
Hierarchical Scheduling for Multiple Classes of Applications in
Connection-Oriented Integrated-Service Networks *

Shigang Chen, Klara Nahrstedt
Department of Computer Science

University of Illinois at Urbana-Champaign
{s-chen5, klara}@cs.uiuc.edu

Abstract

Multiple classes of conventional and multimedia ap-
plications are expected to be supported by the emerging
connection-oriented integrated-service networks, where best-
efJort flows and quality-of-service (QoS) flows co-exist. We
propose a novel two-level hierarchical scheduling algorithm,
which provides an integrated, simple scheme to distribute the
link bandwidth among a dynamic set of flows in the network,
such that (1) every QoS flow always receives a bandwidth
which guarantees the required quality of service and (2) af-
ter the requirements of the QoS flows are satisfied, the rest
network bandwidth is fairly shared among all best-eflort and
soft-&OS flows. We extend our hierarchical scheduling algo-
rithm to support both bursty and non-bursty flows. We also
discuss the techniques which make the throughput of a QoS
flow to be constantly lower bounded and/or upper bounded.

1 Introduction

In traditional connectionless networks, data packets of a
flow (session) may follow different routes to the destination
node. This architecture does not meet the requirements of
the future integrated-service networks. It does not support
resource reservation which is vital for the provision of guar-
anteed quality of service (QoS). Hence, the next generation
of high-speed wide-area networks is likely to be connection-
oriented so that the data packets of a flow are transmit-
ted along the same route in the FIFO order. Extensive re-
search and experiments have been done with the connection-
oriented ATM technology [2, 31.

Multiple classes of applications are expected to be s u p
ported by the integrated-service networks. While the con-
ventional applications such as e-mail and ftp send textual or
binary data using best-effort flows, the emerging distributed
multimedia applications require real-time data to be deliv-
ered through quality-of-service (QoS) flows, which demand
certain system resources to be reserved in order to ensure
the acceptable quality. The &OS flows have very diverse

*This work was supported by the Airforce grant under contract
number F30602-97-2-0121 and the National Science Foundation Career
grant under contract number NSF CCR 96-23867.

traffic patterns. First, some flows such as MPEG video are
bursty, while some others such as audio require constant
throughput. Second, some flows such as mission-critical real-
time control streams require the throughput to be constantly
greater than a minimum rate, while some others require the
throughput to be both lower-bounded and upper-bounded.
A too-large throughput may not be acceptable due to the
limited processing capacity at the receiver end. Third, some
flows are adaptable in the sense that the sending rates can
be adjusted according to the current bandwidth availability,
while some others are non-adaptable in the sense that they
can only operate appropriately at certain rates. Different
types of flows impose different requirements on the system
support. Though many scheduling policies have been pro-
posed for each of the above flows 16, 7, lo], none of the
policies provides a simple solution to all of them.

Bennett and Zhang proposed a nice hierarchical schedul-
ing framework [l]. We extend the idea of hierarchical
scheduling and tailor it towards the specific needs raised by
a set of well-defined application classes. Our hierarchical
scheduling algorithm can support both best-effort and QoS
flows, both bursty and non-bursty flows, both throughput-
lower-bounded and throughput-upper-bounded flows, and
both adaptable and non-adaptable flows.

2 Network Model and Flow Characteristics

A network is modeled as a graph (N , E), where N is a set
of nodes which are fully connected by a set E of full-duplex,
directed communication links. Each link 1 has a bandwidth
capacity C(I). Let F be the set of flows in the network.
We study the connected-oriented network where each flow
has a fixed source (destination) and is assigned a fixed route
through which all packets of that flow are transmitted in
the FIFO order [4]. For a flow f E F , the set of links on its
route is denoted as L (f) . The set of flows through a link 1
is denoted as F(1).

Each flow f is characterized by a pair of bandwidth re-
quirements (B,;,(f),Bmaz(f)) [SI, where Bmin(f) is the
minimum bandwidth that ensures an acceptable quality, and
B,,,(f) is the maximum (or peak) bandwidth that is con-
strained by the highest source rate. Flows can be classified
into the following categories.

