
Efficient Algorithms for Detection and Resolution of Distributed
Deadlocks (Extended Abstract) *

Shigang Chen, Yi Deng, Wei Sun and Naphtali Rishe
School of Computer Science

Florida International University
University Park, Miami, FL 33199

{csg,deng,weisun,rishen}@fiu.edu, Phone: (305)348-2744, Fax: (305) 348-3549

Abstract
We present a simple and efficient distributed al-

gorithm for detecting generalized-deadlocks in dis-
tributed systems. Unlike previous algorithms, which
are all based on the idea of distributed snapshot, and
require multiple rounds of message transfers along the
edges of the global wait-€or graph (WFG), the pro-
posed algorithm uses a novel approach that incremen-
tally constructs an “image” of the WFG a t an initia-
tor node. The algorithm has time complexity of d + 1
and message complexity of e + n, where n is the num-
ber of nodes, d the diameter, and e the number of
edges of the WF’G. Compared with the best existing
algorithm, our algorithm notably reduces both time
and message complexities. Correctness proof and per-
formance analysis for the algorithm are provided. In
addition, the new approach simplifies deadlock reso-
lution. An extension to the algorithm is presented
to handle generalized-deadlock resolution with only a
slight increase to the message complexity.

1 Introduction

Deadlock detection and resolution have long been
considered as a fundamental problem in distributed
systems. A deadlock is a system state in which every
process in some subset of processes in the system waits
indefinitely for a t least one other process in this subset
to respond to a request for some resource. In the past
decade, a number of algorithms have been proposed to
provide a solution to the problem. These algorithms
can be grouped into several classes based on their un-

*This work was supported in part by the Rome Laboratory,
U.S. Air Force under contract No. F30602-93-C-0247, by NASA
under grant No. NAGW-4080 and by NSF under grant No.
CDA-9313624.

derlying computation (resource request) models, such
as the AND [lo, 12, 131, OR [2, 111, AND-OR [5], and
pout-of-q models [I, 8, 141.

A system is said to be based on the pout-of-q model
if a process in the system issues a request for q re-
sources and remains blocked until a t least p out of
the q requested resources are granted. The pout-of-
q model is also called the generalized resource request
model because both the AND and OR models can be
considered as its special cases. It also includes the
AND-OR model [6] . Consequently, a deadlock in the
pof-out-q model is called a generalized-deadlock. An
example of pout-of-q requests arises with replicated
files when quorum-based replica control algorithms are
used [4]. To preserve data consistency, a process that
wants to read (write) a replicated da ta item, must read
(write) r (.U) copies out of the n copies of the da ta item
such that T + w > n and 2w > n. To read or write
a copy, a process must request and obtain a lock on
the copy. Thus, reading or writing a replicated file
generates “pout-of-q” requests for locks.

Distributed generalized-deadlock detection is much
more difficult than deadlock detection in the simpler
AND (or OR) model. This is because it requires the
detection of a complex topology (generalized t ie , see
Definition 2) , instead of a simple cycle (or a knot),
in the global wait-for graph (WFG). Among the ex-
isting distributed deadlock detection algorithms, only
[l, 8, 141 address generalized-deadlocks. To the best of
our knowledge, the only algorithm addressing the res-
olution of dis t r ibuted generalized-deadlocks is in 173,
which is an extension of [8]. All three algorithms in
[l, 8, 141 follow the same approach based on the idea of
distributed snapshots. They have either two distinct
phases [I, 141 or one phase consisting of two overlapped
sweeps [8] of message transmission. In the first phase
(or the outward sweep), they record a WFG, which

1063-6374/95 $04.00 0 1995 IEEE
10

mailto:csg,deng,weisun,rishen}@fiu.edu

is distributed among all the involved processes in the
system, by taking a snapshot of the system state. In
the second phase (or the inward sweep), they reduce
the recorded WFG by simulating the unblocking of
those processes whose requests can be granted.

