
Optimal Deadlock Detection in Distributed Systems
Based on Locally Constructed Wait-for Graphs *

Shigang Chen
Department of Computer Science

University of Illinois at Urbana Champaign

Yi Deng, Paul Attie, and Wei Sun
School of Computer Science

Florida International University
Urbana, IL 6 180 1

s -chen5 0 cs . uiuc . edu

Abstract

We present a new algorithm for detecting generalized
deadlocks in distributed systems. Our algorithm incremen-
tally constructs and reduces a wait-for graph (WFG) at an
initiator process. This WFG is then searched for deadlock.
The proposed algorithm has two primary advantages: First,
it avoids sending messages along the edges of the global
wait-for graph (WFG), thereby achieving a worst-case mes-
sage complexity of 2n, where n is the number of processes
in the WFG. Since information must be obtained from ev-
ery process reachable from the initiatol; this is optimal to
within a constant factol: All the existing algorithms for the
same problem construct a distributed snapshot of the WFG.
As this involves sending messages along the edges of the
WFG, the best available message complexity among these
algorithms is 4e - 2n + 21, which is O (n 2) in the worst
case, where e and 1 are the number of edges and leaves in
the WFG, respectively. Second, since the information about
a detected deadlock is readily available at the initiatorpro-
cess, rather lhan distributed among dizerent processes, it
significantly !rimplifies the task of deadlock resolution, and
helps to reduce system overhead associated with the reso-
lution. The time complexity of our algorithm is also better
than or equal to the existing algorithms.

1. Introduction

A deadlock is a system state in which every process in
some group requests resources from other processes in the
group, and then waits indefinitely for these requests to be
satisfied. Because distributed systems are vulnerable to

*This work was supported in part by Rome Laboratory, U.S. Air
F30602-93-C-0247, by NASA under Grant

___-

Force under Contract No.
No. NAGW-4080, and by NSF under Grant No. CDA-9313624.

1063-6927/!36 $5.00 0 1996 IEEE
Proceedings of the 16th ICDCS

Miami, FL 33 199
{ deng,attie,weisun} .cs.fiu.edu

deadlocks, the problems of deadlock detection and resolu-
tion have long been considered important problems in such
systems.

Existing deadlock detection algorithms can be classified
in terms of their underlying resource request models [8],
such as AND [2,4, 5, 13, 14, 151, OR [2,7, 11, 121, AND-
OR [6], andp-out-of-q [l , 9,161 models. In an AND model,
all requested resources are required. In an OR model, any
one of a number of requested resources is sufficient. Finally,
in the p-out-of-q model, requests are issued for q resources,
and the issuing process remains blocked until any p of these
are acquired. A distributed deadlock based on thep-out-of-q
model is called a generalized deadlock. When p = q (resp.
p=l), we obtain the AND (resp. OR) model as a special
case of the p-out-of-q model.

To detect deadlocks in a distributed system, the global
state of the system is commonly modeled by a logical struc-
ture called the wait-for graph (WFG). A WFG is a directed
graph, in which a vertex represents a process, and an edge
(i, j) indicates that process i has requested a resource from
process j, and j has not granted the request. As indicated
in [9], detecting generalized deadlocks in distributed sys-
tems is a difficult problem, because it requires detection of
a complex topology in the global WFG. Among the dis-
tributed deadlock detection algorithms in the literature, only
[l , 9, 161 address this problem. All three algorithms use
a distributed snapshot-based approach. The basic idea be-
hind these algorithms can be briefly described! as follows:
They have either two distinct phases [l, 161, or one phase
consisting of two overlapped sweeps [9], of message trans-
mission. In the first phase (or the outward sweep), they
record a snapshot of the WFG, which is distributed among
all the processes in the system. In the second phase (or the
inward sweep), they reduce the distributed WFG by simu-
lating the unblocking of those processes whose requests can
be granted.

