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Abstract 
New emerging distributed multimedia applications provide 
guaranteed end-to-end quality of service (QoS) and have 
stringent constraints on delay, delay-jitter, cost, etc. The 
task of QoS routing is to find a route in the network which 
has sufficient resources to  satisfy the constraints. The delay- 
cost-constrained routing problem is NP-complete. We pro- 
pose a heuristic algorithm for this problem. The idea is to  
first reduce the NP-complete problem to a simpler one which 
can be solved in polynomial time, and then solve the new 
problem by either an extended Dijkstra’s algorithm or an 
extended Bellman-Ford algorithm. We prove the correctness 
of our algorithm by showing that a solution for the simpler 
problem must also be a solution for the original problem. 
The performance of the algorithm is studied by both theo- 
retical analysis and simulation. 

1 Introduction 
Quality of Service (QoS) routing has been attracting consid- 
erable attention in the research community recently [6, 10, 
11, 12, 131. The routing requests are typically specified in 
terms of constraints. For example, a delay (cost) constraint 
requires the total delay (cost) of a path to  be not greater than 
a given upper bound. The multi-constrained routing prob- 
lem is difficult because different constraints can conflict with 
one another. In particular, the delay-cost-constrained rout- 
ing, i.e., finding a route between two nodes in the network 
with both end-to-end delay and end-to-end cost bounds, can 
be formalized as a multi-constrained path problem (MCP), 
which is NP-complete [5, 131. 

We propose a heuristic algorithm for the MCP problem 
with a polynomial time complexity. The algorithm first re- 
duces the NP-complete problem to a simpler one which can 
be solved in polynomial time, and then solve the simpler 
problem by an extended Dij kstra’s or Bellman-Ford algo- 
rithm to find a solution path. When the extended Dijkstra’s 
algorithm is used, the total time complexity of the heuris- 
tic algorithm is O(z2V2); when the extended Bellman-Ford 
algorithm is used, the time complexity is O ( z V E ) ,  where z 
is an integer defined solely by the algorithm, V is the set of 
nodes and B is the set of edges. The value of x, which can be 
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set arbitrarily by the user, determines the performance and 
the overhead of the algorithm. The performance of the algo- 
rithm is predictable and adjustable. It is predictable in the 
sense that when certain condition is satisfied the algorithm 
is guaranteed to find a solution. It is adjustable in the sense 
that the probability of finding a solution can be increased 
when the value of x is increased. 

The rest of the paper is organized as follows. In Section 2, 
the heuristic algorithm for the general MCP problem is first 
presented, based on that the delay-cost-constrained routing 
algorithm is proposed, and finally, the performance of the 
routing algorithm is studied by experiments. The related 
work is covered in Section 3. Section 4 draws the conclusion. 

2 A Polynomial-time Heuristic al- 
gorit hm 

2.1 The heuristic algorithm 
Let R$ be the set of non-negative real numbers and I the 
set of non-negative integers. 

Definition 1 ~ulti-constrailaedpeth problem (MCP): Given 
a directed graph G(V, E ) ,  a source vertex s, a destination 
vertex t ,  two weight functions w1 : E -+ R: and wz : E -+ 
R$, two constants c1 E R: and cz E R:; the problem, 
denoted as MCP(G, s, t ,  w l ,  wz, c l ,  cz) ,  is to  find a path p 
from s t o  t such that w1(p)  5 c1 and wz(p )  5 cz if such a 
path exists. 

A path p which satisfies w l ( p )  5 c1 and wz(p )  5 cz is called 
a solution for MCP(G, s , t ,  w l ,  wz,  c l ,  cz).  We assume that 
both weight functions are additive - the weight of a path 
is equal to  the summation of the weights of all edges on the 
path. 