In this paper, we first present a new distributed
algorithm for generalized-deadlock detection. The al-
gorithm performs better than [l, 8, 141 in terms of
both time and message complexities (see Table 1). An
extension to the algorithm is also presentNed to handle
generalized-deadlock resolution, whose performance is
also better than [7]. The improvements are the result
of a novel approach behind the proposed algorithms,
that differs from all the above algorithms. Instead of
recording a distributed WFG of the system and reduc-
ing it in a distributed way as described above, which
requires two or more rounds of message t ransfer along
all wait-for edges of the WFG, the proposed algorithm
incrementally constructs a WFG, which is an “image”
of the system state, a t a single process (the initia-
tor of the algorithm). By doing so, our algorithm re-
quires only one diffusion of messages outward from the
initiator process along the edges of the WFG to all
the involved processes. Consequently, our algorithm
notably reduces both time and message complexities,
compared with [8]. In particular, we corijecture that
our time complexity (d + 1) is the optimal worst-case
complexity that any distributed generalized-deadlock
detection algorithm can achieve. In addition, our ap-
proach also simplifies the deadlock resolution because
the information about the deadlock is readily available
to the initiator.

In the rest of the paper, the underlying computa-
tion model is defined in Section 2. In Section 3, an
informal description (of the deadlock detection algo-
rithm is provided. The correctness and performance
of the algorithm are proved and analyzed in Sections 4
and 5, respectively. In Section 6, we discuss deadlock
resolution. Finally, we conclude the papitr in Section
7.

2 Model of cornputation

A distributed system is composed of n. nodes, each
of which represents a process and has a system-wide
unique identity. Each pair of nodes is connected by
a logical channel. There is no shared memory in the
system. Nodes communicate by message passing, and
message delays on a channel are arbitrary but finite. A
destination node receives messages in the same order
as they are sent by a source node. Messages are neither
lost nor duplicated, and are transmitted error-free.

The following data structure is used at a node i, i =
l...n, to keep track of its current state. We assume
that the logical time at each process is maintained as
specified in [9].

ti : the current logical time at i,
t-blocki: the logicali time at which i last blocked,
outi: the set of nodes for which i is waiting,
mi : the set of tuples < k,t-blockk >, where

k is a node waiting for i and t-blockk
is the logical time a t which k sent a
request t o i,
the number of replies required for i
to unblock.

Pi :

There are two types of events associated with each
node, namely, computation events and control events.
A computation event is caused by the underlying com-
putation of a process; and a control event is caused
by the execution of the deadlock detection algorithm.
The messages generated by these two types of events
are called computation messages and control messages,
respectively. The computation messages include RE-
QUEST, REPLY, CANCEL, and ACK messages.

Each node is either act ive or blocked. An active
node can send both computation and control mes-
sages. A blocked node, however, can only send control
messages or ACK messages, i.e., its underlying compu-
tation is suspended. A node i becomes blocked after it
sends a pi-out-of-qi request (via REQUEST messages)
to qi other nodes. It records these nodes in outi. When
a node j receives a REQUEST message from node i, it
records < i, t-blocki > in in, and immediately sends an
ACK back to node i to acknowledge the receipt of the
request ’. A REPLY message denotes the granting of
a request. When j sends a REPLY to i, < i, t-blocki >
is removed from inj. The node i becomes unblocked
(goes from blocked to active state) o n l y when any pi
out of the qi requests are granted, namely, i receives
REPLY messages from a t least pi out of the qi nodes.
When i unblocks, it sends CANCEL messages to with-
draw the remaining qi - pi requests it had sent.

Each REQUEST, REPLY, or ACK message is
timestamped with the requester’s logical clock value
[9] a t which it blockedi, so that an ACK or a REPLY
can be matched with its corresponding request. ACK
or REPLY messages with unmatched timestamps are
discarded.

‘Notice that this ACK. can be the same acknowledgement
used by the underlying network to guarantee reliable communi-
cation channels. There is no need to send a separate message
to deliver such information.

11

Comparing factor Bracha-Toueg [l]
Phase 2
Delay 4d
No. Messages 4e

Wang et al. [14] Kshem.-Singhal [8] Our Algorithm

3 d + 1 2d d + l
6e 4e - 2n + 22 e + n

2 1 phase, 2 sweep 1 phase, 1 sweep

I SuDDort Resolution I no I no I ves I ves I
Total Size of Data Sent I 4e

Table 1: Performance comparison between our algorithm and the existing algorithms. Given a WFG, n = number
of the nodes, 1 = number of the leaf nodes, e = number of the edges, d = diameter of the WFG.

