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Abstract 

The goal of Quality-of-Service (QoS) routing is to find a 
network path which has suficient resources to satisfy cer- 
tain constraints on delay, bandwidth and/or other metrics. 
The network state information maintained at every node is 
often imprecise in a dynamic environment because of non- 
negligible propagation delay of state messages, periodic up- 
dates due to overhead concern, and hierarchical state aggre- 
gation [6]. The information imprecision makes QoS rout- 
ing dificult. The traditional shortest-path routing algorithm 
does not provide satisfactory performance with imprecise 
state information. 

We propose a distributed routing scheme, called ticket- 
based probing, which searches multiple paths in parallel for 
a satisfactory one. The scheme is designed to work with 
imprecise state information. It allows the dynamic trade- 
off between the routing performance and the overhead. The 
state information of intermediate nodes is collectively used 
to guide the routing messages along the most appropriate 
paths in order to masimise the success probability. The pro- 
posed algorithm consider not only the QoS requirements but 
also the cost optimality of the routing path. Extensive simu- 
lations show that our algorithm achieve high call-admission 
ratio and low-cost routing paths with modest overhead. The 
algorithm can tolerate high degree of information impreci- 
sion. 

1 Introduction 

The up-coming Gbps high-speed networks are expected to 
support a wide range of communication-intensive, real-time 
applications. The quality-of-service (QoS) requirements of 
these applications raise new challenges for the development 
of integrated-service network systems. One of the key issues 
is QoS routing. The goal of routing solutions is two-folded: 
(a) selecting network routes that have sufficient resources 
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to meet the QoS requirements of every admitted connection 
and (b) achieving global efficiency in resource utilization. 

Routing consists of two basic tasks. The first task is to 
collect the state information and keep it upto-date. The sec- 
ond task is to find a satisfactory path for a new connection 
based on the collected information. Most published rout- 
ing algorithms [2, 8, 9, 111 require every node to maintain a 
global network state either by a distance-vector protocol or 
by a link-state protocol. However, such a global state is in- 
heritly imprecise in a dynamic network where the traffic load 
changes constantly. The imprecision is especially noticeable 
in large wide-area networks due to the following reasons. 
First, it takes non-negligible propagation delay for a local 
state change to  be broadcasted to other nodes. Second, a 
distance-vector (or link-state) protocol updates the state in- 
formation periodically or upon triggering when significant 
state change is detected. There exists a tradeoff between 
the update frequency and the overhead involved. For large 
scale networks, the excessive communication overhead often 
makes it impractical for the update frequency to be high 
enough to cope with the dynamics of network parameters 
such as bandwidth and delay. Third, the hierarchical ap- 
proach is likely to be used to solve the scalability problem of 
routing in large networks [4]. However, the state aggregation 
in hierarchical routing increases the level of imprecision [6]. 

We propose a distributed QoS routing scheme that works 
with imprecise state information. While in this paper 
we only study the NP-complete delay-constmined least-cost 
routing problem, our scheme can also be applied to other 
routing problems such as bandwidth-constrained least-cost 
routing [l]. A path which satisfies the delay (or bandwidth) 
constraint is called a feasible path. The design goal of our 
heuristic algorithm is to  find a low-cost feasible path by us- 
ing only the available imprecise information. 

The most related work was done by Guerin and Orda [6] 
and by Lorena and Orda [7]. There are several important 
differences which distinguish our work from theirs. 

First, the imprecision model in [6, 71 is based on the 
probability distribution functions. For instance, every node 
maintains, for every link 1, the probabilitypl(w) of link 1 hav- 
ing a delay of d units, where d ranges from zero to maximum 
possible value. The problem of how to maintain the prob- 
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ability distribution was not discussed. If the distribution 
is collected over time, it ignores the current, specific traffic 
context, that may be very useful to find the best path. Our 
imprecision model is much simpler. Take the delay metric 
for example. A node i maintains two values for every possi- 
ble destination 2 .  They are (1) D;( t ) ,  an estimation of the 
end-to-end delay from i to t ,  and (2) AD;( t ) ,  an estimation 
of the maximumchange of D;(t)  for the next update period. 
AD;( t )  can be easily computed from the recent state history. 