0-7695-0253-9/99 $10.00 0 1999 IEEE
153

mailto:klara}@cs.uiuc.edu

Best-effort flow: If Bmin(f) = 0, f is called a best-effort
flow. Examples are file transmission (f ip) , web-page down-
load, and database retrieval.
QoS flow: If Bmin(f) # 0, f is called a QoS Bow.

1) Soft-QoS flow: If Bmin(f) < Bma3(f), f is called a
soft-QoS %ow. The minimum data throughput is given by
Bmin(f) and must be guaranteed by the network. However,
the actual data rate can be anywhere between Bmin(f) and
Bmaz(f), and is subject to the dynamics of bandwidth avail-
ability in the network. In ATM networks, the available bit
rate (ABR) service is an example.

2) Hard-QoS flow: If Bmin(f) = Bmaz(f), f is called
a hard-QoS flow. The data throughput is required to be a
constant. In ATM networks, the constant bit rate (CBR)
service is an example.

The variable bit rate (VBR) service in ATM networks can
also be modeled by QoS flows. However, additional specifi-
cation about the burstiness of the flow such as the maximum
burst duration (burst tolerance) must be provided.

3 Integrated Packet Scheduling

We propose a new integrated hierarchical packet schedul-
ing scheme which provides the network support for multiple
classes of conventional and multimedia applications with var-
ious flow types including best-effort, soft-QoS and hard-QoS
flows.

3.1 Design goals

When there exist many concurrent flows in the network,
it is crucial that the limited bandwidth and other resources
are shared effectively and fairly among all competing flows.
We have two primary design goals for bandwidth allocation.

Guaranteeing QoS: The minimum bandwidth require-
ment Bmin(f) must be guaranteed for each f E F.

Ensuring fairness: After the bandwidth for guaran-
teeing the minimum QoS is taken off, the rest bandwidth,
C(1) - fe$(I)Bm;n(f), is shared equally among all flows in

There are many other design issues besides the above two,
such as handling burstness and ensuring a strict upper bound
B,,,(f) in order to prevent buffer overflow. All the above
issues will be discussed in the rest of this section.

F W

3.2 Hierarchical scheduling

We propose a decentralized hierarchical scheduling
scheme which achieves the two design goals.

A packet scheduling algorithm operates on each individ-
ual link 1. The algorithm is a two-level hierarchy as shown
in Figure 1. At the first level, the link capacity is divided
between two logical scheduling servers: the QoS server and
the best-eflort server. The capacity of the QoS server is
Cqos(l) = C Bmin(f), and the capacity of the best-effort

f E F (0
server is C b e J t (l) = c(l) - Bmin(f). Note the values of

f E W)

first-level
scheduling

second-level
scheduling

b r d Q o S nows bcst-efforl flows

Figure 1. The QoS server schedules the QoS flows and
the best-effort server schedules the soft-QoS and best-
effort flows.

cqos(l) and C b e s t (l) change when the flow set F(1) changes,
which, as shown later, is critical for guaranteeing a minimum
required bandwidth for every QoS flow seamlessly in a dy-
namic network. At the second level, the QoS server ensures
that each flow f receives a fixed bandwidth of Bmin(f), and
the best-effort server assigns each flow an additional share
of bandwidth which is not fixed but subject to the dynamics

The QoS server only schedules the QoS flows because,
for any best-effort flow, Bm,,,(f) = 0. The set of QoS
flows is denoted as Fqos(l). On the other hand, the best-
effort server does not have to schedule the hard-QoS flows
because Bmin(f) = B,,,(f) and the QoS server already
provides all bandwidth they need. The set of soft-QoS and
best-effort flows scheduled by the best-effort server is de-
noted as F b e s t (l) . Note that F q o , (l) U F b e s t (l) = F(1) and
Fqos(l)

&OS server: The QoS server must maintain two invari-
ants.

of Cbest (1) .

FbeSt(1) is the set of soft-QoS flows on link 1 .

11.

12.

Cqos(l) = fEFEs(l)Bmin(f). Whenever a new QoS Row

f joins in Fqos(l), Cqos(l) must be increased by Bmin(f)
immediately; whenever an existing QoS flow f leaves
Fqos(l), Cqoa(l) must be decreased by Bmin(f).