6e 1 4 e - 2 n t - 2 1 2 e + n

Definition 1 A wait-for graph (N , E) is a directed
graph, where a node in N models a process, and an
edge in E models a dependence relation between two
processes in N . A directed edge from node PI to node
P2 indicates that PI is blocked and is waiting for P2
to release and grant some resource.

The dependent set of a node i is the set of nodes in
out;. A node j is said to be reachable from i iff there
is a directed path in the WFG from i to j .

Definition 2 A general i zed t i e (t i e in short) is a
graph (N t , E t) , where Nt is a nonempty set of nodes
that are blocked on p-out-of-q requests, and Et is the
set of wait-for edges between the nodes in Nt, such
that each i E Nt has a t least qi -p i + 1 outgoing edges
in Et.

Definition 3 A generalized-deadlock exists in a sys-
tem if and only if there exists a generalized tie in the
WFG of the system.

3 A Simple and Efficient Deadlock De-
tection Algorithm

The algorithm can be initiated by any node (which
is called an initiator) when it blocks on a p-out-of-
q request. When multiple nodes in the system block
simultaneously, they will each initiate the deadlock de-
tection algorithm. Each invocation to the algorithm
is called an instance of the algorithm. Every instance
of the algorithm is treated independently and identi-
fied by the initiator’s identity and the logical time a t
which the initiator blocked. In the ensuing discussion,
we will focus on a single instance of the deadlock de-
tection initiated by a node i.

When a node i blocks on a pi-out-of-q; request, it
initiates an instance of deadlock detection. A pre-
condition for i to invoke the algorithm is that i has
received an ACK message from every node j in its
dependent set. The precondition is to ensure that

< i ,t-blocki > has already been recorded in inj be-
fore the algorithm is invoked, which is necessary to
guarantee that the proposed algorithm will detect ev-
ery deadlock in the system.

There are two types of control messages: FOR-
WARD and BACKWARD message. A major differ-
ence between the proposed algorithm and [l, 8, 141 is
that, in the process of deadlock detection, a WFG (de-
noted as W F G ;) , which is an “image” of the system
state, is incrementally constructed a t the initiator i.
W F G i consists of the nodes which are reachable from
i and the wait-for edges between these nodes. The de-
tection of generalized-deadlocks (searching for ties) is
performed on WFG; .

The initialization of the instance of deadlock detec-
tion is composed of two steps:

1.

2.

Create W F G ; a t the initiator containing only one
vertex i; and

the initiator sends a FORWARD message along
every outgoing wait-for edges (i.e. t o every node
in out;). (The purpose of a FORWARD message
is to inform a node of its involvement in the dead-
lock detection.)

Definition 4 Suppose j sends a FORWARD message
to IC along a wait-for edge (j , I C) , which represents a
resource request Rj. The edge (j , I C) is an E-edge if
k has not sent a REPLY message for Rj to j before
receiving the FORWARD. U

When a node IC receives a FORWARD message from
a node j along the wait-for edge (j , I C) , it takes one of
the following two actions:

1. If (j , I C) is an E-edge and the message is the first
FORWARD message received by IC along an E-
edge, then (1) IC sends a BACKWARD message
(t-blockk, i n k , O U t k , pk) t o the initiator i and
(2) propagates the FORWARD message along its
outgoing wait-for edges (to the nodes in O u t k) if
it is blocked. (The purpose of the BACKWARD
message is to report the node’s current state in-
formation to i.)

12

2. If (j, k) is not an E-edge or the message is not
the first FORWARD message received by k along
an E-edge, the received FORWARD message is
discarded.

As the initiator i receives BCKWARD messages
from other nodes in the system, W F G i is incremen-
tally constructed. We now define the data structure
used to store W F G ; . 'This data structure is solely for
deadlock detection, and plays a different role from the
data structure defined in Section 2, which is used by
each node in the system to keep its state information.
To distinguish a node in W F G i from the node in the
underlying system which it represents, we will call a
node in W F G i a v e r t e z . A vertex k in W F G ; is rep-
resented by a tuple (L A , k . i n , k .ou t , k .p) . The rule for
constructing W F G i is as follows:

When the initiator i receives a BACKWARD mes-
sage (t-blockk, i n k , O U t k , p k) from a node k , it in-
serts a new vertex k into W F G i , where k.t := t k ,

k . in := i n k , k .out := O U t k , and k .p := pk .

