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Abstract 

Distributed multimedia applications have quality-of- 
service (QoS) requirements specified in terms of constraints 
on various metrics such as bandwidth and delay. The task 
of QoS routing is to find a path f rom the source node to the 
destination node with suficient resources to support the re- 
quired end-to-end QoS. W e  propose several distributed algo- 
rithms for  the bandwidth-constrained routing and the delay- 
constrained routing. The algorithms are presented in the 
form of distributed recursive computation (DRC). DRC com- 
putes the global routing state in a distributed, recursive fash- 
ion and often leaves useful information at intermediate nodes 
during the process. A n  information-reuse scheme is stud- 
ied to utilize such information in order to reduce the overall 
overhead. Our simulation shows that the overhead of the 
proposed algorithms is modest and stable. 

1 Introduction 

The task of quality-of-service (QoS) routing is to find a 
path from the source node to the destination node with suf- 
ficient resources to support the required end-to-end &OS. [4] 
The recent work in QoS routing has been following two main 
directions: source routing and distributed routing. In the 
source routing, each node maintains an image of the global 
network state, based on which a routing path is centrally 
computed at the source. The global network state is typi- 
cally updated periodically by a link-state protocol. In the 
distributed routing, the path is computed by a distributed 
computation during which control messages are exchanged 
among the nodes and the state information kept at each node 
is collectively used in order to find a path. 

The source routing scheme [3, 7, 91 has several problems. 
First, the global network state has to be updated frequently 
enough to cope with the dynamics of network parameters 
such as bandwidth and delay, which makes the communi- 
cation overhead excessively high for large scale networks. 
Second, the link-state protocol commonly used in the source 
routing can only provide approximate global state due to 
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the overhead concern and non-negligible propagation delay 
of state messages. The inaccuracy in the global state may 
cause the QoS routing fail. Third, the link-state protocol has 
the scalability problem [l]. It is impractical for any single 
node to have access to detailed state information about all 
nodes and all links in large networks. The hierarchical rout- 
ing is used as a solution [6]. However, the state aggregation 
increases the level of inaccuracy [7]. Fourth, the computa- 
tion overhead at the source is excessively high, especially 
when multiple constraints are involved, considering that the 
QoS routing is typically done on a per-connection basis. 

In the distributed routing, the path-selection computation 
is distributed among the intermediate nodes between the 
source and the destination. Hence, the routing response time 
can be made shorter and the algorithm is more scalable. 
However, most existing distributed routing algorithms [lo, 
121 still require each node to maintain a global network state, 
based on which the routing decision is made on a hop-by- 
hop basis. The routing performance heavily depends on the 
accuracy of the global state. Therefore, these algorithms 
more or less share the same problem of the source routing. 

In this paper, several distributed algorithms are pro- 
posed for the bandwidth-constrained routing and the delay- 
constrained routing. No global network state is required 
to be maintained by a distance-vector (or link-state) pro- 
tocol. We define a new concept, distributed recursive com- 
putation (DRC), which computes the global state of a net- 
work upon the arrival of a routing request. DRC provides 
a nice/compact presentation of distributed algorithms and 
makes the induction proofs easier. All proposed distributed 
routing algorithms are presented in the form of DRC. 

The basic idea of DRC is that every node does a small 
amount of local computation based on its local state and 
invokes child computations at  a selected set of adjacent 
nodes, which recursively invokes their child computations to 
carry out the global computation gradually and distribut- 
edly. Global routing information is thus calculated in a 
distributed, recursive fashion. Various techniques are stud- 
ied to reduce the overhead. During the process of dis- 
tributed recursive computation, partial routing information 
is computed and distributed at intermediate nodes. An 
information-reuse scheme is proposed to utilize such infor- 
mation for future routing in order to reduce the overall over- 
head. 
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Figure 1. The parent node i has two child nodes j and 
5; the parent computation DRC(i, t ,  ...) has two child 
computations DRC(j, t ,  ...) and DRC( k ,  t ,  ...). 

