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Abstract—RFID technologies are making their way into
numerous applications, including inventory management, supply
chain, product tracking, transportation, logistics, etc. One
important application is to automatically detect anomalies in RFID
systems, such as missing tags, unknown tags, or cloned tags due
to theft, management error, or targeted attacks. Existing solutions
are all designed to detect a certain type of RFID anomalies,
but lack a general functionality for detecting different types of
anomalies. This paper attempts to propose a general framework
for anomaly detection in RFID systems, thereby reducing the
complexity for readers and tags to implement different anomaly-
detection protocols. We introduce a new concept of differential
Bloom filter (DBF), which turns physical-layer signal data into a
segmented Bloom filter that encodes the IDs of abnormal tags. As
a case study, we propose a protocol that builds DBF for identifying
all missing tags in an efficient way. We implement a prototype for
missing-tag identification using USRP and WISP tags to verify
the effectiveness our protocol, and use large-scale simulations for
performance evaluation. The results show that our solution can
significantly improve time efficiency, when comparing with the
best existing work.

I. INTRODUCTION

Radio-frequency identification (RFID) technologies integrate

simple communication, storage, and computation components

into attachable tags to enable wireless communications over

a distance [1]. An RFID system generally consists of three

components: One or more readers, a large number of tags, and

a backend server. The tags can be attached to different objects,

varying from products in a warehouse, merchandizes in a retail

store, animals in a zoo, or medical equipments in a hospital. A

reader can read the unique IDs of the tags or collect aggregate

information about the tagged objects by communicating with

the tags via RF signals. The research community is working

actively to expand the application scope of RFID technologies

[2]–[6]. Practical RFID systems [7] have been widely applied

to inventory and logistics management, object tracking, access

control, automatic toll payment, theft prevention, localization,

intelligent transportation systems, etc.

A large RFID system can contain thousands of tags.

Therefore, RFID anomalies, e.g., missing tags, may occur from

time to time, but are hard to be detected manually. It is of

importance to have some tools that can automate the process of

anomaly detection in RFID systems. Common anomalies in an

RFID system, which may be caused by theft, management error

or some targeted attacks, include missing tags, unknown tags,

cloned tags, etc. A missing tag is one that should exist in the

system but turns out to be not represent, an unknown tag is one

that is not recorded by the system’s inventory list, and a cloned

tag is an illegal replica of an authentic tag in the system. A

missing, unknown, or cloned tag is also called an abnormal tag.

Timely anomaly detection is very important to RFID systems.

Consider a large storage for retired military equipment or other

long-term storages of sealed objects in civilian applications.

When no one keeps a close eye on them for a long time,

how do we know whether anything is missing? One way is

to have someone periodically walk through the place, up and

down a latter over shelve after shelve to count items. This will

be laborious and error-prone, considering that things may be

stacked together and objects on the back of shelves may be

blocked from view. But if we attach an RFID tag to each item,

the process of finding the absence of tags (and their associated

objects) may be fully automated through the communications

between tags and readers.

Because of its practical importance, tremendous efforts from

the research community have been devoted to developing

anomaly-detection solutions for RFID systems. Time efficiency

is a key concern since RFID systems operate with low-

speed communication channels. More importantly, anomaly

events should be timely detected and properly handled, thereby

minimizing their potential negative impact. For example, if the

missing tags can be identified in time, actions such as blocking

the exit may be taken to avoid the loss. The prior research

on RFID anomaly detection can generally be categorized as

follows:

Missing-tag detection: It further includes two subcategories

of research problems: (1) missing-tag event detection [8], [9],

which is to find out whether any tag is missing, and (2) missing-

tag identification [10]–[14], which deals with a harder problem

of identifying which tag(s) is missing.

Unknown-tag identification: This is to collect the IDs of all

unknown tags which have not been recorded by the inventory

list [15], [16].

Cloned-tag identification: This is to identify all the IDs of

tags cloned by adversaries [17], [18]. As a cloned tag copies all

data from an authentic tag (which may be compromised), it can

pass any authentication. Hence, cloned-tag identification needs

to verify whether an ID is carried by multiple tags.

One naive approach for anomaly detection is to collect the

IDs of all tags currently in the system and compare them with

an inventory list to see which ones are missing, unknown, or

cloned. However, when the number of tags is very large, this

approach is not efficient due to transmission collisions caused by
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channel contention. Prior work on anomaly detection generally

relies on an important observation that an abnormal tag may

cause state change of MAC-layer slots. A snapshot of an RFID

system is taken using a slotted time frame, where each tag is

mapped (by hashing its ID) to one of the slots and the tag is

supposed to transmit in that slot. The idea is that if any abnormal

tag exists, it may affect the slot it is mapped to. For example, if

the only tag mapped to a certain slot is missing, that should-be

busy slot will become an idle one as no tag will transmit during

that slot.

However, although tone of solutions have been proposed

for detecting a certain type of RFID anomalies, there is no

prior work that provides a general functionality for detecting

different types of anomalies. Since every existing solution is

tailored for a specific application of anomaly detection, it is

not trivial to adapt one to other applications. For example,

in missing-tag identification, each tag is required to transmit

one-bit information in the slot it is mapped to confirm its

presence [12]–[14]. In contrast, for cloned-tag identification,

each tag needs to transmit multiple bits in its slot such that

the reader can recognize collision slots [17]–[19]. It will incur

much complexity to implement all anomaly detection protocols,

especially for low-cost RFID tags with limited resources.

Is it possible to design a general framework such that we

can smoothly switch among different categories of anomaly

detection? We observe that any abnormal tag, regardless its type,

can have some impact on the aggregate physical-layer signals

of the tags in the system. For example, the signals contributed

by a missing tag will disappear from the aggregate signals.