Definition 2 wl-weight and wz-weight: For a path p = 

wo 4 V I  + ..., + V k ,  w l ( p )  = ,x W1(v;-l, w;) and w z ( p )  = 

E w2(viPl, w,). w l ( p )  is called the wl-weight and wz(p) the 
wz-weight of the path p. 

k 

t=l 
k 

i=l 

MCP(G, s, t ,  w1, wz, c l ,  cz) is NP-complete [13]. We pro- 
vide a polynomial-time heuristic solution for this problem. 
The algorithm contains two steps: 
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1. Create a new weight function w; : E -+ I .  

where x is a given positive integer. We reduce the 
original problem MCP(G, s, t ,  wl, wz, cl, CZ) to  a new, 
simpler problem MCP(G, s, t ,  wl, wk, cl, z). 

2. Solve MCP(G, s, t ,  wl, wk, cl, z) in polynomial time. 

The algorithms for Step 2 will be discussed in Section 
2.2. We assume for the moment that a solution of MC,?(G, 
s, t ,  wl ,  wi ,  cl, z) can be found in polynomial time if there 
exists one. 

Since MCP(G, s, t ,  wl, WZ, CI, CZ) is NP-complete, wc are 
not trying to find a solution for it whenever there exists one. 
The idea is t o  reduce it to a simpler and solvable problem, 
MCP(G, s, t ,  wl, w;, cl, z), which has a “coarser resolution” 
- z is a given finite integer and the range of w; is I. Theorem 
1 guarantees that a solution for the simpler problem muat be 
a solution for the original problem. 

Theorem 1 A solution for MCP(G, s, t ,  wl,  w;, cl, z) must 
also be a solution for MCP(G, s , t ,  wl, WZ, cl, CZ). 

Proof: Let p be a solution for MCIP(G,s,t,wl,wk,cl,z). 
Hence, wl(p) 5 c1 and wk(p)  5 E. In order to  prove p is 
also a solution for MCP(G, s , t ,  wl, wz, cl, CZ), it suffices to 
prove wz(p)  5 cz. By the definition of w;,  we have 

which means wz(ul w) 5 wk(ul ‘ ”. Therefore, we have 
X 

wz(p )  5 cz and hence the theorem holds. 0 

Corollary 1 Let P be the set of solutions of MCP(G, s, t ,  
wl, wz, c1, C Z )  and P’ be the set of solutions of MCP(G, s, 
t ,  w1, w;, c1, x). Then, P‘ C: P 

Corollary 2 Let P’ be the set of solutions of MCP(G, s, t ,  
wl, wh, c l ,  z). The heuristic algorithm succeeds in finding 
a solution for MCP(G, s, t, wl, wz, c l ,  c2) if and only if 
P’ # 0. 

‘Note that the value of x is chosen by the algorithm. It doe$ not 
depend on the input values of G ,  s, w1, w 2 ,  c1 and cz.  This is thE es- 

sential reason for Step 2 of the algorithm to be solvable in polynomial 
time. As we will see shortly, a larger 3~ means a higher chance to find 
a satisfactory path and a higher overhead. 

w, = llS,, 1 

S WZI 5.0 t 

w, = 20.0 w, = 2.0 w; = 1  

w, = 10.0 

W , ’  1.0 

w, = 1. - ,’w, 4.0 W, =4.0 

V V 

( a )  MCP(G, S7 t, W I  ~ W Z  3 8-07 20.0) ( b ) MCP(G, S, t,w, ,$ ,8.0, 5) 

S 

w; = 1 
V 

( c ) MCP(G, s, t,wl ,w; , 8.0, 10) 

Figure 1: (a) The original problem has a solution, s -+ u -+ 
w -+ t. (13) If z = 5, the reduced problem does not have a 
solution. (c) If z = 10, the reduced problem has a solution. 

The converse of Theorem 1 is not necessarily true - a solu- 
tion for MCP(G, s, t ,  wl, wz, cl, cz) may not be a solution for 
MCP(G, s , t ,  w1, wh, cl, z). Figure 1 gives an example. The 
original problem MCP(G, s, t ,  wl, wz, 8.0,20.0) has a solution 
s -+ u -+ w -+ t (Figure 1 (a)) . Suppose z = 5 and the prob- 
lem is reduced to  MCP(G, s, t ,  wl, 204, 8.0,5) (Figure 1 (b)). 
The path s 3 u -+ w -+ t is not a solution for the new 
problem. In fact, there is no solution for the new problem. 