Distributed Recursive Computation and 
Informat ion Reuse 

2.1 Distributed recursive computation 

A network consists of a set N of nodes which are fully 
connected by a set E of full-duplex, directed communica- 
tion links. Each node keeps certain local state such as the 
queuing delay, the propagation delay and the residual (un- 
used) bandwidth of its outgoing links. The combination of 
the local states of different nodes is called a global state. In 
this paper, we are particularly interested in the end-to-end 
global state between two nodes. Examples are the resid- 
ual bandwidth of a routing path from one node to another, 
the maximum residual bandwidth among all paths between 
two nodes, and the minimum end-to-end delay between two 
nodes. A global state may change when the local state of any 
involved node changes. The solution to many distributed 
problems in a network environment relies on the knowledge 
of global states. Consider the routing of a video data stream 
whose delivery delay is required to be bounded. A useful 
global state will be the minimum end-to-end delay from the 
source node to the destination node. 

An interesting question is how to compute a global state, 
assuming that each node always keeps its up-to-date local 
state. We propose a new approach, called distributed re- 
cursive computation (DRC).  The idea is briefly illustrated 
below. More detailed discussion is left to Sections 2.2 and 
2.3, where the concrete examples of DRC on QoS routing 
are studied. 

Let DRC( i ,  t ,  ...) be a distributed recursive computation 
which computes an end-to-end global state, denoted as 
r(i, t ) ,  between nodes i and t .  DRC( i ,  t ,  ...) takes the source 
node i, the destination node t and other values as param- 
eters. Node i is the place where D R C ( i , t ,  ...) is executed. 
See Figure 1. Let j and k be two adjacent nodes of i. In 
order to compute r(i, t ) ,  we first compute r( j ,  t )  and r ( k ,  t ) .  
This means that DRC( i ,  t ,  ...) invokes two child computa- 
tions, D R C ( j , t  ,...) at j and D R C ( k , t  ,...) at k ,  which re- 
cursively invoke their child computations and upon comple- 
tion return ~ ( j ,  t )  and r ( k ,  t )  to their parent computation 
DRC( i , t ,  ...). DRC( i ,  t ,  ...) calculates r(i , t)  by synthesizing 
n(j ,  t ) ,  n ( k ,  t )  and its local state. 

Definition 1 Parent-child relationship: Given DRC( i ,  t ,  ...) 
and D R C ( j ,  t ,  ...), if D R C ( j ,  t ,  ...) upon its completion sends 
r ( j , t )  in a reply message to D R C ( i , t ,  ...), D R C ( j , t ,  ...) is 
called a child computation of DRC( i ,  t ,  ...) and DRC( i ,  t ,  ...) 
is called a parent computation of D R C ( j ,  t ,  ...). 

A parent computation may have many child computations 
whereas a child is allowed to have one or more than one 
parents depending on the invocation rule, which will be dis- 
cussed in Sections 2.2 and 2.3. When only one parent is 
allowed, all computations form a parent-child tree as shown 
in Figure 1. The algorithm of DRC is outlined below. 

DRC( i ,  t ,  ... ) \ .  . , 
Select a subset C of adjacent nodes based on local state. 
Send every j E C an invocation message[t, ...I, which 
causes the child computation D R C ( j , t ,  ...) to be 
executed at  node j. 
Wait for the reply message[n(j,t), ...I, j E C ,  from 
the child computations. 
Compute r(i,t) based on r ( j , t ) , j  E C, and send a 
reply message[r(i, t ) ,  ...I to the parent node(s). 

We shall discuss the problem of how to select C in Sec- 
tions 2.2 and 2.3. For convenience, we call j E C a child 
node of i and i a parent node of j. A message sent from a 
parent node to a child node is called an invocation message, 
and a message from a child to a parent is called a reply mes- 
sage. The notation message[t,  ...I specifies the values carried 
by the message. The recursion terminates at DRC( t ,  t ,  ...), 
which does not have any child computation and thus is able 
to send a reply message based on its local state. 

In the rest of this section, we shall discuss four DRCs for 
the QoS routing. 