Vf E Fqos(l), the QoS server assigns a bandwidth no
less than Bm,,,(f) to f, regardless the dynamics of the
network state.

Best-effort server: The best-effort server has two
properties.

PI. Cbest(1) = c(1) - Cqo3(1). The capacity of the best-
effort server is always equal to the link bandwidth left
over by the QoS server. When a new QoS flow joins
and thus cqos(l) increases, Cbest(1) must decrease ac-
cordingly; when an existing QoS flow leaves and thus
cqos (1) decreases, &st (1) must increase accordingly.

P2. The best-effort server distributes its capacity Cbest (1)

fairly among all flows in Fbest (l) . Any two flows whose
packet queues remain backlogged should receive the

154

same share of bandwidth. The flows whose queues are
empty receive less bandwidth which is equal to the av-
erage incoming data rate.

3.3 Implementation

The implementation of the hierarchical scheduling algo-
rithm consists of three parts: (1) scheduling within the QoS
server, (2) scheduling within the best-effort server and (3)
scheduling between the two servers.

// two-level hierarchical scheduling on link 1
while true do
(1) a packet n is selected from flows in F,,, (I) by &OS server
(2) a packet m is selected from flows in Fbest(l) by best-effort

(3) select one from n and m for transmission

Referring to Figure 1, (1) and (2) are the second-level
schedulings; (3) is the first-level scheduling. All three parts
can be implemented by the weighted fair queueing [5] .

server

3.3.1

Assume the invariant I1 (Section 3.2) always holds,
i.e., the capacity of the QoS server, Cqos(l), is always

Bmin(f). How to maintain such a capacity in a dy-

namic network is discussed in Section 3.3.3.
In order not to starve the best-effort server, we also as-

sume Cqos(l) < cy x C(l) , where cy (< 1) is a system constant
specifying the maximum percentage of the link capacity used
by the QoS server. This can be achieved by the admission
control.

We implement the scheduling within the QoS server by
the weighted fair queueing as follows. A packet queue is
maintained for each flow f E Fqos(l), The arrival packets
are inserted into the queue in the FIFO order. A timestamp
t i O , (f) is calculated for the i th arrival packet.

Scheduling within the $OS server

C
f E F w = (1)

4-

where V,,, is the reference virtual tame [l] of the QoS server,
p;(f) is the length of the ith packet, t&:(f) is the timestamp
of the (i-1)th packet and Bmin(f) is used as the weight. V,,,
is a variable maintained by the QoS server, keeping track of
the timestamp of the last transmitted packet from Fqo3(1).
It is used to determine where the timestamp of a new or
resumed QoS flow should start. Note that there is a single
variable V,,, used by all flows in Fqos(l). The timestamp
tios specifies the expected transmission completion time of
the ith packet [ll].

The scheduling among flows in Fq0,(l) is based on the
timestamps. Whenever the QoS server becomes idle, the
packet with the smallest timestamp among all queues is se-
lected for transmission.

The above weighted fair queueing assigns bandwidth to
flows based on their weights. The bandwidth received by

f E ~ ~ ~ ~ (1) is equal to <m$L)n(ft) xcqOs(~) = -& B . f x

Cqos(l) = Bmin(f), if all flows are backlogged. Hence, the
invariant I2 holds. Readers are referred to [l, 51 for the
detailed study of fair queueing.

I’EFqos(1)

3.3.2

Assume the property P1 (Section 3.2) always holds, i.e., the
capacity of the best-effort server, Cbest(l), is always equal to
C(1)- C Bmin(f). How to achieve this will be discussed

shortly.
We implement the scheduling within the best-effort server

by the weighted fair queueing as follows. A packet queue is
maintained for each flow f E Fbest(l). The arrival packets
are inserted into the queue in the FIFO order. The weight
of each flow is 1. A timestamp t b e S t (f) is calculated for the
ith arrival packet o f f .

Scheduling within the best-effort server

f € F w (O

ti,&) +- ma41/6est, c,2t(f)} +Piu)
Vbest is a variable maintained by the best-effort server, keep-
ing track of the timestamp of the last transmitted packet
from Fbest(l).