Definition 5 An edge (j , k) belongs to W F G i if (1)
both j and k are vertices in W F G i , (2) k E j .out and
(3) < j , j . t > E IC.in.

There is an edge (j , k) in W F G ; if and only if
the waiting-for relation recorded at vertex j and the
waited-by relation recorded at vertex IC refers to the
same request.

Whenever a new vertex is inserted into W F G i , the
algorithm tries to find whether there is a tie in W F G i .
If there is a tie, the algorithm reports a deadlock.

The algorithm terminates in two cases: (1) a dead-
lock is detected or (2) the initiator unblocks. In the
later case, W F G i is deleted and the memory space is
released.

4 Sketch of Correctness Proof

We first introduce the notations and conventions
used in the proof. For the purpose of correctness proof
only, we introduce T as the global physical (or real)
time of the system, in contrast to the logical time t
used in the algorithm. It should be noted that our
algorithm does not depend on a global (physical time)
clock.

q: the physical time a t which node j sends a
BACKWARD message to the initiator i.

(j, k) is not an E-edge means that it has already ceased to
exist before k receives the FORWARD from j .

Rj: the last p-ouii-of-q request issued by node j
before 3.

Without losing generality, assume that i is the ini-
tiator. Due to the limited space, only a sketch of the
proof is presented here. The detailed formal proof is
provided in [3].

Lemma 1 If (j, k) is an edge in W F G i , then no RE-
PLY message for Rj is sent from node k to node j
before T k .

Proof: We establish the contrapositive of the lemma.
Let t -b lock j (R j) denote the logical time a t which j
blocked on Rj. Since R, is the last request issued by
j before q, the variable j.t will be set to t-block, (R j)
upon receipt by i of the BACKWARD message sent by
j (by construction of the algorithm). Now suppose k
sends a reply for Rj before time T k . Upon sending this
reply, k removes < j, t - b l o c k j (R j) > from i n k . There
are now two cases.

Case 1: k does not rleceive another request from j
before T k .

Then, the i n k field of the BACKWARD message that
k sends to j will not 'contain a tuple of the form <
j, t > (for some value t) . Upon receipt by i, kin will
be assigned this value of i n k . Since k . i n and j . t are
assigned to exactly once during the construction of
W F G i , it follows, by definition 5, that W F G i will
never contain an edge (j, k) .

Case 2: k receives another request from j before Tk.
Call this request Ri. Then, the i n k field of the BACK-
WARD message that k sends to j will contain the tuple
< j , t -b lock j (R$) >, where t -b lock j (R i) denotes the
logical time at which j blocked on R(j, and no other
tuples with j as the first element. Upon receipt by i,
k . in will be assigned this value of i n k . Since the receipt
by j of k ' s reply to Rj occurs between the first time j
blocked (on Rj) and the second t i m e j blocked (on Ri) ,
we have t -bZockj (Rj) < t -bZockj (Ri) , by Lamport's
clock condition [9]. Since j . t is set to t -b lock j (R j)
(see above), and t -b lock j (R j) # t - b l o c k j (R i) , we have,
again by definition 5, that W F G i will never contain
an edge (j, k) .

In both cases we have established the contraposi-
tive, and so the lemmai is established.

Theorem 1 No false deadlock is detected by the pro-
posed algorithm.