2.2 Bandwidth-constrained routing 

A bandwidth-constrained routing request is represented 
by a tuple ( s , t ,  B , i d ) ,  where s, t ,  B and id are the source 
node, the destination node, the bandwidth requirement and 
the identifier of the request. The purpose of routing is to find 
a path from s to t such that the residual (unused) bandwidth 
of the path is not less than B;  such a path is called a solution 
path. In a dynamic network, many different routing requests 
may exist simultaneously. In order to distinguish them, we 
assign each request a system-wide unique identifier, denoted 
as id ,  which consists of the source’s identity and a sequence 
number. Given a path p = s -+ i -+ j -+ ... -+ k -+ t ,  

bandwidth(p) = min{bandwidth(s ,  i), ..., bandwidth(k,  t ) }  

Assume that each node maintains only local QoS state in- 
formation - it only knows the residual bandwidths of its 
outgoing links. 

Let Si, t  be the distance (length of the shortest path) from 
node i to node t .  The value of 6~ solely depends on the 
network topology. We assume that the network topology 
is relatively stable, comparing to the QoS state such as the 
residual bandwidth and the delay of each link in the network, 
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S I source node 
t I destination node 

id 
C 

I i. i .  k I intermediate nodes I 

I *  

identifier of the routing request 
set of child nodes 

~~ 

B [ bandwidth requirement 
D I delay reuuirement 

P 
bi,j 

routing path 
the distance (length of the shortest 
path) from i to  .i 

Table 1. Basic notations 

which may change at  a much faster rate. We further assume 
i knows the values of 6i,t and 6j,t, for every adjacent node j ,  
which are often readily available as a result of the traditional 
link-state (or Bellman-Ford) algorithm in the current packet- 
switching networks. 

Some basic notations, used throughout the rest of the 
paper, is summarized in Table 1 for quick reference. 

2.2.1 The b-computation 

A distributed recursive computation, 
bcomputation(i, t ,  B,  id), is designed to find a solution 
path p from i to t such that bandwidth(p) 2 B. The 
b-computation(i, t ,  B,  id) returns TRUE if there exists a 
solution path and FALSE otherwise. The end-to-end global 
state n(i, t) to be computed is thus a boolean value. 

Basic algorithm: b-computation(i, t ,  B,  id) 
1. If i = t ,  then send the parent a reply m e s s a g e [ ~ ~ u ~ ] ;  

otherwise, do the following steps. 
2. C := { j  I bandwidth(i,j) 2 B ,  j is adjacent to i} 

If C = 0, send the parent a reply  message[^^^^^]; 
otherwise, do the following steps. 

3. Send every j E C an invocation message[t, B,  id]. 
4. Wait for reply messages from the child b-computations. 

If any reply message is TRUE, the current 
b-computation is TRUE; if all reply messages 
are FALSE, the current b-computation is FALSE. 
The result is sent to the parent in a reply message. 

Step (4) of the b-computation completes when (i) a reply 
m e s s a g e [ ~ ~ u ~ ]  is received or (ii) a reply m e s s a g e [ ~ ~ ~ s ~ ]  has 
been received from every child computation. In case that a 
reply message is lost, a timeout mechanism can be used to 
avoid infinite waiting. 

Given a routing request ( s ,  t ,  B,  id), we start from b- 
computation(s, t ,  B,  id) and send invocation messages re- 
cursively to all intermediate nodes i on paths with suffi- 
cient bandwidths to invoke b-computation(i, t, B,  id). The 
idea is that each b-computation(i, t ,  B, id) only finds the 
next hop j E C of the routing path and lets the child 
b-computation(j, t ,  B,  id) complete the rest of the routing 
by finding a solution path from j to t. However, in an 
arbitrarily-connected network, each node i may receive many 
invocation messages. If b-computation(i, t ,  B,  id) is invoked 

whenever an invocation message[t, B,  id] is received, the to- 
tal number of b-computations invoked in the entire system 
will grow exponentially. We introduce the invocation rule to 
reduce the overhead. 

0 Invocation Rule: When i receives its first in- 
vocation message[t, B,  id], b-computation(i, t, B,  id) is 
invoked. For every successively-received invocation 
message[t, B,  id], a reply m e s s a g e [ ~ ~ ~ s ~ ]  is returned 
immediately without the actual execution of b- 
computation(i, t ,  B,  id). 