The scheduling among flows in Fbest(l) is based on the
timestamps. Whenever the best-effort server becomes idle,
the packet with the smallest timestamp among all non-empty
queues is selected for transmission.

The property P2 is achieved by assigning an equal weight
to every flow. The flows whose queues remain backlogged
receive the same share of bandwidth from the best-effort
server because they have the same weight of 1.

Additional flexibility may be achieved by assigning dif-
ferent weights to different types of flows. Some interac-
tive flows demand relatively small bandwidth. However,
the instant bandwidth availability is critical to their per-
formance. Examples are distributed games such as play-
ing chess or cards over the Internet. The sporadic and
bursty nature of their traffic makes it undesired to reserve
a fixed portion of bandwidth on the QoS server. Some
other flows are relatively bandwidth-insensitive. Examples
are non-interactive video retrieval and large file transmission
working on the background. We can modify the schedul-
ing of the best-effort server by classifying the flows into dif-
ferent categories, to each of which a different weight w is
assigned. The timestamp calculation becomes t b e S t (f) +-
m u ~ (1 / 6 ~ ~ t , tii:t(f)} + G. The flows with larger weights
receive more prompt service and/or larger bandwidth shares.
For the most critical flows, a special timestamp of -1 is
assigned to every of their packets so that the packets will
always be transmitted before those of other flows.

3.3.3

The QoS server and the best-effort server are logical servers
using the same physical link. When both servers have pack-
ets to send, we must select one of them for the actual trans-
mission. We want the scheduling between the two servers
satisfies the invariant I1 and the property P1 (Section 3.2).

Scheduling between the two servers

155

The weighted fair queueing is used again, where the
two servers are modeled as two logical flows, whose pack-
ets are from the physical flows in Fqo,(l) (Fbest(l)) sorted
by the timestamps. Let the weight of the QoS server be
W,,, = C Bmin(f) and that of the best-effort server

be Wbest = c(1) - Bmin(f). w,,, and Wbest are not

fixed in the run-time; they change when Fqos(Z) changes.
The ith packet selected by the QoS server is assigned a

timestamp

f € F q o s (l)

S€Fqo*(Q

Pi Tios c max{l$nkr Ti::} + -
wqos

where pi is the size of the packet and q;: is the timestamp
assigned to the (i - 1)th packet selected by the QoS server.
Kink will be explained shortly. The ith packet selected by
the best-effort server is assigned a timestamp

where TLe<i is the timestamp assigned to the (i - 1)th packet
selected by the best-effort server.

I/iink is a variable maintained by the physical link,' keep
ing track of the timestamp - Tio8 or Tiest depending which
server the packet is from - of the last packet transmitted
by the physical link. is used as a reference virtual time
of the link to determine where the timestamp should start
when a packet arrives at an empty QoS or best-effort server.

When both servers select packets, the packet with the
smaller timestamp will be transmitted.

The bandwidth received by the &OS server is w,,2gbs,, x

C(1) = % x C(1) = Wqo, = C Bmin(f), and the

bandwidth received by the best-effort server is W o o ~ ~ $ b e l l x
f E F q o s (l)

3.3.4 Scheduling interference

The above hierarchical scheduling works fine if Fqos(l) and
Faest (1) are disjointed, i.e. there are no soft-QoS flows. How-
ever, if Fq,,(d) n Fbest(l) # 0, a scheduling interference prob-
lem arises.

Suppose f1 E FqoS(!)nFbest(l) . Though fl is sched-
uled by both QoS server and best-effort server, it has
a single packet queue as every other flow does. The
QoS server assigns f l a bandwidth of Bmin(fl). Suppose
the best-effort server assigns f1 a bandwidth of Bbest(f1).

We want the total bandwidth of f1 to be Bmin(fl) +
Bbest(f1). However, due to the scheduling interference be-
tween the two servers, the actual bandwidth received by f1

is maX{Bmin(f l) , Bbest(fi)}, which is explained by the fol-
lowing example in Figure 2.