Proof Sketch: The proposed algorithm reports a dead-
lock only when there is a tie in W F G i . We prove by

13

contradiction that, if a tie G is found in W F G ; , then
every node involved in G never unblocks. Without
losing generality, assume that j is the first node in G
which unblocks on the recorded pj-out-of-qj request
(Rj) . Note that the assumption refers to a particular
request, namely, the last request issued by the node
before it sends its state information to the initiator.
Let Nj be the set of vertices in G that j has edges
outstanding at . Every vertex in Nj represents a node
in the system for which j is waiting a t time q. There
are no less than (q j - p j + 1) vertices in Nj because G
is a tie. Hence, before node j unblocks on Rj, a t least
one node in Nj must send a REPLY message to it.
Suppose k is such a node. By Lemma 1, node le sends
the REPLY to node j after T k . But node le blocks
on R k at T k because k E G. Before node k sends the
REPLY, le has to unblock on R k first. That is in con-
tradiction with the assumption that j is the first node
in G to unblock (on the recorded request, Rj). 0

Theorem 2 Every deadlock in the system will be de-
tected by the proposed algorithm within finite time.

Proof Sketch: Let G be a tie in the underlying system.
For all j E G , j blocks on a pj-out-of-qj request. Let i
be the last node in G to initiate an instance of deadlock
detection. We prove by contradiction that i detects a
deadlock. Suppose i does not detect a tie in W F G i .
By the analysis in section 5, each instance of the algo-
rithm transmits finite control messages. Hence, after
finite time, no control messages are in transmission,
which implies that W F G i does not change any more.
Such a stable W F G i is denoted as WFG:.

Consider an arbitrary vertex j of G. Since j is a
member of a tie G , j will be blocked forever (after
the physical time a t which G was formed, and in the
absence of deadlock resolution). This is easily seen
by considering the first member j ’ of G to unblock,
and noting that (by definition 2) , there is a t least one
member j ” of G which must reply to j”s outstand-
ing request before j ’ \can unblock. Since j ” is itself
blocked, j” must unblock before replying, which con-
tradicts the fact that j ’ is the first member of G to
unblock.

Now if i is the last node in G to initiate deadlock
detection, then G must already be formed when i initi-
ates this instance, by virtue of our precondition (given
on page 4) for invoking the deadlock detection algo-
rithm. Since every node in G is blocked forever from
this moment (in physical time) onwards, the state in-
formation about G , which is stored in variables (i.e.,
ti, t-blocki , outi , ini) of all nodes in G , will remain un-
changed. From this fact and the construction of our
algorithm, we see that:

If an arbitrary node j of G is a vertex of
W F G $, then so is k, for every k E G such
that j waits for k . Furthermore, (j, k) is an

edge in WFG! . (*I
See [3] for the detailed proof of this assertion.
Suppose Gf =< Nf, Ef > is a sub-graph of

W F G ! , where Nf is the set of vertices in both W F G ;
and G, and E f is the set of edges between vertices in
N I . Nf # 0 because i E Nf. For all j E Nf, since j
is a node in the tie G , there are at least (q j - p j + 1)
nodes in G for which j is waiting. By (*) above, each
of these nodes is a vertex in G f , and the wait-for edges
from node j to these nodes are also in Gf. That is, j
has a t least (q j - pj + 1) edges outstanding at other
vertices in G f . Hence, G f is a tie, which contradicts
the assumption that there is no tie in W F G i . Hence
the theorem holds. 0

5 Complexity Analysis

In this section, we consider the time, message, as
well as space complexities. Let W F G , be a system of
n nodes and e edges, with a diameter of d. Let i be
the initiator. Note that only the nodes reachable from
i are involved in the deadlock detection. In comput-
ing the message complexity, we only consider logical
message transfers. Based on the type of underlying
communication network, a logical message may result
in the transfer of a number of physical messages, which
is not an issue here. As in [l, 8, 141, assume that the
message delay on a logical channel (one hop) is 1 unit
of time.

The Bracha-Toueg algorithm [l] has message com-
plexity of 4e messages and time complexity of 4d
hops; the Wang-Huang-Chen algorithm [14] has mes-
sage complexity of 6e and time complexity of 3d + 1;
the Kshemkalyani-Singhal algorithm [8] has message
complexity of 4.2 - 2n + 21 and time complexity of 2d.
As shown below, the performance of our algorithm is
better than the existing results.

