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Abstract—Radio frequency identification (RFID) technology
has many applications in inventory management, supply chain,
product tracking, transportation, and logistics. One research issue
of practical importance is to search for a particular group of tags
in a large-scale RFID system. Time efficiency is a crucial factor
that must be considered when designing a tag search protocol to
ensure its execution will not interfere with other normal inventory
operations. In this paper, we design a new technique called filtering
vector, which can significantly reduce transmission overhead
during search process, thereby shortening search time. Based on
this technique, we propose an iterative tag search protocol. In
each round, we filter out some tags and eventually terminate the
search process when the search result meets the accuracy require-
ment. Furthermore, we extend our protocol to work under noisy
channel. The simulation results demonstrate that our protocol
performs much better than the best existing work.
Index Terms—Noisy channel, radio frequency identification

(RFID), tag search, time efficiency.

I. INTRODUCTION

R ECENT years have witnessed the rapid development of
radio frequency identification (RFID) technology. It is

becoming increasingly utilized in various applications, such as
inventory management, supply chain, product tracking, trans-
portation, and logistics [1]–[10]. Generally speaking, an RFID
system comprises three components: one or multiple RFID
readers, a large set of RFID tags, and a back-end server. Each
tag has a unique ID to identify the object to which it is attached.
Equipped with an antenna, a tag is capable of transmitting and
receiving radio signals, through which communications with
the readers are achieved. Hence, the readers can collect the IDs
and other useful information from tags located in their coverage
areas, and then send the gathered data to the back-end server
for further process.
This paper focuses on the tag search problem in large RFID

systems. We use an example to illustrate the problem. Suppose
a manufacturer finds that some of its products may be defective,
but those products have already been distributed in different
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warehouses. Themanufacturer knows the IDs of tags attached to
those suspected products and wants to recall them for further in-
spection. Thus, the manufacturer asks for a tag search in each
warehouse: Given a set of wanted tag IDs, the problem is to
search in the coverage area of a reader and identify the tags that
belong to the set. Note that there may exist other tags in the area
that do not belong to the set.
To meet the stringent delay requirements of real-world ap-

plications, time efficiency is a critical performance metric for
the RFID tag search problem. In our example, it is highly desir-
able to make the search quick in a busy warehouse as a lengthy
searching process may interfere with other activities that move
things in and out of the warehouse. The only prior work studying
this problem is called CATS [11], which however does not work
well under some common conditions (e.g., if the size of the
wanted set is much larger than the number of tags in the cov-
erage area of the reader).
Themain contribution of this paper is a fast tag searchmethod

based on a new technique called filtering vectors. A filtering
vector is a compact one-dimension bit array constructed from
tag IDs, which can be used not only for tag filtration, but also
for parameter estimation. Using the filtering vectors, we de-
sign, analyze, and evaluate a novel iterative tag search protocol,
which progressively improves the accuracy of search result and
reduces the time of each iteration to a minimum by using the
information learned from previous iterations. Given an accu-
racy requirement, the iterative protocol will terminate once the
search result meets the accuracy requirement. We show that our
protocol performsmuch better than the CATS protocol and other
alternatives that we use for comparison.We then extend our pro-
tocol to work under noisy channel and demonstrate that the in-
crease in its execution time due to channel error is modest.
The rest of this paper is organized as follows. Section II gives

the system model and the problem statement. Section III briefly
introduces the prior work. Section IV describes our new
protocol in detail. Section VI evaluates the performance
of our protocol by simulations. Section V addresses noisy
wireless channel. Section VII discusses the related work.
Section VIII draws the conclusion.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model
We consider an RFID system of one or more readers, a

back-end server, and a large number of tags. Each tag has a
unique 96-bit ID according to the EPC global Class-1 Gen-2
(C1G2) standard [12]. A tag is able to communicate with the
reader wirelessly and perform some computations such as
hashing. The back-end server is responsible for data storage,
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information processing, and coordination. It is capable of
carrying out high-performance computations. Each reader is
connected to the back-end server via a high-speed wired or
wireless link. If there are many readers (or antennas), we divide
them into noninterfering groups, and the protocol proposed in
this paper (or any prior protocol) can be performed for one
group at a time, with the readers in that group executing the
protocol in parallel. The readers in each group can be regarded
as an integrated unit, still called a reader for simplicity. Many
works regarding multireader coordination can be found in the
literature [13]–[15].
In practice, the tag-to-reader transmission rate and the reader-

to-tag transmission rate may be different and subject to the en-
vironment. For example, as specified in the EPC global Class-1
Gen-2 standard, the tag-to-reader transmission rate is 40–640
kb/s in the FM0 encoding format or 5–320 kb/s in the Miller
modulated subcarrier encoding format, while the reader-to-tag
transmission rate is about 26.7–128 kb/s. However, to simplify
our discussions, we assume the tag-to-reader transmission rate
and the reader-to-tag transmission rate are the same, and it is
straightforward to adapt our protocol for asymmetric transmis-
sion rates.
B. Time-Slots
The RFID reader and the tags in its coverage area use a

framed slotted MAC protocol to communicate. We assume
that clocks of the reader and all tags in the RFID system are
synchronized by the reader’s signal. During each frame, the
communication is initialized by the reader in a request-and-re-
sponse mode, namely, the reader broadcasts a request with
some parameters to the tags and then waits for the tags to reply
in the subsequent time-slots.
Consider an arbitrary time-slot. We call it an empty slot if

no tag replies in this slot, or a busy slot if one or more tags
respond in this slot. Generally, a tag just needs to send one-bit
information to make the channel busy such that the reader can
sense its existence. The reader uses “0” to represent an empty
slot with an idle channel and “1” for a busy slot with a busy
channel. The length of a slot for a tag to transmit a one-bit short
response is denoted as . Note that can be set larger than the
time of one-bit data transmission for better tolerance of clock
drift in tags. Some prior RFID work needs another type of slots
for transmission of tag IDs, which will be introduced shortly.
C. Problem Statement
Suppose we are interested in a known set of tag IDs

, where each is called a wanted
tag. For example, the set may contain tag IDs on a cer-
tain type of products under recall by a manufacturer. Let

be the set of tags within the coverage
area of an RFID system (e.g., in a warehouse). Each or
represents a tag ID. The tag search problem is to identify the
subset of wanted tags that are present in the coverage area.
Namely, . Since each tag in is in the coverage area,