The proposed algorithm is based on a new approach that

613

http://cs.fiu.edu

differs from the above. A process initiates the algorithm
when it blocks on a resource request. Instead of recording a
distributed snapshot, the algorithm incrementally constructs
an “image” of the WFG, which is stored locally at the ini-
tiator process. The algorithm is composed of a sequence of
stages. In the first stage, the initiator process i sends an in-
quiry (called FORWARD) message to each process j which
it is waiting for, and then each j reports its state informa-
tion to i via a BACKWARD message; in the second stage, i
sends a FORWARD message to each process k which some
j which was involved in the first stage is waiting for, and
then each k reports its state information to z via a BACK-
WARD message. This process continues stage-by-stage in
a similar manner. At each stage, the new processes are those
processes that the processes of the previous stage are waiting
for. At the end of each stage, the WFG is locally (at process
i) updated (based on the new information from the received
BACKWARDS), reduced, and checked for the existence of
a deadlock.

This new algorithm may be seen as a “hybrid” algo-
rithm, with both centralized and distributed aspects. We
argue that it combines the simplicity and efficiency (with
respect to the total number of messages generated) of a cen-
tralized algorithm, and the flexibility and robustness of a
distributed algorithm. A single instance of our algorithm
is executed in an essentially centralized fashion, with the
initiator being responsible for collecting system state infor-
mation, constructing a WFG, and reducing it to detect a
deadlock. Consequently, in addition to a simpler structure,
each instance of our algorithm only requires 2n messages
in the worst case, compared to the best available message
complexity [9] of 4e - 2n+21 among the existing algorithms
[1, 9, 161, where n, e, and 1 are the number of nodes, edges,
and leaf nodes in the WFG, respectively. The latter com-
plexity is O (n 2) in the worst case. Since information must
be obtained from every process involved in a deadlock, the
message complexity of our algorithm is optimal to within
a constant factor. Also, worst case time complexity of our
algorithm is better than or equal to the existing algorithms.
(See Section 5 for detailed analysis.)

From the global view of the system, however, our al-
gorithm is a distributed algorithm in nature. There is no
designated central controller in our system, as in a typical
centralized algorithm, to control the detection of deadlocks
in the system. All processes in our algorithm play the same
symmetric role. Any process may initiate deadlock detec-
tion as necessary, and all instances of deadlock detection are
executed independently and concurrently, as in other dis-
tributed deadlock detection algorithms. Furthermore, any
distributed deadlock detection algorithm will typically have
many instances active at any one time. Thus the centralized
aspect of our algorithm does not lead to a communication
bottleneck around the initiator(s).

Another primary advantage of our approach is its support
to deadlock resolution. Because the WFG is constructed at
the initiator, deadlock resolution is simplified because the
global state information required is locally available at the
initiator process rather than distributed among all the in-
volved processes. Thus the choice of which process(es)
to abort in order to break the deadlock can be made lo-
cally by the initiator, rather than requiring another round of
communication. In addition, the availability of the global
information makes it possible to construct optimal or near
optimal deadlock resolution strategies, e.g. to minimize the
number of processes needed to be aborted in order to break
the deadlock. Based on the proposed deadlock detection al-
gorithm, we have developed a simple and efficient deadlock
resolution algorithm, which requires only a slight increase
in message complexity. [3] Unlike [1, 9, 161, the proposed
algorithm does not require any storage whose size is pre-
determined by the size of the system. Hence, it is suitable
for use in an environment where processes are created and
terminated dynamically.

The rest of the paper is organized as follows. In Section 2,
the model of computation is defined. In Section 3, the dead-
lock detection algorithm is provided. Section 4 provides a
proof of correctness, and section 5 analyzes the complexity
of the algorithm. We conclude the paper in Section 6.

2. Model of computation

A distributed system is composed of n processes, each
of which has a system-wide unique identity. Each pair
of processes is connected by a logical channel [9]. There
is no shared memory in the system. Processes communi-
cate by message passing, and message delays on a chan-
nel are arbitrary but finite. A destination process receives
messages in the same order as they are sent by a source
process. Messages are neither lost nor duplicated, and
are transmitted error-free. There are two types of mes-
sages. Computation messages are generated by the un-
derlying computation of processes in the system, includ-
ing REQUEST, REPLY, CANCEL and ACK messages;
control messages are generated by the execution of the
deadlock detection algorithm, including FORWARD and
BACKWARD messages which will be discussed in Section
3.

