
Routing by Distributed Recursive Computation and Information Reuse *

Shigang Chen, Klara Nahrstedt
Department of Computer Science

University of Illinois at Urbana-Champaign
{ s-chen5, klara}@cs.uiuc.edu

Abstract

Distributed multimedia applications have quality-of-
service (QoS) requirements specified in terms of constraints
on various metrics such as bandwidth and delay. The task
of QoS routing is to find a path f rom the source node to the
destination node with suficient resources to support the re-
quired end-to-end QoS. W e propose several distributed algo-
rithms for the bandwidth-constrained routing and the delay-
constrained routing. The algorithms are presented in the
form of distributed recursive computation (DRC). DRC com-
putes the global routing state in a distributed, recursive fash-
ion and often leaves useful information at intermediate nodes
during the process. A n information-reuse scheme is stud-
ied to utilize such information in order to reduce the overall
overhead. Our simulation shows that the overhead of the
proposed algorithms is modest and stable.

1 Introduction

The task of quality-of-service (QoS) routing is to find a
path from the source node to the destination node with suf-
ficient resources to support the required end-to-end &OS. [4]
The recent work in QoS routing has been following two main
directions: source routing and distributed routing. In the
source routing, each node maintains an image of the global
network state, based on which a routing path is centrally
computed at the source. The global network state is typi-
cally updated periodically by a link-state protocol. In the
distributed routing, the path is computed by a distributed
computation during which control messages are exchanged
among the nodes and the state information kept at each node
is collectively used in order to find a path.

The source routing scheme [3, 7, 91 has several problems.
First, the global network state has to be updated frequently
enough to cope with the dynamics of network parameters
such as bandwidth and delay, which makes the communi-
cation overhead excessively high for large scale networks.
Second, the link-state protocol commonly used in the source
routing can only provide approximate global state due to

'This work was supported by the ARPA grant under contract num-
ber F30602-97-2-0121 and the National Science Foundation Career
grant under contract number NSF CCR 96-23867.

the overhead concern and non-negligible propagation delay
of state messages. The inaccuracy in the global state may
cause the QoS routing fail. Third, the link-state protocol has
the scalability problem [l]. It is impractical for any single
node to have access to detailed state information about all
nodes and all links in large networks. The hierarchical rout-
ing is used as a solution [6]. However, the state aggregation
increases the level of inaccuracy [7]. Fourth, the computa-
tion overhead at the source is excessively high, especially
when multiple constraints are involved, considering that the
QoS routing is typically done on a per-connection basis.

In the distributed routing, the path-selection computation
is distributed among the intermediate nodes between the
source and the destination. Hence, the routing response time
can be made shorter and the algorithm is more scalable.
However, most existing distributed routing algorithms [lo,
121 still require each node to maintain a global network state,
based on which the routing decision is made on a hop-by-
hop basis. The routing performance heavily depends on the
accuracy of the global state. Therefore, these algorithms
more or less share the same problem of the source routing.

In this paper, several distributed algorithms are pro-
posed for the bandwidth-constrained routing and the delay-
constrained routing. No global network state is required
to be maintained by a distance-vector (or link-state) pro-
tocol. We define a new concept, distributed recursive com-
putation (DRC), which computes the global state of a net-
work upon the arrival of a routing request. DRC provides
a nice/compact presentation of distributed algorithms and
makes the induction proofs easier. All proposed distributed
routing algorithms are presented in the form of DRC.

The basic idea of DRC is that every node does a small
amount of local computation based on its local state and
invokes child computations at a selected set of adjacent
nodes, which recursively invokes their child computations to
carry out the global computation gradually and distribut-
edly. Global routing information is thus calculated in a
distributed, recursive fashion. Various techniques are stud-
ied to reduce the overhead. During the process of dis-
tributed recursive computation, partial routing information
is computed and distributed at intermediate nodes. An
information-reuse scheme is proposed to utilize such infor-
mation for future routing in order to reduce the overall over-
head.

0-7803-5258-0/99 $10.00 0 1999 IEEE 393

mailto:klara}@cs.uiuc.edu

2

Figure 1. The parent node i has two child nodes j and
5; the parent computation DRC(i, t , ...) has two child
computations DRC(j, t , ...) and DRC(k , t , ...).

