
Computer Networks 51 (2007) 4252–4269

www.elsevier.com/locate/comnet
AID: A global anti-DoS service

Shigang Chen a,*, Yibei Ling b, Randy Chow a, Ye Xia a

a Department of Computer and Information Science and Engineering, University of Florida, United States
b Applied Research Laboratories, Telcordia Technologies, United States

Received 4 September 2006; received in revised form 14 January 2007; accepted 22 May 2007
Available online 5 June 2007

Responsible Editor: R. Molva
Abstract

Distributed denial of service (DDoS) has long been an open security problem of the Internet. Most proposed solutions
require the upgrade of routers across the Internet, which is extremely difficult to realize, considering that the Internet con-
sists of a very large number of autonomous systems with routers from different vendors deployed over decades. A prom-
ising alternative strategy is to avoid the universal upgrade of router infrastructure and instead rely on an overlay of end
systems. The prior anti-DoS overlays were designed to protect emergency services for authorized clients. They assume that
trust exists between authorized clients and a private server. Only authenticated traffic can pass through the overlay network
to reach the server, while the attack traffic is not admitted without passing the authentication. The follow-up extension of
the anti-DoS overlays for web service has other serious limitations. This paper attempts to solve an important problem.
How to design an anti-DoS overlay service (called AID) that protects general-purpose public servers while overcoming
the limitations of the existing systems? Anyone, including the attackers, should be able to access the server. Authentication
can no longer be the means of defense. While both normal and malicious clients are given the access, AID is designed to
fend off attack traffic while letting legitimate-traffic through. Its operations are completely transparent to the users
(humans or hosts), the client/server software, and the internal/core routers. To connect the AID service nodes (which
are end systems), we choose a random overlay network for its rich, unpredictable connectivity, short diameter, and ease
of management. We use a distributed virtual-clock packet scheduling algorithm to restrict the amount of data any client
can impose on AID. We analyze the properties of the AID service based on probabilistic models. Our simulations dem-
onstrate that AID can effectively protect legitimate-traffic from attack traffic. Even when 10% of all clients attack, just 1.4%
of legitimate-traffic is mistakenly blocked, no matter how aggressive the attackers are.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Network-level security and protection; Denial of service attacks; Overlay networks
1389-1286/$ - see front matter � 2007 Elsevier B.V. All rights reserved

doi:10.1016/j.comnet.2007.05.005

* Corresponding author. Tel.: +1 352 392 2713; fax: +1 352 392
1220.

E-mail address: sgchen@cise.ufl.edu (S. Chen).
1. Introduction

The goal of a DoS (denial of service) attack is to
completely tie up certain resources so that legitimate
users are not able to access a server. A successful
DoS attack achieves two objectives: overpowering
.

mailto:sgchen@cise.ufl.edu

S. Chen et al. / Computer Networks 51 (2007) 4252–4269 4253
the victim and concealing the offender’s identity. In
a DDoS (distributed denial of service) attack, multi-
ple attack sources launch a coordinated offense
against one victim, which increases the resources
for the offense while making it harder to track down
the attackers.

There are two types of DoS attacks. In a high-rate

attack, each malicious client aggressively sends data
to the server. Even when the number of malicious cli-
ents is smaller than the number of normal clients, the
attack traffic can still overwhelm the legitimate traf-
fic.1 In a low-rate attack, the number of malicious cli-
ents is far greater than the number of normal clients.
The aggregate attack traffic is overwhelming even
when each malicious client sends data at a low-rate,
making it indistinguishable from a normal client.
High-rate DoS attacks are more common because
it is not always possible for an attacker to acquire
tens of thousands of compromised, geographically
dispersed computers that are needed to launch low-
rate attacks against popular servers on the Internet.
This paper focuses on high-rate attacks.

1.1. Background

1.1.1. Router-based defense

Much work against DoS is on spoofing preven-
tion. Ferguson and Senie proposed ingress filtering
[1], which requires the edge routers of stub networks
to inspect outbound packets and discard those
packets whose source addresses do not belong to
the stub networks. Park and Lee pioneered the con-
cept of route-based distributed packet filtering [2].
The basic idea is for a router to drop a packet if
the packet is received from an adjacent link that is
not on any routing path from the packet’s source
to the packet’s destination. Wang et al. proposed
SYN-dog [3], a software agent installed at the edge
routers of stub networks. The agent detects SYN-
flooding from the attached networks by monitoring
the difference between outbound SYN packets and
inbound SYN/ACK packets. For all above
approaches, the effectiveness of preventing DoS
comes only after the deployment has been carried
out widely across the Internet.
1 Assume a server can handle all legitimate-traffic when it is not
under attack. For a DoS attack to succeed, the volume of attack
traffic must be far greater than the volume of the legitimate
traffic. For example, if the former is nine times of the later, then it
can cause up to 90% of legitimate-traffic to be dropped, as the
server has to discard those requests when its capacity is largely
consumed by the attack traffic.
Observing that not all routers in a network are
capable of performing hop-by-hop traffic diagnos-
tics to find flooding sources, Stone proposed Center-
Track [4] to connect all edge routers via IP tunnels
to a mesh of special tracking routers, forming an
IP overlay. Selected packets are rerouted through
these tracking routers, which perform hop-by-hop
traffic analysis towards the flooding sources.

In recent years, there has been a flourish of
research work on IP traceback based on packet
audit or route inference, whose goal is to find the
origins of packets with spoofed source addresses
[5–8]. IP traceback is a reactive approach, which
does not prevent spoofed packets from harming
their victims [9]. Sung and Xu proposed to use IP
traceback to identify the network links that carry
attack traffic and to preferentially filter out packets
that are inscribed with the marks of those links [9].
Yaar et al. proposed path identifier (Pi), a novel
approach that assigns the same mark to packets tra-
versing the same path and different marks to packets
traversing different paths. Because the attack pack-
ets from the same source always carry the same
mark, the victim is able to filter out the packets with
identified attack marks. The effectiveness of these
approaches also require wide deployment in order
for most legitimate-traffic to be marked differently
from the attack traffic.

Mahajan et al. proposed aggregate-based conges-
tion control (ACC) to rate-limit the identified attack
traffic [10]. A congested router starts with local rate-
limit, and progressively pushes the rate limit to
some neighbor routers and further out, forming a
dynamic rate-limit tree. Routers in the tree perform
filtering based on their shares of the rate-limit.

Anderson et al. proposed a capability-based
approach to prevent DoS attacks [11]. The basic
idea is to augment each participating BGP router
with a RTS server that issues authorizing tokens
and a VP function that verifies tokens. A source
first acquires a capability token from the RTS ser-
ver at the destination site. The token is cached by
the intermediate VPs on the path from the source
to the destination. The subsequent packets will
carry the token and only certain number of pack-
ets with the token will be permitted by the VPs.
This approach deposits per-flow soft state (e.g.,
token, source/destination addresses, etc.) at the
intermediate VPs. Similar to other router-based
solutions, the deployment involves routers of dif-
ferent ASs (Autonomous Systems) from all over
the Internet.

4254 S. Chen et al. / Computer Networks 51 (2007) 4252–4269
The recent spoofing prevention method (SPM)
[12] by Bremler-Barr and Levy allows step-wise
deployment by combining packet tagging at the
egress edge router of the source AS and tag verifica-
tion at the ingress edge router of the destination AS.
The method works at the AS level. However, some
ASs are very big. Because a malicious host within
an AS can forge any source addresses belonging to
the AS, it is desirable for a defense system to have
the flexibility of working at arbitrary network-lev-
els, down to the edge routers of LANs. For SPM
to achieve such flexibility, each participating edge
router must explicitly learn the address ranges
behind all other participating edge routers, which
is hard to achieve at the Internet scale.

1.1.2. Host-based defense

The host-based solutions require modifications to
servers, e.g., SYN cookies [13] and SYN cache [14],
which handle SYN-flooding attacks only, or require
modifications to both servers and client hosts, e.g.,
client puzzles [15].

1.1.3. Overlay-based defense

Keromytis et al. proposed a novel architecture
called Secure Overlay Services (SOS) [16], which pro-
actively prevents DoS attacks. It is designed for
emergency services. A certificate for accessing a pro-
tected server must be issued to each authorized cli-
ent. Client requests are first authenticated and then
routed via a Chord overlay network [17] to one of
the servlets, which forward the requests to the target
site. The defense against DoS relies on client authen-
tication and the secrecy of the servlets’ locations.
Mayday [18] by Andersen is a generalization of
SOS. It studies a variety of choices for authentica-
tion, routing, and filtering. It also assumes a closed
group of trusted clients that can be authenticated.
Neither SOS nor Mayday handles attacks from com-
promised clients. Since authentication is fundamen-
tal to SoS and Mayday, they are not suitable for
protecting a general public server (such as Yahoo
or Google), because all users (including the attack-
ers) are automatically authorized, which makes the
authentication itself meaningless.

