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Abstract. Most existing P2P networks route requests in )kN(O k1 , )N(logO , 
)klog/N(logO   hops, where N  is the number of participating nodes and k  is 

an adjustable parameter. Although some can achieve )d(O -hop routing for a 
constant d  by tuning the parameter k , the neighbor locations however become 
a function of N , causing considerable maintenance overhead if the user base is 
highly dynamic as witnessed by the deployed systems. This paper explores the 
design space using the simple uniformly-random neighbor selection strategy, 
and proposes a random peer-to-peer network that is the first of its kind to re-
solve requests in d  hops with a chosen probability of c−1 , where c  is a con-
stant. The number of neighbors per node is within a constant factor  from the 

optimal complexity )N(O d
1

 for any network whose routing paths are bounded 
by d  hops.  
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1   Introduction 

Peer-to-peer (P2P) systems have many applications in data sharing, notification ser-
vices, data dissemination, directory lookup, software distribution, and distributed 
indexes. Because data may be kept at any node, a fundamental problem is to effi-
ciently locate the node that stores a particular data item. Napster uses a centralized 
directory service. Gnutella [1] and KaZaA [2] rely on flooding-based search mecha-
nisms, which cause tremendous communication overhead for large systems [3,4,5,6].  

To solve the scalability problem, many P2P proposals use distributed hash tables 
(DHT) to uniformly distribute the responsibility of data location management to all 
nodes. An identifier is associated with each data item, and each node is responsible 
for storing a certain range of identifiers together with the corresponding data items or 
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their locations (addresses). DHT provides a basic function, )id(lookup , which maps an 
arbitrary identifier to the responsible node. To implement such a function, an overlay 
P2P network is formed among the participating nodes. When a lookup request is is-
sued, the request will be routed to the responsible node via the P2P network. In a 
highly-dynamic environment where nodes frequently join and depart, the maintenance 
overhead for the overlay P2P network is a major design concern [7]. A recent survey 
on different types of P2P networks can be found in [17]. 

When constructing a P2P network, there exists a fundamental space-time tradeoff 
between the number of neighbors (i.e., the size of the routing table) and the network 
diameter (i.e., the length of the routing path) [8]. Many P2P networks have an adjust-
able parameter ( k ) that can be tuned for different space-time tradeoffs. For example, 
if k = Nlog , both time and space complexities of CAN become )N(logO , where N  is 
the number of nodes in the system. For all P2P networks, however, the maintenance 
overhead is minimized when k  is a constant — instead of a function of N  that 
changes continuously as nodes join/depart.  

PRR [9] and Pastry [10] require )
klog

Nlog
k(O  neighbors per node and route in 

)
klog

Nlog
(O  hops with high probability. In the following, we shall omit “with high prob-

ability" as it is true for most complexities to be described. Tapestry [11] and  Chord 
[12] require )N(logO  neighbors and route in )N(logO  hops. CAN [13] requires )k(O  

neighbors and route in )kN(O k

1

 hops.  
The first asymptotically-optimal system is Viceroy [14], which requires seven 

neighbors per node and routes in )N(logO  hops. Koorde [15], and Manku [16], 

achieve asymptotical optimality with )k(O  neighbors and )
klog

Nlog
(O  routing hops, 

where [16] assumes k = ))nlog(poly(O .  
In the family of P2P networks, one important member is much less investigated, 

i.e., one with )N(O d

1

 neighbors per node and d  routing hops, where d  is a constant. 
Such a network is appealing in practice because of its small routing delay, which does 
not grow with respect to the size of the network. Each routing hop in a P2P network 
requires a message to travel end-to-end from one node to another, likely crossing the 
Internet. Given the prevalence of inexpensive memory, it is often desirable to trade 
more neighbors (space) for shorter routing paths (delay). For increased number of 
neighbors, the main problem is not the space requirement, but the complexity for 
maintaining the neighboring relationship [7]. This is particularly true for structured 
networks such as PRR, Pastry, and randomized Chord, where the neighbors of a node 
x  are required to match the top i  digits of x  and differ at the th)i( 1+  digit, for 