Second, the goal of [6,7] is to maximize the probability of 
finding a feasible path. The optimality of such a path, which 
is probably equally important, is ignored. On the contrary, 
the goal of our algorithms is to find a low-cost feasible path. 

Third, the algorithms in [6, 71 are source routing algo- 
rithms. The routing path is locally computed a t  the source 
node. Our algorithm does distributed routing. The path 
is computed by a restricted diffusion computation [3]. It 
avoids the expensive centralized computation at the source, 
and collectively utilizes the state information kept a t  inter- 
mediate nodes to find a path. Multi-path parallel routing is 
used to increase the probability of finding a low-cost feasi- 
ble path. A technique, called ticket-based probing, is used to 
flexibly bound the overhead. 

2 System Models 

2.1 Network model 

A network is modeled as a set V of nodes that are inter- 
connected by a set E of full-duplex, directed communication 
links. Each node i keeps the up-to-date local state about all 
outgoing links. The state information of link (i, j) includes 
1) delay(i, j), consisting of the queueing delay at node i and 
the propagation delay along the link, and 2) cost(i, j), which 
can be simply one as a hop count or a function of the link uti- 
lization. The delay and cost of a path P = i + j + ... k + 1 
are defined as follows 

delay(P) = d e l a y ( i , j )  + ... + delay(k,l) 
cost(P) = cost(i , j)  + ... + cost(k, I )  

Given a source node s, a destination node t and a delay 
requirement D ,  the problem of delay-constrained routing is 
to find a feasible path P from s to t s.t. delay(P) 5 D .  

When there are multiple feasible paths, we want to select 
the one with the least cost. Finding the delay-constrained 
least-cost path is NP-complete [5]. 

2.2 Imprecise state model 

The following information is required to be maintained 
a t  every node i for every possible destination t. The infor- 
mation is updated periodically either by a distance-vector 
protocol or by a link-state protocol. 

1) Connectivity: &(t)  is a routing table entry, keeping 
a subset of adjacent nodes that can be used to route data 
traffic to t .  

2) Delay: D;( t )  keeps the minimum end-to-end delay 
from i to t ,  i.e., the delay of the least-delay path. 

3) Cost: C;(t) keeps the least end-to-end cost of the 
paths from i to t ,  i.e., the cost of the least-cost path. 

The above information, especially D;( t ) ,  is inheritly im- 
precise in a dynamic network, as discussed in Section 1. We 
propose a simple imprecise state model which can be easily 
implemented. An additional state variable is required. 

4) Delay Variation: AD;(t)  keeps the estimated maxi- 
mum change of Di( t )  before the next update. That is, based 
on the recent state history, the actual minimum end-to-end 
delay from i to t is expected to be between D;(t)  - A D ; ( t )  
and D,(t)  + AD;( t )  in the next update period. 

In the following, we describe a possible way to calcu- 
late AD;(t) .  AD;( t )  is updated periodically together with 
D;(t). Consider an  arbitrary update of AD;( t )  and D;(t) .  
Let ADftd(t)  and ADl""( t )  be the values of AD;(t)  before 
and after the update, respectively. Similarly, let Dpld(t) and 
D?""(t) be the values of D;(t)  before and after the update, 
respectively. D?"" ( t )  is provided by a distance-vector pro- 
tocol. AD,"""(t) is calculated as follows. 

ADq""(t) = a x ADpId(t) + (1 - a) x ID?""(t) - Dp'd(t)I 

The above formula is similar to the one used by TCP to 
estimate the round-trip delay. The factor cr (< 1) deter- 
mines how fast the history information (ADp'd(t)) is forgot- 
ten, and (1 -a) determines how fast ADf""(t) converges to  

By the above formula, it is still possible for the actual de- 
lay to be out of the range [D;(t )  - AD;( t ) ,  D;( t )  + AD;( t ) ] .  
One way to make such probability negligibly small is to en- 
large AD;(t). Hence, we shall modify the formula and in- 
troduce another factor p (> 1). 

ADrew(t)  = a  x ADf'd(t) + (1 -a) x p x lD?""(t) - DFd(t) /  

AD?""(t) converges to p x lDr""(t) - D:'d(t)I a t  a speed 
determined by (1 - a) .  

