps the minimum end-to-end delay
from i to t , i.e., the delay of the least-delay path.

3) Cost: C;(t) keeps the least end-to-end cost of the
paths from i to t , i.e., the cost of the least-cost path.

The above information, especially D;(t) , is inheritly im-
precise in a dynamic network, as discussed in Section 1. We
propose a simple imprecise state model which can be easily
implemented. An additional state variable is required.

4) Delay Variation: AD;(t) keeps the estimated maxi-
mum change of Di(t) before the next update. That is, based
on the recent state history, the actual minimum end-to-end
delay from i to t is expected to be between D;(t) - A D ; (t)
and D,(t) + AD;(t) in the next update period.

In the following, we describe a possible way to calcu-
late AD;(t) . AD;(t) is updated periodically together with
D;(t). Consider an arbitrary update of AD;(t) and D;(t) .
Let ADftd(t) and ADl""(t) be the values of AD;(t) before
and after the update, respectively. Similarly, let Dpld(t) and
D?""(t) be the values of D;(t) before and after the update,
respectively. D?"" (t) is provided by a distance-vector pro-
tocol. AD,"""(t) is calculated as follows.

ADq""(t) = a x ADpId(t) + (1 - a) x ID?""(t) - Dp'd(t)I

The above formula is similar to the one used by TCP to
estimate the round-trip delay. The factor cr (< 1) deter-
mines how fast the history information (ADp'd(t)) is forgot-
ten, and (1 -a) determines how fast ADf""(t) converges to

By the above formula, it is still possible for the actual de-
lay to be out of the range [D;(t) - AD;(t) , D;(t) + AD;(t)] .
One way to make such probability negligibly small is to en-
large AD;(t). Hence, we shall modify the formula and in-
troduce another factor p (> 1).

ADrew(t) = a x ADf'd(t) + (1 -a) x p x lD?""(t) - DFd(t) /

AD?""(t) converges to p x lDr""(t) - D:'d(t)I a t a speed
determined by (1 - a) .

For the purpose of simplicity, we do not apply the im-
precise model on &(t) and C;(t) . Such a simplification will
not degrade the routing performance significantly because of
the following reasons. (1) The topology (&(t)) of the net-
work can change, but is relatively infrequent comparing to
the QoS state such as delay. (2) The cost metric (C;(t)) is
used for optimization, in contrast to the delay metric used
in QoS constraints. Since there is not a strict cost bound
requirement, certain degree of imprecision for C;(t) is toler-
able.

IDl""(t) - Df'd(t)l.

3 Routing by Ticket-Based Probing

We propose a multi-path distributed routing scheme,
called ticket-based probing. The basic idea is outlined in this
section while the operational details about delay-constrained
routing are discussed in Sections 4.

'Search multiple paths for a feasible one.

615

5

Figure 1. Two probes, pl and p z , are sent from s. The
number between the parentheses following a probe is
the number of tickets carried. At node j, p z is split into
p3 and p4, each of which has one ticket. There are at
most three probes at any time. Three paths are searched
and they ares --+ i -+ t , s --+ j --t t ands --+ j + k -+ t.

Probes (routing messages) are sent from the source s to-
ward the destination t to search for a low-cost path which
satisfies the delay requirement. Certain number of tickets
are issued at the source according to the contention level
of network resources. Each probe is required to carry a t
least one ticket. Hence, the maximum number of probes a t
any time is bounded by the total number of tickets. Since
each probe searches a path, the maximum number of paths
searched is also bounded by the number of tickets. See Fig-
ure 1 for an example. The routing scheme utilizes the state
information a t intermediate nodes to guide the limited tick-
ets (the probes carrying them) along the best paths to the
destination, so that the probability of finding a low-cost fea-
sible path is maximized. A number of nice properties of the
ticket-based probing are outlined below.

1) The routing overhead is controlled by the number of
tickets, which allows the dynamic tradeoff between the over-
head and the routing performance. For those QoS require-
ments that can be easily satisfied according to the current
state condition, a few or even one ticket are sufficient to find
a feasible path. For other requirements that are harder to
be satisfied, more tickets are issued.

2) The proposed scheme is designed to work with impre-
cise state information. The level of imprecision (information
uncertainty) has a direct impact on the number of tickets
issued. Multi-path parallel search increases the chance of
finding a feasible path and thus provides a means to tolerate
information imprecision.

3) Our scheme considers not only the QoS requirement
but also the optimality of the selected path. Low-cost paths
are given preference in order to improve the overall network
performance.