Distributed Recursive Computation and
Informat ion Reuse

2.1 Distributed recursive computation

A network consists of a set N of nodes which are fully
connected by a set E of full-duplex, directed communica-
tion links. Each node keeps certain local state such as the
queuing delay, the propagation delay and the residual (un-
used) bandwidth of its outgoing links. The combination of
the local states of different nodes is called a global state. In
this paper, we are particularly interested in the end-to-end
global state between two nodes. Examples are the resid-
ual bandwidth of a routing path from one node to another,
the maximum residual bandwidth among all paths between
two nodes, and the minimum end-to-end delay between two
nodes. A global state may change when the local state of any
involved node changes. The solution to many distributed
problems in a network environment relies on the knowledge
of global states. Consider the routing of a video data stream
whose delivery delay is required to be bounded. A useful
global state will be the minimum end-to-end delay from the
source node to the destination node.

An interesting question is how to compute a global state,
assuming that each node always keeps its up-to-date local
state. We propose a new approach, called distributed re-
cursive computation (DRC). The idea is briefly illustrated
below. More detailed discussion is left to Sections 2.2 and
2.3, where the concrete examples of DRC on QoS routing
are studied.

Let DRC(i , t , ...) be a distributed recursive computation
which computes an end-to-end global state, denoted as
r(i, t) , between nodes i and t . DRC(i , t , ...) takes the source
node i, the destination node t and other values as param-
eters. Node i is the place where D R C (i , t , ...) is executed.
See Figure 1. Let j and k be two adjacent nodes of i. In
order to compute r(i, t) , we first compute r(j , t) and r (k , t) .
This means that DRC(i , t , ...) invokes two child computa-
tions, D R C (j , t ,...) at j and D R C (k , t ,...) at k , which re-
cursively invoke their child computations and upon comple-
tion return ~ (j , t) and r (k , t) to their parent computation
DRC(i , t , ...). DRC(i , t , ...) calculates r(i , t) by synthesizing
n(j , t) , n (k , t) and its local state.

Definition 1 Parent-child relationship: Given DRC(i , t , ...)
and D R C (j , t , ...), if D R C (j , t , ...) upon its completion sends
r (j , t) in a reply message to D R C (i , t , ...), D R C (j , t , ...) is
called a child computation of DRC(i , t , ...) and DRC(i , t , ...)
is called a parent computation of D R C (j , t , ...).

A parent computation may have many child computations
whereas a child is allowed to have one or more than one
parents depending on the invocation rule, which will be dis-
cussed in Sections 2.2 and 2.3. When only one parent is
allowed, all computations form a parent-child tree as shown
in Figure 1. The algorithm of DRC is outlined below.

DRC(i , t , ...) \ . . ,
Select a subset C of adjacent nodes based on local state.
Send every j E C an invocation message[t, ...I, which
causes the child computation D R C (j , t , ...) to be
executed at node j.
Wait for the reply message[n(j,t), ...I, j E C , from
the child computations.
Compute r(i,t) based on r (j , t) , j E C, and send a
reply message[r(i, t) , ...I to the parent node(s).

We shall discuss the problem of how to select C in Sec-
tions 2.2 and 2.3. For convenience, we call j E C a child
node of i and i a parent node of j. A message sent from a
parent node to a child node is called an invocation message,
and a message from a child to a parent is called a reply mes-
sage. The notation message[t, ...I specifies the values carried
by the message. The recursion terminates at DRC(t , t , ...),
which does not have any child computation and thus is able
to send a reply message based on its local state.

In the rest of this section, we shall discuss four DRCs for
the QoS routing.