Let Bmin(f1) = 1 and Bmaz(fl) = +W. Suppose f2 is
a best-effort flow with Bmin(f2) = 0 and Bmaz(f2) = +W.
f1 is scheduled by both servers, while f2 is scheduled only

'In more precise words, by the node in charge of the link.

tho. 4 3 2 1

t & 4 3 2 1
Scheduling sequence: (I) Piis scheduled by the QoS server

(2) p: is scheduled by Ihe beslcffori SCNCI

(3) p: is scheduled by Ihe QoS SCNW

(4) p: is scheduled by the beslcffori sewer

(5) p: is scheduled by the QoS semer

(6) pi is schululed by Ihc ben-cffori server

Figure 2. Bmin(f1) = 1, Bmaz(f1) = +w, Bmin(f2) =
0, and Bmaz(f2) = +W. Ideally, B(fl) = 1.5 and
B(f2) = 0.5, where B(fl) and B(fl) are the bandwidth
received by f1 and f2, respectively. However, due to
scheduling interference, B(f1) = B(f2) = 1.

by the best-effort server. Suppose all packets arrive at time
0 and the length of each packet is 1. The ith packet of fl
(f2) is denoted as p i (p i) . The timestamps of all packets
are shown in the figure. Suppose the link capacity is 2.
Cqos(Z) = Bmin(f1) = 1 since f1 is the only flow in Fqos(Z),
and thus C b e s t (1) = 2 - 1 = 1. Ideally, the QoS server
assigns bandwidth 1 to f l and the best-effort server assigns
bandwidth 0.5 to both f1 and f2 so that the total bandwidth
of fl is three times that of fi.

However, let us show how the scheduling interference oc-
curs. Since the capacities of the two servers are the same,
we assume they occupy the link alternatively. First, the
QoS server schedules and transmits p i . After that, the first
packet in the f1 queue is p: with tiest(fl) = 2. Second, the
best-effort server schedules p: which has the smallest times-
tamp tie,,(f2) = 1. Third, the QoS server transmits p t .
Fourth, the best-effort server transmits p: ... The packet
transmission sequence is therefore, p i , p i , p : , p:, p i , p ; , and
so on. The packets in f l and f2 are transmitted alterna-
tively. fi and f2 receive an equal bandwidth of 1.

The reason is that, after p i is scheduled by the QoS server,
the best-effort timestamp of the next packet, p: , does not
reflect the fact that p : is not scheduled by the best-effort
server and thus does not consume the bandwidth of the best-
effort server. The scheduling priority of f l by the best-effort
server, which is solely determined by the timestamp, should
remain the same (but actually decreases) after p : is sched-
uled by the QoS server. A simple solution is to decrease the
best-effort timestamp of p: so that t&,,(fl) = 1 after p t is
sent. A more general and efficient solution is described next.

156

3.3.5 Solution to scheduling interference

The problem of scheduling interference can be solved by
modifying the way the timestamps are calculated. In the fol-
lowing, we only consider the soft-QoS Rows. The hard-QoS
and best-effort Rows do not have the interference problem,
and the calculation of their timestamps remains the same as
discussed in Sections 3.3.1-3.3.2.

Without losing generality, consider the ith packet of a
soft-QoS flow f. The timestamps, t&,(f) and/or tiest(f),
are computed only when the packet becomes the first one in
the queue. Two additional variables, t;:," (f) and t:Lzt (f) ,
are maintained for each soft-QoS Row to keep track of
the timestamps of the last transmitted packet. Initially,
t$:(f) = V,,, and t:::t(f) = hest when the flow starts.

If the ith packet arrives at an empty queue,

t i e s t (f) +- max{vbest, t:::t(f)} 4 Pi(f) = h e s t + pi(f)
By the definition, V,,, 2 t 5 : (f) and hest 2 t:izt(f).
If the ith packet arrives at a non-empty queue, the cal-
culation of the timestamps is delayed until after the
(i - l) th packet is transmitted.
If the (i .

If the (i
server,

1)th packet is scheduled by the QoS server,

t:::(f) +- t;;m

t l e s t (f) t- t:lzt(f) +pi(!)

- 1)th packet is scheduled by the best-effort

If the (i - 1)th packet is scheduled by the QoS server,
only t;:z(f) is increased while t:lit(f) remains the same
so that the scheduling activity of the QoS server does not
change the scheduling priority of the best-effort server. If the
packet is scheduled by the best-effort server, only t:L:t (f) is
increased while tg::(f) remains the same. By calculating
the timestamps in such a way that separates the scheduling
activities of the two servers, the scheduling interference is
avoided, and the total bandwidth received by f is equal to
Bmin(f) i- B b e s t (f) , where &est(f) denotes the bandwidth
share assigned by the best-effort server.