Therefore, instead of utilizing state changes of MAC-layer slots,

which need to be detected in significantly different ways, we

leverage the changes of aggregate physical-layer signals for

anomaly detection.

To our best knowledge, this is the first work that proposes a

general framework for anomaly detection in RFID systems. In

this paper, we introduce a new concept called differential Bloom

filter (DBF). It has the structure of a segmented Bloom filter

and identifies the abnormal tags by taking physical-layer signal

snapshots to derive differential signals such that the aggregate

information of all normal tags is subtracted away and only

the information about the small number of abnormal tags is

digitized and encoded in the Bloom filter for the purpose of

identification. As a case study, we use DBF for missing-tag

identification. We implement a prototype of DBF using USRP

and WISP tags to verify its effectiveness through small-scale

experiments, while using simulations for large-scale evaluation.

The results show that our solution can significantly improve

time efficiency in most cases, when comparing with the best

existing work.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model and Assumptions

Consider a large long-term storage of objects, each of which

is attached with a tag, carrying a unique identifier. There is

one or multiple readers. The readers communicate with the tags

using RF signals. The backend server has a database storing

information about the system, and it is capable of carrying out

high-performance computations on behalf of the readers. The

readers are connected to the backend server via a high-speed

wired or wireless link, so the communication latency between

them is negligible.

There are different types of RFID tags on the market: Active

tags have their own batteries, while passive tags harvest radio

energy emitted from the readers for backscatter communication.

Passive tags are more widely used nowadays because of their

simplicity and low prices. In this paper, we focus on passive

tags that operate at Ultra-High Frequency 860-960MHz [1].

As backscatter communication is generally within a narrow

wireless band, the wireless channel between a tag t and a

reader can be mathematically modeled with a complex number

ht, incorporating both signal attenuation and phase shift of the

wireless channel [20].

The communications between a reader and tags operate

in a request-and-response mode. The reader initiates the

interrogation by broadcasting a command along with some

parameters [1]. The tags will respond in the subsequent

time frame. Following the prior work [13], [14], [21], the

uplink communication from tags to a reader is assumed to be

synchronized at symbol level by the reader, which has been

proved to be achievable by experiments in [20].

We will first consider a system of a single reader, and later

discuss the case of multiple readers. We assume that the reader

has access to a database that stores the IDs of all tags. This

assumption is necessary [8], [14]; we cannot determine if a

tag is an abnormal one if we do not even know its existence.

The assumption can be easily satisfied by a typical inventory

management procedure: the tag IDs are read into a database

when new objects are moved into the system, and they are

removed from the database when the objects are moved out.

The scope of applicability for the proposed work, which is

the same as those of [8]–[10], [12]–[19], is given as follows: We

assume a long-term storage environment with stable conditions,

where objects are statically placed. The function of anomaly

detection does not work during occasions when people move

objects in/out or rearrange them inside the storage facility.

Namely, the function is designed to work at time when such

activities are not present.

B. Problem Statement

Let Ni be the set of tags in the system at time Ti, i ≥ 0.

Suppose Ni−1 contains no abnormal tags, and some anomaly

event happens between time Ti−1 and time Ti. We focus

three common types of anomaly detection, which are listed as

follows:

1) Missing-tag identification: Suppose a set Mi of tags are

missing between Ti−1 and Ti. We have Mi ⊆ Ni−1, Ni ⊆
Ni−1, Ni−1 = Mi ∪ Ni and Mi ∩ Ni = ∅. The problem

of missing-tag identification is to identify all missing tags

in Mi.

2) Unknown-tag identification: Suppose a set Mi of unknown

tags are moved to the system between Ti−1 and Ti. We

have Mi ⊆ Ni, Ni−1 ⊆ Ni, Ni = Mi ∪ Ni−1 and Mi ∩
Ni−1 = ∅. The problem of unknown-tag identification is

to identify all unknown tags in Mi.

3) Cloned-tag identification: Suppose a set Mi of tags are

cloned by an adversary between Ti−1 and Ti. Note that in

this case, Ni and Mi can be multisets. We have Mi ⊆ Ni,

Ni−1 ⊆ Ni, Ni = Mi ∪ Ni−1, and the distinct tags in
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Ni−1 and Ni are the same. The problem of cloned-tag

identification is to identify all cloned tags in Mi.

We want to design a general framework that can be applied

to any of the three types of anomaly detection. Our framework

is expected to: (1) perform anomaly detection in a time-efficient

way such that it is capable of reporting the real-time state of the

system and scaling to large systems with thousands of tags; (2)

generate no false positive or false negative in the identification

result, where a false positive is defined as a tag in Ni being

mistakenly included in Mi, and a false negative is defined as

a tag in Mi not being identified. It would be interesting to

perform anomaly detection when different types of abnormal

tags coexist. However, due to space limitation, we will leave

this more challenging problem as our future work.

III. FRAMEWORK DESIGN

We use physical-layer snapshots to derive a new construct

called differential symbol filter, which is then digitized into a

differential Bloom filter (DBF) that encodes the membership of

the abnormal tags. When the context is clear, we also use DBF

for referring to the protocol of building the filter (this section)

and using it to identify the abnormal tags (the next section).