2.2 Bandwidth-constrained routing

A bandwidth-constrained routing request is represented
by a tuple (s , t , B , i d) , where s, t , B and id are the source
node, the destination node, the bandwidth requirement and
the identifier of the request. The purpose of routing is to find
a path from s to t such that the residual (unused) bandwidth
of the path is not less than B; such a path is called a solution
path. In a dynamic network, many different routing requests
may exist simultaneously. In order to distinguish them, we
assign each request a system-wide unique identifier, denoted
as id , which consists of the source’s identity and a sequence
number. Given a path p = s -+ i -+ j -+ ... -+ k -+ t ,

bandwidth(p) = min{bandwidth(s , i), ..., bandwidth(k, t) }

Assume that each node maintains only local QoS state in-
formation - it only knows the residual bandwidths of its
outgoing links.

Let Si, t be the distance (length of the shortest path) from
node i to node t . The value of 6~ solely depends on the
network topology. We assume that the network topology
is relatively stable, comparing to the QoS state such as the
residual bandwidth and the delay of each link in the network,

394

S I source node
t I destination node

id
C

I i. i . k I intermediate nodes I

I *

identifier of the routing request
set of child nodes

~~

B [bandwidth requirement
D I delay reuuirement

P
bi,j

routing path
the distance (length of the shortest
path) from i to .i

Table 1. Basic notations

which may change at a much faster rate. We further assume
i knows the values of 6i,t and 6j,t, for every adjacent node j ,
which are often readily available as a result of the traditional
link-state (or Bellman-Ford) algorithm in the current packet-
switching networks.

Some basic notations, used throughout the rest of the
paper, is summarized in Table 1 for quick reference.

2.2.1 The b-computation

A distributed recursive computation,
bcomputation(i, t , B, id), is designed to find a solution
path p from i to t such that bandwidth(p) 2 B. The
b-computation(i, t , B, id) returns TRUE if there exists a
solution path and FALSE otherwise. The end-to-end global
state n(i, t) to be computed is thus a boolean value.

Basic algorithm: b-computation(i, t , B, id)
1. If i = t , then send the parent a reply m e s s a g e [~ ~ u ~] ;

otherwise, do the following steps.
2. C := { j I bandwidth(i,j) 2 B , j is adjacent to i}

If C = 0, send the parent a reply message[^^^^^];
otherwise, do the following steps.

3. Send every j E C an invocation message[t, B, id].
4. Wait for reply messages from the child b-computations.

If any reply message is TRUE, the current
b-computation is TRUE; if all reply messages
are FALSE, the current b-computation is FALSE.
The result is sent to the parent in a reply message.

Step (4) of the b-computation completes when (i) a reply
m e s s a g e [~ ~ u ~] is received or (ii) a reply m e s s a g e [~ ~ ~ s ~] has
been received from every child computation. In case that a
reply message is lost, a timeout mechanism can be used to
avoid infinite waiting.

Given a routing request (s , t , B, id), we start from b-
computation(s, t , B, id) and send invocation messages re-
cursively to all intermediate nodes i on paths with suffi-
cient bandwidths to invoke b-computation(i, t, B, id). The
idea is that each b-computation(i, t , B, id) only finds the
next hop j E C of the routing path and lets the child
b-computation(j, t , B, id) complete the rest of the routing
by finding a solution path from j to t. However, in an
arbitrarily-connected network, each node i may receive many
invocation messages. If b-computation(i, t , B, id) is invoked

whenever an invocation message[t, B, id] is received, the to-
tal number of b-computations invoked in the entire system
will grow exponentially. We introduce the invocation rule to
reduce the overhead.

0 Invocation Rule: When i receives its first in-
vocation message[t, B, id], b-computation(i, t, B, id) is
invoked. For every successively-received invocation
message[t, B, id], a reply m e s s a g e [~ ~ ~ s ~] is returned
immediately without the actual execution of b-
computation(i, t , B, id).

The purpose of the invocation rule is to allow b-
computation(i, t, B, id) to be executed at any node i at
most once. Given a routing request (s , t , B , id), let us con-
sider the time complexity and the message complexity (num-
ber of messages sent) of b-computation(i, t , B, id). Let d; be
the number of outgoing links (adjacent nodes) of a node
i E N . The time complexity of Step 1 is O(1); the time
complexities of Steps 2, 3 and 4 are all O(di). The message
complexities of Steps 1 and 2 are zero; the message complex-
ities of Steps 3 and 4 are both O(di). Hence, the time and
message complexities of b-computation(i, t , B, id) are both
O(di). For every i E N , b-computation(i, t, B, id) is invoked
at most once by the invocation rule. Therefore, the total
time and message complexities in the entire network for a
single routing request are both Ci,NO(di) = O (E) .