The purpose of the invocation rule is to allow b- 
computation(i, t, B, id) to  be executed at  any node i at 
most once. Given a routing request ( s ,  t ,  B ,  id), let us con- 
sider the time complexity and the message complexity (num- 
ber of messages sent) of b-computation(i, t ,  B,  id). Let d; be 
the number of outgoing links (adjacent nodes) of a node 
i E N .  The time complexity of Step 1 is O(1); the time 
complexities of Steps 2, 3 and 4 are all O(di). The message 
complexities of Steps 1 and 2 are zero; the message complex- 
ities of Steps 3 and 4 are both O(di).  Hence, the time and 
message complexities of b-computation(i, t ,  B,  id) are both 
O(di). For every i E N ,  b-computation(i, t, B,  id) is invoked 
at  most once by the invocation rule. Therefore, the total 
time and message complexities in the entire network for a 
single routing request are both Ci,NO(di) = O ( E ) .  

Theorem 1 B-computation(s, t ,  B,  id) finds a solution path 
if there exists one. 

The proof of all theorems in the paper can be found in 
[5]. The found solution path is recorded by the reply mes- 
sage[TRUE] as it travels from the destination t back to the 
source s. When a node i receives the reply message[TRUE] 
from a child node j ,  the resource reservation may be per- 
formed and the required bandwidth B is reserved on link 

The above b-computation has some problems. The over- 
head may be excessively high as the invocation messages 
are flooded into the network, and the found solution path 
may be very long. It is often undesired to select a too- 
long path since it consumes too much network resource and 
may reduce the overall call admission ratio. One solution 
for the above problems is to add another parameter 1 to the 
b-computation. The new parameter specifies the maximum 
length a solution path may have. Steps 2 and 3 of the basic 
algorithm need to be modified. An additional field is added 
to the invocation message as well. 

(i, j > .  

Revised algorithm: b-computation(i, t ,  B,  id, 1 )  
Same as in the basic algorithm. 
C := { j  I Sj,, 5 1 - 1, bandwidth(i,j) 2 B,  j is 

If C = 0, send the parent a reply m e s s a g e [ ~ ~ ~ s ~ ] ;  
otherwise, do the following steps. 
Send every j E C an invocation message[t, B,  id, 1 - 11, 
which causes b-computation(j, t ,  B,  id, 1 - 1) to be 
executed if it is the first invocation message[ ..., id, ...I 

adjacent to i } 

395 



Figure 2. Given the topology, we have 6i,t = 2, = 1, 
&,t = 1,6,,t = 2 ,  S,,t = 2, and 61,t = 3. By Step 2 of the 
w-computation, C = { j ,  k } ,  which is the set of adjacent 
nodes leading to the shortest paths from i to t. 

received by j .  
4. Same as in the basic algorithm. 

The height of the parent-child tree rooted at  b- 
computation(i, t ,  B,  id, 1) is bounded by 1. Therefore, the 
length of the found solution path must be no more than 1. 
In particular, when 1 = 6i,t, the found solution path must 
be a shortest path. The additional condition Sj,, 5 1 - 1 
in the calculation of C helps to  reduce the number of child 
computations. 

2.2.2 The w-computation 

The shortest paths are often preferred in the bandwidth- 
constrained routing to save resources. The shortest path 
which has the maximum residual bandwidth among all short- 
est paths is called the widest-shortest path [la]. A distributed 
recursive computation, w-computation, is designed to cal- 
culate b+ - the residual bandwidth of the widest-shortest 
path from i to t. For the purpose of convenience, we define 
bt,t = +CO. In Step 2 ,  C is the set of adjacent nodes which 
leads to the shortest paths from i to t. See Figure 2 for an 
example. In Step 5, the variable ni,t keeps the successive 
node of i on the widest-shortest path. 

Algorithm: w-computation(i, t) 
1. 

2. 
3. 
4. 

5. 

6.  