Hence, our heuristic algorithm may not find a solution for 
MCP(G, s, t ,  wl, wz, cl, cz) even when such a solution exists, 
because the solution set PI of the new problem MCP(G, s, 
t ,  w1, w:, cl, z) can be empty. Fortunately, whether PI is 
empty or not i s  to some extent predictable and adjustable 
- by assigning a larger z, we have a better chance for PI to  
be non-empty. 

Theorem 2 Let a path p be a solution for MCP(G, s, t ,  w1, 
wz, cl, CZ) and 1 be the length of p. If 

1 -  1 -1. cz 
X 

then p is also a solution for MCP(G, s,t, wl,  w;, c l ,  z). 

Proof: Since p is a solution for MCP(G, s, t ,  wl, WZ, c1, CZ), we 
already have zul(p) 5 cl. In order to prove p is a solution for 
MCP(G, s, t ,  wl, w;, c l ,  z), we only need to prove wi(p)  5 z. 

1 bY_ll) ,wz(u14 ‘ X  
4 ( P )  = 4 ( u r 4  - 

CZ 
(u,.) on P (a,.) on P 

< c (wz(u7w)-z C2 + 1) 
( u , ~ )  on P 
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Because both w:(p) and z are integers, wk(p) 5 X. There- 
fore, the theorem holds. 0 

Theorem 2 means that if there exists a path p which is 
overqualified - not just wz(p) 5 c2 but wz(p) 5 (1- $ ) C Z  

- then after we reduce the original problem to  MCP(G, s, 
t ,  wl, wk, c l ,  x), the new problem still has solutions ( p  is 
one of them). Hence, we can solve MCP(G, s, t, ‘ 1 ~ 1 ,  w:, c1, 
z) t o  find a solution, which must also be a solution for the 
original problem as stated by Theorem 1. 

Corollary 3 Let P be the set of solutions of MCP(G, s, t ,  
wl, wz, cl, c2) and P’ be the set of solutions of MCP(G, s, 
t ,  w1, w;, el, x). Then, 

1 - 1  P’ # 0 if P # 0 and 3p E P ,  w z ( p )  5 (1 - -) - cz 
X 

where 1 is the length of p .  

Theorem 3 Let P be the set of solutions of MCP(G, s, t ,  
wl, WZ, c l ,  ~ 2 ) .  The heuristic algorithm succeeds in finding 
a solution for MCP(G, s, t, WI, WZ, C I ,  CZ) if 

1-1 
P # 0 a n d 3 p ~ P , w z ( p ) I ( l - - ) ~ c ~  

X 

below to  solve MCP(G, s, t, w1, wt,  c l ,  X )  in polynomial time. 
An algorithm similar to EBF, in its distributed implemen- 
tation, has been proposed by Jaffe [ 5 ] .  We will discuss the 
difference between our algorithm and the Jaffe’s algorithm 
in Section 3. 

Initialize( G, s) 
begin 

for each vertex v E V[G], each i E [O..z] do 
d [ v , i ]  .- *- 00 

~ [ w ,  i] := N r L  
for each i E [ O . . X ]  do 

d[s ,  i] := O 

(1) 
(2) 
(3) 
(4) 
15) 

end 

Relax(u, le,  w) 
begin 

le’ := le + w$(u, v) 
if le’ 5 z then 

(6) 
(7) 
(8) 
(9) 
(10) 

if d[v, k’] > d[u ,  IC] + w1(u, w) then 
d[w, IC’] := d [u ,  IC] + w1(u, w) 
r [v ,  IC’] := 21 

end 

EDSP( G, s) 
begin 

Proof: By combining Corollaries 2 and 3. 

The condition, P # 0 and 3 p  E P, wz(p) 5 (1 - ? ) C Z ,  is 
called the heuristic condition, where 1 is the length of p .  Note 
that it is a sufficient but not a necessary condition in The- 
orem 3. With a larger X, the condition wz(p) 5 (1 - %)c2 
has a better chance to  be satisfied, which leads to a higher 
probability for the heuristic algorithm to find a solution. 