. Therefore, . We define the intersection
ratio of and as

(1)

Exactly finding can be expensive if and are very
large. It is much more efficient to find approximately, al-
lowing small bounded error [11]—all wanted tags in the

TABLE I
NOTATIONS

coverage area must be identified, but a few wanted ones that are
not in the coverage may be accidentally included.1
Our solution performs iteratively. Each round rules out some

tags in when it becomes certain that they are not in the cov-
erage area (i.e., ), and it also rules out some tags in when
it becomes certain that they are not wanted ones in . These
ruled-out tags are called non-candidate tags. Other tags that re-
main possible to be in both and are called candidate tags.
At the beginning, the search result is initialized to all wanted
tags . As our solution is iteratively executed, the search re-
sult shrinks toward when more and more non-candidates are
ruled out.
Let be the final search result. We have the following two

requirements.
1) All wanted tags in the coverage area must be detected,

namely, .
2) A false positive occurs when a tag in is included

in , i.e., a tag not in the coverage area is kept in the
search result by the reader.2 The false-positive ratio is the
probability for any tag in to be in after the
execution of a search protocol. We want to bound the false-
positive ratio by a prespecified system requirement ,
whose value is set by the user. In other words, we expect

(2)

Notations used in the paper are given in Table I for quick
reference.

III. BACKGROUND

A. Tag Identification
A straightforward solution for the tag search problem is iden-

tifying all existing tags in . After that, we can apply an in-
tersection operation to compute . EPC C1G2 stan-
dard assumes that the reader can only read one tag ID at a time.
Dynamic Framed Slotted ALOHA (DFSA) [16]–[20] is imple-
mented to deal with tag collisions, where each frame consists of
a certain number of equal-duration slots. It is proved that the the-
oretical upper bound of identification throughput using DFSA is
approximately tags per slot ( is the natural constant), which

1If perfect accuracy is necessary, a post-step may be taken by the reader to
broadcast the identified IDs. As the wanted tags in the coverage reply after
hearing their IDs, those mistakenly included tags can be excluded due to non-
response to these IDs.

2The nature of our protocol guarantees that all tags in are not included
in .
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is achieved when the frame size is set equal to the number of
unidentified tags [21]. As specified in EPC C1G2, each slot con-
sists of the transmissions of a QueryAdjust or QueryRep com-
mand from the reader, one tag ID, and two 16-bit random num-
bers: one for the channel reservation (collision avoidance) sent
by the tags, and the other for ACK/NAK transmitted by the
reader. We denote the duration of each slot for tag identifica-
tion as . Therefore, the lower bound of identification time for
tags in using DFSA is

(3)
One limitation of the current DFSA is that the information

contained in collision slots is wasted. A number of recent
papers [22]–[27] focus on collision recovery (CR) techniques,
which enable the resolution of multiple tag IDs from a collision
slot. Benefiting from the CR techniques, the identification
throughput can be dramatically improved up to 3.1 tags per slot
in [26]. Suppose the throughput is tags per slot after adopting
the CR techniques. The lower bound for identification time is

(4)

Note that after employing the CR techniques, the real duration
of each slot can be longer than . The reason is that the reader
may need to acknowledge multiple tags and the tags may need
to send extra messages to facilitate collision recovery.
Readers may refer to Section VII for more information about

tag identification and collision recovery.

B. Polling Protocol
The polling protocol provides an alternative solution to the

tag search problem. Instead of collecting all IDs in , the reader
can broadcast the IDs in one by one. Upon receiving an ID,
each tag checks whether the received ID is identical to its own. If
so, the tag transmits a one-bit short response to notify the reader
about its presence; otherwise, the tag keeps silent. Hence, the
execution time of the polling protocol is

(5)
where is the time cost for the reader to broadcast a tag ID.
The polling protocol is very efficient when is small. How-

ever, it also has serious limitations. First, it does not work well
when . Second, the energy consumption of tags (par-
ticularly when active tags are used) is significant because tags in
have to continuously listen to the channel and receive a large

number of IDs until its own ID is received.

C. CATS Protocol
To address the problems of the tag identification and

polling protocols, Zheng et al. propose a two-phase protocol
named Compact Approximator-based Tag Searching protocol
(CATS) [11], which is the most efficient solution for the tag
search problem to date.
The main idea of the CATS protocol is to encode tag IDs

into a Bloom filter and then transmit the Bloom filter instead of
the IDs. In its first phase, the reader encodes all IDs of wanted
tags in into a -bit Bloom filter, and then broadcasts this
filter together with some parameters to tags in the coverage
area. Having received this Bloom filter, each tag tests whether
it belongs to the set . If the answer is negative, the tag is a
non-candidate and will keep silent for the remaining time. After

the filtration of phase one, the number of candidate tags in
is reduced. During the second phase, the remaining candidate
tags in report their presence in a second -bit Bloom filter
constructed from a frame of time-slots . Each candidate tag
transmits in slots to which it is mapped. Listening to channel,
the reader builds the Bloom filter based on the status of the
time-slots: “0” for an idle slot where no tag transmits, and “1”
for a busy slot where at least one tag transmits. Using this Bloom
filter, the reader conducts filtration for the IDs in to see which
of them belong to , and the result is regarded as .
With a prespecified false-positive ratio requirement ,

the CATS protocol uses the following optimal settings for
and :

(6)

(7)

where is a constant that equals 0.6185, and and are con-
stants pertaining to the reader-to-tag transmission rate and the
tag-to-reader transmission rate, respectively. In CATS, the au-
thors assume is the time needed to delivering one-bit data,
and , i.e., the reader-to-tag transmission rate and the
tag-to-reader transmission rate are identical. Therefore, the total
search time of the CATS protocol is

(8)

IV. FAST TAG SEARCH PROTOCOL BASED ON FILTERING
VECTORS

In this section, we propose an Iterative Tag Search Protocol
(ITSP) to solve the tag search problem in large-scale RFID sys-
tems. We will ignore channel error for now and delay this sub-
ject to Section V.