Theorem 1 B-computation(s, t , B, id) finds a solution path
if there exists one.

The proof of all theorems in the paper can be found in
[5]. The found solution path is recorded by the reply mes-
sage[TRUE] as it travels from the destination t back to the
source s. When a node i receives the reply message[TRUE]
from a child node j , the resource reservation may be per-
formed and the required bandwidth B is reserved on link

The above b-computation has some problems. The over-
head may be excessively high as the invocation messages
are flooded into the network, and the found solution path
may be very long. It is often undesired to select a too-
long path since it consumes too much network resource and
may reduce the overall call admission ratio. One solution
for the above problems is to add another parameter 1 to the
b-computation. The new parameter specifies the maximum
length a solution path may have. Steps 2 and 3 of the basic
algorithm need to be modified. An additional field is added
to the invocation message as well.

(i, j > .

Revised algorithm: b-computation(i, t , B, id, 1)
Same as in the basic algorithm.
C := { j I Sj,, 5 1 - 1, bandwidth(i,j) 2 B, j is

If C = 0, send the parent a reply m e s s a g e [~ ~ ~ s ~] ;
otherwise, do the following steps.
Send every j E C an invocation message[t, B, id, 1 - 11,
which causes b-computation(j, t , B, id, 1 - 1) to be
executed if it is the first invocation message[..., id, ...I

adjacent to i }

395

Figure 2. Given the topology, we have 6i,t = 2, = 1,
&,t = 1,6,,t = 2 , S,,t = 2, and 61,t = 3. By Step 2 of the
w-computation, C = { j , k } , which is the set of adjacent
nodes leading to the shortest paths from i to t.

received by j .
4. Same as in the basic algorithm.

The height of the parent-child tree rooted at b-
computation(i, t , B, id, 1) is bounded by 1. Therefore, the
length of the found solution path must be no more than 1.
In particular, when 1 = 6i,t, the found solution path must
be a shortest path. The additional condition Sj,, 5 1 - 1
in the calculation of C helps to reduce the number of child
computations.

2.2.2 The w-computation

The shortest paths are often preferred in the bandwidth-
constrained routing to save resources. The shortest path
which has the maximum residual bandwidth among all short-
est paths is called the widest-shortest path [la]. A distributed
recursive computation, w-computation, is designed to cal-
culate b+ - the residual bandwidth of the widest-shortest
path from i to t. For the purpose of convenience, we define
bt,t = +CO. In Step 2 , C is the set of adjacent nodes which
leads to the shortest paths from i to t. See Figure 2 for an
example. In Step 5, the variable ni,t keeps the successive
node of i on the widest-shortest path.

Algorithm: w-computation(i, t)
1.

2.
3.
4.

5.

6.

0

. .
If i = t , then bt,t := i-cm and return the parent a
message[bt,t]; otherwise, do the following steps.
C := { j I 6j,t = &,t - 1, j is adjacent to i}
Send every j E C an invocation message[t].
Wait for a reply message[bj,t] from every child
w-computation(j, t), j E C.
bi,t := maz{ min{bandwidth(i,j), b j , t } } , ni,t := I C ,
where k E C and bi,t = min{bandwidth(i, IC), b k , t }
Return the parent a reply message[bi,t].

Invocation Rule: Whenever i receives an invocation
message[t], it invokes w-computation(i, t) .

3 E C

Theorem 2 W-computation(i, t) calculates the maximum
residual bandwidth among all shortest paths from i to t.

After w-computation(i, t) , the variable ~ i , ~ keeps the suc-
cessive node of i on the widest-shortest path. By the re-
cursive nature of w-computation(i, t) , w-computation(j, t) is
executed at every node j on the widest-shortest path and

the variable nj,t keeps the successive node of j on the path.
Therefore, the widest-shortest path can be recovered by trac-
ing nj,t of each node j on the path till reaching t.