The following data structure is used at a process i, i =
l...n, to keep track of its state. We assume that the logical
time at each process is maintained as specified in [lo].

t,: the current logical time at i,
t-block,: the logical time at which i last blocked,
outZ: the set of processes for which i is waiting,
inZ: the set of tuples < k , t-blockk >, where

k is a process waiting for i and

614

tblock, is the logical time at which k sent its
request to i,
the number of replies required fori to unblock. pi:

Each process is either active or blocked. An active
process can s,end both computation and control messages.
A blocked process, however, can only send control mes-
sages or ACK messages, i.e., its underlying computation is
suspended. A. process i becomes blocked after it sends api-
out-of-q, request (via REQUEST messages) to q-qi other pro-
cesses. It records these processes in outi. When a process
j receives a REQUEST message from process i, it records
< i, t-block-qi > in inj and immediately sends an ACK back
to process i to acknowledge the receipt of the request '. A
REPLY message denotes the granting of a request. When
j sends a =,PLY to i, < i,t-blocki > i s removed from
inj. The process i becomes unblocked (goes from blocked
to active state:) only when any pi out of the qi requests are
granted, namely, i receives REPLY messages from at least
pi out of the q; processes. When i unblocks, it sends CAN-
CEL messages to withdraw the remaining (qi - pi) requests
it had sent.

Each REQUEST, REPLY, or ACK message is times-
tamped with the requester's logical clock value [IO] at which
it blocked, so that an ACK or a REPLY can be matched with
its corresponding request. ACK or REPLY messages with
unmatched tirnestamps are discarded.

When j is in out;, we say process i is waiting for process
j or there is a wait.-for edge from i to j . The set of
processes in outi is called the dependent set of process
i. If pi # 0, then process i is blocking on a pi-out-of-
loutil request. When i receives a REPLY message from
j (E outi), j is removed from outi and pi is decreased by
one. (Ioutil -. pi) remains a constant. When pi is decreased
to zero, i unblocks.

A process is deadlocked when it belongs to a generalized
deadlock set vvhich is defined as follows.

Definition 1 A generalized deadlock set (deadlock set in
short) is a set S of processes in the system which satisfies
the following conditions:
(1) V i E S, z blocks on a pa-out-of-q, request,
(2)Vi E S, 32% E out,, C, 2 S A IC,/ 2 qz -pa + 1, and
(3) V i E S, V j E C,, ~ I Q REPLY message is under transmis-
sion from j to i.

We use a data structure called WFG to model a distributed
system.

Definition 2 14 wait-for graph WFG < N, E > is a directed
graph, where a vertex in N models a process, and an edge in

'Notice that this ACK can he the same acknowledgement used by the
underlying network to guarnntee reliable communication channels. There
is no need to send a separate message to deliver such information.

E from vertex i to vertex j indicates that i blocks and waits
for j to grant some resource. Every vertex i has two pieces
of information: i.p and i.q, which indicates that i blocks on
a ipout-of-i.q request, where i . q is the outdegree of a.

A process j is said to be reachable from process i iff
there is a directed path in the WFG from i io j.

Definition 3 Ageneralized tie (tie in short) is a subgraph
< Nt, Et > of a WFG, where Nt is a nonempty set of
vertices, and Et is the set of wait-for edges between the
vertices in Nt, such that each i E Nt has at least i.q - i . p f 1
outgoing edges in Et.

3. An Efficient Distributed Deadlock Detection
Algorithm

Whenever a process i blocks on a pi-out-of-q-qi request,
it initiates an instance of deadlock detection (i is called the
initiator of the instance). Every instance of the algorithm is
treated independently from others. The control .messages of
a particular instance of the algorithm are identifiled by times-
tamps which consist of the initiator's identity and the logical
time at which the initiator blocked. Control mlessages be-
longing to different instances of the algorithm have different
timestamps, and thus can be distinguished. We will thus fo-
cus our attention on a single instance of deadlock detection
in the ensuing discussion. The following preconldition needs
to be satisfied for the algorithm to be invoked:

Precondition for invocation of the algorithm:
The precondition for i to invoke the algorithm is that i is
blocked on a pi-out-of-qi request and has received an ACK
message from every process j in its dependent set.

This is to ensure that < i,t-blocki > has already been
recorded in inj. The precondition is necessary to guarantee
that the proposed algorithm will detect every deadlock in the
system. The initiator i will then incrementally construct a
data structure called W FG;, which will be used for deadlock
detection.