4 Delay-Constrained Routing

Based on the idea of ticket-based probing, we propose a
heuristic algorithm for the NP-complete delay-constrained
least-cost routing problem. When a connection request ar-

rives a t the source node, a certain number No of tickets are
generated and probes are sent toward the destination. Each
probe carries one or more tickets. Since no new tickets are
allowed to be created by the intermediate nodes, the total
number of tickets is always No and the number of probes is
a t most NO a t any time. When a node receives a probe p
with N (p) tickets, it makes a t most N (p) copies of p , dis-
tributes the tickets among the new probes, and then for-
wards them along selected outgoing links toward t . Probes
can only travel along the paths that satisfy the delay require-
ment. Hence, any probe arriving a t the destination detects
a feasible path.

There are two problems: (1) how to determine NO, and
(2) how to distribute the tickets of a received probe among
the new probes. The first problem is solved in Section 4.1
and the second problem is solved in Section 4.2.

4.1 Yellow tickets and green tickets

The NO tickets are colored either yellow or green. The
two types of tickets have different purposes.

1) The purpose of yellow tickets is to maximize the proba-
bility of finding a feasible path. Hence, yellow tickets (more
precisely, probes carrying them) prefer paths with smaller
delays, so that the chance of satisfying a given delay re-
quirement is higher.

The number of yellow tickets, YO, is determined by the
delay requirement D . If D is very large and can be surely
satisfied, a single yellow ticket will be sufficient to find a fea-
sible path. If D is too small to be possibly satisfied, no yellow
ticket is necessary and the connection is rejected. Otherwise,
more than one yellow tickets are issued to search multiple
paths for a feasible one. The curve of Yo is given in Figure 2
(upper curve), which will be explained in details in Section
4.1.1.

2) The purpose of green tickets is to maximize the prob-
ability of finding a low-cost path. Green tickets prefer the
paths with smaller costs, which may however have larger
delays and hence have less chance to satisfy the delay re-
quirement D .

The number of green tickets, Go, is also determined by
the delay requirement. The curve of Go is given in Figure 2
(lower curve), which will be explained in details in Section
4.1.2.

The overall strategy is to use the more aggressive green
tickets to find a low-cost feasible path with relatively low
success probability and to use the yellow tickets as a backup
to guarantee a high success probability of finding a feasible
path.

4.1.1

Consider a connection request whose source, destination and
delay requirement are s, t and D , respectively. YO is deter-
mined by D d (t) , AD,(t) and D . The curve of Yo with respect
to D is shown in Figure 2 (upper curve), which is explained
in the following.

Number of yellow tickets, YO

6 16

n

Q2h

el

Q. 0 E [1.5,2.0] and
simulation (Section 5) .

E [1..3] worked fine in our

2. If D , (t) < D < 0 x (D , (t) + A D . (t)) , then Go =

A D , (t) , the delay requirement becomes increasingly
harder to be satisfied. Hence, the emphasis of rout-
ing shifts from minimizing the cost to maximizing the
probability of finding a feasible path. Go is decreased in
order to reduce the overhead and allow YO to be larger.

\ . , - . . , , I ,
ex D , t +AD, t - D

r s x (d , (t ~ l ~ D , (t) o ! D , (~) - + where
is the maxlmum allowable number of green tickets. As

J I I * 4. If D < D , (t) - A D , (t) , Go = 0 . The connection request
0 Ds(t) ~ ADs(t) Ds(t) Ds(t) +AD,(t) 8 (Ds(t) + A Ds(t)) is rejected.
Figure 2. Curves of Yo and Go with respect to D

1. If D 2 D , (t) + A D , (t) , then Yo = 1. Because D is
equal to or greater than the largest possible end-to-end
delay (D , (t) + A D , (t)) , a single yellow ticket will be
sufficient to find a feasible path. How to propagate the
ticket will be discussed in Section 4.2.

2. If D , (t) - A D , (t) 5 D < D , (t) + A D , (t) , then YO =
[D ' (~ ~ f ~ ; ~ ~)) - D x @I, where 9 is a system parame-
ter specifying the maximum allowable number of yellow
tickets. More yellow tickets are assigned for smaller D .

Because D
is even less than the best expected end-to-end delay
(D g (l) - A D , (t)) , such a tight delay requirement will
not be satisfied. The connection request is rejected and
the QoS negotiation process is activated for a relaxed
delay bound.

3 . If D < D , (t) - A D , (t) , then YO = 0.