Take the case x = 101VI as an example. Consider the 
worst case where the longest loopfree path has a length of 
IVI - 1. The condition can be rewritten as w2(p) 5 0 . 9 ~ 2 .  
It means that, given an arbitrary problem MCP(G, s, t ,  
201, w2, c l ,  cz ) ,  if the problem has a solution p such that 
wz(p) 5 0.9~2, then our heuristic algorithm is guaranteed 
to find a solution for the problem, provided z is as large as 
lOlVl. A more detailed analysis of the relation between z 
and the heuristic condition can be found in [l]. In practice, 
how large should z be? This question will be discussed in 
Section 2.4 though experiments. 

There remains another important question: Is the new 
problem MCP(G, s, t ,  w l ,  wi ,  c1, z) in Step 2 solvable in poly- 
nomial time? We answer the question in Section 2.2. 

Q := {(u, le)lzl E V [ G ] ,  IC E [ O . . X ] }  
while Q # 0 do 

find (u, a) E Q such that d[u, le]  = 

Q := Q - { (u ,  k ) }  
s := s -t ((21, k)} 
/* Note that the for loop iterates on 

different adjacent vertices w. */ 
for each outgoing edge of u, (u, w )  E E do 

Relax(u, l e ,  v) 

(14) 
(15)  

(16) 
(17) 

Min {d[u’,  le’]} 
(U’ik’)€Q 

(18) 

end 
(19) 

EBF(G, 8) 
begin 

Initialize(G, s) 
for i := 1 to IV[G]I - 1 do 

(20) 
(21) 
(22) 
(23) 
(24) 

for k := 0 to z do 
for each edge ( u , ~ )  E E[G] do 

Relax(u, k ,  W )  

end 

2.2 The extended Dijkstra’s and Bellman- For each vertex 21 E v and each integer E [o..z], a 
variable d[w, IC] is maintained, which is an estimation of the 
smallest wl-weight of those paths from s to w whose wi- 
weights are k .  Let 

Ford algorithms 
An extended Dijkstra’s shortest path algorithm (EDSP) and 
an extended Bellman-Ford algorithm (EBF) are presented 

S ( v , k )  = M i n  {WI(P)} 
P C P ( V , k )  

where P ( v ,  k )  = { p  I ~ i ( p )  = k ,  p is any path from s to w}. 
The value of d[v ,  k ] ,  initially +oo, is always greater than or 

’Theorem 3 can be rewritten as: The heuristic algorithm succeeds 
in finding a solution for MCP(G, E ,  t ,  w l r  w 2 ,  cl, c 2 )  if there exists a 
path p from E to t such that w1 ( p )  5 CI A W ( P )  5 (1 - 5). cz 
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equal to  6(v, le). During the execution, EDSP (EBF) makes 
better and better estimation and d[v,  le] becomes closm and 
closer to, and eventually reach, 6(v, le). 

When EDSP (EBF) completes, d[v ,  le] = 6(v, le), v E V, le E 
[O..z]. There exists a solution, i.e. a path p from s to t such 
that w l ( p )  5 c1 and w;(p)  5 z, iff 3k E [O..z], d [ t ,  le 5 cl.  
The path is stored by the variable 7r. ~ [ v , l e ]  keeps the im- 
mediate preceding vertex (called predecessor) of v on the 
path. Hence, the path can be recovered by tracing the vari- 
able i~ starting from t ,  through all intermediate vertices, till 
reaching the source s. 

Two additional variables, S and Q, are required by EDSP. 

S = {(v, le) I d[v,  le] = a(v, k ) , v  E V, le E [O..z]} 

Q = {(v, .E) I d[v,  le] > 6(v, le), v E V, le E [O..z]} 
where the notation (v,le) simply means a pair of x,alues, 
v E V and lc E [O..z]. Initially, S = 0 and Q = {(v, le) I E 
V,le E [O..z]}. In the while loop (lines 14-19 of the algo- 
rithm), each iteration moves a pair from Q to S and adjusts 
the wl-weight estimation by calling Relax(u, le, v). When 
Q = 0, the algorithm completes. 