In general, SOS requires special client software.
WebSOS applies the SOS architecture to web ser-
vice. Using the web proxy feature and TLS, it
requires no modification to web browsers and web
servers. However, the first version [19] continued
assuming a group of trusted clients, each having a
public key certificate from the WebSOS administra-
tor. The second version [20] attempted to solve this
problem by using Graphic Turing Tests to separate
human users from automated attackers. Before
granting the access to a protected web server, the
system presents a distorted image of an arbitrary
word on the browser of a user. It relies on the fact
that humans can read the word within the distorted
image and the current automated tools cannot. In
reply, the human ‘‘authenticates’’ himself/herself
by entering the word from the image in ASCII. This
approach has a number of limitations. First, it is
designed only for web service because the browser
can support such exchange without modification.
The same thing is not true for other applications,
particularly, text/voice applications whose client
software does not handle images. Second, even for
web browsing, the change of user experience can
be undesirable. Imagine that you have to view and
reply a distorted image each time you access Goo-
gle. Third, it does not protect applications that do
not always involve human users. Even for web
browsing, some legitimate software may be devel-
oped to automatically mine data on the web.

1.2. Our contributions

We study the problem of providing an anti-DoS

service (called AID) for public servers. The practical
advantages of such a service are apparent. It meets
the need of the enterprises (e.g., retailers, banks,
libraries, web portals, etc.) that do not have security
expertise but want to outsource their anti-DoS oper-
ations. It supports incremental deployment on a
registration basis. A registered network (at any
level) receives immediate protection, independent
of what others do. Below are the design features
of the AID service:

1. AID is open to all clients and does not require
authentication. Any client, including an attacker,
can register for the service without any restriction.
AID is able to mitigate DoS attacks launched
from both unregistered attackers and registered
attackers. This property overcomes the limitation
of SOS and Mayday whose defense relies on cli-
ent authentication.

2. AID does not require the upgrade of client/server
software, OS, or protocols at the hosts. It is
transparent to human users, which overcomes
the limitation of WebSOS. Its service nodes are
end systems. This allows great flexibility in
deployment locations. This property distinguishes

S. Chen et al. / Computer Networks 51 (2007) 4252–4269 4255
AID from most host-based or router-based
solutions.

3. AID is scalable, efficient, and light-weighted. The
defense is activated only when a DoS attack
occurs.

AID uses a random overlay network that con-
nects registered client networks via service nodes
to registered servers. The overlay topology is simple
and easy to manage, with each node having a small
number of randomly-selected nodes as its neigh-
bors. The maximum routing distance is three hops
with the majority node pairs just two hops away.
We design a distributed virtual-clock packet sched-
uling algorithm, which is executed on the overlay
network to mitigate DoS attacks. It ensures that
most attack packets are dropped while most legiti-
mate packets are delivered. We analyze the proper-
ties of the AID service, including how fast AID
mitigates an attack and what percentage of legiti-
mate-traffic will be mistakenly blocked. Such analy-
sis is often lacked in the prior works. Our
simulations show that most legitimate-traffic sur-
vives even when the majority of all clients attack.
We also discuss the deployment/implementation/
robustness issues and how to minimize the traffic
carried by the overlay network.

The rest of the paper is organized as follows. Sec-
tion 2 motivates the concept of self-complete
defense systems. Section 3 describes the AID ser-
vice. Section 4 discusses various issues. Section 5
analyzes the property of the system. Section 6 pre-
sents the simulation results. Section 7 draws the
conclusion.

2. Motivation

2.1. Self-complete defense systems

Consider a networked system of S + C, where S

is a set of servers and C is a set of client networks.
In a DDoS attack, a group of attackers from some
client networks A (�C) flood a server s (2S), such
that the legitimate clients from C � A are not able
to access s. In this paper, it is not important to dis-
tinguish between multiple attackers and a single
attacker launching the offense from multiple Zom-
bies. When we say ‘‘multiple attackers’’, we mean
either of the two cases.

On the Internet, any practical defense system
must support incremental deployment. Suppose a
defense system is installed on S 0 + C 0, where S 0 � S
and C 0 � C. The system is said to be self-complete if
a client network in C 0 is able to access any server in
S 0 during a DoS attack as long as the client itself
does not participate in the attack. A self-complete
system must defeat both the ‘‘internal’’ attackers
of A ˙ C 0, which are within the defense coverage,
and the ‘‘external’’ attackers of A ˙ (C � C 0), which
are outside of the defense coverage. Most existing
defense systems are not self-complete. A few exam-
ples are given below.

Example 1 (Ingress filtering [1]). Suppose all net-
works in C 0 perform ingress filtering and those in
C � C 0 do not. The attackers from C � C 0 can forge
the source addresses and pretend that the requests
are from a client network in C 0. This attack traffic is
not filtered. The server cannot distinguish the attack
traffic from the legitimate-traffic, and has to drop
both. Hence, ingress filtering is not self-complete.
SYN-dog [3] is also not self-complete by a similar
analysis.

Example 2 (Route-based distributed packet filtering

[2]). The original paper demonstrated that a partial
deployment (on 18% of Internet ASs) can effectively
prevent spoofed packets from reaching their desti-
nations. However, 18% of the Internet consists of
a large number of ASs, and consequently the system
may not be effective even after C 0 contains hundreds
of ASs. Before C 0 is sufficiently large to cover most
Internet routing paths, attackers from C � C 0 can
still flood a server if the routing paths from some
attackers to the server do not contain routers from
C 0. Therefore, the route-based filtering is not self-
complete.

Similar to [2], the IP traceback systems are not
self-complete because, during a partial deployment,
the ASs that deploy the traceback system may be
denied of accessing a remote server, if there exists
a routing path from an attacker to the server and
the traceback is not implemented on the path, or
it is partially implemented on the path such that
some legitimate-traffic is mixed with and indistin-
guishable from the attack traffic. Take Pushback
[10] as another example. In order to ensure a group
of remote networks to access a server, all intermedi-
ate routers, or at least the edge routers of all inter-
mediate ASs, must implement Pushback, such that
the attack traffic can be rate-limited before entering
the routing paths from those networks to the server.
Hence, the protection of a remote network depends
on the actions of all intermediate ASs.

4256 S. Chen et al. / Computer Networks 51 (2007) 4252–4269
When an organization deploys a system that is
not self-complete such as ingress filtering, it essen-
tially takes a good-citizen strategy in helping the glo-
bal effort of defeating DDoS attacks.2 But the
benefits for its own hosts arrive only after other
organizations on the Internet are also good-citizens
and, moreover, implementing the same defense. On
the other hand, if an organization joins a self-com-
plete system such as AID proposed in this paper, its
hosts are immediately protected with only one
exception – the protection is voided if some of its
hosts participate in the attack. In other words, a
self-complete system makes sure (1) that the exter-
nal attackers outside of the system have no impact
on the clients in the system, and (2) that the internal
attackers in the system will only harm themselves
but not others that behave normally.

For a self-complete system to defend most of the

Internet, it also requires wide deployment. This is
obvious because the system only protects the net-
works that it covers. But a self-complete system does
not require wide deployment before being effective,
whereas most current systems do require that, which
has been explained above. Even at the initial phase
of incremental deployment, a self-complete system
provides immediate protection among those (maybe
a small number of) networks that join the system.

In the following, we motivate how to design a
self-complete system that defeats attackers from
both within and outside the system coverage.
AID

server endpoint client endpoint

server client network
2.2. Overlay defense systems

What causes many existing defense systems not
self-complete? Because they cannot handle the
external attackers not covered by the systems.
Unless universally deployed, a defense system cov-
ers only a portion of the Internet. It effectively han-
dles the internal attacks launched from this portion,
but cannot always fend off the external attacks
launched from outside. For example, networks that
do not implement ingress filtering can forge arbi-
trary traffic to overwhelm a server.

To solve this problem, we must have a way to dif-
ferentiate the traffic within the system’s coverage
from the traffic outside. One solution is to create
an overlay network to carry the former while letting
the Internet to carry the latter. When a DoS attack
2 Similar observations were made in a recent paper by Bremler-
Barr and Levy [12].
occurs, the traffic from the overlay network is given
a reserved portion of the server’s capacity, which
effectively eliminates the impact of the external
attackers. Moreover, the overlay connections
bypass the requirement of infrastructure support
at the network layer, and the defense can be
expanded across the Internet to reach the edge of
the customer networks. In comparison, a router-
based solution (e.g., IPtraceback or pushback) is
limited within the boundary of the AS that deploys
it.

The existing overlay defense systems either
require client authentication or have other serious
limitations. We attempt to remove these limitations,
which requires new architecture as well as new
techniques.

3. A global anti-DoS service

We describe a global anti-DoS service, called
AID, which is a self-complete defense system. Any-
one (including attackers) can register, but only the
well-behaved are protected.