We propose a routing algorithm which combines the w-
computation and the b-computation. If the bandwidth of
the widest-shortest path is no less than the requirement,
then the widest-shortest path is used as the solution path;
otherwise, execute the b-computation to find a non-shortest
solution path. If b-computation(s, t , B , id, 1) is used in Step
2 , 1 should be larger than b,,t.

Algorithm: bandwidth-constrained-routing(s, t , B , id)
1. Execute w-computation(s, t) to calculate b,,t.
2. If b,,t 2 B, use the widest-shortest path as the solution

path; if b,,t < B, execute b-computation(s, t , B , id) or
b-computation(s, t, B, id, 1) to find a solution path.

2.2.3 Information reuse

One problem remains for the w-computation - the invoca-
tion rule causes the exponential time (message) complexity.
Our solution to this problem is information reuse. Each node
i maintains a variable b;,t for every other node t . When w-
computation(i,t) is executed and bi,t is updated, a times-
tamp equal to the current clock time is attached to bi,t.
When i receives another invocation message for the execu-
tion of w-computation(i, t) , the timestamp of bi,t is checked
to see whether it has passed a pre-defined timeout period.
If it has not been timed out, the value of bi,t is returned
immediately to the parent w-computation; if it has been
timed out, w-computation(i, t) is executed and the value
of bi,t is updated before being returned. If an invocation
message is received when w-computation(i, t) is in execu-
tion, then it simply waits for w-computation(i, t) to com-
plete. In this case, the sender becomes an additional par-
ent of w-computation(i, t) . Therefore, multiple parents are
allowed. During a timeout period, each node i invokes w-
computation(i,t) a t most once. The invocation rule of the
w-computation is rewritten below.

0 Invocation Rule: When node i receives an invocation
message[t] from node IC,

1. if b;,t has not been timed out, send IC a reply
me~sage[bi,~];

2 . if bi,t has been timed out and there is no w-
computation(i, t) executing, invoke w-computation(i, t)
and IC is a parent;

3. if bi,t has been timed out and w-computation(i,t) is in
execution, add IC as an additional parent.

When w-computation(i, t) completes, a reply message[b;,t] is
sent to every parent.

The above information-reuse scheme is especially effec-
tive when the system has a relatively small set of servers
and a relatively large set of clients. The w-computations re-
cursively invoked for a routing request will distribute state
information at many nodes on the shortest paths to a server.

396

That information can be utilized by future requests and thus
help to reduce the overall overhead.

The overhead of w-computation depends on the timeout
period, denoted as T . For any pair of nodes i and t ,
w-computation(i, t) is executed at most once during a time
period of T. Let the total number of nodes in the network
be n. There are n2 different node pairs in total if i and t
are allowed to be the same node. It gives an upper-bound
overhead of at most n2 w-computations in the entire network
for any given time period of T , no matter how many rout-
ing requests arrive. Each w-computation sends (receives)
at most one invocation (reply) message along every adjacent
link. The actual number of w-computations can be less than
the upper bound. In particular, when there are no routing
requests, there will be no w-computations invoked.

Similar to the link-state (or distance-vector) algorithm,
the state information bi,t is updated periodically, which nat-
urally introduces the probability of inaccuracy. In practice,
a roughly (though not exactly) precise value of bi,t is still of
great value, which is supported by our simulation. A larger
T corresponds to a lower overhead and a less accurate value
of bi,t. A smaller T corresponds to a higher overhead and a
more up-to-date bi,t. When the inaccuracy of b+ makes the
w-computation fail, the b-computation is used as another
attempt to find a solution path and special control messages
can be sent along all shortest paths from i to t to clean up
the inaccurate information. When a node j receives such a
control message, bi,t is immediately timed out.

2.3 Delay-constrained routing

We study another routing problem, the delay-constrained
routing. A delay-constrained routing request (s, t , D , i d) is
to find a path from s to t such that the end-to-end delay of
the path is bounded by the delay requirement D. Given a
p a t h p = s -+ i -+ j -i ... -i IC + t ,

delay(p) = delay(s, i) + de lay (i , j) + ... + delay(k, t)

Assume that each node knows the delays of its outgoing links
but does not know those of the other links in the network.