For the purpose of simplicity, we do not apply the im- 
precise model on &(t)  and C;(t) .  Such a simplification will 
not degrade the routing performance significantly because of 
the following reasons. (1) The topology (&( t ) )  of the net- 
work can change, but is relatively infrequent comparing to 
the QoS state such as delay. (2) The cost metric (C;(t)) is 
used for optimization, in contrast to the delay metric used 
in QoS constraints. Since there is not a strict cost bound 
requirement, certain degree of imprecision for C;(t) is toler- 
able. 

IDl""(t) - Df'd(t)l. 

3 Routing by Ticket-Based Probing 

We propose a multi-path distributed routing scheme, 
called ticket-based probing. The basic idea is outlined in this 
section while the operational details about delay-constrained 
routing are discussed in Sections 4. 

'Search multiple paths for a feasible one. 
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Figure 1. Two probes, pl and p z ,  are sent from s. The 
number between the parentheses following a probe is 
the number of tickets carried. At node j, p z  is split into 
p3 and p4, each of which has one ticket. There are at 
most three probes at any time. Three paths are searched 
and they ares --+ i -+ t , s  --+ j --t t ands --+ j + k -+ t. 

Probes (routing messages) are sent from the source s to- 
ward the destination t to search for a low-cost path which 
satisfies the delay requirement. Certain number of tickets 
are issued at  the source according to the contention level 
of network resources. Each probe is required to carry a t  
least one ticket. Hence, the maximum number of probes a t  
any time is bounded by the total number of tickets. Since 
each probe searches a path, the maximum number of paths 
searched is also bounded by the number of tickets. See Fig- 
ure 1 for an example. The routing scheme utilizes the state 
information a t  intermediate nodes to guide the limited tick- 
ets (the probes carrying them) along the best paths to the 
destination, so that the probability of finding a low-cost fea- 
sible path is maximized. A number of nice properties of the 
ticket-based probing are outlined below. 

1) The routing overhead is controlled by the number of 
tickets, which allows the dynamic tradeoff between the over- 
head and the routing performance. For those QoS require- 
ments that can be easily satisfied according to the current 
state condition, a few or even one ticket are sufficient to find 
a feasible path. For other requirements that are harder to 
be satisfied, more tickets are issued. 

2)  The proposed scheme is designed to work with impre- 
cise state information. The level of imprecision (information 
uncertainty) has a direct impact on the number of tickets 
issued. Multi-path parallel search increases the chance of 
finding a feasible path and thus provides a means to tolerate 
information imprecision. 

3) Our scheme considers not only the QoS requirement 
but also the optimality of the selected path. Low-cost paths 
are given preference in order to improve the overall network 
performance. 

4 Delay-Constrained Routing 

Based on the idea of ticket-based probing, we propose a 
heuristic algorithm for the NP-complete delay-constrained 
least-cost routing problem. When a connection request ar- 

rives a t  the source node, a certain number No of tickets are 
generated and probes are sent toward the destination. Each 
probe carries one or more tickets. Since no new tickets are 
allowed to be created by the intermediate nodes, the total 
number of tickets is always No and the number of probes is 
a t  most NO a t  any time. When a node receives a probe p 
with N ( p )  tickets, it makes a t  most N ( p )  copies of p ,  dis- 
tributes the tickets among the new probes, and then for- 
wards them along selected outgoing links toward t .  Probes 
can only travel along the paths that satisfy the delay require- 
ment. Hence, any probe arriving a t  the destination detects 
a feasible path. 

There are two problems: (1) how to determine NO, and 
(2) how to distribute the tickets of a received probe among 
the new probes. The first problem is solved in Section 4.1 
and the second problem is solved in Section 4.2. 

4.1 Yellow tickets and green tickets 

The NO tickets are colored either yellow or green. The 
two types of tickets have different purposes. 

1) The purpose of yellow tickets is to maximize the proba- 
bility of finding a feasible path. Hence, yellow tickets (more 
precisely, probes carrying them) prefer paths with smaller 
delays, so that the chance of satisfying a given delay re- 
quirement is higher. 