3.3.6 Overhead

We study the per-packet computational overhead of our al-
gorithm. For scheduling within the QoS server, finding
the smallest timestamp among all flows in FqOs(l) takes
O(Zog~F,,,(l)[), if a balanced binary tree such as a heap tree
is maintained. For scheduling within the best-effort server,
finding the smallest timestamp takes O(loglFbe,t(l)l). For
scheduling between the QoS server and the best-effort server,
finding the smaller timestamp takes O(1). In the worst case,
there are four timestamps, t&,(f) , t t e s t (f) , Tio, and Tiest,
to be calculated for a packet, which takes a small constant
time. Therefore, the total overhead for scheduling a single
packet is ~(~og~F,,,(l)~ + loglFb,,t(l)l), which is reasonably
small and comparable to the time complexity O(loglF(l)l)
of the single-level fair queueing scheduling.

3.3.7

For some bursty QoS flows such as compressed video,
Bmin(f) is given as the average bandwidth for guarantee-
ing the required quality. The actual data rate may be higher
or lower than Bmin(f) at times, which is the case of VBR
service in ATM networks. The QoS server provides certain
degree of tolerance to the burstyness of such flows. When
many bursty flows are scheduled by the QoS server, their
bursts are likely to interleave. When some flows send pack-
ets at their burst rates, some other flows may send packets
at their low rates and thus leave bandwidth to absorb the
bursts.

We require a bursty flow f to specify the maximum burst
duration, D(f). The maximum burst size is D(f) x Bmaz(f).
At link I , each bursty QoS Row f maintains a state variable,
called burst credit and denoted as a(!). When the flow
sends data a t a lower rate than Bmin(f), n(f) is increased;
when it sends data at a higher rate than Bmin(f) , n(f) is
decreased. The value of Q(f) must always be in the range

In addition to n(f), another variable d(f) is maintained
to keep the most recent time at which the queue off becomes
empty.

Scheduling of bursty and non-bursty flows

of IO, D(f) x Bmaz(f)].

Whenever the length of the packet queue of f exceeds
a threshold value and Q(f) > 0, the bursty mode is
trigered. t & , (f) is calculated based on Bmar(f) instead
of Bmin(f)-

Whenever n(f) reaches zero, the normal mode is
trigered. t & (f) is calculated based on Bmin(f) as
usual.

157

3. Whenever a packet arrives at an empty queue at time
t , O(f) is set as follows.

Simply speaking, the idea is that the burst credit is built
up for the unused bandwidth and then is used when the
burst comes. In fact, there are many issues to be addressed
in order for this approach to be effective. For example, the
maximum burst size D (f) x Bma,(f) should not be arbitrar-
ily large. A sufficiently large maximum burst size together
with a sufficiently large Bmax(f) may grab all bandwidth
from other Bows in a long period.

Another problem is that many (or all in the worst case)
flows may enter the bursty phase simultaneously. When the
total data rate exceeds the capacity of the QoS server, the
backlogs of the queues are built up. If such synchronized
bursts persist, the buffer is overflowed and the packets are
lost. Besides, a long end-to-end packet delay will be ob-
served. There are a number of approaches to deal with this
problem. First, when the length of a queue exceeds certain
threshold value, a control message can be sent to the u p
stream nodes and the source node to slow down the incoming
data rate. Second, Bmin(f) can be temporarily increased for
the flows in burst. As a result, the capacity of the QoS server
is temporarily increased. Third, the best-effort server can be
used to help absorbing the bursts. The soft-QoS flows are al-
ready scheduled by the best-effort server. For the hard-QoS
flows, we can temporarily insert them into Fbest(l) until their
bursts are transmitted.2 We can also increase the weights of
these flows in the best-effort server so that they can receive
a larger bandwidth share until the bursts are over.