3.1. Overall system architecture

The system architecture is shown in Fig. 1. Illus-
trated as a cloud, the AID service is implemented as
a distributed overlay system, consisting of geo-
graphically dispersed AID stations that carry out
service registration and anti-DoS operations. Unlike
many P2P overlay systems where nodes can join
from anywhere, we envision the dedicated AID sta-
tions are owned, deployed, and managed by a single
or a few trusted entities. Because the AID stations
are end systems (like CDN servers), they can be
deployed anywhere with high-speed access to local
ISPs. The throughput of the overlay network can
be increased by adding more AID stations, whose
VPN tunnels

Fig. 1. AID system architecture.

S. Chen et al. / Computer Networks 51 (2007) 4252–4269 4257
number can be in thousands or tens of thousands.
While these stations may be ‘‘widely spread across
the Internet’’, unlike router-based solutions, the
AID deployment does not require the modification
of Internet router infrastructure (which is a much
higher demand, requiring the concerted effort of
the ISPs).
3.1.1. Secure VPN overlay

A client (or server) network may register to a
nearby AID station. As part of the registration pro-
cess, a hardware device (or a software module) is
installed at the edge of the client network (behind
the BGP router) to support secure VPN.3 AID sta-
tions should also support secure VPN. The registra-
tion establishes a VPN tunnel between the edge
device and an AID station. It is also possible for a
registered network to establish more than one tun-
nel with different AID stations. This is especially
true for a server network having multiple access
links with different ISPs. Each access link has its
own edge device for AID registration.

While the AID stations each connect to a subset
of registered networks, they also form an overlay
network amongst themselves via secure VPN tun-
nels, whose purpose is to prevent external injection
of false traffic. In the rest of the paper, we often
refer to ‘‘a client network’’ simply as ‘‘a client’’.
The implementation of secure VPN tunnels is dis-
cussed in Section 4.3.
3.1.2. Operation overview

The client/server traffic is always routed through
the Internet unless there is a DoS attack. Once a
DoS attack is detected by an overloaded server (Sec-
tion 4.1), a notification is sent to the AID station
that the server is registered to. The AID station trig-
gers the defense by forming a tunnel tree from all
clients to the server under attack and allowing the
client requests to be redirected via the overlay net-
work to the server (Section 3.4). Efforts are made
3 Secure VPN is a matured technology that is widely used on
the Internet as a replacement of leased lines to securely connect
remote networks (or hosts). It has become a feature of today’s
firewalls and routers such as the market-dominating Cisco IOS
routers [21]. VPN software is also widely available for hosts of
most OS platforms. Both AID and [1,3] require the modification
of edge devices. The difference is that a self-complete system only
modifies the edge devices of the participating networks, whereas a
self-incomplete system has to modify the edge devices of all
networks [1,3].
to minimize the traffic that the overlay network car-
ries (Section 4.2).

3.1.3. Handling attacks
When a registered server is under attack, the goal

of AID is to make sure that the clients within its
coverage, i.e., the registered clients, can access the
server. From the server’s point of view, attack traffic
may come from the Internet (if some attackers do
not register) or from the overlay network via VPN
tunnel (if some attackers register):

• To handle the unregistered attackers, the server’s
edge device gives higher priority to the tunnel
traffic and blocks excessive Internet traffic.4 This
may seem unfair to the unregistered clients who
do not attack. However, even if the unregistered
clients were given all the server’s capacity, they
would still not be able to access the server
because their traffic was mixed with the huge vol-
ume of attack traffic from the Internet. It is nat-
ural that some clients are not protected during
incremental deployment because they are not
covered by the defense yet.

• Now how to handle the registered attackers? They
seem indistinguishable from the other registered
clients. The idea is simple: because they are within
the AID’s coverage and their traffic will be carried
by the overlay network, we can design distributed
algorithms on the overlay network to restrict the
amount of traffic each registered client may send.
The challenges are how to form an efficient overlay
topology with a routing structure and how to
enforce the appropriate data rate for each registered
client, which are solved in the rest of the section.
3.2. Topology requirements

1. Small diameter: The diameter is defined as the

number of hops on the longest routing path of
the overlay topology. Each ‘‘hop’’ potentially
requires a packet to travel across the Internet.
Hence, comparing with the underlying Internet,
an m-hop routing path in the overlay network
increases the delay as well as the aggregate traffic
volume by m times in the worst-case. It is highly
desirable that all routing paths are bounded by
two or three hops.
4 In addition, a service contract may be established with the ISP
to forward the tunnel traffic ahead of Internet traffic.

4258 S. Chen et al. / Computer Networks 51 (2007) 4252–4269
2. Small nodal degree: Each AID station can take a
limited number of VPN tunnels. For example,
the high-end Cisco PIX 535 Firewall supports
up to 2000 VPN connections [22]. Much of this
capacity should be reserved for the registration
of clients. The number of tunnels used for con-
necting peer AID stations should be kept modest.

The first requirement of bounding the path
length by two to three excludes most existing over-
lay topologies. A full mesh topology has the small-
est diameter (one) but the largest nodal degree,
which violates the second requirement, given that
the number of AID stations may grow into thou-
sands. A spanning tree is also problematic because
any internal node failure breaks the topology. Tree
is a good routing structure, but not a good topology
structure, which requires a high degree of redun-
dancy to prevent graph partition. Furthermore, it
is hard to design a load-balanced tree with diameter
3 and no apparent root.5 There are numerous DHT-
based P2P networks [17,23–25] that are proposed
for distributed file sharing. Their restrictions (and
consequently complexities) of maintaining numeri-
cal relationships between neighbors’ identifiers
(after hashing) are unnecessary in our context,
where there is no need to look up any specific iden-
tifier or route packets based on identifiers (as SOS
does). This will become clear in Section 3.4.
3.3. Random overlay network

There is a tradeoff to be made between the two
requirements. We propose to form a random over-
lay network (RONet) among the AID stations.
RONet is constructed by every station randomly
selecting a number of other stations to be its neigh-
bors. The tunnel between two neighbors is bi-direc-
tional. A great advantage of RONet is that it is
extremely simple and easy to manage. Yet, it is
meshy with rich connectivity and short in diameter.
The unpredictable nature of a random topology pre-
vents an attacker from designing an attack strategy
based on specific topological characteristics.

Let N be the set of n AID stations. Each x 2 N

connects with a subset Nx of k randomly-selected
stations via VPN tunnels. Consider an arbitrary sta-
tion y 2 N. Let Pl be the probability for x to reach y

in l or less hops. P 0 ¼ 1
n, which happens only when
5 Ideally all AID stations should be treated equally.
y = x. P 1 ¼ kþ1
n , which happens when y 2 Nx + {x}.

We derive P2 below.
x cannot reach y in two or less hops if and only if

(Ny + {y}) ˙ (Nx + {x}) = ;. The number of possi-

ble selections for Ny + {y} from N is
n

k þ 1

� �
.

The number of possible selections for Ny + {y}

from N � Nx � {x} is
n� k � 1

k þ 1

� �
. The probabil-

ity of (Ny + {y}) ˙ (Nx + {x}) = ; is:

n� k � 1

k þ 1

� �

n

k þ 1

� � ¼ ðn� k � 1Þ!ðn� k � 1Þ!
n!ðn� 2k � 2Þ! ;

Hence,

P 2 ¼ 1� ðn� k � 1Þ!ðn� k � 1Þ!
n!ðn� 2k � 2Þ! : ð1Þ
Theorem 1. If n > 2 and k ¼
ffiffiffi
n
p

, then P 2 > 1� 1
e,

where e is the natural constant.

The proofs for all theorems and lemmas of this
paper can be found in Appendix A. Next we derive
P3. If x cannot reach y in two or less hops, the con-
ditional probability for x not reaching y in three

hops is p3 ¼ ðn�k�2Þ!ðn�k�2Þ!
ðn�3Þ!ðn�2k�1Þ!

� �k
, which is derived in

Appendix B. Hence, we have:

P 3 ¼ 1� ð1� P 2Þp3

¼ 1� ðn� k � 1Þ!ðn� k � 1Þ!
n!ðn� 2k � 2Þ!

ðn� k � 2Þ!ðn� k � 2Þ!
ðn� 3Þ!ðn� 2k � 1Þ!

� �k

:

ð2Þ

Consider an example where k = 100, i.e., each sta-
tion has 100 neighbors. When n is as large as
10,000, P2 = 0.63 and P3 = 1 � 1.33 · 10�44, which
means with almost perfect certainty that the dis-
tance between any two nodes does not exceed three
hops.

Given any two nodes, let / be the target proba-
bility for them to be three or less hops away. Based
on (2), there exists a functional relationship between
n and the lower bound of k:

/6 1�ðn�k�1Þ!ðn�k�1Þ!
n!ðn�2k�2Þ!

ðn�k�2Þ!ðn�k�2Þ!
ðn�3Þ!ðn�2k�1Þ!