]Nlog...[i k1∈ , where k  is the base of the digits. By choosing dNk
1

= , these systems 

achieve )d(O  routing hops with )dN(O d

1

 neighbors. However, the neighbor locations 
are now a function of N  because the base k  is related to N . As N  changes, the base 

of the digits ( dN
1

) changes, which can make many existing neighbors no longer valid, 
causing considerable maintenance overhead.  
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One solution for reducing maintenance overhead is to use random neighbors, which 
require little maintenance. A node can take any other nodes as its neighbors based on 
certain probability distribution. Among the random P2P networks [14,,16],  [16] have 
an adjustable parameter k , which must be a polylog function of N  in order for their 
complexities to hold. For NoN routing [16], ))Nlog(poly(Ok = . None can achieve 
constant routing distance by adjusting k .  

This paper proposes a new random P2P network that combines arbitrary neighbor 
selection, typically used only in unstructured P2P networks, with a DHT (distributed 
hash table) ring. It is the first of its kind to resolve requests in no more than d  hops 
with probability c−1 , where d  and c  are two configurable constants. In more con-
ventional terms, choosing a small value (e.g., 1010− ) for c , the system resolves an 
arbitrary request in d  hops with high probability (e.g., 10101 −− ). There is a small 
probability c  that a request is not resolved in d  hops. When it does happen, a slower 
routing path will be taken, which guarantees to find the responsible node. The number 

of neighbors per node is )dN)cln((O d

1

2
1

− . Random neighbors are easy to manage. 
When nodes join or depart, the random neighbors of all other nodes remain un-
changed. Without sacrificing the performance, a node increases (or decreases) its 
number of random neighbors only when N  doubles (or halves). Note that the location 
of any particular neighbor is independent of N .  

In Appendix A we prove that, for routing paths to be bounded by d  hops, the lower 

bound on the number of neighbors is )N( d

1

Ω . Therefore, the space complexity of the 

proposed random P2P network is within a constant factor d)cln( 21−  from the optimal.  
The rest of the paper is organized as follows. Section 2 defines the model, notations 

and performance metrics. Section 3 proposes a random peer-to-peer network. Sec-
tion 4 presents the simulation results. Section 5 shows the time complexity and the 
space complexity. Section 6 draws the conclusion.  

2   Model, Notations and Performance Metrics 

Each data item is mapped to an m -bit identifier by a hash algorithm. The whole ID 
space can be viewed as a modulo- m2  circle, where the next identifier in the circle 
after the largest value • m2 -1• is zero. Consider N  participating nodes. Each node is 
assigned an identifier by hashing its address or domain name. When the node identifi-
ers are marked on the ID space, they split the circle into N  segments. A node x  is 
responsible for the segment (denoted as )x(seg ) that immediately follows its node 
identifier. The nodes that are responsible for the adjacent preceding (or following) 
segments are called the predecessors (or successors) of x . The location information 
about a data item is stored at x  if the identifier of the item belongs to )x(seg .  

When a user queries for a data item whose identifier is id , she submits a lookup 
request( id ), which is routed through an overlay network to the node that is responsi-
ble for the identifier, denoted as )id(node . The node subsequently returns the data 
location to the user. The performance/overhead tradeoff achieved by the routing algo-
rithm is fundamentally determined by the structure of the overlay topology.  
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Table 1. Notations 

N  number of nodes in a peer-to-peer network 
m  number of bits in an identifier 

w,z,y,x  arbitrary nodes in a peer-to-peer network 
)x(seg  segment of identifiers that x  is responsible for 

id  arbitrary identifier to be queried 
)id(node  node that is responsible for id  

xS  set of sequential neighbors of x  

xR  set of random neighbors of x  

)x(segsup_  segment of identifiers that }x{Sx +  is responsible for 

s  number of sequential neighbors 
r  number of random neighbors 

dP−1  probability for a request to be resolved in d  or less hops 

c−1  target probability of resolving a request in d  or less hops 

RP2P )c,d(  
random peer-to-peer network that resolves a request in d  
or less of hops with a probability of at least )c( −1  

 
The notations defined above and later in the paper are listed in Table 1 for quick 

reference. We evaluate the performance of a peer-to-peer system based on the follow-
ing metrics.  