The number of yellow tickets, YO, is determined by the 
delay requirement D .  If D is very large and can be surely 
satisfied, a single yellow ticket will be sufficient to find a fea- 
sible path. If D is too small to be possibly satisfied, no yellow 
ticket is necessary and the connection is rejected. Otherwise, 
more than one yellow tickets are issued to search multiple 
paths for a feasible one. The curve of Yo is given in Figure 2 
(upper curve), which will be explained in details in Section 
4.1.1. 

2) The purpose of green tickets is to maximize the prob- 
ability of finding a low-cost path. Green tickets prefer the 
paths with smaller costs, which may however have larger 
delays and hence have less chance to satisfy the delay re- 
quirement D .  

The number of green tickets, Go, is also determined by 
the delay requirement. The curve of Go is given in Figure 2 
(lower curve), which will be explained in details in Section 
4.1.2. 

The overall strategy is to use the more aggressive green 
tickets to find a low-cost feasible path with relatively low 
success probability and to use the yellow tickets as a backup 
to guarantee a high success probability of finding a feasible 
path. 

4.1.1 

Consider a connection request whose source, destination and 
delay requirement are s, t and D ,  respectively. YO is deter- 
mined by D d ( t ) ,  AD,( t )  and D .  The curve of Yo with respect 
to D is shown in Figure 2 (upper curve), which is explained 
in the following. 

Number of yellow tickets, YO 
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Q. 0 E [1.5,2.0] and 
simulation (Section 5 ) .  

E [1..3] worked fine in our 

2. If D , ( t )  < D < 0 x (D , ( t )  + A D . ( t ) ) ,  then Go = 

A D ,  ( t ) ,  the delay requirement becomes increasingly 
harder to be satisfied. Hence, the emphasis of rout- 
ing shifts from minimizing the cost to maximizing the 
probability of finding a feasible path. Go is decreased in 
order to reduce the overhead and allow YO to be larger. 

\ . ,  - . . ,  , I ,  
ex  D ,  t +AD, t - D  

r s x ( d , ( t ~ l ~ D , ( t ) o ! D , ( ~ )  - + where 
is the maxlmum allowable number of green tickets. As 

J I I * 4. If D < D , ( t ) - A D , ( t ) ,  Go = 0 .  The connection request 
0 Ds(t) ~ ADs(t) Ds(t) Ds(t) +AD,(t) 8 (Ds(t) + A Ds(t)) is rejected. 
Figure 2. Curves of Yo and Go with respect to D 

1. If D 2 D , ( t )  + A D , ( t ) ,  then Yo = 1. Because D is 
equal to or greater than the largest possible end-to-end 
delay ( D , ( t )  + A D , ( t ) ) ,  a single yellow ticket will be 
sufficient to find a feasible path. How to propagate the 
ticket will be discussed in Section 4.2. 

2. If D , ( t )  - A D , ( t )  5 D < D , ( t )  + A D , ( t ) ,  then YO = 
[ D ' ( ~ ~ f ~ ; ~ ~ ) ) - D  x @I,  where 9 is a system parame- 
ter specifying the maximum allowable number of yellow 
tickets. More yellow tickets are assigned for smaller D .  

Because D 
is even less than the best expected end-to-end delay 
( D g ( l )  - A D , ( t ) ) ,  such a tight delay requirement will 
not be satisfied. The connection request is rejected and 
the QoS negotiation process is activated for a relaxed 
delay bound. 

3 .  If D < D , ( t )  - A D , ( t ) ,  then YO = 0. 

4.1.2 Number of green tickets, Go 

The curve of Go with respect to D is shown in Figure 2 
(lower curve), which is explained in the following. 