� �k

:

ð3Þ

From the above relation, we can numerically calcu-
late k’s lower bound for any network size. For

30

40

50

60

70

80

90

100

0 2000 4000 6000 80001000012000140001600018000 20000
number of AID stations

lower bound of k

Fig. 2. Minimum number of neighbors per station (k), such that
the probability of any two stations to be three or less hops away is
bounded by / = 1 � 10�20.

S. Chen et al. / Computer Networks 51 (2007) 4252–4269 4259
example, when / = 1 � 10�20, the lower bound of k
with respect to n is shown in Fig. 2.

Even when / is extremely close to one, it remains
possible for two nodes to be more than three hops
apart. Although such a rare event is practically
insignificant, if one still wants to eliminate it, a
backup mechanism may be used, with each station
reporting its neighbor set to a management server.6

The server will detect any long path and adjust the
topology, e.g., by instructing the two stations at
the path ends to add a link between them. We want
to stress that, working on the side line as a topology
checker, this optional server is not a critical element
of RONet. It is not needed in any operation per-
formed on RONet to be described. Even its interac-
tion with RONet is extremely rare. Therefore, it
neither constitutes a single point of failure, nor
degrade RONet’s performance and robustness in
any manner.7
3.4. Constructing tunnel tree from clients to server

under attack

Our next task is to establish a routing structure
on RONet. Let As be the AID station that a server
6 As a bonus, it presents a global picture of the overlay
topology to the AID service provider. This may be useful in
assisting other management functions.

7 Just like RONet, most highly-reliable distributed systems
(such as Chord [17] and other P2P systems) have a non-zero
probability of failure (e.g., network partition due to massive node
departure). It is normally ignored in the system design; to guard
against it, a centralized backup mechanism is likely to be needed
in one way or another.
s registers to. There is a VPN tunnel between As and
the edge device of s. When s is under attack, As is
signaled with the type of attack traffic, denoted as
p. An example is ‘‘All SYN packets to s’’ for a
SYN-flooding attack. Attack detection and type
determination are discussed in Section 4.1.

Each AID station x periodically queries its
neighbors for detected attacks. As’s neighbors learn
the attack from As. Their neighbors learn the attack
from them, and so on. When a station x learns the
attack from another station y, it informs the adja-
cent tunnels to admit client traffic of type p with
destination s, and it forwards the traffic to y, which
is one hop closer to the server. All AID stations
will eventually form a tunnel tree. The specified
traffic p will then flow up the tunnel tree from the
registered clients to the server.8 The query period
represents a tradeoff between control overhead
and responsiveness. If the topology diameter is
three, then the tunnel tree is constructed after just
three query periods and the tree depth is three. In
order to construct the tunnel tree more quickly,
As may directly broadcast p to all AID stations.
This design is volunerable when the attackers initi-
ate many short-lived DoS attacks and cause the
overlay to perform excessive broadcasts. In com-
parison, the scheme based on periodic queries has
constant control overhead and reasonable response
time.

The above routing protocol is resilient to node
failure. When an internal node of the tunnel tree
fails, its child nodes are disconnected from the tree.
As long as the node failure does not partition the
overlay network, the next queries will rejoin all
nodes to the tree. Erdos and Renyi [26] showed
that, for a random graph to be connected with a
high probability p, the expected node degree d

should be:

d P
n� 1

n
ðln n� lnð� ln pÞÞ: ð4Þ
Suppose the overlay topology is designed to with-
stand the failure of a percentage a of all AID sta-
tions. After a percentage of all stations fails (for
example, due to the outage of an ISP), the expected
number of neighbors for each remaining node is
(1 � a)k. From (4), we derive a requirement for k:
8 Traffic other than p flows through the Internet as normal
(Section 4.2). The purpose is to minimize the traffic carried by the
overlay.

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
alpha

lower bound of k

Fig. 3. Minimum number of neighbors per station (k), such that
the system will remain functional after a percentage of all AID
stations fails.

4260 S. Chen et al. / Computer Networks 51 (2007) 4252–4269
ð1� aÞk P
ð1� aÞn� 1

ð1� aÞn ðlnð1� aÞn� lnð� ln pÞÞ;

k P
ð1� aÞn� 1

ð1� aÞ2n
ðlnð1� aÞn� lnð� ln pÞÞ:

ð5Þ

For example, if p = 0.99999 and n = 10,000, the
minimum value of k with respect to a is shown in
Fig. 3. If k = 85, then even after 78% of all AID sta-
tions fails, the system is still functional.

DoS attacks may congest Internet links or over-
load specific AID stations. When an AID station
detects performance degradation of a neighbor sta-
tion, it may simply treat the neighbor as having
failed. The routing protocol will automatically
reroute traffic to a different neighbor. As analyzed
above, even when the overlay paths to a large num-
ber of AID stations are congested, by temporarily
disabling those links, the system automatically
adapts to less loaded paths. Additional robustness
mechanisms are discussed in Section 4.4, including
redundant backup tunnels and parallel tunnel trees,
where the server registers to multiple AID stations
to improve resiliency.

It should be emphasized that, according to the
routing protocol, a separate tunnel tree will be con-
structed for each server under attack. The traffic in
different tunnel trees is processed independently
based on destination addresses.
3.5. Distributed virtual-clock packet scheduling

Given that the registered attackers have access to
the overlay network, the next problem is how to fil-
ter the attack traffic in order to protect the server as
well as the overlay infrastructure. We use the con-
cept of virtual-clock packet scheduling, which was
originally designed for a router to guarantee certain
shares of its bandwidth to the passing flows [27].
This capability matches our anti-DoS goal, which
is to prevent the aggressive malicious clients from
consuming most of the service’s capacity and starv-
ing the legitimate clients. The idea is that, if we can
guarantee each client a fair share of the server’s
capacity, all clients will be immune from DoS
attacks because their access to the server is guaran-
teed. Below we design a distributed virtual-clock
scheduling scheme, which allows the AID system
to assign fair shares of the server’s capacity to the
registered clients. This scheme is designed to operate
on the ‘‘distributed’’ AID system, instead of on a
single router as the original virtual-clock algorithm
does. Moreover, with an adaptive mechanism
described in the next subsection, the scheme assigns
a ‘‘fair’’ share, instead of a ‘‘fixed’’ share, of the ser-
ver’s capacity to each client. Note that a fair share is
a variable quantity inversely proportional to the
number of active clients, which changes over time.

The data traffic is forwarded in the tunnel tree
upstream from the clients to the server’s edge As

and then to the server s. Each AID station receives
data packets from downstream tunnels and multi-
plexes them into the upstream tunnel. The control
traffic travels in the opposite direction. As periodi-
cally broadcasts a CONTROL(T) message to all
AID stations in the tree, where T is a control
parameter called the waiting interval. The goal is
to introduce tunable waiting time between consecu-
tive data packets from a client. For now let us
assume As has some way to determine the best value
for T.

Assume the system clocks of all AID stations are
loosely synchronized. Each AID station x maintains
a virtual-clock VCu (initialized to be the local sys-
tem clock) for every tunnel u connecting to a client
network. VCu advances by T for every byte
transmitted.

1. When x receives a data packet from a client net-
work via tunnel u, it updates VCu as follows:

VCu ¼ maxfVCu; current timeg þ T � L; ð6Þ
where L is the length of the packet. The packet is
then labeled with a timestamp equal to VCu.

2. When x receives a data packet from a neighbor-
ing station, the packet already has a timestamp
assigned by the first station receiving it.

S. Chen et al. / Computer Networks 51 (2007) 4252–4269 4261
An AID station stores all received data packets
in a shared heap array [28] in ascending order based
on their timestamps. A packet is scheduled to enter
the upstream tunnel only when the current system
clock is larger than the timestamp of the packet plus
the maximum clock skew on any branch of the tun-
nel tree. Because the timestamps of a virtual-clock
advance at the speed of T per byte, the maximum
sustainable rate that the overlay network will deliver
for a client is 1

T bytes per unit of time.
The timestamp-based scheduling performed by

all AID stations collectively ensures that each client
receives a fair share of the server’s capacity. By tun-
ing the value of T, we can also make sure that the
unused bandwidth left by some clients are picked
up by the other clients.

If a registered client hosts an attacker, the high
volume of attack traffic will quickly advance its vir-
tual-clock, which results in large timestamps for its
packets. The packets will be pushed to the end of
the heap array and dropped if the maximum size
of the array is reached. Consequently, most exces-
sive attack packets will be blocked at the AID sta-
tion connecting to the offending client. They do
not have a chance to traverse the overlay network
and further consume resources.

3.6. Determining T

How to determine the best value for T? Suppose
we want the total rate of tunnel traffic to be roughly
bounded by a target rate cs. As starts by broadcast-
ing CONTROL(T) in the tunnel tree with T ¼ 1

cs
. It

then tunes the value of T in the subsequent broad-
casts. There are two phases. The first is an exponen-
tial phase, where As doubles T at each subsequent
broadcast. Doubling T makes the virtual-clocks
run twice as fast, which effectively reduces the max-
imum rate per client by half. Once the arrival rate of
tunnel traffic at As is below cs, a linear phase starts
for fine tuning. Suppose T is changed from I to 2I by
the last update of the exponential phase. e 2 (0,1) is
a system parameter. The linear phase will decrease T

by eI periodically until the arrival rate is above cs, at
which moment we call the system converges. It is
obvious that T P I.