0 

. .  
If i = t ,  then bt,t := i-cm and return the parent a 
message[bt,t]; otherwise, do the following steps. 
C := { j  I 6j,t = &,t - 1, j is adjacent to i} 
Send every j E C an invocation message[t]. 
Wait for a reply message[bj,t] from every child 
w-computation(j, t), j E C. 
bi,t := maz{ min{bandwidth(i,j), b j , t } } ,  ni,t := I C ,  
where k E C and bi,t = min{bandwidth(i, IC), b k , t }  
Return the parent a reply message[bi,t]. 

Invocation Rule: Whenever i receives an invocation 
message[t], it invokes w-computation(i, t ) .  

3 E C  

Theorem 2 W-computation(i, t) calculates the maximum 
residual bandwidth among all shortest paths from i to t. 

After w-computation(i, t) ,  the variable ~ i , ~  keeps the suc- 
cessive node of i on the widest-shortest path. By the re- 
cursive nature of w-computation(i, t ) ,  w-computation(j, t )  is 
executed at every node j on the widest-shortest path and 

the variable nj,t keeps the successive node of j on the path. 
Therefore, the widest-shortest path can be recovered by trac- 
ing nj,t of each node j on the path till reaching t. 

We propose a routing algorithm which combines the w- 
computation and the b-computation. If the bandwidth of 
the widest-shortest path is no less than the requirement, 
then the widest-shortest path is used as the solution path; 
otherwise, execute the b-computation to find a non-shortest 
solution path. If b-computation(s, t ,  B ,  id, 1 )  is used in Step 
2 ,  1 should be larger than b,,t. 

Algorithm: bandwidth-constrained-routing(s, t ,  B ,  id) 
1. Execute w-computation(s, t) to  calculate b,,t. 
2. If b,,t 2 B,  use the widest-shortest path as the solution 

path; if b,,t < B,  execute b-computation(s, t ,  B ,  id) or 
b-computation(s, t, B,  id, 1) to find a solution path. 

2.2.3 Information reuse 

One problem remains for the w-computation - the invoca- 
tion rule causes the exponential time (message) complexity. 
Our solution to this problem is information reuse. Each node 
i maintains a variable b;,t for every other node t .  When w- 
computation(i,t) is executed and bi,t is updated, a times- 
tamp equal to the current clock time is attached to bi,t. 
When i receives another invocation message for the execu- 
tion of w-computation(i, t) ,  the timestamp of bi,t is checked 
to see whether it has passed a pre-defined timeout period. 
If it has not been timed out, the value of bi,t is returned 
immediately to the parent w-computation; if it has been 
timed out, w-computation(i, t )  is executed and the value 
of bi,t is updated before being returned. If an invocation 
message is received when w-computation(i, t) is in execu- 
tion, then it simply waits for w-computation(i, t )  to com- 
plete. In this case, the sender becomes an additional par- 
ent of w-computation(i, t ) .  Therefore, multiple parents are 
allowed. During a timeout period, each node i invokes w- 
computation(i,t) a t  most once. The invocation rule of the 
w-computation is rewritten below. 

0 Invocation Rule: When node i receives an invocation 
message[t] from node IC, 

1. if b;,t has not been timed out, send IC a reply 
me~sage[bi,~]; 

2 .  if bi,t has been timed out and there is no w- 
computation(i, t )  executing, invoke w-computation(i, t) 
and IC is a parent; 

3. if bi,t has been timed out and w-computation(i,t) is in 
execution, add IC as an additional parent. 

When w-computation(i, t) completes, a reply message[b;,t] is 
sent to every parent. 

The above information-reuse scheme is especially effec- 
tive when the system has a relatively small set of servers 
and a relatively large set of clients. The w-computations re- 
cursively invoked for a routing request will distribute state 
information at many nodes on the shortest paths to a server. 
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That information can be utilized by future requests and thus 
help to reduce the overall overhead. 

The overhead of w-computation depends on the timeout 
period, denoted as T .  For any pair of nodes i and t ,  
w-computation(i, t )  is executed at  most once during a time 
period of T.  Let the total number of nodes in the network 
be n. There are n2 different node pairs in total if i and t 
are allowed to be the same node. It gives an upper-bound 
overhead of at most n2 w-computations in the entire network 
for any given time period of T ,  no matter how many rout- 
ing requests arrive. Each w-computation sends (receives) 
at most one invocation (reply) message along every adjacent 
link. The actual number of w-computations can be less than 
the upper bound. In particular, when there are no routing 
requests, there will be no w-computations invoked. 