4.1.2 Number of green tickets, Go

The curve of Go with respect to D is shown in Figure 2
(lower curve), which is explained in the following.

1. If D 2 6' x (D, (t) + A D , (t)) , then Go = RI, where
6' (> 1) and RI (2 1) are system parameters. 6' spec-
ifies a threshold, 6' x (D . (t) + A D , (t)) , beyond which
D is considered to be sufficiently large. When D is
sufficiently large, the minimum number (01) of green
tickets is assigned. The reason for the threshold to be
0 x (D , (t) + A D , (t)) instead of D , (t) + A D , (t) is that
green tickets prefer the least-cost paths whose delay may
be larger than D , (t) + A D , (t) , which is the largest delay
of the least-delay path. It is generally an engineering is-
sue to determine the most appropriate values for 0 and

*By our imprecise state model, the actual end-to-end delay is CX-

pccted to be in [D.(t) - A D . (t) , D , (t) + AD.(t)]. The probability for
the delay to be out of the range is assumed to be negligibly small.

Theoretically, 9 (or nh) can be $00, which makes the
ticket-based probing a flooding scheme. In practice, a value
of 10 or less for (or a,) should be sufficient according to
our simulation. We can also take the source-destination dis-
tance into account - 9 and nh are larger when the distance
is larger.

Other than Figure 2, there can be many different curves
for YO and Go, depending on the tradeoff objective between
the routing performance and the overhead.

4.2 Ticket-based probing

If YO + Go = 0, the connection request is rejected. Oth-
erwise, probes carrying the tickets are sent from s toward
t . A probe proceeds only when the path has a delay no
more than D . Hence, once the probe reaches t , it detects a
delay-constrained path.

Each probe accumulates the delay of the path it has tra-
versed so far. More specifically, a data field, denoted as
delay(p), is defined in a probe p . Initially, delay(p) := 0;
whenever p proceeds for another link (i , j) , delay(p) :=
delay(p) + delay(i , j).

The distribution of the tickets is described as follows:
Suppose a node i receives a probe p with Y (p) yellow tickets
and G(p) green tickets. Suppose k is the sender of the probe
p . Let Rr(t) = { j I delay(p)+delay(i , j) + D j (t) - A D j (t) 5
D , j E &(t) - {k}). There is no need to send any ticket to
j E &(t) - R:(t), because the best expected delay from j to
t , which is D j (t) - A D j (t) , plus delay(p) and de lay (i , j)
violates the delay requirement. If R:(t) = 0, invalidate
all received tickets and discard them. Otherwise, for ev-
ery j E R:(t) , i makes a copy of p , denoted as p j . Let p j
have Y (p j) yellow tickets and G (p j) green tickets, such that
E Y (p j) = Y (p) and C G (p j) = G(p) . We show

j ER: (t) j E R:(t)
how to calculate Y (p j) and G (p j) in the following.

617

4.2.1 Distributing yellow tickets

Y (p j) , V j E RP(t), is determined based on an intuitive ob-
servation: A probe sent toward the direction with a smaller
delay should have more yellow tickets.

Y (p j) calculated by the above formula may not be an in-
teger. Larger Y (p j) ’ s have the priority to be rounded to
[Y (p j)] , and smaller Y (pj)’s will be rounded to LY (p j)] , so
that C Y (p j) = Y (p) .

j € RP (t)

In order to calculate Y (p j) , node i must maintain the
value of D,,(t) , for every adjacent node j’, which can be
easily realized either in a distance-vector protocol or in a
link-state protocol. Another possible implementation is to
inquire Djl (t) from j‘ and cache the value locally. The same
thing is true for Cjt(t) .

4.2.2 Distributing green tickets

Recall that the purpose of green tickets is to find a low-
cost feasible path. A probe sent toward the direction with a
smaller cost should have more green tickets. V j E R;(t),

Larger G(pj)’s have the priority to be rounded to [G(pj)1 .
Finally, if Y (p j) + G(p,) > 0, p , is sent to j , carrying

Y (p j) yellow tickets and G (p j) green tickets. If Y (p j) +
G (p ,) = 0 , p , is dropped.

In the above scheme, tickets may cycle around loops.
Three possible approaches to avoid cycling infinitely are:
(1) At most one probe is allowed to be sent to every out-
going link,3 (2) the number of hops a probe can traverse is
bounded, i.e., over-aged probes will be discarded, or (3) a
probe records its path to detect the possible loops.