Let T1 and T2 be the waiting intervals before and
after the last update of the linear phase, respectively.
T2 = T1 � eI P (1 � e)T1. Hence, 1

T 2
6

1
1�e

1
T 1

, where
1

T 1
and 1

T 2
are the traffic rates allowed from each reg-

istered client before and after the last update,
respectively. Therefore, the total arrival rate at As
is improved at most by a factor of 1
1�e at the last

update. Because the arrival rate is below cs before
this update, it must be below 1

1�e cs after the update.
Hence, the arrival rate of tunnel traffic at As is in the
range of cs;

1
1�e cs

� �
when the system converges. After

converging, the updates of T may be restarted if the
arrival rate goes beyond the range.

It is required that the server’s capacity is at least
1

1�e cs. The edge router must ensure that the tunnel
traffic is fully admitted up to a rate of 1

1�e cs and
the Internet traffic is admitted to fill the remaining
server’s capacity. For simplicity, we have made all
virtual-clocks run at the same speed. A weight can
be introduced in (6) to give some clients more band-
width than others.

Persistent overloading of a server by aggressive
behaviors of some normal clients will also trigger
the same defense process described above, which
will drop the excessive traffic from aggressive clients.
This is a QoS property that protects clients with
normal usage from being ‘‘squeezed’’ by aggressive
users.

4. Discussions

4.1. Attack detection

The DoS attack may be detected by an over-
loaded server which starts to drop packets or by
the edge device based on a preconfigured policy,
e.g., the rate of connections exceeds 10,000 s�1or
the traffic volume exceeds 10 Mb/s for certain per-
iod of time. The type p of client traffic to be regu-
lated can be as straightforward as ‘‘all IP packets
to the server (or the subnet) under attack’’. More
specific types can be identified for specific attacks.
For example, the traffic type for a SYN attack is
‘‘all SYN packets to the server’’ and the type for a
smurf attack is ‘‘all ICMP echo-reply packets to
the server’’.

4.2. Minimizing traffic on overlay

In order to prevent the overlay network from
being overloaded, we must minimize the traffic it
carries. AID kicks in when there is an attack. It is
likely that only a small portion of servers will be
under DoS attack at any single time. For the vast
majority of servers that are not under attack, AID
is not on their communication paths. Furthermore,
AID only carries some traffic (type p) from the reg-
istered clients to the attacked servers. It does not

4262 S. Chen et al. / Computer Networks 51 (2007) 4252–4269
carry the reverse traffic from the servers to the cli-
ents, which accounts for the majority of the total
traffic volume for many applications such as web
browsing. All traffic that is not carried by the over-
lay network will be delivered via the Internet as
usual.

The registered attackers may generate a huge
number of attack packets. The overlay network will
not carry all of them; the distributed virtual-clock
scheduling algorithm (Section 3.5) makes sure that
the total traffic carried by the overlay network from
all registered clients to a server does not exceed the
server’s capacity. For example, suppose a web ser-
ver can process 104 new connections per second.
When the server is under a SYN-flooding attack,
the AID system will be activated. The SYN packets
from the registered clients to the server will now go
through the overlay network, while all other packets
still go through the Internet. Moreover, only up to
104 SYN packets per second will be delivered
through the numerous AID stations of the overlay
network. The excessive SYN packets will be auto-
matically dropped at the edge of the overlay. Con-
sider bandwidth-flooding attacks. For most
common services on the Internet, a server sends
much more than it receives. For example, if the out-
bound capacity of a web server is one Gigabit per
second, then an inbound request rate of 10 Mb/s
may already cause a DoS attack. In this case, the
load on our overlay system will be no more than
10 Mb/s during the attack. In yet another example,
suppose AID protects 100,000 registered servers and
the clients’ request traffic is one hundredth of the
servers’ reply traffic. If there are 1000 servers under
attack at a given time, then the AID overlay carries
a small fraction of 1/10,000 of the total traffic
between the clients and the servers.

It is possible to design an overlay network to
carry all client traffic even without attacks, as SOS
[16] and Mayday [18] do. This would however
require a larger transmission capacity and thus
more AID stations.

4.3. Implementation

The edge device of a registered client may need to
pass traffic of type p into a secure VPN tunnel and
the rest traffic to the Internet. We adopt the stan-
dard implementation used by a firewall [22] or a
router with IPSec capability [21]. The edge device
is configured with regular ACL (access control list)
and crypto ACL. A received packet is first matched
against the regular ACL, which decides whether the
packet should be dropped or forwarded. If the
packet should be forwarded, it is matched against
the crypto ACL, which decides whether the packet
should be sent in clear or in a tunnel. Under a
DoS attack, as the tunnel tree is formed, the edge
device is informed to add p to the crypto ACL
and consequently the traffic is redirected into the
VPN tunnel, instead of going directly to the
Internet.

The purpose of our secure VPN is to prevent
injection of false packets. There is no privacy
requirement. We can conveniently rely on the
IPSec/AH standard for trust management and com-
munication integrity, which only requires a hash
function to generate/verify MAC (message authenti-
cation code) for tunnel packets. The registration
process requires the domain administrative privilege
of a client/server network. It should not accept reg-
istration requests from a host or repeated requests
from an unverified domain, which prevents registra-
tion-based attacks.

It is practically feasible to gather the necessary
resources for building such an overlay network.
Today’s content distribution networks (CDN) con-
sist of hundreds or thousands of machines with
the capacity to deliver the multimedia content from
a large number of content providers. In comparison,
the demand for the overlay network in AID is much
smaller because it supports only those servers cur-

rently under attack and involves only the traffic from

clients to the servers. Moreover, it has a mechanism
to regulate the traffic volume it carries.

4.4. Robustness of the AID system

It is extremely hard to overwhelm the entire over-
lay network due to the sheer number of AID sta-
tions and the rich connectivity between them. The
damage that the attackers can inflict on a particular
AID station is also limited. First, unregistered
attackers cannot place their traffic in the overlay
network. Second, even though the registered attack-
ers are able to place their traffic in the tunnels, the
distributed virtual-clock packet scheduling algo-
rithm ensures that they can only impose limited traf-
fic on the overlay network.

Having these protection measures, if an AID sta-
tion is still overloaded, it simply reassigns its client/
server networks to other randomly-selected AID
stations. To avoid service disruption, a client/server
network may pre-establish some backup tunnels

S. Chen et al. / Computer Networks 51 (2007) 4252–4269 4263
with different AID stations. When the AID station
of one tunnel is overloaded, the traffic will switch
to a different tunnel. Additional tunnels are dynam-
ically established under the extreme case that all
AID stations for the backup tunnels are overloaded.
For a client, typically only one tunnel will be active
at any given time; more than one active tunnels give
the client a larger share of the server’s capacity. For
a server, one or more tunnels may be active depend-
ing on the service contract. Multiple server tunnels
result in multiple tunnel trees, whose combined traf-
fic is bounded by the server’s capacity. Multiple
trees serve not only the resilience purpose but also
the load-balancing purpose because they spread
the traffic more evenly across the overlay network.
5. Analysis

We study two important performance metrics:
convergence time and misblocking percentage. The
former answers the questions of whether the system
will stabilize and how long it takes to block out the
attack traffic. The latter answers the questions of
how much legitimate traffic from registered clients
is mistakenly blocked and whether the system can
control the impact of the collateral damage.
5.1. Convergence time

The following theorem shows that the worst-case
convergence time is logarithmic in the number of
registered client networks, denoted as m. It does
not consider the three query periods for construct-
ing a tunnel tree, which is a constant time. The nota-
tions, including those defined later, can be found in
Table 1 for quick reference.
Table 1
Notations

T Speed of virtual-clock, a parameter of distributed virtual-
clock algorithm

e Convergence threshold, a parameter of distributed virtual-
clock algorithm

cs Target rate of the total tunnel traffic delivered via AID to s

m Number of registered clients
a Number of registered clients that attack
r Maximum data rate allowed for a client after AID

converges
b Ratio of legitimate-traffic rate to cs

f(x) Probability density function for legitimate-traffic rate
distribution over all registered clients

D Misblocking percentage
Theorem 2. Given any set of steady traffic from all

clients, it takes no more than log2mþ 1
e

	

updates of

T before the AID system converges.

Example 3. Suppose m = 100,000 and e = 0.1. It
takes at most 27 updates of T for the AID system
to converge. If the update period is 10 s, the conver-
gence time will be at most 4.5 min.
5.2. Misblocking percentage

In the following, we will establish an upper
bound for misblocking percentage. Suppose AID
converges at a certain value of T, which allows each
registered client to send data at a rate up to r ¼ 1

T .
Let b be the ratio of the total legitimate-traffic rate
(from all registered clients) to the target rate cs for
tunnel traffic. b is expected to be within (0,1). If
not, cs should be increased with more server’s capac-
ity reserved for tunnel traffic. The total legitimate-
traffic rate is thus bcs.