Similar to the link-state (or distance-vector) algorithm, 
the state information bi,t is updated periodically, which nat- 
urally introduces the probability of inaccuracy. In practice, 
a roughly (though not exactly) precise value of bi,t is still of 
great value, which is supported by our simulation. A larger 
T corresponds to a lower overhead and a less accurate value 
of bi,t. A smaller T corresponds to a higher overhead and a 
more up-to-date bi,t. When the inaccuracy of b+ makes the 
w-computation fail, the b-computation is used as another 
attempt to find a solution path and special control messages 
can be sent along all shortest paths from i to  t to  clean up 
the inaccurate information. When a node j receives such a 
control message, bi,t is immediately timed out. 

2.3 Delay-constrained routing 

We study another routing problem, the delay-constrained 
routing. A delay-constrained routing request (s, t ,  D ,  i d )  is 
to find a path from s to t such that the end-to-end delay of 
the path is bounded by the delay requirement D. Given a 
p a t h p =  s -+ i -+ j  -i ... -i IC + t ,  

delay(p) = delay(s,  i) + de lay ( i , j )  + ... + delay(k,  t )  

Assume that each node knows the delays of its outgoing links 
but does not know those of the other links in the network. 

2.3.1 The d-computation 

D-computation(i ,  t ,  Di, i d )  finds a solution path p from i to 
t such that delay(p) 5 Di. It returns TRUE if there exists a 
solution path and FALSE otherwise. 

Basic algorithm: d-computation(i, t ,  Di, i d )  
1. If i = t ,  then send the parent a reply m e s s a g e [ ~ ~ u ~ ] ;  

2. C := { j  I de lay ( i , j )  5 Di, j is adjacent to i }  
otherwise, do the following steps. 

If C = 0, send the parent a reply m e s s a g e [ ~ ~ ~ s ~ ] ;  
otherwise, do the following steps. 

3. For every j E C, send an invocation 
message[t, Di - de lay ( i , j ) ,  i d ] ,  which may cause 

'The value of T depends on how often the load of the network 
changes. 

d-computation(j, t ,  Di - d e l a y ( i , j ) ,  i d )  to be 
executed according to the invocation rule. 

d-computations. If any reply message is TRUE, the 
current d-computation is TRUE; if all reply messages 
are FALSE, the current d-computation is FALSE. 
The result is sent to  the parent in a reply message. 

Invocation Rule: When i receives an invocation 
message[t,Di,id], if it is the first invocation message 
with the identifier i d ,  d-computation(i, t ,  Di, i d )  is in- 
voked; otherwise, a reply m e s s a g e [ ~ ~ ~ s ~ ]  is returned 
immediately. 

Theorem 3 D-computation(s, t ,  D,  i d )  finds a solution 
path if there exists one. 

4. Wait for reply messages from the child 

Note that d e l a y ( i , j )  is the delay that a normal datu 
packet experiences on link (i, j). The invocation message is a 
system message and thus may use less time than d e l a y ( i , j )  
to traverse (i, j). * However, in order for the above theorem 
to hold, we require the delay of an invocation message to 
be d e l a y ( i , j )  as well [2, 51. There are a number of ways to 
achieve this. The simplest approach is to treat the invoca- 
tion messages as normal data packets whose delay on (i, j) 
is de lay ( i , j )  by definition. A more general approach is to 
set a timer for each invocation message [2]. The invocation 
message is sent immediately after the timer is expired. The 
timer is set appropriately so that the delay of the timer plus 
the propragation delay of the link is equal to delay(i ,  j). An- 
other approach was proposed by Shi and Chou [ll]. They 
showed that when certain scheduling policies are used and 
the routing messages are set to the appropriate priority, it 
also takes d e l u y ( i , j )  for the routing message to be delivered 
along link (i, j). 