1. If D 2 6' x (D, ( t )  + A D , ( t ) ) ,  then Go = RI, where 
6' (> 1) and RI (2 1) are system parameters. 6' spec- 
ifies a threshold, 6' x ( D . ( t )  + A D , ( t ) ) ,  beyond which 
D is considered to be sufficiently large. When D is 
sufficiently large, the minimum number (01) of green 
tickets is assigned. The reason for the threshold to be 
0 x ( D , ( t )  + A D , ( t ) )  instead of D , ( t )  + A D , ( t )  is that 
green tickets prefer the least-cost paths whose delay may 
be larger than D , ( t ) + A D , ( t ) ,  which is the largest delay 
of the least-delay path. It is generally an engineering is- 
sue to determine the most appropriate values for 0 and 

*By our imprecise state model, the actual end-to-end delay is CX- 

pccted to be in [D.(t) - A D . ( t ) , D , ( t )  + AD.(t)]. The probability for 
the delay to be out of the range is assumed to be negligibly small. 

Theoretically, 9 (or nh) can be $00, which makes the 
ticket-based probing a flooding scheme. In practice, a value 
of 10 or less for (or a,) should be sufficient according to 
our simulation. We can also take the source-destination dis- 
tance into account - 9 and nh are larger when the distance 
is larger. 

Other than Figure 2, there can be many different curves 
for YO and Go, depending on the tradeoff objective between 
the routing performance and the overhead. 

4.2 Ticket-based probing 

If YO + Go = 0, the connection request is rejected. Oth- 
erwise, probes carrying the tickets are sent from s toward 
t .  A probe proceeds only when the path has a delay no 
more than D .  Hence, once the probe reaches t ,  it detects a 
delay-constrained path. 

Each probe accumulates the delay of the path it has tra- 
versed so far. More specifically, a data field, denoted as 
delay(p),  is defined in a probe p .  Initially, delay(p) := 0; 
whenever p proceeds for another link ( i , j ) ,  delay(p) := 
delay(p) + delay(i ,  j). 

The distribution of the tickets is described as follows: 
Suppose a node i receives a probe p with Y ( p )  yellow tickets 
and G(p)  green tickets. Suppose k is the sender of the probe 
p .  Let Rr(t) = { j  I delay(p)+delay(i ,  j ) + D j ( t ) - A D j ( t )  5 
D ,  j E &(t) - {k}). There is no need to send any ticket to 
j E &(t) - R:(t), because the best expected delay from j to 
t ,  which is D j ( t )  - A D j ( t ) ,  plus delay(p) and de lay ( i , j )  
violates the delay requirement. If R:(t) = 0, invalidate 
all received tickets and discard them. Otherwise, for ev- 
ery j E R:(t) ,  i makes a copy of p ,  denoted as p j .  Let p j  
have Y ( p j )  yellow tickets and G ( p j )  green tickets, such that 
E Y ( p j )  = Y ( p )  and C G ( p j )  = G(p) .  We show 

j ER: ( t )  j E R:( t )  
how to calculate Y ( p j )  and G ( p j )  in the following. 
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4.2.1 Distributing yellow tickets 

Y ( p j ) , V j  E RP(t), is determined based on an intuitive ob- 
servation: A probe sent toward the direction with a smaller 
delay should have more yellow tickets. 

Y ( p j )  calculated by the above formula may not be an in- 
teger. Larger Y ( p j ) ’ s  have the priority to be rounded to 
[Y ( p j ) ] ,  and smaller Y (pj)’s will be rounded to LY ( p j ) ] ,  so 
that C Y ( p j )  = Y ( p ) .  

j €  RP (t) 

In order to calculate Y ( p j ) ,  node i must maintain the 
value of D,,(t) ,  for every adjacent node j’, which can be 
easily realized either in a distance-vector protocol or in a 
link-state protocol. Another possible implementation is to 
inquire Djl ( t )  from j‘  and cache the value locally. The same 
thing is true for Cjt( t ) .  

4.2.2 Distributing green tickets 

Recall that the purpose of green tickets is to find a low- 
cost feasible path. A probe sent toward the direction with a 
smaller cost should have more green tickets. V j  E R;(t), 

Larger G(pj)’s  have the priority to be rounded to [G(pj )1 .  
Finally, if Y ( p j )  + G(p, )  > 0, p ,  is sent to j ,  carrying 

Y ( p j )  yellow tickets and G ( p j )  green tickets. If Y ( p j )  + 
G ( p , )  = 0 ,  p ,  is dropped. 