We have discussed two types of tickets. The distribution
of yellow tickets is solely based on delay, and the distribution
of green tickets is solely based on cost. Another type of
tickets may be introduced, whose distribution is based on a
combination of delay and cost. We omit the discussion on
this type of tickets due to the space limitation.

Our ticket-based probing algorithm nicely reduces to the
traditional shortest-path routing algorithm when the impre-
cise model is not used. Suppose AD;(t) = 0, Vi , t E V . Our
algorithm reduces to the following approach: If D 2 os@),
then the source node issues a single yellow ticket, which tra-
verses along the least-delay path to the destination, and in
addition, several (0,) green tickets are issued, trying to find
a feasible path with a lower cost.

3An intermediate node i must record which outgoing links probes
have been sent to. When a new probe is received, Ry is re-defined
8s { j I d e l w (p) + d e l a y (i , j) + Dj(4) - ,ADj (t) 5 D , j E Ri(t) -
{k},a probe has not been sent from a to J before.}

The routing process is activated by the source node, which
sends itself a probe with YO yellow tickets and Go green
tickets. New probes will then be created and sent to t . The
termination of the routing process is discussed in Section
4.3.

4.3 Termination and path selection

The routing process is terminated when all probes have
either reached the destination or been dropped by the inter-
mediate nodes. In order to detect the termination, we re-
quire the intermediate nodes to send the invalidated tickets

to the destination t , instead of discarding them. Therefore,
all tickets will arrive a t t eventually. The routing process is
terminated after t receives all (Yo + Go) tickets. Timeout
is used to handle the problem of message (tickets) losses. If
only invalidated tickets are received, t sends a message to s
to inform the rejection of the request; otherwise, at least one
feasible path is found.

Whenever t receives a probe with a valid ticket, a feasible
path is found, which is the one the probe has traversed.
There are two ways to record the path: one is to record
the path in the probe itself, and the other is to record the
path at the intermediate nodes on a hopby-hop basis. The
first approach requires larger size probes, and thus consumes
more communication bandwidth and more memory space to
store the probes when they are waiting in the queues. The
second approach, however, requires memory space at the
intermediate nodes to store the path. The second approach
is appropriate for an ATM network where a probe with a
constant, smaller size is more likely to be able to fit into a
single cell.

A probe accumulates the cost of the path it traverses. If
multiple probes with valid tickets arrive at the destination,
the path with the least cost is selected.

4.4 Data Structure

The data structure of a probe p is as follows.
id: the system-wide unique identification for the connection
s: the source node
t : the destination node
D: the delay requirement
YO + Go: the total number of tickets
k : the sender of p
Y (p) : the number of yellow tickets carried by p
G (p) : the number of green tickets carried by p
delay(p): the accumulated delay of the path traversed so far
cost(p): the accumulated cost of the path traversed so far

The last five fields, k , Y (p) , G (p) , delay(p) and cost(p),
are modified as the probe traverses. Tickets are logical tokens
and only the number of tickets is important: there can be
at most Y (p) + G (p) new probes descending from p , among

‘The tickets in a received probe are invalidated if R;(t) = 0 (Section

5The number (Yo + Go) is included in the probes sent to t .
4.2).

618

Figure 3. network topology

Table 1. System parameters for TBP

which probes with yellow tickets choose paths based on de-
lay, probes with green tickets choose paths based on cost,
and probes with both yellow and green tickets choose paths
based on both delay and cost.

5 Simulation and Results

Extensive simulations were done to evaluate the proposed
ticket-based probing algorithm. Three performance metrics,
success ratio, average message overhead and average path
cost, are defined as follows.

number of connections accepted
total number of connection requests

success ratio =

total number of routing messages sent
total number of connection requests

avg. msg. overhead =

total cost of all established connection paths
avg. path cost =

number of established connection paths

Sending a probe over a link is counted as one message.
Hence, for a probe having traversed a path of 1 hops, 1 mes-
sages are counted.

The network topology used in our simulation is shown
in Figure 3, which expends the major circuits in ANSNET
by inserting additional links to increase the connectivity.
The source node, the destination node and the delay re-
quirement (D) of each connection request are randomly
generated. D is uniformly distributed in the range of
[30,16Oms]. The cost of each link is uniformly distributed
in [0,200]. Each link (j , k) is associated with two delay
values: delay-old(j, k) and delay-new(j, k). delay-old(j , k)
is the last delay value advertised by the link to the net-
work. Note that D;(t),Vi,t E V , is calculated based on the
delay-old values of all links. delay-new(j, k) is the actual
delay of the link a t the time of routing. delay-old(j ,k) is
uniformly distributed in [0 , 5 0 m s] , while delay-new(j, k) is
uniformly distributed in [(1 - () x delay-old(j, k) , (1 + () x

delay-old(j , k)], where (is a simulation parameter, called
imprecision rate, specifying the largest percentage difference
of delay-neur(j, k) from delay-old(j , k) .