Similar to the discussion in Section 2.2.1, we can add 
another parameter 1 to  the d-computation and revise Steps 2 
and 3 of the algorithm as follows. The length of the solution 
path found by the revised d-computation is bounded by 1. 

Revised algorithm: d-computation(i, t ,  Di, id ,  I )  
1. Same as in the basic algorithm. 
2. C := { j  1 6j,, 5 1 - 1, deZay(i , j)  5 Di, j is 

adjacent to  i } 
If C = 0, send the parent a reply m e s s a g e [ ~ ~ ~ s ~ ] ;  
otherwise, do the following steps. 

3. For every j E C, send an invocation 
message[t, Di - d e l a y ( i , j ) ,  id ,  1 - 11, which causes 
d-computation(j, t ,  Di - d e l a y ( i , j ) ,  i d ,  1 - 1) to be 
executed if it is the first invocation message[ ..., id, ...I 
received by j. 

4-6. Same as in the basic algorithm. 

2.3.2 The f-computation 

The shortest path 
all shortest paths is called the fastest-shortest path. 

which has the minimum delay among 
We 

2A shortest path is a path from the source to  the destination with 
the minimum number of hops. Given two nodes, there may be multiple 
shortest paths. 
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design a distributed recursive computation, f -computation, 
to  calculate d,,t - the delay of the fastest-shortest path from 
i to t. For the purpose of convenience, we define dt,t = 0.3 

Algorithm: f-computation(i, t) 
1. If i = t ,  then dt,t := 0 and return the parent a 

2. C := { j  I J J , t  = &,t - 1, j is adjacent to i} 
3. Send every j E C an invocation message[t]. 
4. Wait for a reply message[d,,t] from every child 

f-computation(j, t) ,  j E C. 
5. d,,t := min{delay(i,j) + dJ,t} 

n,,t := k ,  where k E C and d,,t = delay(i, IC) + d k , t  
6 .  Return the parent a reply message[d,,t]. 

0 Invocation Rule: Whenever i receives an invocation 3 Simulation 

me~sage[d~,~] ;  otherwise, do the following steps. 

Figure 3. The network topology of the UUNET at the 
United States J E C  

message[t], it invokes f-computation(i, t). 
Simulations were done to evaluate the proposed routing 

algorithms. The results about the bandwidth-constrained 
routing is presented in this section. Two performance met- 
rics, average message complexity and call admission ratio, 
are considered. The former is defined as the average number 
of invocation messages sent per routing request; the latter 
is defined as the percentage of routing reqests which are ac- 

By using the above invocation rule, we have the following 
theorem. 

Theorem 
delay among all shortest paths from i to t 

~ - ~ ~ ~ ~ ~ ~ ~ ~ i ~ ~ ( i ,  t )  calculates the minimum 

cepted into the network. 
The network topology of the UUNET at  the United 

States, as shown in Figure 3, is used in our simulation. 
Each link is full duplex with a bandwidth capacity of 

The information reuse scheme can used to  reduce the over- 
head of the f-computation. The invocation rule is modified 
as follows: 

Invocation ~ ~ 1 ~ :  When node i receives an invocation 155Mbps(OC3). The Source node, the destination node, the 
bandwidth (or delay) requirement and the background traf- 
fic are randomly generated independently for every routing 

message[t] from node k ,  

request. 
The message overhead is one of the most important per- 

formance metrics for distributed routing algorithms. It has 

if di,t has not been timed out, send k a reply 
me~sage[di,~]; 

a direct impact on how applicable the algorithms are in the 
real world. In Figure 4, we compare the message overhead of 
two algorithms: the proposed bandwidth-constrained-routing 
algorithm and the bounded flooding algorithm [8]. 

The bandwidth-constrained routing algorithm is a com- 
bination of the b-computation and the w-computation. In 
our simulation, b-computation(s, t ,  B ,  id, 1 )  is used in Step 2 

if di,t has been timed out and there is no f- 
computation(i, t )  executing, invoke f-computation(i, t) 
and k is a parent; 

if di,t has been timed out and f-computation(i,t) is in 
execution, add k as an additional parent. 

of bandwidth-constrained-routing(s, t ,  B ,  id), and 1 = 6,,t + 
computation.) The timeout period of the w-computation is 
60 time units. The arrival rate of routing requests at each 
node is 1 request per time unit. The average bandwidth 
requirement of the routing requests is 0.1 Mbps. 