A. Motivation
Although the CATS protocol takes a significant step forward

in solving the tag search problem, it still has several important
drawbacks. First, when optimizing the Bloom filter sizes and

, CATS approximates simply as . This rough ap-
proximation may cause considerable overhead when
deviates significantly from .
Second, it assumes that in its design and formula

derivation. In reality, the number of wanted tags may be far
greater than the number in the coverage area of an RFID system.
For example, there may be a huge number of tagged prod-
ucts that are under recall, but as the products are distributed to
many warehouses, the number of tags in a particular ware-
house may be much smaller than . Although CAT can still
work under conditions of , it will become less effi-
cient as our simulations will demonstrate.
Third, the performance of CATS is sensitive to the false-

positive ratio requirement . The performance deteriorates
when the value of is very small. While the simulations in
[11] set , its value may have to be much smaller
in some practical cases. For example, suppose ,
and . If we set , the number of wanted
tags that are falsely claimed to be in by CATS will be up to
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, far more than the 1000 wanted tags
that are actually in .
We will show that an iterative way of implementing Bloom

filters is much more efficient than the classical way that the
CATS protocol adopts.

B. Bloom Filter
A Bloom filter is a compact data structure that encodes

the membership for a set of items. To represent a set
using a Bloom filter, we need a bit array

of length in which all bits are initialized to zeros. To encode
each element , we use hash functions, ,
to map the element randomly to bits in the bit array, and
set those bits to ones. For membership lookup of an element
, we again map the element to bits in the array and see
if all of them are ones. If so, we claim that belongs to ;
otherwise, it must be true that . A Bloom filter may cause
false positive: A non-member element is falsely claimed as a
member in . The probability for a false positive to occur in a
membership lookup is given as follows [28]:

(9)

When , is approximately minimized to
. In order to achieve a target value of , the minimum

size of the filter is .
CATS sends one Bloom filter from the reader to tags and an-

other Bloom filter from tags back to the reader. Consider the
first Bloom filter that encodes . As , the filter size is

. As an example, to achieve , the size
becomes bits. Similarly, the size of the second filter
from tags to the reader is also related to the target false-positive
probability.
We show that the overall size of the Bloom filter can be sig-

nificantly reduced by reconstructing it as filtering vectors and
then iteratively applying these vectors.

C. Filtering Vectors
A Bloom filter can also be implemented in a segmented way.

We divide its bit array into equal segments, and the th hash
function will map each element to a random bit in the th seg-
ment, for . We name each segment as a filtering
vector (FV), which has bits. The following formula gives
the false-positive probability of a single filtering vector, i.e., the
probability for a non-member to be hashed to a “1” bit in the
vector:

(10)

Since there are independent segments, the overall false-posi-
tive probability of a segmented Bloom filter is

(11)

which is approximately the same as the result in (9). It means
that the two ways of implementing a Bloom filter have similar
performance. The value is also minimized when
. Hence, the optimal size of each filtering vector is

(12)

Fig. 1. Bloom filter and filtering vectors.

Fig. 2. Iterative use of filtering vectors. Each arrow represents a filtering vector,
and the length of the arrow indicates the size of the filtering vector, which is
specified to the right. As the size shrinks in subsequent rounds, the total amount
of data exchanged between the reader and the tags is significantly reduced.

which results in

(13)

Namely, each filtering vector on average filters out half of
non-members.
Fig. 1 illustrates the concept of filtering vectors. Suppose we

have two elements and , two hash functions and , and an
8-bit bit array. First, suppose ,
, , , and we construct a
Bloom filter for and in the upper half of the figure. Next, we
divide the bit array into two 4-bit filtering vectors and apply

to the first segment and to the second segment. Since
, , ,

, we build the two filtering vectors in the lower
half of the figure.

D. Iterative Use of Filtering Vectors

In this work, we use filtering vectors in a novel iterative way:
Bloom filters between the reader and tags are exchanged in
rounds; one filtering vector is exchanged in each round, and the
size of filtering vector is continuously reduced in subsequent
rounds, such that the overall size of each Bloom filter is greatly
reduced.
We use a simplified example to explain the idea, which is il-

lustrated in Fig. 2: Suppose there is no wanted tag in the cov-
erage area of an RFID reader, namely, . In round one,
we first encode in a filtering vector of size through
a hash function and broadcast the vector to filter tags in .
Using the same hash function, each candidate tag in knows
which bit in the vector it is mapped to, and it only needs to check
the value of that bit. If the bit is zero, the tag becomes a non-can-
didate and will not participate in the protocol execution further.
The filtering vector reduces the number of candidate tags in
to about . Then, a filtering vector of size

is sent from the remaining candidate tags in back
to the reader in a way similar to [11]: Each candidate tag hashes
its ID to a slot in a time frame and transmits one-bit response in
that slot. By listening to the states of the slots in the time frame,
the reader constructs the filtering vector, “1” for busy slots and
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“0” for empty slots. The reader uses this vector to filter non-can-
didate tags from . After filtering, the number of candidate tags
remaining in is reduced to about . Only
the candidate tags in need to be encoded in the next filtering
vector, using a different hash function . Hence, in the second
round, the size of the filtering vector from the reader to tags is
reduced by half to , and similarly the size of the fil-
tering vector from tags to the reader is also reduced by half to

. Repeating the above process, it is easy to see that
in the th round, the size of the filtering vector from the reader to
tags is , and the size of the filtering vector from
tags to the reader is . After rounds, the total size
of all filtering vectors from the reader to tags is

(14)

where is an upper bound, regardless of the number of
rounds (i.e., regardless of the requirement on the false-positive
probability). It compares favorably to CATS, whose filter size,

, grows inversely in , and reaches bits
when in our earlier example.
Similarly, the total size of all filtering vectors from tags to the

reader is

(15)

and . We can make as small as
we like by increasing , while the total transmission overhead
never exceeds bits. The strength of filtering
vectors in bidirectional filtration lies in their ability to reduce the
candidate sets during each round, thereby diminishing the sizes
of filtering vectors in subsequent rounds and thus saving time.
Its power of reducing subsequent filtering vectors is related to

and . The more the numbers of tags outside of
, the more they will be filtered in each round, and the greater

the effect of reduction.