A. Motivation

The prior work generally encodes each tag to a separate slot,

thereby identifying the abnormal ones based on the observed

slot states. Hence, it takes at least O(n) time slots, where n
is the number of the tags in the system. In a large system,

the tags of interest, i.e., the abnormal ones, can be small

[10]–[14]. Can we identify all of them with O(m) time slots

instead, where m is the number of abnormal tags? Moreover,

in order identify different types of abnormal tags, different

types of slots are needed [8]–[19], rendering those protocols

not universally applicable. This motivates us to design a new

differential Bloom-filter approach below.

The idea is that we actually do not need a snapshot of

O(n) time slots with all tags being recorded separately. We

only need a “snapshot” of the m abnormal tags, while the

information of the normal tags is of no interest. This can be

achieved through physical-layer signals: Suppose we encode

all n tags in each snapshot of O(m) time slots. It is likely

that there is no singleton since there are too few slots. Instead

of ternary collision/singleton/empty information, each snapshot

now records the physical signals carried in the slots from all

tags. By combining two consecutive snapshots, we can subtract

away the unchanged information from the normal tags and

produce differential symbols (signals), which were transmitted

by the abnormal tags, either in the first snapshot or the second

snapshot. But the real challenge is how to design the differential

symbols and how to use them for anomaly detection.

In this paper, we present a design of differential symbols

that can be digitized into binary states, which together form a

Bloom filter [22], encoding the set of m abnormal tags only.

The new approach only requires each tag transmits a few ‘1’s,

while staying silent for most of the time. As a result, only a

small number of tags will transmit in each slot.

t t

F i F i F i

Fig. 1: In this example, the physical-layer snapshot consists of

three segments, and each segment contains four symbols. The

representative symbols of tag t1 are F 1
i [1], F

2
i [2], and F 3

i [3],
which are shown in grey. The symbol F 2

i [2] is a representative

for both t1 and t2.

B. Physical-layer Snapshot

At time Ti, the reader constructs a physical-layer snapshot

Fi based on the tags’ responses. The snapshot consists of k
segments (one segment during each time frame), denoted as

F j
i , 1 ≤ j ≤ k, each of which consists of l symbols (received

by the reader from the tags), denoted as F j
i [s], 1 ≤ s ≤ l.

By hashing its ID and j, each tag t is mapped to one

symbol in each segment F j
i , which is called a representative

symbol of t. (Such a mapping function is also required by

[8]–[19].) Each tag has exactly one representative symbol in

every segment and k representatives in total, while each symbol

F j
i [s] may be a representative for multiple tags, denoted as a set

Rj
i [s], that happen to be mapped to the same symbol. Note that

when cloned tags exist, Rj
i [s] can be a multiset. An illustrative

example is shown in Fig. 1.

For each segment, F j
i , 1 ≤ j ≤ k, the reader broadcasts a

command to initiate the construction. The duration for every

symbol, referred to as a time slot, is fixed. Each tag t will wait

until the time of its representative symbol and transmit a signal

xt. What the reader actually receives is

yt = htxt + et, (1)

where ht was introduced earlier in the system model, and

et is a term of channel error. Note that the tags can be

resynchronized by the reader’s command before the construction

of each segment, which significantly reduces the negative effect

caused by clock drift of the tags. If the segment is too long, we

may divide it into blocks and require the reader to synchronize

the tags at the beginning of each block.

Due to random mapping of tags to symbols in the segment,

there can be other tags that share the same representative symbol

as t and thus transmit simultaneously. Hence, what the reader

receives may be the combination of transmissions from multiple

tags. More specifically, considering an arbitrary symbol F j
i [s]

that the reader receives, we have

F j
i [s] =

∑

t∈R
j
i
[s]

yt. (2)

Each tag transmits only once in each segment and stays silent

for the rest of the time. Hence, each time slot records the

transmissions from n
l

tags on average. By choosing a sufficient

value for l, we can reduce n
l

to an arbitrarily small value.

C. Differential Symbol Filter

Suppose the reader constructs a new physical-layer snapshot

after a certain time interval and uses it together with the previous

snapshot for anomaly detection. To ensure timely detection,
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one may want to set the time interval, Ti − Ti−1, between the

constructions of the two consecutive snapshots small.

Over time, the reader constructs a series of snapshots, Fi,

i ≥ 0. For each new snapshot Fi constructed where i > 0,

the reader derives a differential symbol filter Di based on the

new snapshot and its predecessor Fi−1 as follows: Let Dj
i be

the jth segment of the differential filter and Dj
i [s] be the sth

differential symbol in the segment, 1 ≤ j ≤ k and 1 ≤ s ≤ l.

Dj
i [s] = F j

i−1[s]− F j
i [s] =

∑

t∈R
j
i−1

[s]

yt −
∑

t∈R
j
i
[s]

yt

=
∑

t∈R
j
i−1

[s]∆R
j
i
[s]

yt,
(3)

where ‘∆’ is the symmetric difference operator of sets, and

Rj
i−1[s]∆Rj

i [s] = (Rj
i−1[s]−Rj

i [s]) ∪ (Rj
i [s]−Rj

i−1[s]).

D. Convert Differential Symbol Filter to Bloom Filter

We convert each differential symbol filter Di to a binary filter

Bi, consisting of k segments, denoted as Bj
i , 1 ≤ j ≤ k, each

of which consists of l bits, denoted as Bj
i [s], 1 ≤ s ≤ l. The

conversion is performed as follows: ∀j ∈ [1, k], s ∈ [1, l],

Bj
i [s] =

{

0 if ‖Dj
i [s]‖ ≤ θ

1 if ‖Dj
i [s]‖ > θ,

(4)

where the operator ‖.‖ calculates the magnitude of Dj
i [s], and θ

is a threshold value that should be significantly larger than the

magnitude of channel error. In practice, the reader may keep

monitoring the channel, and set θ accordingly. Obviously, the

signal strength transmitted by the tags should be much larger

than θ. Suppose the aggregate channel error is smaller than θ.