3.1 Outline of the Algorithm

The proposed algorithm consists of a series of similar
stages. In the first stage, the initiator i sends a FOR-
WARD message to every process j E outi. When j
receives the FORWARD, it sends the current values of
t-blockj, outj, inj, andpj viaaBACKWARDmessageback
to i. When i receives the BACKWARD, it expands W F G ,
by inserting a vertex j and edges associated ,with j into
W FGi. After i receives all BACKWARD messages sent by
the processes in outi, the algorithm enters the second stage.
At the second stage, the same process is repeated between i

615

and the processes in outj for every j E out;. This process
continues stage-by-stage in a similar manner. At the end of
each stage, a reduction is performed to W F G , to remove
those edges that will not belong to any tie and those vertices
that are unreachable from the initiator; deadlock detection is
then attempted by searching for a tie in the reduced W FGi.
The algorithm terminates in one of the following three cases:
(a) A tie is found in W F G ; , (b) all outgoing edges of vertex
i are removed during the reduction, and (c) all processes
reachable from i have been inserted into W F G ; and no tie
is found in WFG,. A deadlock is detected only in case (a).
W FG; is deleted and the memory space is released in case
(b) or (c).

3.2 Definitions and conventions

We first define the data structure used to store WFGi.
(Note: The data structure described here plays a different
role from the one defined in Section 2.) A vertex j in WFGi
is represented by a tuple < j . t , j . m t , j.in, j .p >.

The rule for constructing W F G i is as follows:
When the initiator i receives a BACKWARD message
(t-blockj, outj, inj, p j) from a process j , it inserts a
new vertex j into W F G i , with the following assignments:

j .t := t-blockj;

j.in := inj; and
3.p := pj.

j.out := outj;

loutj I and j . p specify that process j blocks on a j.p-out-
of-loutjl request when j .p > 0 (Definition 2) .

Definition 4 (1) An edge (j , k) belongs to WFG; if j and
k are two vertices in W F G i and k E j.out. (2) There are
two types of edges in W F G ; : An edge (j , k) is a matched
edge if < j , j . t >E k.in; otherwise, it is an unmatched
edge.

(j, I C) is a matched edge in W F G ; if and only if the
wait-for relation recorded at vertex j and the waited-by re-
lation recorded at vertex k refer to the same request. All
unmatched edges must be removed from W F G ; . The rules
for removing an unmatched edge (j , I C) are as follows: (1)
Remove k from j . m t , (2) decrease j . p by one, and (3) set
j.mt to empty if j.p is decreased to zero (i.e., remove all
outgoing edges of j from WFG;) .

Definition 5 A matched edge (j , I C) in W F G i is a reducible
edge if k.out = 0.

A reducible edge (j , k) means the request from j to
k is grantable. Therefore, all reducible edges should also
be removed from W F G ; because they will not contribute
to a deadlock. The rules for removing a reducible edge

(j , I C) are as follows: (1) Remove k from j.out, (2) decrease
j . p by one, (3) set j.out to empty if j . p is decreased to
zero (which will cause the edges incident to j to become
reducible), and (4) remove the new reducible edges created
in (3) recursively.

Definition 6 A vertex j (J’ # i) in W F G i is an invalid
vertex if there is no directed path from i to j in W F G i .

We remove invalid vertices from W F G ; and put them in
Pool, which is a data structure consisting of invalid vertices
removed from W F G ; . Initially, Pooli is empty.

3.3 The algorithm

A more formal description of the algorithm is presented
below. The initialization of the proposed algorithm is com-
posed of three steps: (1) W F G ; is created at the initia-
tor a , containing only one vertex i, where i.t := t-blocki,
i.out := mti, i.in := in i , and2.p := pi ; (2) Newi := out,;
and (3) Pooli := 0. New; is the set of new vertices which
will be inserted into W FGi at the next stage.

Each stage of the algorithm can be divided into the fol-
lowing five steps:

1. For every j E Newi, if it is in Pooli, then remove it
from Pool; and insert it into WFG,; otherwise, send
a FORWARD message to process j .

2. When i receives a BACKWARD message from j , a new
vertex j is inserted into WFGi. (The edges associated
with j are inserted automatically.) After i receives all
BACKWARD messages sent by the processes in N e w ,
go to the next step.