Given a routing request (’7 t, D ,  id), the 2. (See Section 2.2.1 for the revised algorithm of the b- 
constrained routing algorithm is proposed. 

Algorithm: delay-constrained-routing(s, t, D ,  id) 
1. Execute f-computation(s, t )  to calculate d,,t. 
2. If dS,t 5 D ,  use the widest-shortest path as the Most existing distributed routing algorithms [lo, 121 

Path; if d s ) t  ’ D l  execute d-computation(s,t, D ,  id) Or 

d-computation(s, t ,  D ,  id, ‘1 to find a 
either a distance-vector protocol or a link-state protocol to 
maintain a global network state, based on which the rout- path. 
ing decision is made on a hop-by-hop basis. Maintaining a 

2.4 Multi-constrained routing 
31n this paper, delay is defined only on links and paths with non-zero 

lengths. dt , t  is undefined because the length of the shortest paths from 
t to itself is zero. Mathematically, we let bt,t = 0 in order to uniforming 
the algorithm and eliminating the discussion of special cases. 

40nly the network topology comes from the UUNET. All other pa- 
rameters are assigned by our own assumptions, independent from those 
of the UUNET. 

DRCs for multi-constrained routing can also be designed. 
For example, we can easily combine b-computation and d- 
computation (w-computation and f-computation) to 
the bandwidth-delay-constrained routing problem. 
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Figure 4. Average message overhead of the bandwidth- 
constrained routing 

global state causes the scalability problem [l, 21. Our algo- 
rithm requires every node to maintain only its local state.5 
The most related work was done by Kweon and Shin [8]. 
Their bounded flooding algorithm does not require a global 
network state to be maintained, either. It floods routing 
messages from the source to the destination. The routing 
messages check the bandwidth availability of the intermedi- 
ate links as they traverse towards the destination. In order 
to reduce the overhead, routing messages proceed only along 
those paths whose length is bounded by certain number 1. 
In our simulation, we choose 1 = 6,,t + 2. By simple analy- 
sis, it can be shown that the bounded flooding algorithm is 
equivalent to the revised b-computation. 

Each point in Figure 4 is taken by averaging the overhead 
of one thousand requests. The average message overhead of 
our bandwidth-constrained routing algorithm is constantly 
modest; as shown from the figure, it is always bounded by 7, 
much lower than the average overhead of the bounded flood- 
ing algorithm, which can go up to 35 messages. The reason 
is that our bandwidth-constrained routing algorithm tries to 
route as many requests as possible by the w-computations, 
which are much cheaper because only the shortest paths are 
involved and the routing information is reused. On the con- 
trary, the bounded flooding algorithm is equivalent to the 
revised b-computation, and it searches much more paths 
and thus has a much larger invocation tree than the w- 
computation does. 

Our simulation also shows that the call admission ratios of 
the above two algorithms are the same. This is nothing sur- 
prising because the bounded flooding algorithm is equivalent 
to the revised b-computation, i.e., Step 2 of our bandwidth- 
constrained routing algorithm. The simulation result about 
the call admission ratios is not presented in this paper due 
to the lack of space. 

4 Conclusion 

We proposed several distributed routing algorithms based 
on distributed recursive computation and information reuse. 
For the bandwidth-constrained routing, the b-computation 
finds a solution path if there exists one; the w-computation 
computes the maximum residual bandwidth among all 
shortest paths. For the delay-constrained routing, the 
d-computation finds a solution path if there exists one; 
the f-computation computes the minimum end-to-end de- 
lay among all shortest paths. An information-reuse scheme 
was proposed for the w-computation (f-computation), which 
result in a bounded overall overhead - at most n2 w- 
computations (f-computations) for any given timeout period. 
Our simulation showed that the average overhead per rout- 
ing request is modest and practical, especially when con- 
sidering that QoS routing is done not on a per-data-packet 
basis but to set up a connection, along which thousands or 
even millions of data packets may be transmitted. 
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