2.3.1 The d-computation

D-computation(i , t , Di, i d) finds a solution path p from i to
t such that delay(p) 5 Di. It returns TRUE if there exists a
solution path and FALSE otherwise.

Basic algorithm: d-computation(i, t , Di, i d)
1. If i = t , then send the parent a reply m e s s a g e [~ ~ u ~] ;

2. C := { j I de lay (i , j) 5 Di, j is adjacent to i }
otherwise, do the following steps.

If C = 0, send the parent a reply m e s s a g e [~ ~ ~ s ~] ;
otherwise, do the following steps.

3. For every j E C, send an invocation
message[t, Di - de lay (i , j) , i d] , which may cause

'The value of T depends on how often the load of the network
changes.

d-computation(j, t , Di - d e l a y (i , j) , i d) to be
executed according to the invocation rule.

d-computations. If any reply message is TRUE, the
current d-computation is TRUE; if all reply messages
are FALSE, the current d-computation is FALSE.
The result is sent to the parent in a reply message.

Invocation Rule: When i receives an invocation
message[t,Di,id], if it is the first invocation message
with the identifier i d , d-computation(i, t , Di, i d) is in-
voked; otherwise, a reply m e s s a g e [~ ~ ~ s ~] is returned
immediately.

Theorem 3 D-computation(s, t , D, i d) finds a solution
path if there exists one.

4. Wait for reply messages from the child

Note that d e l a y (i , j) is the delay that a normal datu
packet experiences on link (i, j). The invocation message is a
system message and thus may use less time than d e l a y (i , j)
to traverse (i, j). * However, in order for the above theorem
to hold, we require the delay of an invocation message to
be d e l a y (i , j) as well [2, 51. There are a number of ways to
achieve this. The simplest approach is to treat the invoca-
tion messages as normal data packets whose delay on (i, j)
is de lay (i , j) by definition. A more general approach is to
set a timer for each invocation message [2]. The invocation
message is sent immediately after the timer is expired. The
timer is set appropriately so that the delay of the timer plus
the propragation delay of the link is equal to delay(i , j). An-
other approach was proposed by Shi and Chou [ll]. They
showed that when certain scheduling policies are used and
the routing messages are set to the appropriate priority, it
also takes d e l u y (i , j) for the routing message to be delivered
along link (i, j).

Similar to the discussion in Section 2.2.1, we can add
another parameter 1 to the d-computation and revise Steps 2
and 3 of the algorithm as follows. The length of the solution
path found by the revised d-computation is bounded by 1.

Revised algorithm: d-computation(i, t , Di, id , I)
1. Same as in the basic algorithm.
2. C := { j 1 6j,, 5 1 - 1, deZay(i , j) 5 Di, j is

adjacent to i }
If C = 0, send the parent a reply m e s s a g e [~ ~ ~ s ~] ;
otherwise, do the following steps.

3. For every j E C, send an invocation
message[t, Di - d e l a y (i , j) , id , 1 - 11, which causes
d-computation(j, t , Di - d e l a y (i , j) , i d , 1 - 1) to be
executed if it is the first invocation message[..., id, ...I
received by j.

4-6. Same as in the basic algorithm.

2.3.2 The f-computation

The shortest path
all shortest paths is called the fastest-shortest path.

which has the minimum delay among
We

2A shortest path is a path from the source to the destination with
the minimum number of hops. Given two nodes, there may be multiple
shortest paths.

397

design a distributed recursive computation, f -computation,
to calculate d,,t - the delay of the fastest-shortest path from
i to t. For the purpose of convenience, we define dt,t = 0.3

Algorithm: f-computation(i, t)
1. If i = t , then dt,t := 0 and return the parent a

2. C := { j I J J , t = &,t - 1, j is adjacent to i}
3. Send every j E C an invocation message[t].
4. Wait for a reply message[d,,t] from every child

f-computation(j, t) , j E C.
5. d,,t := min{delay(i,j) + dJ,t}

n,,t := k , where k E C and d,,t = delay(i, IC) + d k , t
6 . Return the parent a reply message[d,,t].