Consider the probability distribution of the legit-
imate-traffic rates generated by individual registered
clients. Let f(x) be the probability density function.
The average rate of legitimate-traffic generated by a
registered client is bcs/m. Therefore,
Z 1

0

xf ðxÞdx ¼ bcs

m
: ð7Þ

Let a be the number of registered client networks
that attack. These client networks are called attack

clients, and the rest (m � a) client networks are
called normal clients. Suppose the attack clients
are randomly distributed among all clients. The
probability density function of the traffic rates from
the normal clients remains to be f(x). We have the
following lemmas.

Lemma 1. The misblocking percentage for all legit-

imate-traffic is:

D ¼ m
bcs

Z 1

r
ðx� rÞ � f ðxÞdx: ð8Þ

Lemma 2. The rate at which each registered client is

allowed to send is:

r P
bcs

m
þ ð1� bÞcs

a
:

In the following, we analyze the misblocking per-
centage (D) based on three specific distribution func-
tions of f(x).

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2000 4000 6000 8000 10000 12000

up
pe

r
bo

un
d

of
 m

is
bl

oc
ki

ng
 p

er
ce

nt
ag

e

number of registered attack clients (a)

number of registered clients, m = 100000

beta = 0.5
beta = 0.6
beta = 0.7
beta = 0.8
beta = 0.9

Fig. 4. Upper bound of misblocking percentage (D) with respect
to number of attackers (a) as well as the total rate of legitimate
traffic (characterized by b).

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2000 4000 6000 8000 10000 12000

up
pe

r
bo

un
d

of
 m

is
bl

oc
ki

ng
 p

er
ce

nt
ag

e

number of registered attack clients (a)

number of registered clients, m = 100000

beta = 0.5
beta = 0.6
beta = 0.7
beta = 0.8
beta = 0.9

4264 S. Chen et al. / Computer Networks 51 (2007) 4252–4269
5.2.1. Exponential distribution

f(x) = ke�kx. It models the case where most cli-
ents access the server at low-rates but a small num-
ber of clients access the server at high-rates. The
mean is 1

k, which is equal to bcs
m by (7). Hence,

k ¼ m
bcs

. Applying f(x) = ke�kx to (8), we have:

D ¼ m
bcs

Z 1

r
ðx� rÞke�kx dx ¼ m

bcsk
e�rk ¼ e�

rm
bcs :

By Lemma 2, we have:

D 6 e�1�m
a

1
b�1ð Þ: ð9Þ

Interestingly, the upper bound of D depends on the
total rate of legitimate-traffic, characterized by b,
but does not depend on the total rate of attack traf-
fic.9 Fig. 4 shows the upper bound of D with respect
to b and a. Given a target value of D, the number of
attack clients that the system can tolerate is:

a 6 m
1

b
� 1

� ��
ð� ln D� 1Þ: ð10Þ

Consider D = 0.0001 and m = 100,000. If b = 0.8,
then the system can tolerate 3044 attack clients. If
b = 0.2, then the system can tolerate 48,719 attack
clients; even when 48.7% of all clients attack, the
remaining clients can still access the server with a
misblocking percentage of just 0.0001.
Fig. 5. Upper bound on D with respect to different b and a.
5.2.2. Normal distribution

f ðxÞ ¼ 1
r
ffiffiffiffi
2p
p e�

1
2ðx�lÞ2=r2

. It models the case where

the registered clients are similar but with certain
variations. The mean is l, which is equal to bcs/m
by (7). From Lemma 1,

D ¼ 1

l

Z 1

r
ðx� rÞ � 1

r
ffiffiffiffiffiffi
2p
p e�

1
2ðx�lÞ2=r2

dx

¼ 1

l

Z 1

r�l
r

ðry � r þ lÞ 1ffiffiffiffiffiffi
2p
p e�

1
2y2

dy

¼ r

l
ffiffiffiffiffiffi
2p
p e�

1
2ðr�lÞ2=r2 � r � l

l
1� U

r � l
r

� �� �
;

where UðxÞ ¼ 1ffiffiffiffi
2p
p
R x
�1 e�

1
2t2

dt, whose value can be
found in almost any statistics book in tabular for-
mat. To simplify the analysis, we assume r = l/2:
9 The upper bound depends on the number of attackers (a) but
not on the total rate of attack traffic, which means that the
attackers will not be better off by increasing their individual
attacking rates.
D ¼ 1

2
ffiffiffiffiffiffi
2p
p e�

1
8ðr�lÞ2=l2 � r � l

l
1� U

2ðr � lÞ
l

� �� �

6
1

2
ffiffiffiffiffiffi
2p
p e�

1
8ðr�lÞ2=l2

:

Applying Lemma 2, we have:

D 6
1

2
ffiffiffiffiffiffi
2p
p e�

1
8

1
b�1ð Þma½ �2 :

Fig. 5 shows the upper bound of D with respect to b
and a. The upper bounds shown in Figs. 4 and 5 are
not tight due to the relaxations we made. Our sim-
ulation shows better results.
5.2.3. Singular distribution

The rates of legitimate-traffic from all clients are
the same, bcs/m, which is a special case of the nor-
mal distribution with r! 0. By Lemma 2, we know
r P bcs

m þ
ð1�bÞcs

a . Because r is no less than the data

0

100000

200000

300000

400000

500000

600000

700000

0 50 100 150 200 250

ra
te

 (
kb

ps
)

time (sec)

total rate of legitimate traffic
data rate of tunnel traffic from AID

target rate of tunnel traffic from AID

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250pe
rc

en
ta

ge
 o

f
le

ga
l t

ra
ff

ic
 m

is
ta

ke
nl

y
bl

oc
ke

d

time (sec)

Fig. 6. Left-hand plot: AID brings the tunnel traffic rate around the target rate; right-hand plot: misblocking percentage drops to almost
zero after AID converges.

S. Chen et al. / Computer Networks 51 (2007) 4252–4269 4265
rate of any normal client, no legitimate data from
normal clients will be lost.
6. Simulation results

In the previous section, we established the upper
bounds for the worst-case convergence time and the
worst-case misblocking percentage. In this section,
we use simulations to evaluate AID in terms of aver-
age convergence time and average misblocking per-
centage. The default simulation parameters are
given as follows. There are 1000 AID stations, each
having 100 registered client networks. Consider a
registered server under a DDoS attack. The target
rate of tunnel traffic from AID is 100,000 kbps
(kilobits per second), which the edge device (As) will
forward to the server. The initial legitimate-traffic
rates from all registered clients follow an exponen-
tial distribution with an average rate of 7 kbps.
The total legitimate-traffic rate from the clients is
thus 70,000 kbps. b = 0.7. The simulation is per-
formed at ticks of two seconds each. The arrival rate
of legitimate-traffic from a client fluctuates up to
±50% over each tick. Assume 1000 randomly-
selected client networks have compromised
machines.10 The attack rates from those client net-
works follow an exponential distribution with an
average attack rate of 500 kbps.11 The waiting inter-
val T is updated every 10 s. e = 5%. The default
10 The total number of compromised machines may exceed 1000
because each attack client may have multiple compromised
machines.
11 Some clients may have more compromised machines or

higher-speed Internet connections than others.
parameters are always assumed unless the figures
indicate otherwise.

We use simulations to show that AID is practi-
cal, but we do not compare the performance of
AID with that of the existing overlay defense sys-
tems, SOS, Mayday, and WebSOS. The reason is
that their difference is not quantitatively in perfor-
mance. The means of defense by SOS/Mayday are
client authentication and servlet secrecy, which
makes them unsuitable for public servers. WebSOS
is only for web service and requires human interac-
tion. The means of defense by AID are distributed
filtering and topology randomization, and it is
designed for all public servers with or without
human interaction, which remove the limitations
of SOS/Mayday/WebSOS.
6.1. Effectiveness of AID

Fig. 6 shows how AID reacts to a DDoS attack.
The three curves of the left-hand plot are (1) the total
rate of legitimate traffic sent by the registered clients,
which fluctuates over time, (2) the total data rate
received from AID by the server’s edge device, which
jumps up after the attack begins and is reduced over
time by the distributed virtual-clock algorithm, and
(3) the target rate of tunnel traffic from AID. Before
the attack, all client traffic goes through the Internet
and thus the server receives no traffic from AID.
After the attack starts at time = 20, legitimate/
attack traffic from registered clients is routed
through AID. Consequently, the traffic received
by the server’s edge device from AID shoots up.
When the edge device drops the portion above the
target rate, it drops legitimate-traffic proportionally,

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 2000 4000 6000 8000 10000 12000pe
rc

en
ta

ge
 o

f
le

ga
l t

ra
ff

ic
 m

is
ta

ke
nl

y
bl

oc
ke

d

number of client networks that host attackers

beta=0.5
beta=0.6
beta=0.7
beta=0.8
beta=0.9
beta=1.0

Fig. 8. Impact of the total rate of legitimate-traffic (characterized
by b) on the misblocking percentage.