3. (a) Remove all unmatched edges from W FG; .
(b) Remove all reducible edges from W F G ; .
(c) Remove all invalid vertices from W F G ; and

Newi.

4. New, = (C j E N e w , j . m t) - WFGi.N, where

5. One of the following actions is taken:

WFG;.N is the set of vertices in WFG,.

(a) If there is a tie in W F G i , a deadlock is detected
and the algorithm terminates.

(b) If i.p = 0, the algorithm terminates, with no
deadlock detected.

(c) If Newi = 0 and there is no tie in W F G ; , the
algorithm terminates, with no deadlock detected.

(d) Otherwise, go to the next stage.

When a process j receives a FORWARD message from
the initiator i, it responds simply by sending a BACKWARD
message (t-blockj, inj, out j ,p j) to i.

616

4. Correctness of the Algorithm

It suffices to prove correctness by considering only a
single instance of the algorithm. Without loss of generality,
assume that i is the initiator. Due to space limitations, only
a proof sketch is presented here. The detailed formal proof
is provided in [31.

We first introduce the notations and conventions used in
the proof. For the purpose of the correctness proof only,
we introduce T as the global physical (or real) time of the
system, in contrast to the logical rime t used in the algorithm.
It should be noted that our algorithm does not depend on a
global (physical time) clock.

Tj : the physical time at which process j sends a BACK-
WARD message to the initiator i .

Rj : the last p j -out-of-qj request issued by j before Tj.

Lemma 1 If a matched edge (j , k) is added to WFGi dur-
ing the execution of the algorithm, then no REPLY message
for Rj is sent from k to j before Tk .

Pro08 We establish the contrapositive of the lemma. Let
t-block3(R3) denote the logical time at which j blocked
immediately before issuing the request R3 . Since R3 is the
last request issued by j before T3, the variable j.t will be
set to t-block3(R3) upon receipt by i of the BACKWARD
message sent by j (by construction of the algorithm). Now
suppose k sends a reply to R3 before time Tk. Upon sending
this reply, k reimoves i: j, t-block3((R3) > from ink. There
are now two caises.

Case 1: k does not receive another request from j before

Then, the ink field of the BACKWARD message that k
sends to j will not contain a tuple of the form < j, t > (for
some value t) . Upon receipt by i , k.in will be assigned this
value of ink. Since k.i,n and j . t are assigned to exactly once
during the construction of WFGi, it follows, by definition 4,
that WFGi will never contain a matched edge (j , k) .

Case 2: k receives another request from j before T k .
Call this request Ri. Then, the ink field of the BACK-
WARD message that k sends to j will contain the tuple
< j , t-blockj(R;) >, where t-blockj(R;) denotes the logi-
cal time at which j blocked immediately before issuing the
request Ri, and no other tuples with j as the first element.
Upon receipt by i, k.in will be assigned this value of ink.
Since the receipt by j of IC‘s reply to Rj occurs between
the first time j blocked (immediately before issuing Rj) and
the second time j blocked (immediately before issuing R;),
we have t-blockj(Rj) < t-blockj(Ri), by Lamport’s clock
condition [lo].. Since ji.t is set to t-blockj(Rj) (see above),

Tk.

and t-blockj(Rj) # t-blockj(Ri), we have, again by def-
inition 4, that W F G ; will never contain a matched edge

In both cases we have established the contrapositive, and
U

(j , IC).

so the lemma is established.

Theorem 1 No false deadlock is detected by the proposed
algorithm. That is, every tie in the WFG construlcted by the
algorithm corresponds to a deadlock set in the system.

Pro08 The proposed algorithm detects a deadlock only
when there is a tie in WFG,. We prove by contradiction that,
if a tie G is found in WFG,, then every process iinvolved in
G never unblocks. Without loss of generality, assume that j
is the first process in G which unblocks (on R3). Let N3 be
the set of vertices in G that j has edges outstanding at. Every
vertex in NJ represents a process in the system for which j is
waiting at time T3. There are at least (q3 -p3 + 1) vertices in
N3 because G is a tie. Hence, before process j unblocks on
R3, at least one process in N3 must send a REPLY message
to it. Suppose k is such a process. By Lemma 1, process
k sends the REPLY to process j after Tk. But process k
is blocked on Rk at Tk because k E G. Before process IC
sends the REPLY, k has to unblock on Rk first. That is in
contradiction with the assumption that j is the first process
in G to unblock. 0

Theorem 2 Every deadlock in the system will be detected
by the proposed algorithm. That is, there will be a tie in
the WFG constructed by some instance of the algorithm for
every deadlock set in the system.