It is straightforward to see the following proposition.

Proposition 1. ∀i > 0, j ∈ [1, k], s ∈ [1, l], Bj
i [s] = 0 if and

only if Rj
i [s] = Rj

i−1[s].

Each bit in the binary filter Bi represents the differential state

of a slot: Zero means that there is no state change and one means

that there is a state change, indicating one or multiple abnormal

tags. Hence, Bi can serve as a tool for anomaly detection.

Furthermore, we show below that Bi can be used to identify the

IDs of the abnormal tags as well because it is actually a Bloom

filter that encodes those abnormal tags. (It is interesting to point

out that even if the channel error is sometimes greater than θ
and causes some bits to ones, it only increases false positives,

which already exist in the Bloom filter and will be handled by

our protocol shortly.)

Recall that Ni is the set of tags at the time when Fi is

constructed, Ni−1 the set at the time when Fi−1 is constructed,

and the set of abnormal tags is Mi. The following theorem

shows that Bi is a segmented Bloom filter for Mi. Each member

t in Mi is pseudo-randomly mapped to k bits, each from one

segment, in the same way as t was mapped to Fi — these bits

are called the representative bits of tag t. Tag t is encoded in

Bi if all its representative bits are ones.

Theorem 1. Bi is a segmented Bloom filter for Mi. That is, a

bit in Bi is one if and only if it is a representative bit of a tag

in Mi.

Fi

t t

F
i

t

Di

B
i

t

t t

t t

Fig. 2: An example of creating a Bloom filter of missing tags:

Fi−1 is the (i − 1)th physical-layer snapshot with four tags,

where a white rectangle represents no signal from tags, a light-

grey rectangle represents a symbol from a single tag, and a

dark-grey rectangle represents a combined symbol from signals

of multiple tags. Fi is the ith physical-layer snapshot with two

tags. Di is the differential symbol filter generated by subtracting

Fi from Fi−1, symbol by symbol. Its non-zero symbols (light or

dark grey rectangles) are exactly those that are representatives

of the missing tags. Bi is the Bloom filter derived from Di.

Proof: Consider an arbitrary bit Bj
i [s], ∀j ∈ [1, k], s ∈

[1, l]. We have two cases.

• Case 1: Bj
i [s] is a representative bit for some tag t in Mi.

We need to show that Bj
i [s] = 1. Because tag t is mapped

to Bj
i [s], it must also be mapped to the corresponding

symbols, F j
i [s] and F j

i−1[s]. Since t is an abnormal tag in

Mi, it only belongs to either Rj
i−1[s] or Rj

i [s] by definition.

Therefore, Rj
i [s] -= Rj

i−1[s], which means Bj
i [s] = 1 by

Proposition 1.

• Case 2: Bj
i [s] is not a representative bit for any tag in Mi.

We need to show that Bj
i [s] = 0. Because no abnormal tag

is mapped to the corresponding symbols F j
i [s] and F j

i−1[s],

we must have Rj
i [s] = Rj

i−1[s], which means Bj
i [s] = 0

by Proposition 1.

Fig. 2 gives an illustrative example of missing-tag event,

where four tags in Ni−1 are mapped to Fi−1, two tags in Ni are

mapped to Fi (with two tags missing), only the signals from

the missing tags will be recorded by the differential symbol

filter Di, and Bi is in fact a segmented Bloom filter for the two

missing tags.

An interesting observation is that even when the number of

tags is very large, the size of the filters can be small as long as

there are not too many abnormal tags. In the above example, the

same filters can be used when there are many more tags. Each

slot will carry the signals from more tags, but as the signals

from non-missing tags are subtracted away, in the end we will

get the same Bi as long as only the two tags are missing.

It is well known that the size of an optimal Bloom filter is

−
ln pf

(ln 2)2 |Mi|, where pf is the false-positive ratio. Although we

do not know |Mi|, we may set the filter size (thus the physical-

layer snapshot size) based on an estimated upper bound of

abnormal tags, which we will be further discussed later.

E. Using Differential Bloom Filter to Identify Abnormal Tags

We know that the differential Bloom filter encodes the IDs of

all abnormal tags. Using the Bloom filter, we can identify a set

of candidate missing tags for missing-tag identification or a set
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of cloned tags for cloned-tag identification. Since Bloom filters

do not lead to false negatives, but can cause false positives, all

missing tags or cloned tags must be contained in the candidate

set. The reader then can ping each tag in the candidate set

(whose size is generally small), to verify if it is missing or

cloned. The process of identifying unknown tags is a little

different since the reader does not know the IDs of the unknown

tags. To collect IDs from those unknown tags, the reader can

broadcast the Bloom filter, and any tag passes the membership

check should report its ID.

IV. CASE STUDY: DBF FOR MISSING-TAG IDENTIFICATION

In this section, we apply the DBF framework to missing-tag

identification, an anomaly-detection problem that has been well

studied in the literature. The RFID reader knows the IDs of all

tags in the original set N0; note that if some tags are moved in

or out from the system by normal activities, we need to take a

new snapshot for the new tag set as N0. After constructing each

filter, the reader will identify the missing ones and thus know

the remaining ones. As the inductive assumption, suppose the

reader knows the correct set Ni−1 of remaining tags. We show

in this section that the reader is able to figure out the correct

set of Mi (thus Ni) after obtaining Bi.