4266 S. Chen et al. / Computer Networks 51 (2007) 4252–4269
causing a large misblocking percentage. The distrib-
uted virtual-clock algorithm iteratively refines the
waiting interval. At time = 100, T is large enough
to cause some attack traffic to be blocked. The expo-
nential phase terminates at time = 150, and then the
linear phase improves the data rate gradually above
cs. The right-hand plot shows the fraction of legiti-
mate-traffic mistakenly blocked by AID. When the
attack occurs, a significant portion of legitimate-
traffic (almost 80%) is blocked. The misblocking per-
centage is reduced over time and reaches almost zero
after time = 140.

6.2. Against a large number of attackers

Fig. 7 demonstrates that AID is able to handle a
large number of attack clients. The left-hand plot
shows that the convergence time increases at a mod-
est (sublinear) pace with the number of attack cli-
ents. The time increase for the exponential phase
is steady, while the time for the linear phase changes
up and down significantly. That is because the linear
phase is greatly affected by the value of the waiting
interval after the last update of the exponential
phase, which is not monotonically related to the
number of attack clients. The right-hand plot shows
the misblocking percentage, which increases with
the number of attack clients. When there are 2000
attack clients, virtually no legitimate-traffic is
blocked. Remarkably, even when the number of cli-
ent networks hosting attackers reaches 10,000, just
1.4% of legitimate packets are lost.

6.3. Impact of b

Fig. 8 shows how the total rate of legitimate-traf-
fic, characterized by b, will affect the misblocking
100

120

140

160

180

200

220

240

0 2000 4000 6000 8000 10000 12000

co
nv

er
ge

nc
e

tim
e

(s
ec

)

number of client networks that host attackers

AID
exponential phase

Fig. 7. Scalability with increasing number
percentage. As expected, a larger value of b causes
more legitimate packets to be dropped. On the other
hand, when b = 0.7, there is no observable mis-
blocking when the number of attack clients is 4000
or less. When b = 0.6, there is no observable mis-
blocking when the number of attack clients is 7000
or less. When b = 0.5, there is no observable mis-
blocking when the number of attack clients is
10,000 or less. Another interpretation of data is
that, if the number of attack clients is 4000 (7000
or 10,000), the legitimate clients can send their traf-
fic at least at 70% (60% or 50%) of the maximum
possible speed.
7. Conclusion

The traditional anti-DoS strategy is mainly along
the line of modifying the OS, protocol stacks, or
other software of end hosts or routers. The resulting
0

0.005

0.01

0.015

0.02

0 2000 4000 6000 8000 10000 12000pe
rc

en
ta

ge
 o

f
le

ga
l t

ra
ff

ic
 m

is
ta

ke
nl

y
bl

oc
ke

d

number of client networks that host attackers

of registered clients hosting attackers.

S. Chen et al. / Computer Networks 51 (2007) 4252–4269 4267
defense systems are often not self-complete and
require widespread deployment. In this paper, we
take a new defense strategy of providing a self-com-
plete global anti-DoS service (AID) for general-pur-
pose public servers. Differing from SOS and
Mayday, AID is open to all clients instead of a
group of authorized ones, and it handles both exter-
nal and internal attacks. The primary defensive
means are no longer authentication but distributed
filtering and topology randomization. Differing
from WebSOS, AID is designed for applications
beyond web service and it does not require human
interaction.

Appendix A. Proofs

Proof of Theorem 1. By Eq. (1), we have:
P 2 ¼ 1� ðn� k � 1Þ!ðn� k � 1Þ!
n!ðn� 2k � 2Þ!

¼ 1� n� k � 1

n
� n� k � 2

n� 1
� � � � � n� 2k � 1

n� k

> 1� n� k
n

� �k

¼ 1� 1� k
n

� �k

¼ 1� 1� 1ffiffiffi
n
p

� � ffiffi
n
p

by the theorem assumption

k ¼
ffiffiffi
n
p

;

1� 1ffiffi
n
p

� � ffiffinp
is a monotonically-increasing function

and,

lim
n!1

1� 1ffiffiffi
n
p

� � ffiffi
n
p

¼ lim
n!1

1� 1

n

� �n

¼ 1

e
:

Hence, we must have P 2 > 1� 1
e. h

Proof of Theorem 2. The waiting interval T is ini-
tially 1

cs
, and each update in the exponential phase

doubles T. The sustainable rate that a client can
send via the AID system to a server s is bounded
by 1

T . When T P m
cs

, each registered client can send
at a rate no more than cs

m, and the total rate of all
registered clients is no more than cs, which termi-
nates the exponential phase. It takes log2m updates
to increase T from 1

cs
to m

cs
. Suppose the last update in

the exponential phase changes T from I to 2I. Each
update in the linear phase decreases T by eI. The
total decrease will not exceed I; otherwise, the last
update of the exponential phase would have been
unnecessary. Hence the number of updates in the
linear phase is bounded by 1

e. Therefore, the total
number of updates is bounded by log2mþ 1

e

	

. h

Proof of Lemma 1. The combined data rate gener-
ated by all normal clients is

R1
0

x � ðm� aÞf ðxÞdx,
among which the portion that is admitted by AID
after convergence is

R1
0

minfx; rg � ðm� aÞf ðxÞdx
and the portion that is blocked by AID isR1

r ðx� rÞ � ðm� aÞf ðxÞdx.
For traffic from normal clients, the percentage

that is mistakenly blocked by AID is:
D ¼
R1

r ðx� rÞ � ðm� aÞf ðxÞdxR1
0

x � ðm� aÞf ðxÞdx

¼ m
bcs

Z 1

r
ðx� rÞ � f ðxÞdx: �

Proof of Lemma 2. The combined data rate gener-
ated by all normal clients is

R1
0

x � ðm� aÞf ðxÞdx.
For each attack client, the data rate admitted by
AID after convergence is bounded by r. Hence,
the combined attack rate admitted by AID is
bounded ar. When the linear phase terminates, the
total arrival rate at As is expected in the range of
cs;

1
1�e cs

� �
. We must have:

Z 1

0

minfx; rg � ðm� aÞf ðxÞdxþ ar P cs: ð11Þ

Simplifying (11), we can derive a bound for r:

Z 1

0

x � ðm� aÞf ðxÞdxþ ar P cs;

bcs

m
ðm� aÞ þ ar P cs by ð7Þ;

r P
bcs

m
þ ð1� bÞcs

a
: �
Appendix B. Deriving p3

Consider two arbitrary stations x and y. If x can-
not reach y in two or less hops, the conditional
probability for x not reaching y in three hops is
derived as follows: Consider arbitrary station
z 2 Nx. x does not have a three hop path via z to
y if and only if Nz \ Ny = ;. Other than x, z has
k � 1 neighbors, which can be selected from
N � {x,z,y}. The number of possible selections is:

4268 S. Chen et al. / Computer Networks 51 (2007) 4252–4269
n� 3

k � 1

� �
¼ ðn� 3Þ!
ðk � 1Þ!ðn� k � 2Þ! :

Other than y, there are k � 1 nodes in Ny. The num-
ber of possible selections of Nz that do not share a
station with Ny is:

n�3�ðk�1Þ
k�1

� �
¼

n�k�2

k�1

� �
¼ ðn� k�2Þ!
ðk�1Þ!ðn�2k�1Þ! :

The conditional probability for x not reaching y in
three hops via z is:

n� k � 2

k � 1

� �

n� 3

k � 1

� � ¼ ðn� k � 2Þ!ðn� k � 2Þ!
ðn� 3Þ!ðn� 2k � 1Þ! :

There are k nodes in Nx. Hence, The conditional
probability for x not reaching y in three hops via
"z 2 Nx is:

p3 ¼
ðn� k � 2Þ!ðn� k � 2Þ!
ðn� 3Þ!ðn� 2k � 1Þ!

� �k

:

References

[1] P. Ferguson, D. Senie, Network ingress filtering: defeating
denial of service attacks which employ IP source address
spoofing, in: IETF, RFC 2267, Janurary 1998.

[2] K. Park, H. Lee, On the effectiveness of route-based packet
filtering for distributed DoS attack prevention in power-law
Internets, in: Proceedings of the ACM SIGCOMM’01,
August 2001.

[3] H. Wang, D. Zhang, K.G. Shin, SYN-dog: sniffing SYN
flooding sources, in: Proceedings of the 22nd International
Conference on Distributed Computing Systems (ICDCS’02),
July 2002.

[4] R. Stone, CenterTrack: an IP overlay network for tracking
DoS floods, in: Proceedings of the Ninth USENIX Security
Symposium, August 2000.