A more detailed presentation of the original Dijkstra's 
and Bellman-Ford algorithms, which our algorithms are based 
on, can be found in [3]. 

The time complexity of ESDP is (xc2V2) .  The maximum 
size of Q is (z + 1)V. Hence, line 15 can be done within 
O(zV). There can be at most (z+l )V i1.erations of the while 
loop and thus the total time for line 15 is O(z2V2). The for 
loop of lines 18-19 has (z + l )E iterations in total because 
Relax(u, le, v) is called once for every (u, v) E E ,  le E [O..z]. 
In each iteration, Relax(u, le, v) takes O(1). Hence, the time 
complexityfor this part is O ( z E ) .  The total time com-plexity 
is O(x2V2+zE)  = O(x2V2) .  The time complexity of E:BF is 
O ( z V E ) ,  because line 23 is executed for at  most (z + 1)(V - 
l)E times. The space complexities of both algorithms are 

Let us consider the time complexity of our heuris1,ic al- 
gorithm in Section 2.1. Step l of the algorithm takes O(E) .  
Step 2 of the algorithm is implemented by EDSP or EBF. 
Therefore, the total time complexity is O(z2V2) when 13DSP 
is used or O ( x V E )  when EBF is used. The time complexity 
is polynomial because the value of z is given by the algo- 
rithm. For example, if we let 3: = lOlVl and use EI3F in 
Step 2, the time complexity is O ( V 2 E ) .  

We have studied the heuristic algorithm for MCP with 
two weight functions and two constraints so far. However, 
the heuristic algorithm together with EDSP and EBP can 
be easily generalized for more than two constraints. The 
generalized algorithms can be found in [l]. 

O(zV). 

~ 
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"(z + l ) E  iterations are the combination result of the outer while  
loop and the inner for loop. The while loop iterates on u and IC, and 
the for loop iterates on v .  

2.3 Multi-C onstrained Routing 
Multi-Constrained routing is an important application of 
MCP. Consider delay and cost as the two weight functions. 
Given a source node s and a destination node t ,  the delay- 
cost-constrained routing problem is to  find a path p from s 
to t such that tdelay(p) 5 D and cost(p) 5 C, where D and 
C are the required end-to-end delay bound and cost bound, 
respectively. The routing algorithm is presented below. 

1. Create two new functions new-delay : E + I and 
new-cost : E + I .  

new-delay( u, v) = I 1 .delay( u, v) z 
D 

1 
cost(u, v) * z 

C new-cost(u, v) = [ 

where x = coef x dd, t ,  coef is a given positive integer 
and d,,t is the distance from s to t .  We reduce the origi- 
nal problem MCP(G, s, t ,  delay, cost, D,  C )  to  two sim- 
pler problems, MCP(G, s, t ,  delay, new-cost, D,  z) and 
MCP(G, s , t ,  new-delay, cost, x, C ) .  

2. First, solve MCP(G, s, t ,  delay, new-cost, D ,  z) by EDSP 
or EBF. If a solution is found, return the found path 
and terminate; otherwise, solve MCP(G, s, t ,  new-delay, 
cost, 2, CY). 

The proposed routing algorithm applies the heuristic al- 
gorithm (Section 2.1) twice, reducing delay and cost to  new- 
delay and new-cost, respectively. Hence, it guarantees to find 
a solution when either of the following two heuristic condi- 
tions is satisfied by a path p from s to t (see Theorem 3): 

1. delay(p) 5 D A cost(p) 5 (1 - e) C .  

2. delay(p) 5 (1 - 9) D A cost(p) 5 C 

(Heuristic condition one) 

(Heuristic condition two) 

We assume a source routing strategy, which was also 
adopted by routing algorithms in [7, 6, 9, 131. It requires 
every node to  maintain the state information of the network, 
which can be done by the link-state algorithm [8]. The rout- 
ing path is determined locally at the source node. 

2.4 Experiments 
We know from the routing algorithm proposed in Section 2.3 
that x = coef x d,,t. What is the relationship between coef 
and the performance of the algorithm and how large should 
coe f be? We answer the questions by simulation. 