A. Prior Art

Li et al. [12] proposed a series of protocols for missing-

tag identification based on a simple idea: If one and only one

tag is mapped to a slot (which is called a singleton) and that

slot turns out to be empty, then the tag must be missing. Their

most efficient protocol (called THP) ensures that each tag will

be mapped to a singleton and thus all missing ones can be

identified. The number of time slots needed is O(n) in order

to encode the information of all tags in separate slots, where

n is the number of tags in the system. Liu et al. proposed two

protocols called MMTI [10] and SFMTI [11] to improve the

time efficiency of THP based on the similar idea. Zhang et al.

considered the case of multiple readers, and Protocol 3 is their

most efficient protocol [13].

The previous binary-state solutions throw away a lot of

useful information at the signal level. A slot only takes a

binary value (busy or empty) even though the signal in the

slot received by the reader carries more details. Zheng et

al. proposed P-MTI [14] to utilize that information. Each of

the n tags simultaneously transmits a pseudo-random number,

consisting of physical-layer symbols (signals) representing ‘0’s

or ‘1’s. Assuming bit-level synchronization, the reader receives

a sequence of aggregate symbols. Each aggregate symbol is

the combination of individual symbols from n tags, which

may be in thousands. At a later time, the reader performs the

same operation for a second sequence of aggregate symbols.

If some tags are missing, based on the theory of compressive

sensing, P-MTI tries to identify these tags by solving a convex

optimization problem formulated from the difference between

the two sequences of aggregate symbols. The difference is

modeled as continuous signal waves. The convex optimization

does not guarantee the identification of all missing tags,

especially when the number of missing tags exceeds a threshold

[14]. This is not acceptable for the applications that require the

identification of every missing tag. Moreover, all tags in P-MTI

t tt t

Fig. 3: An illustration of finding potentially missing tags using

Bloom filter with three segments. t3 and t4 are two missing

tags, while t1 and t2 are not missing tags, with t2 causing a

false positive.

transmit pseudo-random numbers simultaneously. With on-off

keying where signals are transmitted only for ‘1’s, there are

n/2 tags transmitting at any bit time on average. P-MTI assumes

that when multiple tags transmit simultaneously, the aggregate

symbols received by the reader exhibit as the superposition of

the individual symbols from tags. Experiments show that it

is true for a small number of tags, e.g., 5 tags in [14], but

the result may not be extrapolateable to a large number of

tags in thousands. Each tag has small variation in its signals.

The accumulated variation among a small number of tags may

remain insignificant, but the accumulated variation among a

very large number of tags that transmit together can be large.

B. DBF for Identifying the IDs of Potentially Missing tags

Recall from Section III-D that the segmented Bloom filter Bi

encodes Mi. For each tag in Mi, its k representative bits in the

filter are all ones. The reader performs a lookup for every tag

t in Ni−1. Knowing the ID of t, the reader can generate the

same pseudo-random bits that the tag uses to map itself to its

representatives in the segments. If all k representative bits are

ones, the reader inserts the tag’s ID to a set M ′
i for possible

missing tags.

A Bloom filter does not have false negatives [22], which

means that Mi ⊆ M ′
i . All missing tags will be found in M ′

i .

However, a Bloom filter may have false positives, which means

that tags in Ni−1−Mi (not missing) may end up in M ′
i because

all their representative bits may happen to be ones. Fig. 3 gives

an example. The Bloom filter encodes two missing tags, t3 and

t4, whose representative bits are all ones, and thus they will be

inserted into M ′
i . Tag t1 is not missing and thus not encoded

in Bi. Because some of its representative bits are zeros, it will

not be inserted into M ′
i . Tag t2 is not missing either, but all its

representative bits are ones because they happen to be also the

representative bits of t3 or t4. In this case, t2 will end up in

M ′
i .

For an arbitrary tag in Ni−1−Mi, the probability for one of

its representative bits to be one is 1−(1− 1
l
)|Mi|. The probability

for all k representative bits to be ones, also called false-positive

ratio and denoted as pf , is

pf = (1− (1−
1

l
)|Mi|)k ≈ (1− e−

|Mi|

l )k, (5)

which can be made arbitrarily small by increasing the value of

l. For example, suppose |Ni−1| = 10000, k = 10, l = 720, and

|Mi| = 500. The false-positive ratio will be just 0.001.

Therefore, the expected size of M ′
i is given as follows:

E(|M ′
i |) = |Mi|+ pf |Ni−1 −Mi|. (6)

With the parameters of the previous example, E(|M ′
i |) will be

510.
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C. Confirming the Missing Tags

The reader confirms whether the tags in M ′
i are actually

missing through a simple polling phase: The reader transmits the

tag IDs in M ′
i one after another and requires any tag receiving

its own ID to acknowledge. A tag must be missing if the

expected acknowledgement is not received. After the polling

phase, all missing tags will be identified.

D. Performance Improvement through Singleton Bits in Bi

A performance improvement step may be introduced before

the polling phase based on a simple observation: If a tag t in

M ′
i is mapped a bit b in Bi that no other tag in M ′

i is mapped

to, then t must belong to Mi, i.e., it is a missing tag. This

observation follows directly from Theorem 1: The fact that b is

a representative bit of a tag in M ′
i means that b must be one

because otherwise the tag would not be inserted into M ′
i in the

first place. By the theorem, there must be a missing tag mapped

to b. All missing tags are in M ′
i , and t is the only tag in M ′

i

mapped to b, which can only mean that t is missing.

We call a bit with only one tag mapped to it as a singleton

bit. Hence, after mapping the tags in M ′
i to the bits in Bi, the

reader finds out which tags are mapped to singleton bits and

those tags must be missing. We have the following proposition,

the proof of which is omitted due to space limitation.