[5] S. Savage, D. Wetherall, A. Karlin, T. Anderson, Practical
network support for IP traceback, in: Proceedings of the
ACM SIGCOMM’00, August 2000.

[6] A.C. Snoren, C. Partridge, L.A. Sanchez, C.E. Jones, F.
Tchakountio, S.T. Kent, W.T. Strayer, Hash-based IP
traceback, in: Proceedings of the ACM SIGCOMM’01,
August 2001.

[7] A. Yaar, A. Perrig, D. Song, Pi: a path identification
mechanism to defend against DDoS attacks, in: IEEE
Symposium on Security and Privacy, May 2003.

[8] J. Li, M. Sung, J. Xu, L. Li, Large-scale IP traceback in high-
speed Internet: practical techniques and theoretical founda-
tion, in: IEEE Symposium on Security and Privacy, May
2004.

[9] M. Sung, J. Xu, IP traceback-based intelligent packet
filtering: a novel technique for defending against Internet
DDoS attacks, IEEE Transactions on Parallel and Distrib-
uted Systems 14 (9) (2003) 861–872.

[10] P. Mahajan, S.M. Bellovin, S. Floyd, J. Ioannidis, V.
Paxson, S. Shenker, Controlling high bandwidth aggregates
in the network, Computer Communications Review 32 (3)
(2002) 62–73.

[11] T. Anderson, T. Roscoe, D. Wetherall, Preventing internet
denial-of-service with capabilities, in: Proceedings of the
Second Workshop on Hot Topics in Networks (HotNets-II),
November 2003.

[12] A. Bremler-Barr, H. Levy, Spoofing prevention method, in:
Proceedings of the INFOCOM’05, March 2005.

[13] D.J. Bernstein, SYN cookies, 1997, http://cr.yp.to/
syncookies.html.

[14] J. Lemon, Resisting SYN flood DoS attacks with a SYN
cache, in: Proceedings of the USENIX BSDCON’2002,
February 2002.

[15] A. Juel, J. Brainard, Client puzzles: a cryptographic coun-
termeasure against connection depletion attacks, in: Pro-
ceedings of the Network and Distributed System Security
Symposium (NDSS’99), February 1999.

[16] A.D. Keromytis, V. Misra, D. Rubenstein, SOS: Secure
Overlay Services, in: Proceedings of the ACM SIG-
COMM’02, August 2002.

[17] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrish-
nan, Chord: a scalable peer-to-peer lookup service for
Internet applications, in: ACM SIGCOMM’01, 2001.

[18] D.G. Andersen, Mayday: distributed filtering for Internet
services, in: Proceedings of the Fourth USENIX Symposium
on Internet Technologies and Systems, March 2003.

[19] D.L. Cook, W.G. Morein, A.D. Keromytis, V. Misra, D.
Rubenstein, WebSOS: protecting web servers from DDoS
attacks, in: Proceedings of the 11th IEEE International
Conference on Networks (ICON), September/October 2003.

[20] W.G. Morein, A. Stavrou, D.L. Cook, A.D. Keromytis, V.
Misra, D. Rubenstein, Using graphic turing tests to counter
automated DDoS attacks against web servers, in: Proceed-
ings of the 10th ACM International Conference on Com-
puter and Communications Security (CCS), October 2003.

[21] Cisco Systems, Cisco IOS Network Security, Cisco Press,
1998.

[22] Cisco Systems, Cisco PIX 500 Series Firewalls, http://
www.cisco.com/warp/public/cc/pd/fw/sqfw500/.

[23] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker,
A scalable content-addressable network, in: ACM SIG-
COMM’01, 2001.

[24] D. Malkhi, M. Naor, D. Ratajczak, Viceroy: a scalable and
dynamic emulation of the butterfly, in: Proceedings of the
ACM PODC’02, July 2002.

[25] F. Kaashoek, D.R. Karger, Koorde: a simple degree-optimal
Hash table, in: Proceedings of the Second International
Workshop on Peer-to-Peer Systems (IPTPS’03), Feburary
2003.

[26] J. Spencer, The strange logic of random graphs, Number 22
in Algorithms and Combinatorics, Springer-Verlag, 2000,
ISBN 3-540-41654-4.

[27] L. Zhang, VirtualClock: a new traffic control algorithm for
packet switching networks, ACM Transactions on Computer
Systems 9 (2) (1991) 101–124.

[28] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to
Algorithms, The MIT Press and McGraw-Hill Book Com-
pany, 1989.

http://cr.yp.to/syncookies.html
http://cr.yp.to/syncookies.html
http://www.cisco.com/warp/public/cc/pd/fw/sqfw500/
http://www.cisco.com/warp/public/cc/pd/fw/sqfw500/

Networks 51 (2007) 4252–4269 4269
Shigang Chen received his B.S. degree in
computer science from University of

Science and Technology of China in
1993. He received M.S. and Ph.D.
degrees in computer science from Uni-
versity of Illinois at Urbana-Champaign
in 1996 and 1999, respectively. After
graduation, he had worked with Cisco
Systems for 3 years before joining Uni-
versity of Florida as an assistant pro-
fessor in the Department of Computer

and Information Science and Engineering. His research interests
include quality of service, wireless networks, Internet security,

S. Chen et al. / Computer
and overlay networks. He received IEEE Communications
Society Best Tutorial Paper Award in 1999. He was a guest editor
for ACM/Baltzer Journal of Wireless Networks (WINET) and
IEEE Transactions on Vehicle Technologies. He served as a TPC
co-chair for the Computer and Network Security Symposium of
IEEE IWCCC 2006, a vice TPC chair for IEEE MASS 2005, a
vice general chair for QShine 2005, a TPC co-chair for QShine
2004, and a TPC member for many conferences including IEEE
ICNP, IEEE INFOCOM, IEEE SANS, IEEE ISCC, IEEE
Globecom, etc.

Yibei Ling is research scientist at applied
research, Telcordia technologies (for-
merly Bellcore). His research interests
include distributed computing, query
optimization in database management
system, scheduling, checkpointing, sys-
tem performance, fault localization and
self-healing in mobile ad hoc network
and power-aware routing in mobile ad
hoc network. He has published several
papers in IEEE Transactions on com-

puters, IEEE Transactions on Knowledge and Data Engineering,
IEEE Transactions on Biomedical Engineering, SIGMOD,

ICDE, PODC, Information system. He is the architect, as well as
developer, of the voice subsystem of Telcordia Notification Sys-
tem. He received his B.S. in EE from Zhejiang University in 1982,
his M.S. in statistics from Shanghai medical university (now
Fuda University) in 1988, and his Ph.D. in CS from Florida State
University at Miami in 1995. He is a member of the IEEE.
Randy Chow received the B.S. degree in
electronic engineering from National
Chiao-Tung University, Taiwan, in 1968,
and the M.S. and Ph.D. degrees from the
Department of Computer and Informa-
tion Science at the University of Massa-
chusetts in 1974 and 1977, respectively.
He has been on the faculty in the Com-
puter and Information Science and
Engineering Department at the Univer-
sity of Florida since 1981, where he is

currently a full professor. His research interests are distributed
systems, computer networks, and security with a focus on

ontology-based information access models for workflow systems.
His recent affiliations include serving as a program director for
the Distributed Systems and Compiler Program at NSF from
2001 to 2003 and a visiting professor at National Chiao-Tung
University form 2003 to 2004. He is a member of IEEE, ACM,
and editorial board of the Journal of Information Science and
Engineering.

Ye Xia is an assistant professor at the
Computer and Information Science and
Engineering department at the Univer-
sity of Florida, starting in August 2003.
He has a Ph.D. degree from the Uni-
versity of California, Berkeley, in 2003,
an M.S. degree in 1995 from Columbia
University, and a B.A. degree in 1993
from Harvard University, all in Electri-
cal Engineering. Between June 1994 and
August 1996, he was a member of the

technical staff at Bell Laboratories, Lucent Technologies in New
Jersey. His research interests are in computer networking area,

including performance evaluation of network protocols and
algorithms, congestion control, resource allocation, and load-
balancing on peer-to-peer networks. He is also interested in
probability theory, stochastic processes and queueing theory.

	AID: A global anti-DoS service
	Introduction
	Background
	Router-based defense
	Host-based defense
	Overlay-based defense

	Our contributions

	Motivation
	Self-complete defense systems
	Overlay defense systems

	A global anti-DoS service
	Overall system architecture
	Secure VPN overlay
	Operation overview
	Handling attacks

	Topology requirements
	Random overlay network
	Constructing tunnel tree from clients to server under attack
	Distributed virtual-clock packet scheduling
	Determining T

	Discussions
	Attack detection
	Minimizing traffic on overlay
	Implementation
	Robustness of the AID system

	Analysis
	Convergence time
	Misblocking percentage
	Exponential distribution
	Normal distribution
	Singular distribution

	Simulation results
	Effectiveness of AID
	Against a large number of attackers
	Impact of beta

	Conclusion
	Proofs
	Deriving p3
	References