E. Generalized Approach
Unlike the CATS protocol, our iterative approach divides

the bidirectional filtration in tag search process into multiple
rounds. Before the th round, the set of candidate tags in is
denoted as ( ), which is also called the search result
after the th round. The final search result is the set of
remaining candidate tags in after all rounds are completed.
Before the th round, the set of candidate tags in is denoted
as ( ). Initially, and . We define

and , which are the tags to be
filtered out. Because is always a subset of both and ,
we have

(16)
Instead of exchanging a single filtering vector at a time, we

generalize our iterative approach by allowing multiple filtering
vectors to be sent consecutively. Each round consists of two
phases. In phase one of the th round, the RFID reader broad-
casts a number of filtering vectors, which shrink the set of
remaining candidate tags in from to . In phase two of
the th round, one filtering vector is sent from the remaining can-
didate tags in back to the reader, which uses the received

Fig. 3. Generalized approach. Each round has two phases. In phase one, the
reader transmits zero, one, or multiple filtering vectors. In phase two, the tags
send exactly one filtering vector to the reader. In the example shown by the
figure, and , which means there are two filtering vectors sent
by the reader in the first round, and no filtering vector from the reader during
the second round.

filtering vector to shrink its set of remaining candidates from
to , setting the stage for the next round. This process

continues until the false-positive ratio meets the requirement of
.

The values of will be determined in Section IV-F. If
, multiple filtering vectors will be sent consecutively from the
reader to tags in one round. If , no filtering vector is sent
from the reader in this round. When this happens, it essentially
allows multiple filtering vectors to be sent consecutively from
tags to the reader (across multiple rounds). An illustration is
given in Fig. 3.
F. Values of
Let be the total number of rounds. After all rounds,

we use as our search result. There are in total fil-
tering vectors sent from tags to the reader. We know from
Section IV-C that each filtering vector can filter out half of
non-members (in our case, tags in ). To meet the
false-positive ratio requirement , the following constraint
should hold:

(17)

Hence, the value of is set to . (We will dis-
cuss how to guarantee meeting the requirement in
Section IV-A.)
Next, we discuss how to set the values of , ,

in order to minimize the execution time of each round. We use
to denote the filtering vector of a set. In phase one of

the th round, the reader builds filtering vectors, denoted
as , , which are consecu-
tively broadcast to the tags. From (12), we know the size of each
filtering vector is . After the filtration based on these
vectors, the number of remaining candidate tags in is on
average

(18)
In phase two of the th round, the tags in use a time frame
of slots to report their presence. After receiving
the responses, the reader builds a filtering vector, denoted as

. After the filtration based on , the size of
the search result is on average

(19)
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We denote the transmission time of the th round by .
To make a fair comparison to CATS, we utilize the parameter
setting that conforms with [11]. Therefore,

, which is set to be

(20)

To find the value of that minimizes , we take the first-
order derivative and set the right side to zero

(21)

Hence, the value of is minimized when

(22)

Because cannot be a negative number, we reset
if . Furthermore, must be an integer.
If is not an integer, we round either to the
ceiling or to the floor, depending on which one results in a
smaller value of .
For now, we assume that we know and in our compu-

tation of . Later, wewill show how to estimate these values on
the fly in the execution of each round of our protocol. Initially,

is known. can be calculated from (16). Hence,
the value of can be computed from (22). After that, we can
estimate , , and based on (18), (19), and (16), re-
spectively. From and , we can calculate the value .
Following the same procedure, we can iteratively compute all
values of for .
We find it often happens that the sequence has several

consecutive zeros at the end, that is, , for
. In this case, we may be able to further optimize the

value of with a slight adjustment. We first explain the reason
for : It costs some time for the reader to broadcast a
filtering vector in phase one of the th round. It is true that this
filtering vector can reduce set , thereby reducing the frame
size of phase two in the th round. However, if the time cost
of sending the filtering vector cannot be compensated by the
time reduction of phase two, it will be better off to remove this
filtering vector by setting . (This situation typically
happens near the end of the sequence because the number of
unwanted tags in the remaining candidate set is already very
small.) However, if all values of in the subsequent rounds
(after ) are zeros, increasing to a nonzero value may
help reduce the transmission time of phase two of all subsequent
rounds, and the total time reduction may compensate more than
the time cost of sending those filtering vectors.
Consider the transmission time of these rounds

as a whole, denoted by . It is easy to derive

(23)
To minimize , we have

if
if (24)

where . As a result, is updated
to , while other , , remains unchanged.

TABLE II
INITIAL VALUES OF

TABLE III
OPTIMIZED VALUES OF

Here, we give an example to illustrate how to calculate the
values of . Suppose , , ,
and , so . Using (22), we
can calculate the values from to . The result is listed in
Table II. There is a sequence of zeros from to . Thus, we
can make an improvement using (24), and the optimized result
is shown in Table III.

G. Iterative Tag Search Protocol
Having calculated the values of , we can present our iter-

ative tag search protocol (ITSP) based on the generalized ap-
proach in Section IV-E. The protocol consists of iterative
rounds. Each round consists of two phases. Consider the th
round, where .
1) Phase One: The RFID reader constructs filtering vec-

tors for using hash functions. According to (12), we set
the size of each filtering vector as

(25)

The RFID reader then broadcasts those filtering vectors one by
one. Once receiving a filtering vector, each tag in maps its
ID to a bit in the filtering vector using the same hash func-
tion that the reader uses to construct the filter. The tag checks
whether this bit is “1.” If so, it remains a candidate tag; oth-
erwise, it is excluded as a non-candidate tag and drops out of
the search process immediately. The set of remaining candidate
tags is .
If the filtering vectors are too long, the reader divides each

vector into blocks of a certain length (e.g., 96 bits) and transmits
one block after another. Knowing which bit it is mapped to, each
tag only needs to record one block that contains its bit.
From (13), we know that the false-positive probability after

using filtering vectors is . Therefore,
.