In order to prevent the dynamic behavior of the bursty
&OS flows from affecting the performance of the non-bursty
QoS flows, we can separate the scheduling of bursty flows and
non-bursty flows by using different QoS servers. Our pro-
posed hierarchical scheduling algorithm can be easily gener-
alized to handle multiple QoS servers.

Some flows may require their data rates to be always
bounded by Bmaz(f). A rate greater than B,,,(f) is unde-
sired because that may overwhelm the processing ability at
the receiver end. We denote the set of such flows as FG:z(l).
A simple solution is to make the sending rate at the source
to be bounded by Bmaz(f) . However, this will not guaran-
tee the incoming rate at the receiver to be always bounded
by Bmaz(f) due to buffering and transmission burst at the
intermediate links. A better solution is to make the leaky-
bucket-like traffic shaping at each link 1 for each flow f in

only when the packet becomes the first one in the queue as
discussed in Section 3.3.5. Let the length of the packet be
p . Right after the timestamp is calculated, a timer, equal
to -6, is set for the next packet. After the first packet

Fmax qos (I) . Suppose the timestamp of a packet is calculated

2There are non-bursty hard-QoS flows and hard-QoS Bows. The
former requires a constant throughput, and the latter satisfies the def-
inition of Bmin(f) = B,,,,=(f) in a statistical sense that the avemge
throughput is a constant over periods.

is transmitted, if the timer has expired, the next packet is
immediately available for scheduling. Otherwise, it has to
wait until the timer expires before its timestamp can be cal-
culated. Hence, the consecutive packets are well spaced by
using an appropriately-set timer, which makes the sending
rate off at any intermediate link to be bounded by Bmaz(I).

4 Conclusion

We propose a two-level hierarchical scheduling algorithm,
which dynamically adjusts the fair-share bandwidth allo-
cated to the flows such that (1) each best-effort flow receives
a fair share from the best-effort server, (2) each hard-QoS
flow receives the required bandwidth from the QoS server,
and (3) each soft-QoS flow receives the minimum required
bandwidth from the &OS server and a fair share from the
best-effort server. Both servers are implemented by the
weighted fair queueing. We discuss the problem of schedul-
ing interference between two servers and provide a solution.
We also discuss how to schedule bursty and non-bursty flows
by using multiple QoS servers that separate the scheduling
activities of different types of flows.

References

J. Bennett and H. Zhang. Hierarchical Packet Fair Queueing
Algorithms. ACM SICCOMM’96, 1996.
S. Berson and L. Berger. 1P Integrated Services with
RSVP over ATM. IETF Internet Draft: draft-ieft-issll-atm-

F. Bonomi, K. Fendick, and N. Yin. ABR Point-tc-
Multipoint Connections. ATM Forum/95-0974Rl, August
1995.
A. Charny, D. D. Clark, and R. Jain. Congestion Control
With Explicit Rate Indication. IEEE International Confer-
ence on Communications, 1995.
A. Demers, S. Keshav, and S. Shenker. Analysis and Simu-
lation of A Fair Queueing Algorithm. ACM SICCOMM’89,
pages 3-12, 1989.
S. Golestani. A Self-Clocked Fair Queueing Scheme for
Broadband Applications. Proceedings of IEEE INFO-
COM’94, pages 636-646, June 1994.
E. Knightly, D. Wrege, J. Liebeherr, and J. Zhang. Fun-
damental Limits and Tradeoffs for Providing Deterministic
Guarantees to VBR Video Trafic. ACM SIGMETRICS’95,
pages 275-286, May 1995.
S . Lu, K.-W. Lee, and V. Bharghavan. Adaptive Service in
Mobile Computing Environments. I WQoS’97, May 1997.
A. Parekh and R. Gallager. A Generalized Processor Shar-
ing Approach to Flow Control - The Single Node Case.
ACM/IEEE ‘IFansoctions on Networking, pages 344-357,
June 1993.
H. Zhang. Service Disciplines For Guaranteed Performance
Service in Packet-Switching Networks. Proceedings of the
IEEE, 83(10), October 1995.
L. Zhang. VirtualClock: A New Ttaffic Control Algorithm
for Packet-Switched Networks. ACM Transactions on Com-
puter Systems, 9(2):101-123, May 1991.

s~pp0rt-03. txt, July 1997.

158