Proposition 2. The probability ps of a missing tag t to be
mapped to a singleton bit is

ps = 1− (1− (1−
1

l
)|Mi|−1×

∑

1≤x≤min{l,|Mi|}

(

l

x

)

× x!× S(|Mi|, x)

l|Mi|
× (1−

1

x
)|M

′
i−Mi|)k,

(7)

where S(|Mi|, x) =
1
x!

∑x

i=0(−1)i
(

x
i

)

(x− i)|Mi|.

Note that ps is also the probability for any missing tag in Mi

to be confirmed from M ′
i based on singleton bits. Continuing

the previous numerical example, with |Ni−1| = 10000, k = 10,

l = 720, |Mi| = 500, and |M ′
i | = 510, the value of ps is

0.9987.

We remove the confirmed missing tags (based on singleton

bits) from M ′
i and pass the remaining tags to the polling

phase described in the previous subsection. Following the above

numerical example, with |Ni−1| = 10000, k = 10, l = 720, and

|Mi| = 500, we find that |M ′
i | = 510 before this performance

improvement step and |M ′
i | = 10 after the step, which will

greatly reduce the polling overhead.

E. Setting the System Parameters

The values of the system parameters, l and k, are under our

control. Below we show how to set their optimal values.
1) Optimal Value of l: Under an arbitrary value of k, below

we find an optimal value of l that minimizes the false-positive
ratio pf . Taking the logarithm of both sides of (5) and then the
first derivative of ln pf with respect to l, we have

d(ln pf )

dl
=

dpf

pfdl
=

−k

l
ln(1− e

−
|Mi|

l )−
|Mi|k

l2

1− e−
|Mi|

l

e
−

|Mi|
l . (8)

By setting
d(ln pf )

dl
to zero and solving the equation, we obtain

the optimal value of l as follows:

l
∗ =

|Mi|

ln 2
, (9)

which is a function of |Mi| (see further discussion shortly).

2) Optimal Value of k: The execution of the DBF protocol

mainly consists of two phases: (1) Construct a differential

Bloom filter to identify a set M ′
i of potentially missing tags;

(2) Poll the tags in M ′
i to confirm their presence/absence. There

exists a tradeoff between the time costs of these two phases: If

k is larger, longer physical-layer snapshots are built in phase

one such that pf will be smaller and ps will be larger. In this

case, the execution time of phase one will rise, but the time

expenditure for the polling phase will decrease since fewer

unidentified tags will be left in M ′
i . The opposite is true if

k is smaller. Hence, our objective is to find the optimal value

of k that minimizes the overall execution time T of the DBF

protocol, which can be expressed as follows:

T = k(tc + l × ts) + |M ′
i |(tid + ts), (10)

where tc is the duration for the reader broadcasting a command

to initialize the construction of a segment of the physical-layer

snapshot. The expected value of T is

E(T ) = k(tc + l × ts) + E(|M ′
i |)(tid + ts)

= k(tc + l × ts) + (|Mi|(1− ps) + |Ni|pf )(tid + ts).
(11)

The value of ps approaches to 1 quickly with the increase

of k, and |Mi| is generally much smaller compared to |Ni|.
Therefore, the term |Mi|(1−ps) in (11) can be made negligibly

small and is omitted for simplicity. Meanwhile, we let l = |Mi|
ln 2 ,

Eq. (11) is simplified as

E(T ) ≈ k(tc +
|Mi|

ln 2
× ts) + |Ni| × (

1

2
)k × (tid + ts). (12)

Take the first derivative of (12) with respect to k and set it to

zero, we have

dE(T )

dk
≈ tc +

|Mi|

ln 2
ts − ln 2× |Ni| × (tid + ts)× (

1

2
)k = 0. (13)

As a result, the optimal value for k is

k
∗ =

ln(ln 2|Ni|(tid + ts))− ln(tc +
|Mi|
ln 2

ts)

ln 2
. (14)

Note that k is a non-negative integer. We should round k∗ either

to the ceiling or to the floor, depending on which one results in

a smaller value of E(T ).

F. Unknown Value of |Mi|

From (9) and (14), the optimal values of l and k are functions

of |Mi|, which is however unknown. In practical applications,

we may substitute it with an estimated upper bound C based on

historical data, as what’s been done in [14]. We stress that all

missing tags will be identified in our design, even if |Mi| turns

out to be larger than C. When that happens, the only negative

effect is that the DBF protocol may take more time than what

the optimal setting could have achieved with the knowledge of

|Mi|. We will investigate the impact of C on the performance

of DBF in Section V.
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G. Overhead

In the DBF protocol, each tag only needs to generate k log l =
k log C

ln 2 pseudo-random bits to index its k representative

symbols, where k is typically a small number. Each tag needs

to transmit those k symbols (bits). The reader needs to generate

|Ni−1|k log
C
ln 2 bits to index all tags’ representatives, and the

computation complexity of producing the differential symbol

filter and the segmented Bloom filter is O(kl) = O(kC).
Because C must be set smaller than the number of existing tags,

|Ni−1|, the overall computation complexity is O(|Ni−1|k logC)
at the reader. The communication complexity for the reader to

take a snapshot is O(kl) = O(kC) since the total number of

symbols in the snapshot is kl.