 

1.  time complexity: the maximum number of hops that a request( id ) must travel in 
the overlay topology before reaching )id(node   

2. space complexity: the maximum storage that a node is used to keep the neighbor 
information  

 

The issues of load balancing [18,19], proximity and locality [20], security [21], 
pricing, etc., are beyond the scope of this paper.  

3   Random Peer-to-Peer Network (RP2P) 

Given two constants d  and c , our goal is to develop a peer-to-peer network whose 

time and  space complexities are )d(O  and  )N(O d

1

, respectively. We start with an 
abstract description of the system. We then present some analytical results and discuss 
the protocols/algorithms that realize the system.  

For all above complexities in the forms of )N(O d

1

, we have omitted factors that are 
functions of d  and c . These factors will be shown in the detailed description of the 
system.  

3.1   Overlay Topology 

Each node knows a set of neighbors that it will directly communicate with. There are two 
types of neighbors, as shown in Figure 1, where the circle represents the ID space.  
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random neighbors:  A node x  takes a number of randomly selected nodes as its ran-
dom neighbors, denoted as xR .  

 

sequential neighbors:  A node x  takes a number of predecessors and a number of 
successors as its sequential neighbors, denoted as xS . The combination of the seg-

ments that }x{Sx +  are responsible for is denoted as )x(segsup_ , which is called the 

super segment of x .  

x

z

sup_seg(z)
random neighbors of x

x

seg(x)

sup_seg(x)

sequential neighbors of x

 

Fig. 1. Random neighbors and sequential neighbors of x  

In the example of Figure 1, x  has three random neighbors and four sequential 
neighbors. A node is required to store the following information about its neighbors.  

 

• For each sequential neighbor xSy ∈ , it uses two integers to store the neighbor’s 

segment, )y(seg . Combining all these segments, x  also knows its super segment, 
)x(segsup_ .  

• For each random neighbor xRz ∈ , it uses two integers to store the neighbor’s super 

segment, )z(segsup_ .  
 

The above information is learned from the neighbors. The space complexity for 
storing the information is equal to the number of neighbors. when x  receives a re-
quest whose identifier belongs to )x(segsup_ , it knows immediately which node (a  
 



 Building a Scalable P2P Network with Small Routing Delay 461 

sequential neighbor or itself) is responsible for the identifier. On the other hand, if the 
identifier belongs to the super segment of a random neighbor z , x  should forward the 
request to z .  

3.2   Routing Algorithm 

When a node x  receives a request( id ), it processes the request by the following algo-
rithm. Suppose the request carries the address of the node that originates the request.  

 

RP2P_Routing( id )   
1.  if id )x(seg∈  then   
2.    process request and send result to 

original requester   
3.  else if )y(segid,Sy x ∈∈∃  then   

4.    forward the request to y    
5.  else if )z(segsup_id,Rz x ∈∈∃  then   

6.    forward the request to z    
7.  else   
8.    forward the request to all random 

neighbors   
 

A few routing examples are given in Figure 2.  
 

zero-hop case: It takes zero hop to resolve a request if )x(segid ∈ , as shown by the 
first plot in the figure and implemented by Lines 1-2 of the algorithm.  

 

one-hop case: It takes one hop if xSy),y(segid ∈∃∈ , as shown by the second plot in the 

figure and implemented by Lines 3-4 of the algorithm.  
 

two-hop case: It takes two hops if xRz),z(segsup_id ∈∃∈ , as shown by the third plot in 

the figure and implemented by Lines 5-6 of the algorithm.  
 

Three-hop case: It takes three or more hops otherwise, as shown by the last plot in the 
figure and implemented by Lines 7-8 of the algorithm.  