1 [delay-new(j, k) - delay-old(j, k)l
delay-old(j , k)

(= supremum{

Three algorithms are simulated: the flooding algorithm, the
ticket-based probing algorithm (TBP), and the shortest-path
algorithm (SP).

The flooding algorithm is equivalent to TBP with infinite
yellow tickets and zero green tickets. It floods routing mes-
sages from the source to the destination. Each routing mes-
sage accumulates the delay of the path it has traversed, and
the message proceeds only if the accumulated delay does not
exceed the delay bound. As shown by Shin and Chou [lo],
when certain scheduling policies are used and the routing
messages are set to the appropriate priority, the routing mes-
sages travel at speeds according to the link delays. Hence,
the message traveling along the least-delay path arrives first.
With this assumption, an intermediate node needs only to
propagate the first received message and discard all succes-
sively received ones. There will be a t most one message sent
along every link. The algorithm finds a feasible path when-
ever there exists one and hence is the optimal algorithm in
terms of success ratio. The flooding algorithm does not have
an efficient mechanism for the termination detection. It se-
lects the routing path when the destination receives the first
routing message. The advantage of the flooding algorithm
is that it does not need to maintain any global state. The
disadvantage is that too many routing messages are sent.

The system parameters of the TBP algorithm are shown
in Table 1. The values in the table are obtained by extensive
simulation runs. See Section 4 for an explanation about each
parameter.

The SP algorithm maintains a state vector a t each node
i by a distance-vector protocol. The vector has an entry for
every possible destination t , containing two elements, D, (t)
and ra(t). Q(t) is the delay of the least-delay path from
i to t, and .rr,(t) is the next hop on the least-delay path.
D,(t) and r,(t) may be imprecise since they are calculated
based on the last advertised delay values (delay-old) of all
links. When a request arrives at s with D 5 D d (t) , the al-
gorithm sends out one routing message along the least-delay
path to check the current resource availability for possible
connection establishment.

5.1 Success ratio

Figures 4-5 compare the success ratios of the three algo-
rithms. The success ratio is a function of both average delay
requirement D and imprecision rate (. The former is rep-
resented by the z axis and the later is shown by different
figures. In each figure, as the delay requirement becomes
larger, it becomes easier to be satisfied and thus the success
ratio is higher. The flooding algorithm, as expected, has the
best success ratio. The success ratio of TBP is very close

619

imprecision rate: 10%

70 80 60

50
40
30

imprecision rate: 50%

- . F l o o d i r TBp x... .

-

-

-

0 .-
4 2 E
2
v)

U

VI

U
01

3
5

C
0

U

c
C

2

.- +d

8
8

::

a

M
01

$

5!
'C
0

80
70

1

0.9
0.8

0.7

0.6

0.5

0.4

0.3

Flooding -
TBp /

40 60 80 100 120 140 160
average delay requirement D (ms)

60
50
40
30

Figure 4. success ratio (imprecision rate: 10%)

-
-

-

-

imprecision rate: 10%

10 1 --* **..........
J -

.......... *- *...*...*... ** " ~ ~ . ~ ~ ::;.

300

250

-..K,..-. R . . . " .

- x-"

.

..... ,."
Flooding -

TBp *
s p

20 c /
40 60 80 100 120 140 160

average delay requirement D (ms)

Figure 6. message overhead (imprecision rate: 1 OYO)

imurecision rate: 10%
400 I I

380 -
360 -

~ *

Flooding - -
TBP *

sp

220 - xi'

40 60 80 100 120 140 160
average delay requirement D (ins)

Figure 8. cost per established path (imprecision rate:
10%)

0 .-
Y

E
v1

0
0

VI

Y
v)

3
5

C
O

0

c
C

L

.e Y

8
5

2
2
E

a
v)

rc
0

i

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

40 60 80 100 120 140 160
average delay requirement D (ms)

Figure 5. success ratio (imprecision rate: 50%)

imprecision rate: 50%
80
70
60
50
40
30
20
10
0

.......... *.......... x.......... x * *
*........e.