2) Phase Two: The reader broadcasts the frame size
of phase two to the tags, where

(26)

After receiving , each tag in randomly maps its ID
to a slot in the time frame using a hash function and transmits
a one-bit short response to the reader in that slot. Based on the
observed state (busy or empty) of the slots in the time frame,
the reader builds a filtering vector, which is used to filter non-
candidates from .
The overall transmission time of all rounds in the ITSP is

(27)
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H. Cardinality Estimation
Recall from Section IV-F that we must know the values of
, , and to determine , , and . It is trivial

to find the value of by counting the number of tags in the
search result of the th round. Meanwhile, we know

, and . Therefore, we only need
to estimate and .
Besides serving as a filter, a filtering vector can also be used

for cardinality estimation, a feature that is not exploited in [11].
Since no filtering vector is available at the very beginning, the
first round of the ITSP should be treated separately: We may
use the efficient cardinality estimation protocol ART proposed
in [29] to estimate (i.e., ) if its value is not known at
first. As for , it is initially assumed to be .
Next, we can take advantage of the filtering vector received

by the reader in phase two of the th ( ) round to estimate
without any extra transmission expenditure. The estimation

process is as follows: First, counting the actual number of “1”
bits in the filtering vector, denoted as , we know the actual
false-positive probability of using this filtering vector, denoted
by , is

(28)
because an arbitrary unwanted tag has a chance of out of

to be mapped to a “1” bit, where is the size of
the vector. Meanwhile, we can record the number of tags in
the search results before and after the th round, i.e., and

, respectively. We have ,
, and . Therefore

(29)

For the purpose of accuracy, we may estimate after every
round, and obtain the average value.
I. Additional Filtering Vectors
Estimation may have error. Using the values of and

computed from estimated and , a direct consequence is
that the actual false-positive ratio, denoted as , can be greater
than the requirement . Fortunately, from (28), the reader
is able to compute the actual false-positive ratio , ,
of each filtering vector received in phase two of the ITSP. Thus,
we have

(30)

If , our protocol will automatically add additional
filtering vectors to further filter until (as
described in Section IV-D).
J. Hardware Requirement
The proposed protocol cannot be supported by off-the-shelf

tags that conform to the EPC Class-1 Gen-2 standard [12],
whose limited hardware capability constrains the functions that
can be supported. By our design, most of the ITSP protocol’s
complexity is on the reader side, but tags also need to provide
certain hardware support. Besides the mandatory commands of
C1G2 (e.g., Query, Select, Read), in order for a tag to execute
the ITSP protocol, we need a new command defined in the
set of optional commands, asking each awake tag to listen to
the reader’s filtering vector, hash its ID to a certain slot of the
vector for its bit value, keep silent and go sleep if the value is

zero, and respond in a hashed slot (by making a transmission
to make the channel busy) if the value is one. Note that the tag
does not need to store the entire filtering vector, but instead
only needs to count to the slot it is hashed to, and retrieve the
value (0/1) carried in that slot.
Hardware-efficient hash functions [30]–[32] can be found in

the literature. A hash function may also be derived from the
pseudo-random number generator required by the C1G2 stan-
dard. To keep the complexity of a tag’s circuit low, we only use
one uniform hash function , and use it to simulate multiple
independent hash functions: In phase one of the th round, we
use and unique hash seeds to achieve

independent hash outputs. Thus, a tag is mapped to bit
locations , , ,

in the filtering vectors, respec-
tively. Each hash seed, together with its corresponding filtering
vector, will be broadcast to the tags. In phase two of the th
round, the reader generates a new hash seed and sends it to
the tags. Each candidate tag in maps its to the slot of
index , and then transmits a one-bit
short response to the reader in that slot.

V. ITSP OVER NOISY CHANNEL
So far, the ITSP assumes that the wireless channel between

the RFID reader and tags is reliable. Note that the CATS
protocol does not consider channel error, either. However, it
is common in practice that the wireless channel is far from
perfect due to many different reasons, among which interfer-
ence noise from nearby equipment, such as motors, conveyors,
robots, wireless LANs, and cordless phones, is a crucial one.
Therefore, our next goal is to enhance ITSP making it robust
against noise interference.
A. ITSP With Noise on Forward Link
The reader transmits at a power level much higher than the

tags (which after all backscatter the reader’s signals in the case
of passive tags). It has been shown that the reader may transmit
more than one million times higher than tag backscatter [33].
Hence, the forward link (reader to tag) communication is
more resilient against channel noise than the reverse link (tag
to reader). To provide additional assurance against noise for
forward link, we may use CRC code for error detection. The
C1G2 standard requires the tags to support the computation of
CRC-16 (16-bit CRC)[12], which therefore can also be adopted
by future tags modified for ITSP. Each filtering vector built
by the reader can be regarded as a combination of many small
segments with fixed size of bits (e.g., ). For each
segment, the reader computes its 16-bit CRC and appends it
to end of that segment. Those segments are then concatenated
and transmitted to tags. When a tag receives a filtering vector,
it first finds the segment it hashes to and computes the CRC of
that segment. If the calculated CRC matches the attached one, it
will determine its candidacy by checking the bit in the segment
to which it maps. For mismatching CRC, the tag knows that the
segment has been corrupted, and it will remain as a candidate
tag regardless of the value of the bit to which it maps.
Suppose we let , then

(31)

We assume the probability that the noise corrupts each segment
is ( is expected to be very small as explained above).
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A corrupted segment can be thought as consisting of all “1”s.
Hence, the false-positive probability for a filtering vector sent
by reader, denoted by , is roughly

(32)
We can also get

(33)
and now (20) can be rewritten as

(34)Therefore, is optimized when

(35)

B. ITSP With Noise on Reverse Link
Now let us study the noise on the reverse link and its effect

on the ITSP. Since the backscatter from a tag is much weaker
than the signal transmitted by the reader, the reverse link is more
likely to be impacted by noise.
First, channel noise may corrupt a would-be empty slot into

a busy slot. The original empty slot is supposed to be translated
into a “0” bit in the filtering vector by the reader; if a candidate
tag is mapped to that bit, it is ruled out immediately. However, if
that slot is corrupted and becomes a busy slot, the corresponding
bit turns into “1”; a tag mapped to that bit will remain a candi-
date tag, thereby increasing the false-positive probability of the
filtering vector.
Second, noise may also occur during a busy slot. Although