Recall that only when a node j receives a FOR-
WARD message along an E-edge for the first time,
it propagates the FORWARD to the nodes in its de-
pendent set. Therefore, a spanning tree composed of
nodes reachable from i, with the initiator as the root,
can be defined. A node j is the parent o f a node k if
and only if j sends the first FORWARD message re-
ceived by k and (j, k) is an E-edge. The height of the
spanning tree is a t most d. Hence, it takes a t most d
hops to propagate FORWARDS to all the nodes reach-
able from i. When a node receives a FORWARD along

14

an E-edge for the first time, it sends a BACKWARD
to the initiator, which takes 1 hop. Therefore, all con-
trol messages are transmitted within at most d + 1
hops. We conjecture that d + 1 is the optimal time
complexity that can be achieved by any distributed
generalized-deadlock detection algorithm.

By the construction of the algorithm, leach node in
W F G , has a t most one chance to send FORWARDS
along its outgoing edges, which implies th,at there is a t
most one FORWARD message sent along each wait-
for edge in W F G , . Hence, the number of FORWARD
messages can not be greater than e . Each node in
W F G , sends a t most one BACKWARD message to
the initiator. The number of the BACKWARD mes-
sages can not be greater than n. Therefore, the num-
ber of control messages transmitted is e + n in the
worst case. For simplicity, consider the length of a
control message in [l , 8 , 141, which consists of several
integers, as 1 unit. The total size of data transmitted
in the algorithms of [l , 8 , 141 are 4 e , 6e and 4e-2n+21
units, respectively. The total size of data transferred
in our algorithm is 2e + n units. The detailed analysis
is provided in [3].

In algorithms [I , 81, the memory space needed by
each node to store the snapshots for (different in-
stances of deadlock detection is O(n2) in the worst
case. Therefore, the total space required is O(n3). In
our algorithm, no snapshot needs to be stored at any
node. The initiator requires a t most 0(n2) space to
store the constructed WFG. In the worst case, when
all the n nodes initiate deadlock detections simulta-
neously, O(n3) space in all is needed. Thus our al-
gorithm is comparable to the other algorithms in its
space complexity.

6 Deadlock Resolution

The proposed algorithm works under the assump-
tion that the only way for a blocked node to unblock
is to get enough REPLY messages. To resolve a dead-
lock, however, a node is allowed to abort. In such a
system model, deadlocks are not stable and can be
resolved by aborting a node or a set of nodes. The se-
mantics of a node’s aborting is the same ,as described
in [7]. That is, when a node aborts, the process it
represents is rolled back and a new one restarts us-
ing a higher timestamp. The resources held by the
aborted node are released, and thus can bme granted to
the nodes requiring them.

To the best of our knowledge, the only algorithm
addressing the problem of the distributed generalized-
deadlock resolution is in [7]. In what follows, we

present an extension to the proposed deadlock detec-
tion algorithm to hanldle the distributed generalized-
deadlock resolution with only a slight increase to mes-
sage complexity. We have proved in [3] that every
deadlock in the system can be resolved by the extended
algorithm.

Simply speaking, wyhenever a node i detects that it
is involved in a tie, it aborts itself to resolve the dead-
lock. .After i aborts, its previous state information
that has been collected by other nodes becomes out-
dated. Node i then sends ABORT messages to these
nodes to inform them of its aborting. When a node re-
ceives an ABORT message, it eliminates the outdated
information.

More specifically, every node i (i = 1 , ..., n) main-
tains a data structure named N o d e S e t i . Node-Se t ;
keeps track of the set of nodes, to which i sent its
state information (via BACKWARD messages) af-
ter i issued the last (namely, the most recent) re-
quest. The rules for maintaining Node-Se t* are as fol-
lows: (1) Whenever i blocks, N o d e S e t i is set empty;
and (2) when i sends a BACKWARD message to j ,
Node-Se t i = N o d e S e t i + { j } . Suppose i initiates a
deadlock detection and detects a tie in W F G i . If i is a
vertex in the tie, i aborts itself and sends an ABORT
message to every node in N o d e - S e t i . When a node
j receives an ABORT message from i, one of the fol-
lowing two actions is t,aken: (1) If j is the initiator of
an instance of the deadlock resolution algorithm and
i is a vertex in WFGi , remove every outgoing edge
of i from W F G j ; (2) otherwise, discard the ABORT
message.

The termination conditions of the deadlock resolu-
tion algorithm are different from those of the deadlock
detection algorithm. The resolution algorithm termi-
nates in one of the following two cases: (1) The ini-
tiator aborts itself; or (2) it unblocks. In either case,
WFGi is deleted and the memory space is released.