 

For the first three cases, x  knows for sure which is the next node to forward the re-
quest. For the last case, x  has no clue about the next node. Hence, it broadcasts the 
request to all random neighbors. To restrain the broadcast overhead, we introduce a 
TTL field in the request message such that the request can only travel d  or less hops 
and allows up to 2−d  levels of broadcast (to random neighbors). As illustrated in the 
figure, the last two hops do not require broadcast as the node receiving the request has 
enough information to determine whether two more hops can reach )id(node  and if so, 
which is the next node to forward the request.  

Below we give a basic analytical result. Suppose each node has s  sequential 
neighbors and r  random neighbors. To simplify the analysis, assume the nodes are 
responsible for equal-sized segments of the ID space. We will show that the analytical 
results with this assumption match very well with the simulation results without this  
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x

one-hop routing
(one message) 

id belongs to seg(y),
i.e., y = node(id)

y

x

zero-hop routing
(zero message) 

id belongs to seg(x),
i.e., x = node(id)

x

node(id)
z

x

node(id)

z

two-hop routing
(two messages) 

id belongs to sup_seg(z)

three-hop routing
( r + 2 messages) 

id belongs to sup_seg(y), where
y is a random neighbor of z and

z is a random neighbor of x

y

id

id

 

Fig. 2. Routing examples 

assumption. Let dP  be the probability for request( id ) to NOT reach )id(node  in d  or 
less hops. The following upper bound of 2≥d,Pd  is proved in Appendix B.  

1

1
−

−
dr

d )
N

s
(P ≺  (1) 

We will demonstrate shortly that, by appropriately choosing the values of s  and r , 
a request can be resolved in d  or less hops with a chosen probability (e.g., 10101 −− ).  

3.3   Determining Appropriate Values for s  and r  

Consider an integer 2≥d  and a small constant )..(c 10∈ . We prove that, if dkNrs
1

==  

where d)cln(k
1

−= , then cPd < .    By (1), we have  
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1
1

1

1
−

−<
dd )kN(

d

d )
N

kN
(P  (2) 

Define the following quantity.  

d

d

d

d
)

k

N
(q

1

1

−

−

=  
 

 
Rewrite (2) as below.  

d
d qk)

q
(P

1
1 −<  

 

q)
q

(
1

1 −  is a monotonically-increasing function with respect to q , and  

e
)

q
(itlim q

q

11
1 =−∞→ , where e  is the base of natural logarithm. Hence, we have  

dk
d )

e
(P

1<  

                                                              
d

d)cln()
e

(

1

1 −=  

                                                                  c=  

Let RP2P( c,d ) be a random peer-to-peer network where each node has dd N)cln(
11

−  
sequential neighbors and the same number of random neighbors.1 As an example, 
when 3=d , it becomes RP2P(3, c ). Suppose each request carries a TTL field whose 
initial value is d . We modify the routing algorithm such that the longest routing path 
has no more than d  hops.  

 

RP2P_Routing_TTL( id )   
1.    decrease the TTL of the request by one   
2.    if )x(segid ∈  then   
3.    process request and send result to original 

requester   
4.    else if )y(segid,Sy x ∈∈∃  then   

5.    forward the request message to y    
6.    else if )z(segsup_id,Rz x ∈∈∃  then   
7.    forward the request message to z    
8.    else if TTL of the request 2≥  then   
9.    forward the request to all random neighbors   
10.  else   
11.    discard the request   

 

Based on the previous analysis, we have the following theorem.  
                                                           

1 If 1010−=c
 and 3=d ,then d)cln(

1

− =2.8. 
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Theorem 1. The probability for RP2P( c,d ) to resolve a request in d  or less hops is 
larger than  c−1 , where 2≥d  and )...(c 10∈ .  