the noise and the transmissions from tags may partially cancel
each other in a slot if they happen to reach the reader in opposite
phase, it is extremely unlikely that they will exactly eliminate
each other. As long as the reader can still detect some energy,
regardless of its source (it may even come from the noise), that
slot will be correctly determined as a busy slot, and the corre-
sponding bit in the filtering vector is set to “1” just as it is sup-
posed to be. However, if we take the propagation path loss, in-
cluding reflection loss, attenuation loss, and spreading loss [34],
into account, there is still a chance that a busy slot may not be de-
tected by the reader. This may happen in a time varying channel
where the reader may fail in receiving a tag’s signal during a
deeply faded slot when the tag transmits. We stress that this is
not a problem unique to ITSP, but all protocols that require com-
munications from tags to readers will suffer from this problem
if it happens that the reader cannot hear the tags. ITSP is not
robust against this type of error. However, there exist ways to
alleviate this problem—for instance, each filtering vector from
tags to the reader is transmitted twice. As long as a slot is busy
in one of two transmissions, the slot is considered to be busy.
Next, we will investigate the reverse link with noise interfer-

ence for ITSP under two error models.
1) ITSP Under Random Error Model (ITSP-rem): The

random error model is characterized by a parameter called
error rate , which means every slot independently has a
probability to be corrupted by the noise. Influenced by
the channel noise, the reader can detect more busy slots as some
empty slots turn into busy ones, which raises the false-positive

probability of phase-two filtering vectors. Suppose the frame
size of phase two in a certain round is , and the original
number of busy slots is about . At the reader’s
side, however, the number of busy slots averagely increases
to . After encoding the slot
status into a filtering vector, the false-positive probability of
that filtering vector is

(36)

To satisfy the false-positive ratio requirement,
should hold. Therefore, the search process of ITSP-rem

contains at least

(37)

rounds. Also, we can derive

(38)
With , , , and , , the search time of
ITSP-rem can be calculated using (31), (26), and (27).
2) ITSP Under Burst Error Model (ITSP-bem): In telecom-

munication, a burst error is defined as a consecutive sequence of
received symbols, where the first and last symbols are in error,
and there exists no continuous subsequence of ( is a spec-
ified parameter called the guard band of the error burst) cor-
rectly received symbols within the error burst [35]. A burst error
model describes the number of bursts during an interval and the
number of incorrect symbols in each burst error, which differs
greatly from the random error model.
According to the burst error model presented in[36], both the

number of bursts in an interval and the number of errors in
each burst have Poisson distributions. Assuming the expected
number of bursts in an -bit interval is , the probability distri-
bution function for the number of bursts can be expressed as

(39)

where is the Kronecker delta function [37]. Meanwhile, if
the mean value of errors due to a burst in the bits is , then the
probability distribution function of the number of error is given
by

(40)

Therefore, the probability of having errors in an interval of
bits is

(41)

In other words, for a frame with slots, the probability that
slots will be corrupted by the burst noise is .
Now we evaluate the ITSP under the burst error model, de-

noted as ITSP-bem. Given a filtering vector with size of bits,
recall from (41) that the probability of having errors in this
-bit vector is . In this case, each original “0” bit has a
probability to be corrupted by the errors and becomes a “1”
bit. Consequently, the false-positive probability of the filtering
vector is expected to be

(42)
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TABLE IV
PERFORMANCE COMPARISON OF TAG SEARCH PROTOCOLS, WHERE DFSA REPRESENTS A TAG IDENTIFICATION PROTOCOL WITH DFSA, AND CR REPRESENTS A

TAG IDENTIFICATION PROTOCOL WITH COLLISION RECOVERY TECHNIQUES. ,

TABLE V
PERFORMANCE COMPARISON OF TAG SEARCH PROTOCOLS, WHERE DFSA REPRESENTS A TAG IDENTIFICATION PROTOCOL WITH DFSA, AND CR REPRESENTS A

TAG IDENTIFICATION PROTOCOL WITH COLLISION RECOVERY TECHNIQUES. ,

After obtaining the value of , the ITSP-bem can use (37)
and (38) to determine the values of other necessary parameters.

VI. PERFORMANCE EVALUATION

A. Performance Metric
We compare our protocol ITSP to CATS [11], the polling pro-

tocol (Section III-B), the optimal DFSA, and a tag identifica-
tion protocol with collision recovery [27], denoted as CR, which
identifies 4.8 tags per slot on average, about 13 times the speed
of the optimal DFSA. For ITSP and CATS, their Bloom filters
(or filtering vectors) constitute most of the overall transmission
overhead, while other transmission cost, such as transmission
of hash seeds, is comparatively negligible. Both protocols need
to estimate the number of tags in the system, , as a pre-pro-
tocol step. According to the results presented in [11], the time
for estimating takes up less than 2% of the total execution
time of CATS. Hence, we do not count the estimation time of

in the simulation results because it is relatively small and
does not affect fair comparison as both protocols need it. Con-
sequently, the key metric concerning the time efficiency is the
total size of Bloom filters or filtering vectors, and then (8) can
be used for calculating the search time required by CATS, while
(27) for ITSP.
After the search process is completed, we will calculate the

false-positive ratio using , where
is the set of tags in the search result and is the actual set
of wanted tags in the coverage area. will be compared to

to see whether the search result meets the false-positive
ratio requirement.

B. Performance Comparison
We evaluate the performance of our protocol and compare

it to the CATS protocol. In the first set of simulations, we set
, fix , vary from 5000 to

640 000, and let . In the second

set of simulations, we set , fix ,
vary from 1250 to 40 000 to investigate the scalability of
ITSP with tag population from a large range, and let

. For simplicity, we assume , and
, in which a 9-bit QueryAdjust or a 4-bit QueryRep

command, a 96-bit ID, and two 16-bit random numbers can be
transmitted. Tables IV and V show the number of slots needed
by the protocols under different parameter settings. Each data
point in these tables or other figures/tables in the rest of the
section is the average of 500 independent simulation runs with

or less error at 95% confidence level.
From the tables, we observe that when is small (which

means is small), the ITSP performs much better than the
CATS protocol. For example, in Table IV, when ,
the ITSP reduces the search time of the CATS protocol by as
much as 90.0%. As we increase (which implies larger

), the gap between the performance of the ITSP and the
performance of the CATS gradually shrinks. In particular, the
CATS performs poorly when . However, the ITSP
can work efficiently in all cases. In addition, the ITSP is also
muchmore efficient than the polling protocol and any tag identi-
fication protocol with/without CR techniques. Even in the worst
case, the ITSP only takes about half of the execution time of a
tag identification protocol with CR techniques. (Note that the
identification process actually takes much more time since the
throughput 4.8 tags per slot may not be achievable in practice
and the duration of each slot is longer.). In practice, the wanted
tags may be spatially distributed in many different RFID sys-
tems (e.g., warehouses in the example we use in Section I), and
thus can be small. The ITSP is a much better protocol
for solving the tag search problem in these practical scenarios.
Another performance issue we want to investigate is the re-

lationship between the search time and . The polling pro-
tocol, DFSA, and CR do not have false positive. Our focus will
be on ITSP and CATS. We set , 20 000, or 80 000,

, vary from 0.1 to 0.9, and vary from
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Fig. 4. Relationship between search time and . Parameter setting: ; (a) ; (b) ; (c) .