......... .-I. ~* * * -.*

40 60 80 100 120 140 160
average delay requirement D (ms)

Figure 7. message overhead (imprecision rate: 50%)

imprecision rate: 50%
5
0 500 I a

Figure 9. cost per established path (imprecision rate:
50%)

620

to that of the flooding algorithm, even when the'imprecision
rate is as high as 50%. This is because TBP searchs mul-
tiple paths and the number of paths searched is adjusted
according to how hard it will be to find a feasible path.
In addition, the state information of intermediate nodes is
collectively used to direct the probes along the most appro-
priate paths towards the destination. In contrast, the S P
algorithm performs much worse when the imprecision rate
is high.

5.2 Message overhead

Figures 6-7 compare the average message overhead of the
three algorithms. The flooding algorithm has a very high
message overhead. S P has the lowest overhead. T B P has an
overhead higher than that of S P but much lower than that
of the flooding algorithm. The overhead of TBP increases as
the imprecision rate increases. Readers are referred to 111 for
some simple heuristics which reduce the message overhead
of T B P significantly.

5.3 Average path cost

Figures 8-9 compare the average path cost of the three
algorithms. In Figure 8, TBP has a much lower path cost
than the flooding algorithm and SP. This is because TBP
uses both the delay metric and the cost metric to make the
routing decision while the other two algorithms use only the
delay metric. Recall that the green tickets are designed to
find the low-cost feasible paths.

In Figure 9, however, the average path cost of TBP is
higher than that of S P when D is relatively low. That can
be explained as follows: TBP has a much higher success
ratio than SP when the imprecision rate is 50%. Those con-
nections, that TBP is able to establish but S P is not able to,
tend to have relatively long routing paths, as observed in the
simulation. They also tend to have higher cost, which brings
the average path cost up. A fairer comparison is made in
Figure 10, where only the connections which can be estab-
lished by SP are considered. The average path cost of TBP
is lower than that of SP.

6 Conclusion

In this paper, we proposed a ticket-based distributed QoS
routing scheme which works for dynamics networks where
the global state information maintained a t every node is im-
precise. Our simulations show that the scheme achieves high
success ratio and low-cost feasible paths with modest over-
head. It can tolerate high degree of information imprecision.

Our on-going work includes (1) a theoretical approach
to formally analyze the performance of the proposed rout-
ing algorithm, (2) a simulation study on how different sys-
tem parameters affect the routing performance and how to
choose their values and (3) an efficient way to record the

imprecision rate: 50%
c

k

0 a
Y
ffl

8

450 I 1

400

350

300

250

200 ' 40 60 80 100 120 140 160
average delay requirement D (ms)

Figure 10. Using the same set of established paths to
compare the average path cost (imprecision rate: 50%)

routing paths and dynamically optimize these paths during
the process of the ticket-based probing.

References

[l] S. Chen and K. Nahrstedt. Distributed qos routing with
imprecise state information. Technical Report, University
of nlinois at Urbana-Champaign, Department of Computer
Science, 1998.

[2] S. Chen and K. Nahrstedt. On finding multi-constrained
paths. IEEE International Conference on Communications,
June 1998.

[3] E. W. Dijkstra and C. S. Scholten. Termination detection for
diffusion computations. Inform. Process. Lett., 11(1):833-
837, August 1980.

[4] A. Forum. Private network network interface (pnni) v1.0
specifications. May 1996.

[5] M. Garey and D. Johnson. Computers and Intractability: A
Guide t o the Theory of NP-Completeness. New York: W.H.
fieeman and Co., 1979.

[6] R. Guerin and A. Orda. Qos-based routing in networks with
inaccurate information: Theory and algorithms. Infocom'97,
Japan, April 1997.

[7] D. H. Lorenz and A. Orda. Qos routing in networks with
uncertain parameters. Infocom '98, March 1998.

[8] Q. Ma and P. Steenkiste. Quality-of-service routing with
performance guarantees. Proceedings of the 4th Interna-
tional IFIP Workshop on Quality of Service, May 1997.

[9] H. F. Salama, D. S. Reeves, and Y. Viniotis. A distributed
algorithm for delay-constrained unicast routing. INFO-
COM'97, Japan, April 1997.

[lo] K. G. Shin and C.-C. Chou. A distributed route-selection
scheme for establishing real-time channel. Sizth IFIP Int'l
Conf. on High Performance Networking Conf. (HPN'95),
pages 319-329, Sep. 1995.

[l l] Z. Wang and J. Crowcroft. Qos routing for supporting re-
source reservation. JSAC, September 1996.

62 1