0 Invocation Rule: Whenever i receives an invocation 3 Simulation

me~sage[d~,~] ; otherwise, do the following steps.

Figure 3. The network topology of the UUNET at the
United States J E C

message[t], it invokes f-computation(i, t).
Simulations were done to evaluate the proposed routing

algorithms. The results about the bandwidth-constrained
routing is presented in this section. Two performance met-
rics, average message complexity and call admission ratio,
are considered. The former is defined as the average number
of invocation messages sent per routing request; the latter
is defined as the percentage of routing reqests which are ac-

By using the above invocation rule, we have the following
theorem.

Theorem
delay among all shortest paths from i to t

~ - ~ ~ ~ ~ ~ ~ ~ ~ i ~ ~ (i , t) calculates the minimum

cepted into the network.
The network topology of the UUNET at the United

States, as shown in Figure 3, is used in our simulation.
Each link is full duplex with a bandwidth capacity of

The information reuse scheme can used to reduce the over-
head of the f-computation. The invocation rule is modified
as follows:

Invocation ~ ~ 1 ~ : When node i receives an invocation 155Mbps(OC3). The Source node, the destination node, the
bandwidth (or delay) requirement and the background traf-
fic are randomly generated independently for every routing

message[t] from node k ,

request.
The message overhead is one of the most important per-

formance metrics for distributed routing algorithms. It has

if di,t has not been timed out, send k a reply
me~sage[di,~];

a direct impact on how applicable the algorithms are in the
real world. In Figure 4, we compare the message overhead of
two algorithms: the proposed bandwidth-constrained-routing
algorithm and the bounded flooding algorithm [8].

The bandwidth-constrained routing algorithm is a com-
bination of the b-computation and the w-computation. In
our simulation, b-computation(s, t , B , id, 1) is used in Step 2

if di,t has been timed out and there is no f-
computation(i, t) executing, invoke f-computation(i, t)
and k is a parent;

if di,t has been timed out and f-computation(i,t) is in
execution, add k as an additional parent.

of bandwidth-constrained-routing(s, t , B , id), and 1 = 6,,t +
computation.) The timeout period of the w-computation is
60 time units. The arrival rate of routing requests at each
node is 1 request per time unit. The average bandwidth
requirement of the routing requests is 0.1 Mbps.

Given a routing request (’7 t, D , id), the 2. (See Section 2.2.1 for the revised algorithm of the b-
constrained routing algorithm is proposed.

Algorithm: delay-constrained-routing(s, t, D , id)
1. Execute f-computation(s, t) to calculate d,,t.
2. If dS,t 5 D , use the widest-shortest path as the Most existing distributed routing algorithms [lo, 121

Path; if d s) t ’ D l execute d-computation(s,t, D , id) Or

d-computation(s, t , D , id, ‘1 to find a
either a distance-vector protocol or a link-state protocol to
maintain a global network state, based on which the rout- path.
ing decision is made on a hop-by-hop basis. Maintaining a

2.4 Multi-constrained routing
31n this paper, delay is defined only on links and paths with non-zero

lengths. dt , t is undefined because the length of the shortest paths from
t to itself is zero. Mathematically, we let bt,t = 0 in order to uniforming
the algorithm and eliminating the discussion of special cases.

40nly the network topology comes from the UUNET. All other pa-
rameters are assigned by our own assumptions, independent from those
of the UUNET.

DRCs for multi-constrained routing can also be designed.
For example, we can easily combine b-computation and d-
computation (w-computation and f-computation) to
the bandwidth-delay-constrained routing problem.

398

40 I I

100 110 120 130 140 150
average link traffic load (Mbps)

Figure 4. Average message overhead of the bandwidth-
constrained routing

global state causes the scalability problem [l, 21. Our algo-
rithm requires every node to maintain only its local state.5
The most related work was done by Kweon and Shin [8].
Their bounded flooding algorithm does not require a global
network state to be maintained, either. It floods routing
messages from the source to the destination. The routing
messages check the bandwidth availability of the intermedi-
ate links as they traverse towards the destination. In order
to reduce the overhead, routing messages proceed only along
those paths whose length is bounded by certain number 1.
In our simulation, we choose 1 = 6,,t + 2. By simple analy-
sis, it can be shown that the bounded flooding algorithm is
equivalent to the revised b-computation.