Pro08 Let G be a tie in the underlying system. For all j E G,
j blocks on a pj-out-of-qj request. Let i be the 1,ast process
in G to initiate an instance of deadlock detection. We prove
by contradiction that i detects a deadlock. Suppose i does
not detect a tie in WFGi . Let W F G ; be the final WFGi
before the deadlock detection initiated by i terminates.

Consider an arbitrary vertex j of G. Since j is a member
of a tie G , j will be blocked forever (after the physical time
at which G was formed, and in the absence of de,adlock res-
olution). This is easily seen by considering the first member
j ’ of G to unblock, and noting that (by definition 3), there
is at least one member j ” of G which must re:ply to j”s
outstanding request before j ’ can unblock. Since j ” is itself
blocked, j ” must unblock before replying, which contradicts
the fact that j ‘ is the first member of G to unblock.

Now if i is the last process in G to initiate deadlock de-
tection, then G must already be formed when i initiates this
instance, by virtue of our precondition (given on page 3) for
invoking the deadlock detection algorithm. Since: every pro-
cess in G is blocked forever from this moment (in physical
time) onwards, all state variables (i.e., ti, t-block,, outi, ini)
of all processes in G will remain unchanged. From this fact

617

and the construction of our algorithm (in particular, none of
the edges in G will be eliminated by step 3 of the algorithm)
we see that:

If an arbitrary process j of G is a process of
W F G f , then so is k , for every k E G such that j
waits for k. Furthermore, (j , k) is a matched edge
in w F G ~ . (*)

Suppose Gf =< Nf, Ef > is a sub-graph of WFG, f ,
where N* is the set of vertices in both WFG! and G, and
Ef is the set of edges between vertices in Nf. Nf # 0
because i E Nf. For all j E Nf, since j is a process in
the tie G , there are at least (q, - p, + 1) processes in G for
which j is waiting. By (*) above, each of these processes is a
vertex in Gf , and the wait-for edges from process j to these
processes are also in Gf . That is, j has at least (4, - p , + 1)
edges outstanding at other vertices in Gf. Hence, Gf is a
tie, which contradicts the assumption that there is no tie in
WFG, . Hence the theorem holds. 0

5. Performance Analysis

In this section, we consider the time, message, data-
traffic and space complexities of the proposed algorithm.
In calculating the message complexity, we only consider
logical message transfers. Based on the type of underlying
communication network, a logical message may result in
the transfer of a number of physical messages, which is
not an issue here. Assume that message delay on a logical
channel (one hop) is 1 unit of time. It is important to notice
that a WFG is a logical structure. An edge in the WFG
does not correspond to a physical communication channel.
Therefore, whether a message is sent along an edge of the
WFG has no affect on the cost of transmitting the message.
For simplicity, we consider, in the following analysis, that a
message transmisstion between any pair of processes in the
system has the same cost.

The message complexity is the number of messages trans-
mitted; the time complexity is the time it takes for the initiator
to detect a deadlock; the datu-tr@c complexity is the total
length of data transmitted by the algorithm. For simplicity,
consider the length of a control message in [1,9,16] as 1 unit.
We now analyze the proposed algorithm. Consider a system
depicted by W F G , with n processes, e wait-for edges and a
diameter of d, and suppose every process is reachable from
the initiator i . Each process in W F G , receives at most one
FORWARD message and sends at most one BACKWARD
message in a single instance of the algorithm. The number of
FORWARD (or BACKWARD) messages is not greater than
n. Hence, the worst-case message complexity is 2n. The
proposed algorithm is composed of a series of stages. Let
H (j) denote the stage number when j sends a BACKWARD

to the initiator. H (j) equals to the length of the shortest path
from i to j in WFG,. Thus, H (j) 5 d, which implies that
the number of stages of the algorithm can not be greater than
d. Each stage takes two (hops). Hence, the worst-case time
complexity of the proposed algorithm is 2d. The worst-case
data-traffic complexity of the proposed algorithm is e + 272,
which is still better (by a constant factor) than the best result
(4e - 2n + 21) of the other three algorithms. The detailed
analysis for the data-traffic complexity is provided in [3].