Fig. 5. False-positive ratio after running the ITSP. (a) , , . (b) , , .
(c) , , .

10 to 10 . Fig. 4 compares the search times required by the
CATS and the ITSP under different false-positive ratio require-
ments. Generally speaking, the gap between the search time re-
quired by the ITSP and the search time by the CATS keeps get-
ting larger with the decrease of , particularly when
is small. For example, in Fig. 4(c), when and

, the search time by the ITSP is about one third
of the time by the CATS; when we reduce to 10 , the
time by the ITSP becomes about one fifth of the time by the
CATS. The reason is as follows: When is small,
is small, and most tags in and are non-candidates. After
several ITSP rounds, as many non-candidates are filtered out it-
eratively, the size of filtering vectors decreases exponentially,
and therefore subsequent ITSP rounds do not cause much extra
time cost. This merit makes the ITSP particularly applicable in
cases where the false-positive ratio requirement is very strict, re-
quiring many ITSP rounds. On the contrary, the CATS protocol
does not have this capability of exploiting low values.

C. False-Positive Ratio
Next, we examine whether the search results after execution

of the ITSP will indeed meet the requirement of . In this
simulation, we set the false-positive ratio requirement based on
the following formula:

(43)

where is a constant. We use an example to give the rationale:
Consider an RFID system with . If ,

may be good enough because the number of false
positives is about , which is much
fewer than . However, if , may
become unacceptable since .
Therefore, it is desirable to set the value of such that the
number of false positives in the search result is much smaller

than , namely, . Let ,
and we test the ITSP under three different parameter settings.
(a) , , and varies from

0.1 to 0.9, i.e., varies from 500 to 4500.
. We set .

(b) , , and varies from
0.01 to 0.9, i.e., varies from 200 to 18 000.

. We set .
(c) , , and varies from

0.01 to 0.9, i.e., varies from 500 to 45 000.
. We set .

For each parameter setting, we repeat the simulation 500 times
to obtain the average false-positive ratio.
Fig. 5 shows the simulation results. In Fig. 5(a)–(c), we

can see that the average is always smaller than the corre-
sponding . Hence, the search results using the ITSP meet
the prescribed requirement of false-positive ratio in the average
sense.
If we look into the details of individual simulations, we find

that a small fraction of simulation runs have beyond .
For example, Fig. 6 depicts the results of 500 runs with

, , , and . There
are about 5% runs having , but that does not come
as a surprise because the false-positive ratio in the context of
filtering vectors (ITSP) or Bloom filters (CATS) is defined in a
probability way: The probability for each tag in to be
misclassified as one in is no greater than . This prob-
abilistic definition enforces a requirement in an average
sense, but not absolutely for each individual run.

D. Performance Evaluation Under Channel Error
1) Performance of ITSP-rem and ITSP-bem: We evaluate the

performance of ITSP-rem and ITSP-bem. To simulate the error
rate in ITSP-rem, we employ a pseudo-random number
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TABLE VI
PERFORMANCE COMPARISON. , ,

TABLE VII
PERFORMANCE COMPARISON. , ,

Fig. 6. False-positive ratio by the ITSP of 500 runs.

generator, which generates random real numbers uniformly in
the range . If a bit in the filtering vector is “0” and the gen-
erated random number is in , that bit is flipped to “1.”

can be simulated in a similar way. As for the burst error in
ITSP-bem, we first calculate the values of with different
for a given . Then, each is assigned with a nonoverlapping

range in , whose length is equal to the value of . For
each interval, we generate a random number and check which
range the number locates, thereby determining the number of
errors in that interval.
We set , , and

, respectively. The values of and are the
same as those in Tables IV and V. is set to 80 bits, and
a 16-bit CRC is appended to each segment on forward link
for integrity check. For ITSP-rem, we consider two cases
with and 10%, respectively. For ITSP-bem, the
prescribed parameters are set to be the following: ,

with each interval to be 96 bits [36].
Tables VI–XI show the number of slots needed under each

parameter setting. The second column presents the results of
ITSP when the channel is perfectly reliable. The third and fourth
columns present the results of ITSP-rem with an error rate of
5% or 10%. The fifth column presents the results of ITSP-bem.
It is not surprising that the search process under noisy channel
generally takes more time due to the use of CRC and the higher
false-positive probability of filtering vectors, and the execution
time of the ITSP-rem is usually longer in a channel with a higher

TABLE VIII
PERFORMANCE COMPARISON. , ,

TABLE IX
PERFORMANCE COMPARISON. , , .

TABLE X
PERFORMANCE COMPARISON. , ,

TABLE XI
PERFORMANCE COMPARISON. , ,

error rate. An important positive observation is that the perfor-
mance of the proposed protocol gracefully degrades in all sim-
ulations. The increase in execution time for both ITSP-rem and
ITSP-bem is modest, compared to ITSP with a perfect channel.
For example, even when the error rate is 10%, the execution
time of ITSP-rem is about higher than that of ITSP.
This modest increase demonstrates the practicality of our pro-
tocol under noisy channel.
2) False-Positive Ratio of ITSP-rem and ITSP-bem: We use

the same parameter settings in Section VI-C to examine the ac-
curacy of search results by ITSP-rem and ITSP-bem. Mean-
while, for ITSP-rem, we set or 10%. For ITSP-
bem, the required input parameter setting is and

, with each 96-bit interval. Simulation results are de-
lineated in Fig. 7, where the error rate is given between the
parentheses after ITSP-bem. Clearly, the false-positive ratio in
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Fig. 7. False-positive ratio after running ITSP-rem, ITSP-bem, and CATS. (a) , , . (b) , ,
. (c) , , .