Each point in Figure 4 is taken by averaging the overhead
of one thousand requests. The average message overhead of
our bandwidth-constrained routing algorithm is constantly
modest; as shown from the figure, it is always bounded by 7,
much lower than the average overhead of the bounded flood-
ing algorithm, which can go up to 35 messages. The reason
is that our bandwidth-constrained routing algorithm tries to
route as many requests as possible by the w-computations,
which are much cheaper because only the shortest paths are
involved and the routing information is reused. On the con-
trary, the bounded flooding algorithm is equivalent to the
revised b-computation, and it searches much more paths
and thus has a much larger invocation tree than the w-
computation does.

Our simulation also shows that the call admission ratios of
the above two algorithms are the same. This is nothing sur-
prising because the bounded flooding algorithm is equivalent
to the revised b-computation, i.e., Step 2 of our bandwidth-
constrained routing algorithm. The simulation result about
the call admission ratios is not presented in this paper due
to the lack of space.

4 Conclusion

We proposed several distributed routing algorithms based
on distributed recursive computation and information reuse.
For the bandwidth-constrained routing, the b-computation
finds a solution path if there exists one; the w-computation
computes the maximum residual bandwidth among all
shortest paths. For the delay-constrained routing, the
d-computation finds a solution path if there exists one;
the f-computation computes the minimum end-to-end de-
lay among all shortest paths. An information-reuse scheme
was proposed for the w-computation (f-computation), which
result in a bounded overall overhead - at most n2 w-
computations (f-computations) for any given timeout period.
Our simulation showed that the average overhead per rout-
ing request is modest and practical, especially when con-
sidering that QoS routing is done not on a per-data-packet
basis but to set up a connection, along which thousands or
even millions of data packets may be transmitted.

References

[l] J. Behrems and J. Garcia-Luna-Aceves. Distributed, scal-
able routing based on link-state vectors. SIGCOMM, pages

[2] S. Chen and K. Nahrstedt. Distributed quality-of-service
routing in high-speed networks based on selective probing.
LCN’98, 1998.

[3] S. Chen and K. Nahrstedt. On finding multi-constrained
paths. IEEE International Conference on Communications,
June 1998.

[4] S. Chen and K. Nahrstedt. An overview of quality-of-service
routing for the next generation high-speed networks: Prob-
lems and solutions. IEEE Network, Nov./Dec. 1998.

[5] S. Chen and K. Nahrstedt. Routing by distributed recur-
sive computation and information reuse. Technical Report,
University of Illinois at Urbana- Champaign, Department of
Computer Science, 1998.

[6] A. Forum. Private network network interface (pnni) v1.0
specifications. May 1996.

[7] R. Guerin and A. Orda. Qos-based routing in networks with
inaccurate information: Theory and algorithms. Infocom’97,
Japan, April 1997.

[8] S. Kweon and K. G. Shin. Distributed qos routing using
bounded flooding. Technical Report, Real- Time Computing
Laboratory, University of Michigan, 1998.

[9] Q. Ma and P. Steenkiste. Quality-of-service routing with
performance guarantees. Proceedings of the 4th Interna-
tional IFIP Workshop on Quality of Service, May 1997.

[lo] H. F. Salama, D. S. Reeves, and Y. Viniotis. A distributed
algorithm for delay-constrained unicast routing. INFO-
COM’97, Japan, April 1997.

[ll] K. G. Shin and C.-C. Chou. A distributed route-selection
scheme for establishing real-time channel. S k t h IFIP Int’l
Conf. on High Performance Networking Conf. (HPN’95),
pages 319-329, Sep. 1995.

[12] 2. Wang and 3. Crowcroft. Qos routing for supporting re-
source reservation. JSA C, September 1996.

136-1 47, August 1994.

5Note that bi,t and di,t are not the results of a link-state (or
distance-vector) protocol but the by-product of the routing process
itself.

399