In the above scheme, tickets may cycle around loops. 
Three possible approaches to avoid cycling infinitely are: 
(1) At most one probe is allowed to be sent to every out- 
going link,3 (2) the number of hops a probe can traverse is 
bounded, i.e., over-aged probes will be discarded, or (3) a 
probe records its path to detect the possible loops. 

We have discussed two types of tickets. The distribution 
of yellow tickets is solely based on delay, and the distribution 
of green tickets is solely based on cost. Another type of 
tickets may be introduced, whose distribution is based on a 
combination of delay and cost. We omit the discussion on 
this type of tickets due to the space limitation. 

Our ticket-based probing algorithm nicely reduces to the 
traditional shortest-path routing algorithm when the impre- 
cise model is not used. Suppose AD;( t )  = 0, Vi ,  t E V .  Our 
algorithm reduces to the following approach: If D 2 os@), 
then the source node issues a single yellow ticket, which tra- 
verses along the least-delay path to the destination, and in 
addition, several (0,) green tickets are issued, trying to find 
a feasible path with a lower cost. 

3An intermediate node i must record which outgoing links probes 
have been sent to. When a new probe is received, Ry is re-defined 
8s { j  I d e l w ( p )  + d e l a y ( i , j )  + Dj(4)  - ,ADj ( t )  5 D , j  E Ri( t )  - 
{k},a probe has not been sent from a to J before.} 

The routing process is activated by the source node, which 
sends itself a probe with YO yellow tickets and Go green 
tickets. New probes will then be created and sent to t .  The 
termination of the routing process is discussed in Section 
4.3. 

4.3 Termination and path selection 

The routing process is terminated when all probes have 
either reached the destination or been dropped by the inter- 
mediate nodes. In order to detect the termination, we re- 
quire the intermediate nodes to send the invalidated tickets 

to the destination t ,  instead of discarding them. Therefore, 
all tickets will arrive a t  t eventually. The routing process is 
terminated after t receives all (Yo + Go) tickets. Timeout 
is used to handle the problem of message (tickets) losses. If 
only invalidated tickets are received, t sends a message to s 
to inform the rejection of the request; otherwise, at  least one 
feasible path is found. 

Whenever t receives a probe with a valid ticket, a feasible 
path is found, which is the one the probe has traversed. 
There are two ways to record the path: one is to record 
the path in the probe itself, and the other is to record the 
path at the intermediate nodes on a hopby-hop basis. The 
first approach requires larger size probes, and thus consumes 
more communication bandwidth and more memory space to 
store the probes when they are waiting in the queues. The 
second approach, however, requires memory space at  the 
intermediate nodes to store the path. The second approach 
is appropriate for an ATM network where a probe with a 
constant, smaller size is more likely to be able to fit into a 
single cell. 

A probe accumulates the cost of the path it traverses. If 
multiple probes with valid tickets arrive at  the destination, 
the path with the least cost is selected. 

4.4 Data Structure 

The data structure of a probe p is as follows. 
id: the system-wide unique identification for the connection 
s: the source node 
t :  the destination node 
D: the delay requirement 
YO + Go: the total number of tickets 
k :  the sender of p 
Y (p ) :  the number of yellow tickets carried by p 
G ( p ) :  the number of green tickets carried by p 
delay(p): the accumulated delay of the path traversed so far 
cost(p):  the accumulated cost of the path traversed so far 

The last five fields, k ,  Y ( p ) ,  G ( p ) ,  delay(p)  and cost(p),  
are modified as the probe traverses. Tickets are logical tokens 
and only the number of tickets is important: there can be 
at  most Y ( p )  + G ( p )  new probes descending from p ,  among 

‘The tickets in a received probe are invalidated if R;(t)  = 0 (Section 

5The number (Yo + Go) is included in the probes sent to t .  
4.2). 
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Figure 3. network topology 

Table 1. System parameters for TBP 

which probes with yellow tickets choose paths based on de- 
lay, probes with green tickets choose paths based on cost, 
and probes with both yellow and green tickets choose paths 
based on both delay and cost. 