Fig. 8. False negatives due to signal loss in time-varying channel.

the search results after executing ITSP-rem or ITSP-bem is al-
ways within the bound of . These results confirm that the
false-positive ratio requirement is met under noisy channel.
3) Signal Loss Due to Fading Channel: We consider the sce-

nario of a time-varying channel in which it may happen that a
signal from a tag is not received by the reader in a deep fading
slot. Although we consider this condition is relatively rare in
an RFID system that is configured to work stably, we acknowl-
edge in Section V-B that ITSP (or CATS) is not robust against
this type of error. However, the problem can be alleviated by
the tags transmitting each filtering vector twice. Fig. 8 shows the
simulation results under parameters , ,

, and . The horizontal axis shows the
error rate, which is defined as the fraction of slots in deep fading,
causing complete signal loss. ITSP-2 denotes the approach of
transmitting each filtering vector from tags to the reader twice.
When a wanted tag in is not identified, we call it a false neg-
ative. The simulation results show that ITSP incurs significant
false negatives when the error rate becomes large. For example,
when the error rate is 2%, the average number of false negatives
is 90.7. ITSP-2 works very well in reducing this number. When
the error rate is 2%, its number of false negatives is just 1.95.

VII. RELATED WORK

A. Prior RFID Research

In the past, much RFID research concentrated on two fronts:
1) physical-layer technologies for transmitting IDs from tags to
a reader more reliably, over a longer distance, and using less
energy; 2) MAC-layer technologies for improving the rate at
which a reader can collect IDs from tags. Tag identification pro-
tocols, which read IDs from all tags in an RFID system, mainly
fall into two categories. One is tree-based [38]–[42], and the

other is ALOHA-based [43]–[46]. The tree-based protocols or-
ganize all IDs in a tree of ID prefixes [38]–[41]. Each in-tree
prefix has two child nodes that have one additional bit, “0” or
“1.” The tag IDs are leaves of the tree. The reader walks through
the tree and requires tags with matching prefixes to transmit
their IDs. The ALOHA-based protocols work as follows: The
reader broadcasts a query request. With a certain probability,
each tag chooses a time-slot in the current frame to transmit its
ID. If there is a collision and the reader does not acknowledge
positively, the tag will continue participating in the next frame.
This process repeats until all tag IDs are read successfully. Un-
like the basic ALOHA-based protocols where the frame size is
fixed, RFID systems with DFSA [16]–[20] dynamically adjust
the frame size in each round to improve throughput.
Another related research topic is cardinality estimation

in an RFID system. Kodialam and Nandagopal [47] esti-
mate the number of tags based on the probabilistic counting
methods [48]. The same authors propose a nonbiased follow-up
work in [49]. Han et al. [50] improve the performance of [47].
Qian et al. [51] present the Lottery-Frame (LoF) scheme for
estimating the number of tags in a multiple-reader scenario.
The work in [52] uses the maximum likelihood method.
Sheng et al. design two probabilistic algorithms to identify
large tag groups [3].

B. Tag Identification With Collision Recovery Techniques
Collision recovery embodies an emerging direction for RFID

technology, which aims at resolving tag IDs from collided sig-
nals, thereby improving the identification throughput.
Fyhn et al. [22] develop a theoretic model to resolve multiple

tags from collisions. They take advantage of the channel fading,
the difference in delay, and the frequency dispersion of tags to
separate the collided signals.Meanwhile, by using the technique
of successive interference cancellation (SIC), more tag IDs can
be decoded from collisions that contain no more than five tags.
This approach brings about 16% throughput gain compared to
conventional tag identification protocols.
In [23], the Interframe SIC (ISIC) protocol is proposed to

improve the collision recovery capability. In contrast to the
traditional DFSA, where the tags randomly select slots within
each frame to transmit their IDs, ISIC employs a deterministic
pseudo-random function for slot selection. Hence, the tags do
not need to explicitly inform the reader about the selected slots
in different frames. A throughput improvement to about 1.2 tags
per slot can be observed in ISIC. In the follow-up work [24],
the authors find that the throughput grain of ISIC depends



CHEN et al.: EFFICIENT TAG SEARCH PROTOCOL IN LARGE-SCALE RFID SYSTEMS WITH NOISY CHANNEL 715

on the signal format. A new technique called Interframe Soft
Combining (ISoC) is introduced. The idea of ISoC originates
from the observation that the reader may only recover a few bits
of a tag ID from a single collision slot. Therefore, combining
the bits recovered across multiple slots selected by the tag can
increase the probability of successful decoding. ISoC is more
efficient in terms of memory and computation when compared
to ISIC, but its throughput gain is much smaller.
Based on rateless coding [53], a flameless slotted ALOHA is

presented in [25]. Each frame is terminated when the instanta-
neous throughput of SIC is maximized. This protocol gives a
throughput around 0.9 tags per slot. The problem is that since
the frame sizes are not predetermined, a tag can hardly know its
selected slots in other frames.
A theoretical upper bound of throughput in multiantenna

RFID systems with collision recovery is derived in [26]. The
reader is assumed to have perfect channel knowledge, and it
can decode and acknowledge up to eight tags per slot using
four receiving antennas. In addition, the tags are modified
by adding post-preambles to responses to facilitate collision
recovery. As a result, the maximal theoretical throughput is
3.1 tags per slot. In the follow-up work [27], the received
signal is post-processed by a beamformer to further improve
collision recovery. With this strategy, the maximal throughput
is increased to 4.8 tags per slot using four receiving antennas.

VIII. CONCLUSION
This paper studies the tag search problem in large-scale RFID

systems. To improve time efficiency and eliminate the limita-
tion of prior solutions, we propose an iterative tag search pro-
tocol (ITSP) based on a new technique that iteratively applies
filtering vectors. Moreover, we extend the ITSP to work under
noisy channel. The main contributions of our work are summa-
rized as follows.
1) The iterative method of ITSP based on filtering vectors is

very effective in reducing the amount of information to be
exchanged between tags and the reader, and consequently
saves time in the search process.

2) The ITSP performs much better than the existing solutions.
3) The ITSP works well under all system conditions, particu-

larly in situations of when CATS works poorly.
4) The ITSP is improved to work effectively under noisy

channel.
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