There are a t most 7~ ABORT messages in a single
instance of the resolution algorithm. It takes one hop
to transmit the ABORT messages. By the results in
Section 5, the resolution algorithm has message com-
plexity of e + 2 n and time complexity of d + 2. Our
algorithm is much more efficient than [7], which has
message complexity of (Se - 2n+21) and time complex-
ity of 2d. Like [7], our algorithm may abort nodes that
are not deadlocked at the moment they are aborted.
However, in our algorithm, it takes only one hop of
message transfer for tbe ABORT messages to reach
the nodes in N o d e - S e t , in contrast to the sequence of
message transfers for thie information from the aborted
node to reach the initiator in [7], which takes d hops

15

in the worst case. Hence, the outdated information
caused by the abort events is eliminated more quickly
in our algorithm, which implies less nodes are aborted
unnecessarily in our algorithm than those in [7].

7 Conclusion

We have presented two distributed algorithms for
the detection and resolution of generalized-deadlocks
in distributed systems, which significantly improve the
existing results. Correctness proof sketch and com-
plexity analysis for the deadlock detection algorithm
are also provided. Detailed formal correctness proof
and performance analysis for the two algorithms are
in [3].

The improvement achieved by the proposed algo-
rithm is due to the novel approach behind the algo-
rithms, which differs from the one used by all the ex-
isting algorithms for the detection and resolution of
distributed deadlocks. It incrementally constructs a
WFG a t the initiator instead of recording a distributed
snapshot, and thus the reduction of the WFG can be
done locally rather than in a distributed fashion. Con-
sequently, our algorithms are not only simpler but also
much more efficient. We believe that this approach
points out a new way to design distributed deadlock
detection and resolution algorithms.

References

G. Bracha and S. Toueg. Distributed deadlock detec-
tion. Distributed Computing, 2:127 - 138, 1987.

K. M. Chandy and J. Misra.
detection.
1(2):144 - 156, May 1983.

S . Chen and Y. Deng. Efficient algorithms for detec-
tion and resolution of distributed deadlocks. Technical
Report, School of Computer Science, Florida Interna-
tional University, October 1994.

D. G. Gifford. Weighted voting for replicated data.
Proceedings of the 7th AGM Symposium on Operating
Systems Principles, pages 150 - 163, 1979.

T. Herman and K. M. Chandy. A distributed proce-
dure to detect AND/OR deadlocks. Department of
Computer Science, Technical Report, TR- LCS-8301,
University of Texas, Austin, T X , February 1983.

E. Knapp. Deadlock detection in distributed
database. A C M Computing Surveys, 19(4):303 - 328,
December 1987.

Distributed deadlock
A C M Transactions on Computer System,

A. D. Kshemkalyani. Characterization and correct-
ness of distributed deadlock detection and resolu-
tion. Ph. D. dissertation, Ohio State University, Au-
gust 1991.

A. D. Kshemkalyani and M. Singhal. Efficient detec-
tion and resolution of generalized distributed dead-
locks. IEEE Transactions on Software Engineering,
20(1):43 - 54, January 1994.

L. Lamport. Time, clocks, and the order of events in
a distributed system. Communication of the AGM,
21:558 - 565, July 1978.

D. A. Menasce and R. R. Muntz. Locking and dead-
lock detection in distributed data base. IEEE Trans-
actions on Software Engineering, SE-5(3):195 - 202,
May 1979.

N. Natarajan. A distributed scheme for detecting
communication deadlocks. IEEE Transactions on
Software Engineering, SE-12(4):531 - 537, April 1986.

R. Obermarck. Distributed deadlock detection. ACM
Transactions on Database Systems, 7(2):187 -208,
June 1982.

M. Roesler and W. A. Burkhard. Resolution of dead-
locks in object-oriented distributed systems. IEEE
Transactions on Computers, 38(8):1212 - 1224, Au-
gust 1989.

J . Wang, S . Huang, and N. Chen. A distributed algo-
rithm for detecting generalized deadlocks. Technical
Report, Department of Computer Science, National
Tsing-Hua University, 1990.

16