H. Multiple Readers

The communication range of a single RFID reader is limited

(e.g., 10 meters) due to power constraints. Hence, multiple

readers should be deployed to ensure all tags in the system

can be covered. If multiple readers share the same channel,

the reader-to-reader collision problem may arise. Namely, if

two readers broadcast their commands simultaneously, the tags

located in their overlapping area cannot resolve the collided

messages. A basic solution to avoid reader-to-reader collision

is to divide the readers into non-interfering groups and schedule

each group at different times for missing-tag identification,

with the readers in the same group executing the protocol in

parallel. Each non-interfering group can be determined through

experiments at the time when readers are installed. Reader

scheduling can be implemented by the back-end server. The

union of missing tags identified by all readers gives the set of

missing tags in the system. Therefore, the problem of missing-

tag identification in the multi-reader scenario can be reduced to

reader scheduling plus missing-tag identification in each non-

interfering group. Since the readers in the same group will run

in parallel, the time efficiency for each group is determined

by the bottleneck reader in the group that has the maximum

number of tags in its coverage area. Therefore, the comparison

of different missing-tag identification protocols under a multi-

reader scenario is equivalent to the sum of the comparison under

single bottleneck readers.

V. PERFORMANCE EVALUATION OF DBF FOR MISSING-TAG

IDENTIFICATION

We use simulations to evaluate the performance of DBF for

missing-tag identification in large RFID systems, which will be

complemented with a small-scale implementation for feasibility

demonstration. We compare the proposed DBF with the state-of-

art protocols P-MTI [14], THP [12], SFMTI1 [10] and Protocol

3 [13]. Since it takes much more time to identify all tags

in a large RFID system, we do not include tag identification

protocols in the comparison.

A. Simulation Setup

Following the parameter setting in [14], we assume both

the reader-to-tag transmission rate and the tag-to-reader

transmission rate are 40kbps. We measure the execution time in

terms of the number of time slots, each of which can carry one

1SFMTI and MMTI [11] are proposed by the same authors. SFMTI
outperforms MMTI, so MMTI is not included for comparison.

Fig. 4: Number of identified missing tags by P-MTI, and other

protocols including DBF, THP, SFMTI and Protocol 3.

symbol from tags. The time slot is a generic concept which fits

with different interpretations in the literature. For example, the

experiments in [14], [20] show that the bit-level synchronization

of off-shelf passive RFID tags is achievable after adopting drift

correction. In this case, a time slot is the time of transmitting

a bit. However, those experiments are performed for only a

small number of consecutive symbols (bits), while the protocols

under comparison in this section all require transmissions of

long sequences of consecutive symbols in thousands. A more

conservative interpretation of slots can be found in [12], where

each slot includes one symbol and a waiting time (0.30ms

used in [12] according to the Philips I-code specification [23]

and 0.27ms used in [9] according to the EPC C1G2 standard

[1]). Even more conservatively, each slot includes a reader-

tag exchange, with the reader issuing a command and tags

responding with a symbol [24]. The reader’s command also

serves for the purpose of synchronization. Our protocols also

require the reader to transmit tag IDs (96 bits each) to resolve

false positives. We conservatively count each bit from the reader

also as a slot.

P-MTI has to set the value of C large in order to guard

against false negatives. In the original paper, it is set as a

fraction of |Ni−1|. We set it as 0.1|Ni−1| by default unless

it is otherwise explicitly specified. Our protocols do not require

such a large value of C because they do not have false negatives.

We nevertheless set C = 0.1|Ni−1| in order to compare our

protocols with P-MTI on the same footing even though that

can cause longer execution time for our protocols.

Under each parameter setting, we run the simulation 500

times and average the results.

B. Number of Identified Missing Tags

One important performance metric for a missing-tag

identification protocol is whether it can exactly identify all

missing tags. We set |Ni−1| = 1000, vary |Mi| from 5 to 40 at

steps of 5, and set C to 20 for DBF and P-MTI. Fig. 4 illustrates

the numbers of missing tags identified by these protocols. All

protocols except P-MTI can always exactly identify all missing

tags. Although P-MTI has no false positive, it fails to identify

some missing tags when |Mi| becomes close to or larger than C,

resulting in false negatives. In missing-tag identification, false

negatives tend to be worse than false positives. For example, if

a stolen product is not detected in time, we may miss the best

time to trace it and get it back.

C. Execution Time

The second performance metric to study is time efficiency. In

the first set of simulations, we vary |Ni−1| from 1000 to 10000
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Fig. 5: Left plot: Execution time of DBF, P-MTI, THP, SFMTI

and Protocol 3 with different numbers of tags. Right plot:

Execution time of DBF, P-MTI, THP, and SFMTI with different

numbers of missing tags.

at steps of 1000. For each Ni−1, we let |Mi| = 0.05|Ni−1|,
and C = 0.1|Ni−1| for DBF and P-MTI. The left plot of

Fig. 5 shows the results, from which we can see that DBF

is much more efficient than P-MTI, THP, SFMTI and Protocol

3, especially when the number of tags is getting larger. For

example, when the number of tags in the system is 10000, DBF

only takes 32.6% of the execution time of P-MTI, 32.5% of the

execution time of SFMTI, 23.4% of the execution time of THP,

and 2.7% of the execution time of Protocol 3, respectively, to

identify the 500 missing tags.

In the second set of simulations, we set |Ni−1| = 1000, C =
0.1|Ni−1| for DBF and P-MTI, and vary |Mi| from 10 to 150 at

steps of 10. The right plot of Fig. 5 presents the execution time

of DBF, P-MTI, THP, and SFMTI with respect to the number

of missing tags. Protocol 3 takes approximately 50,000 slots to

identify all missing tags, much more time-consuming than the

other four protocols. To make the trend of protocol execution

time with respect to |Mi| more legible, we do not plot Protocol

3 so that we can reduce the vertical scale. Recall that when

|Mi| > C, P-MTI cannot identify all missing tags. Therefore,

we only consider the execution time of P-MTI when |Mi| ≤
C = 100 for fair comparison. In general, DBF outperforms the

other four protocols in terms of time efficiency. We observe that

the execution time of THP, SFMTI and P-MTI is not sensitive

to the change of |Mi|. In contrast, the performance of DBF

increases when |Mi| > C.