5 Simulation and Results 

Extensive simulations were done to evaluate the proposed 
ticket-based probing algorithm. Three performance metrics, 
success ratio, average message overhead and average path 
cost, are defined as follows. 

number of connections accepted 
total number of connection requests 

success ratio = 

total number of routing messages sent 
total number of connection requests 

avg. msg. overhead = 

total cost of all established connection paths 
avg. path cost = 

number of established connection paths 

Sending a probe over a link is counted as one message. 
Hence, for a probe having traversed a path of 1 hops, 1 mes- 
sages are counted. 

The network topology used in our simulation is shown 
in Figure 3, which expends the major circuits in ANSNET 
by inserting additional links to increase the connectivity. 
The source node, the destination node and the delay re- 
quirement (D) of each connection request are randomly 
generated. D is uniformly distributed in the range of 
[30,16Oms]. The cost of each link is uniformly distributed 
in [0,200]. Each link ( j ,  k )  is associated with two delay 
values: delay-old(j, k )  and delay-new(j,  k). delay-old( j ,  k) 
is the last delay value advertised by the link to the net- 
work. Note that D;(t),Vi,t E V ,  is calculated based on the 
delay-old values of all links. delay-new(j,  k )  is the actual 
delay of the link a t  the time of routing. delay-old( j ,k)  is 
uniformly distributed in [ 0 , 5 0 m s ] ,  while delay-new(j,  k )  is 
uniformly distributed in [( 1 - () x delay-old(j, k ) ,  (1 + () x 

delay-old(j ,  k)], where ( is a simulation parameter, called 
imprecision rate, specifying the largest percentage difference 
of delay-neur(j, k )  from delay-old(j ,  k ) .  

1 [delay-new(j,  k )  - delay-old(j, k)l 
delay-old( j ,  k )  

( = supremum{ 

Three algorithms are simulated: the flooding algorithm, the 
ticket-based probing algorithm ( TBP), and the shortest-path 
algorithm (SP). 

The flooding algorithm is equivalent to TBP with infinite 
yellow tickets and zero green tickets. It floods routing mes- 
sages from the source to the destination. Each routing mes- 
sage accumulates the delay of the path it has traversed, and 
the message proceeds only if the accumulated delay does not 
exceed the delay bound. As shown by Shin and Chou [lo], 
when certain scheduling policies are used and the routing 
messages are set to the appropriate priority, the routing mes- 
sages travel at  speeds according to the link delays. Hence, 
the message traveling along the least-delay path arrives first. 
With this assumption, an intermediate node needs only to 
propagate the first received message and discard all succes- 
sively received ones. There will be a t  most one message sent 
along every link. The algorithm finds a feasible path when- 
ever there exists one and hence is the optimal algorithm in 
terms of success ratio. The flooding algorithm does not have 
an efficient mechanism for the termination detection. It se- 
lects the routing path when the destination receives the first 
routing message. The advantage of the flooding algorithm 
is that it does not need to maintain any global state. The 
disadvantage is that too many routing messages are sent. 

The system parameters of the TBP algorithm are shown 
in Table 1. The values in the table are obtained by extensive 
simulation runs. See Section 4 for an explanation about each 
parameter. 

The SP algorithm maintains a state vector a t  each node 
i by a distance-vector protocol. The vector has an entry for 
every possible destination t ,  containing two elements, D, ( t )  
and ra(t). Q(t )  is the delay of the least-delay path from 
i to t, and .rr,(t) is the next hop on the least-delay path. 
D,(t) and r,(t) may be imprecise since they are calculated 
based on the last advertised delay values (delay-old) of all 
links. When a request arrives at s with D 5 D d ( t ) ,  the al- 
gorithm sends out one routing message along the least-delay 
path to check the current resource availability for possible 
connection establishment. 

5.1 Success ratio 

Figures 4-5 compare the success ratios of the three algo- 
rithms. The success ratio is a function of both average delay 
requirement D and imprecision rate (. The former is rep- 
resented by the z axis and the later is shown by different 
figures. In each figure, as the delay requirement becomes 
larger, it becomes easier to be satisfied and thus the success 
ratio is higher. The flooding algorithm, as expected, has the 
best success ratio. The success ratio of TBP is very close 
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to  that of the flooding algorithm, even when the'imprecision 
rate is as high as 50%. This is because TBP searchs mul- 
tiple paths and the number of paths searched is adjusted 
according to how hard it will be to find a feasible path. 
In addition, the state information of intermediate nodes is 
collectively used to direct the probes along the most appro- 
priate paths towards the destination. In contrast, the S P  
algorithm performs much worse when the imprecision rate 
is high. 