4   Simulation Results 

Our simulation results match very well with the analysis. We simulated RP2P(3, c ) 
on networks of 1000,10000,  and 100000 nodes, respectively. The simulation was 
repeated for different values of c . The results are shown in Table 2. The column of c  
is the target failure probability. The column of s r,  is the number of sequential (ran-
dom) neighbors. The column of 3P  is the measured probability of NOT resolving a 
request in 3 or less hops. 3P  is always better (smaller) than the target value c . That is 
because our analysis made a conservative simplification when using (5) to derive the 
upper bound of dP  in Appendix B.  

Table 2. Simulation results for RP2P(3, c ) 

N  = 1,000  N  = 10,000  N  = 100,000  
c rs,

3P rs,
3P rs,

3P

1.0e-1 13 6.8e-2  28  8.8e-2 61 1.1e-1  
1.0e-2 16 9.4e-3  35  1.1e-2 77 9.1e-3  
1.0e-3 19 4.3e-4  41  7.4e-4 88 8.6e-4  
1.0e-4 20 1.4e-4  45  7.1e-5 97 8.1e-5  
1.0e-5 22 7.7e-6  48  9.2e-6 104 9.4e-6  
1.0e-6 23 1.5e-6  51  8.9e-7 111 8.7e-7  
1.0e-7 25 3.5e-8  54  7.0e-8 117 8.4e-8   

5   Complexities of RP2P( cd, ) 

The maximum number of hops that a request will travel in RP2P( c,d ) is d , and the 
time complexity is thus )d(O . The number of neighbors per node is 

sr + = dd N)cln(
11

2 − , and the space complexity is thus dd N)cln((O
11

− .  

6   Conclusion 

This paper designs a random peer-to-peer network with neighbor nodes selected uni-
formly at random. The network is the first of its kind to resolve requests within a con-
stant number of hops with high probability. A key advantage is the ease of neighbor 
management when nodes join/depart. The time and  space complexities of the pro-

posed network are )d(O  and dd N)cln((O
11

− , respectively. We conduct comprehensive  
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analysis to derive the properties of the systems. Our simulation results match with the 
analytical results.  
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Appendix A. Number of Neighbors Per Node in Networks of 
Constant Diameter   

Theorem 1:  The average nodal degree must be )N( d

1

Ω  for an N-node network 
with diameter d .   

Proof:  For a network with diameter d , starting from an arbitrary node, we can 
reach all nodes by a breadth-first search tree of d  levels in depth. Let x  be the aver-

age nodal degree. The number of nodes in the tree is )x(ON
d

i

i∑
=

=
0

= )x(O d . In order for 

=N )x(O d  to hold, it is required that )N(x d

1

Ω= .  

Appendix B. Upper Bound for dP  in RP2P  

We establish an upper bound for dP , 2≥d , in the following. Consider an arbitrary 

identifier id  and an arbitrary node x . Suppose x  issues request( id ). Each node has 
an equal probability of being responsible for id . )x(segsup_  consists of the segments 
of )s( 1+  nodes. Hence, the probability for id ∈ )x(segsup_  is  

 

N/)s(P 1+=  (3) 

 
It takes zero hop for the request to reach )id(node  if x = )id(node . Hence, 

N
P

1
10 −= . It takes one or less hop if id  belongs to )x(segsup_ . Hence, 1P ≤ P−1 =1-

N/)s( 1+ . We now derive dP  for 2≥d . The request will not reach )id(node  in d  or 

less hops if and only if the following two conditions are satisfied.  
Condition 1: id ∉ )x(segsup_   
Condition 2: Starting from any random neighbor of x , the request will not reach 

)id(node  in )d( 1−  or less hops.  
The probability for Condition 1 to hold is P−1 . The probability for Condition 2 

to hold is r
d )P( 1− . Hence,  

dP = )P( −1 r
d )P( 1−  (4) 

By induction we have, for 2≥d ,  
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dP = ∑
−

=

−−
1

1

11
d

i

ir)p(
1

1

−dr)P(   (5) 

We simplify the formula as follows.  

dP <
1

1

−dr)P(  

        <
1

1
−

−
dr)

N

s
(  
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