D. Impact of Channel Error

Finally, we investigate the impact of channel error on the

performance of DBF in identifying missing tags. We adopt the

random channel error model. The model is characterized by a

parameter perr called error rate, which means any symbol in

the differential filter has a probability perr to be corrupted by

the channel error (whose magnitude exceeds the threshold θ.).

As a result, the corresponding bit in the Bloom filter will be set

to 1 according to (4), resulting in a higher false-positive ratio.

In the simulations, we set |Ni−1| = 1000, C = 0.1|Ni−1|,
and vary |Mi| from 10 to 150 at steps of 10. The value of perr
is set to 0.01, 0.05 and 0.1, respectively. The left plot of Fig.

6 shows the execution time of DBF under different channel

error rates. It is clear that the execution time of DBF is not

significantly affected. Even if perr = 0.1, the execution time

increases less than 10% when comparing with the execution

time without channel error. The right plot of Fig. 6 shows the

increased number of false positives as the channel error rate

×

p
err

p
err

p
err

p
err

p
err

p
err

p
err

Fig. 6: Left plot: Execution time of DBF with respect to channel

error rate. Right plot: False positives with respect to channel

error rate.

Fig. 7: A testbed for the DBF protocol. Two circular antennas

are mounted to USRP1 that is connected to a laptop to work as

an RFID reader.

increases, which is expected. When |Mi| is small, the number

of false positives is negligible. When |Mi| > C, the number

of false positives is still in an acceptable range. For example,

when perr = 0.1 and |Mi| = 150, there are 8.4 false positives

(≈ 1%) on average. We emphasize that DBF does not have any

false negative, with or without channel error.

VI. PROTOTYPE IMPLEMENTATION

We implemented a prototype of DBF using USRP1 and WISP

programmable tags [25] for missing-tag identification. As shown

in Fig. 7, two circular antennas are mounted to USRP1 that is

connected to a laptop to serve as an RFID reader. The software

defined reader works in the 915MHz UHF band and has full

control over the RFID physical layer. We set the sampling rate

of the reader to 4MHz and the backscatter link frequency of the

WISP tags to 24KHz. Besides the mandatory commands (e.g.,

Query, Select, Read), C1G2 allows the users to defined a set of

custom commands. To enable the reader and tags to run DBF,

they should support the DBF command, which is added as a

custom command.

The parameters of DBF were set as follows: Each physical-

layer snapshot consisted of two segments, i.e., k = 2, each

segment allowed transmissions of 20 symbols, i.e., l = 20, and

there are 16 tags. The experiments are performed in our lab.

Fig. 8 shows two executions of DBF. After the reader started

(0.35ms), it first powered up the tags by transmitting continuous

carrier waves (0.35–1.48ms). During the first execution, the

reader broadcasts a DBF command (1.48–2.19ms) to initiate the

DBF protocol. Upon receiving the DBF command, each of the

16 tags randomly selected its representative in each segment and

sent a response to the reader (2.33–3.47ms), which formed the

1st physical-layer snapshot. In the second execution, two tags

were programmed to keep silent to emulate missing tags, and

the remaining 14 tags responded as usual. The reader broadcast

another DBF command (4.14–4.86ms), and the 14 non-missing

tags chose their representatives (the same ones as in the first
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Fig. 8: Two executions of DBF with 16 WISP tags.

Fig. 9: Two physical-layer snapshots received by the reader and

the corresponding differential Bloom filter.

execution) to send responses to the reader (5.00–6.12ms), which

formed the 2nd physical-layer snapshot.

The construction of a differential Bloom filter is shown by

Fig. 9, where the magnitude of each signal is depicted. The first

plot from the top shows the 1st physical-layer snapshot for 16

initial tags. The dashed line in the middle shows the boundary

of the two segments in the snapshot. The second plot shows

the 2nd snapshot for 14 tags after while two tags are missing.

By subtracting the aggregate signals in the 2nd physical-layer

snapshot from the 1st physical-layer snapshot, we obtained

the differential symbol filter, which is presented in the third

plot. Despite the slight jitters in tags’ responses, the aggregate

signals can be roughly aligned [20]. From the differential

symbol filter we can clearly recognize the representatives of

the missing tags, which are the sixth symbol and the eighteenth

symbol in the first segment, and the tenth symbol and the

fourteenth symbol in the second segment, exactly matching

the true representatives of the missing tags. After that, the

differential symbol filter is converted to a segmented Bloom

filter for missing-tag identification as discussed in Section III.

The Bloom filter is shown in the third plot.

VII. CONCLUSION

In this paper, we introduce a new concept called differential

Bloom filter, which is constructed from physical-layer

differential symbols. It is carefully designed such that the

filter only encodes the abnormal tags. Based on this concept,

we propose a general framework for anomaly detection that

guarantees the identification of all abnormal tags and in the

meantime significantly reduces the execution time. We apply

the proposed framework to missing-tag identification as a case

study. The simulation results demonstrate that our solution

drastically outperforms the best existing protocols for missing-

tag identification. In addition, We implement a prototype using

USRP and WISP tags to verify the effectiveness of the proposed

solution. In our future work, we will study how to apply

the framework to anomaly detection where different types of

abnormal tags coexist. This is a more practical and complicated

problem that has not yet be investigated.
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