5.2 Message overhead 

Figures 6-7 compare the average message overhead of the 
three algorithms. The flooding algorithm has a very high 
message overhead. S P  has the lowest overhead. T B P  has an 
overhead higher than that of S P  but much lower than that 
of the flooding algorithm. The overhead of TBP increases as 
the imprecision rate increases. Readers are referred to  111 for 
some simple heuristics which reduce the message overhead 
of T B P  significantly. 

5.3 Average path cost 

Figures 8-9 compare the average path cost of the three 
algorithms. In Figure 8, TBP has a much lower path cost 
than the flooding algorithm and SP. This is because TBP 
uses both the delay metric and the cost metric to make the 
routing decision while the other two algorithms use only the 
delay metric. Recall that the green tickets are designed to 
find the low-cost feasible paths. 

In Figure 9, however, the average path cost of TBP is 
higher than that of S P  when D is relatively low. That can 
be explained as follows: TBP has a much higher success 
ratio than SP when the imprecision rate is 50%. Those con- 
nections, that TBP is able to establish but S P  is not able to, 
tend to have relatively long routing paths, as observed in the 
simulation. They also tend to have higher cost, which brings 
the average path cost up. A fairer comparison is made in 
Figure 10, where only the connections which can be estab- 
lished by SP are considered. The average path cost of TBP 
is lower than that of SP. 

6 Conclusion 

In this paper, we proposed a ticket-based distributed QoS 
routing scheme which works for dynamics networks where 
the global state information maintained a t  every node is im- 
precise. Our simulations show that the scheme achieves high 
success ratio and low-cost feasible paths with modest over- 
head. It can tolerate high degree of information imprecision. 

Our on-going work includes (1) a theoretical approach 
to formally analyze the performance of the proposed rout- 
ing algorithm, (2) a simulation study on how different sys- 
tem parameters affect the routing performance and how to 
choose their values and (3) an efficient way to record the 
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routing paths and dynamically optimize these paths during 
the process of the ticket-based probing. 

References 

[l] S. Chen and K. Nahrstedt. Distributed qos routing with 
imprecise state information. Technical Report, University 
of nlinois at Urbana-Champaign, Department of Computer 
Science, 1998. 

[2] S. Chen and K. Nahrstedt. On finding multi-constrained 
paths. IEEE International Conference on Communications, 
June 1998. 

[3] E. W. Dijkstra and C. S. Scholten. Termination detection for 
diffusion computations. Inform. Process. Lett., 11(1):833- 
837, August 1980. 

[4] A. Forum. Private network network interface (pnni) v1.0 
specifications. May 1996. 

[5] M. Garey and D. Johnson. Computers and Intractability: A 
Guide t o  the Theory of NP-Completeness. New York: W.H. 
fieeman and Co., 1979. 

[6] R. Guerin and A. Orda. Qos-based routing in networks with 
inaccurate information: Theory and algorithms. Infocom'97, 
Japan, April 1997. 

[7] D. H. Lorenz and A. Orda. Qos routing in networks with 
uncertain parameters. Infocom '98, March 1998. 

[8] Q. Ma and P. Steenkiste. Quality-of-service routing with 
performance guarantees. Proceedings of the 4th Interna- 
tional IFIP Workshop on Quality of Service, May 1997. 

[9] H. F. Salama, D. S. Reeves, and Y. Viniotis. A distributed 
algorithm for delay-constrained unicast routing. INFO- 
COM'97, Japan, April 1997. 

[lo] K. G. Shin and C.-C. Chou. A distributed route-selection 
scheme for establishing real-time channel. Sizth IFIP Int'l 
Conf. on High Performance Networking Conf. (HPN'95), 
pages 319-329, Sep. 1995. 

[ l l]  Z. Wang and J. Crowcroft. Qos routing for supporting re- 
source reservation. JSAC, September 1996. 

62 1 