The network topology used in our simulation is shown in 
Figure 2, which expends the major circuits in ANSNET [2] 
by inserting additional links to increase the connectivity. For 
each routing request, the values of s, t ,  delay, cost,  D and 

4The cost of an edge can be measured in dollars, or it can be a 
function of a given system metric such as bandwidth utilizationor buffer 
utilization. 
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Figure 3: Success ratio with respect to coef when D E 
[loo, 115msl and C E [400,460]. Note that 2 = coef d,,t .  
The average distance from the source to the destination of 
all experimental routing requests is 3.2 hops. 

- 

- 

C are randomly generated. The delay values of the links are 
uniformly distributed in the range of [0..50ms], and the cost 
values of the links are uniformly distributed in [0..200]. The 
performance metric we considered was success ratio. 0.8 
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0.6 

number of Tequests successfully routed 
total number of routing requests 

success ratio = 

- 

- 

- 

We studied the success ratio with respect to  coe f ,  D and 
C. The larger the value of c o e f ,  the higher the probability 
for the heuristic conditions to be satisfied, which leads to a 
higher success ratio. The smaller the values of D and C ,  the 
tighter the constraints of a routing request, which leads to a 
lower success ratio. 

The experiment results are presented in Figures 3-7. The 
x axis represents coef and the y axis represents the success 
ratio. The dimensions of D and C are shown by different fig- 
ures. Let us take Figure 3 as an example. Each point in the 
figure is taken by running one thousand randomly-generated 
routing requests. The values of D and C of all the requests 
are uniformly distributed in [loo, 115ms] and [400,460], re- 
spectively. For the purpose of comparison, we implemented 
an optimumalgorithm, which searches all possible paths for a 
solution with an exponential time complexity. There are two 
lines in the figure. The upper horizontal line shows the suc- 
cess ratios of the optimum algorithm. The lower line shows 
the success ratios of the proposed routing algorithm. The 
success ratio of the proposed routing algorithm approaches 

I 

~ 
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that of the optimum algorithm when coe f is increased. With 
coef 2 4, the performance of our algorithm is close to that 
of the optimum algorithm. 

Figures 4-7 present the success ratios when D E [75, 90ms] 
and C E [300,360], D E [125,14Oms] and C E [500 5601, 
D E [15Ol165ms] and C E [600,660], D E [150,165m~] and 
C E [600,660], respectively. Larger values for D and C .mesult 
in more relaxed delay and cost constraints and thus higher 
success ratios as seen from the figures. 

3 Related Work 
Much work has been done in QoS routing recently [tj, 10, 
11, 12, 131. Some routing algorithms consider a single con- 
straint. Plotkin discussed the competitive routing :itrat- 
egy in [lo], which considers only the bandwidth require- 
ment. The Salama’s algorithm [ll] and the Sun’s algorithm 
[12] consider the delay constraint. Though both algorithms 
use heuristic approaches trying to  minimize the cost cf the 
found route, the cost is not required to be bounded. The 
multi-constrained routing was studied in 16, 131. Wan$: and 

WI, WZ, C I ,  C Z )  to a simpler one M C P ( G , s , t , w ~ , w ~ , c ~ , a ) ,  
and then uses an extended Dijkstra’s (or Bellman-Ford) al- 
gorithm to find a solution for the new problem in polynomial 
time. We showed the correctness of the algorithm by proving 
that any solution found for the simpler problem must also be 
a solution for the original problem. We showed the effective- 
ness of the algorithm by proving that the simpler problem 
must have a so1,ution if the original problem has a solution 
p and w z ( p )  5 (1 - ?)cz, where 1 is the length of p and a 
is an integer given by the algorithm. With an increasing a,  
the condition w z ( p )  5 (1 - %)cz is gradually relaxed and 
approaching the original constraint, w z ( p )  5 cz. The statis- 
tical performance of the heuristic algorithm was studied by 
experiments, which showed that higher performance of the 
algorithm can be achieved at the expense of higher overhead. 
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