Looking at Table 1, we see that the proposed algorithm is
comparable to the algorithms given in [l, 9, 161 in terms of
the time complexity and the data-traffic complexity. In terms
of message complexity however, the message complexity of
the proposed algorithm is O(n) ; the message complexities of
thealgorithmsin[1,9,16]areallO(e)(= O(n2)intheworst
case). This is the first deadlock detection algorithm to our
knowledge with message complexity linear in the number
of processes of the system, i.e., optimal to within a constant
factor. Although the data-traffic complexity of our algo-
rithm is comparable to the other algorithms, we remark that
the reduced message complexity of our algorithm reduces
the overhead associated with message creation, transmis-
sion, and receipt, which are significant in a practical sense,
considering the very small-sized messages used in [I , 9, 161.
For example, because a message in [1, 9, 161 contains only
several integers, the message header may be much larger
than the message body.

The worst-case time, message, and data-traffic complex-
ities are often unreached in our algorithm. The algorithm
may terminate (due to the detection of a tie or due to the
reduction of the initiator) before every process reachable
from the initiator gets involved in the deadlock detection.
Therefore, the average message, time, and data-traffic com-
plexities are expected to be better than the worst-case com-
plexities. Unlike our algorithm, the algorithms in [1, 9, 161
require the involvement of every process reachable from the
initiator for every instance of the algorithm, and thus require
corresponding message transfers.

In algorithms [1, 91, the memory space needed by each
process to store the snapshots for different instances of dead-
lock detection is O(n2). Therefore, the total space required
is O(n3). In our algorithm, no snapshot needs to be stored
at any process. The initiator requires at most O(n2) space
to store the constructed WFG. In the worst case, when all
the n processes initiate deadlock detections simultaneously,
0(n3) space in all is needed. Thus our algorithm is compa-
rable to the other algorithms in its space complexity. Unlike
[l , 9, 161, our algorithm does not require any array whose
size is determined by n, and hence is suitable for use in
an environment where processes are created and terminated
dynamically.

618

Number of' Messages Sent I 4e
I Delav I 4cl I 3 d + l I 2d ~ -T ~~ 2d ~

6e 1 4e-2n+21 I

Table I. Performance comparison between our and existing algorithms. Given a WFG, n = nuniber of
processes, 1 = number of leaf processes, e = number of edges, d = diameter.

6. Conclusion and Discussion References

We have presented a new algorithm for detecting
generalized-deadlock in distributed systems, and proved its
correctness. Our approach differs from the existing algo-
rithms in that, instead of using distributed snapshot, our
algorithm is based on the idea of locally constructing a wait-
for graph at an initiator. Instead of using the diffusion com-
putation to propagate control messages level-by-level from
the initiator to ,all reachlable processes, our algorithm lets the
initiator communicate directly with those processes. Under
this new approach, our algorithm combines the simplicity
and efficiency of centralized algorithms, and the flexibility
and robustness of distributed ones. It is shown that the pro-
posed algorithm requires only 2n messages in the worst case,
compared to the best message complexity, 4e - 2n -+ 21, of
the existing algorithms (which is O(n2) in the worst case),
where n, e and 1 are the number of vertices, edges and leaves
of the WFG, respectively. Its time complexity is better than
or equal to those algorithms.

The algorithm is the first distributed algorithm which
detects every deadlock and detects no false deadlock with
a worst-case message complexity of O(n). Although some
messages are of variatde length with a maximum size of n,
the total length of data itransmitted by the proposed algorithm
is still better than the best result of the previously published
algorithms [I, 9, 161.

An equally important contribution of the algorithm is that
it significantly eases the task of deadlock resolution in dis-
tributed systems. For every deadlock set in the system, a
corresponding tie will be present in the WFG constructed by
some instance of the algorithm. Not only deadlocked pro-
cesses but also the wait-for relations between them are de-
tected by our algorithm; whereas no other distributed dead-
lock detection algoritlhm known to us tries to provide the
whole structuire of a deadlock set. This nice property not
only makes deadlock resolution much easier, but also makes
optimum deadlock resolution possible. The issues of dead-
lock resolution are discussed in [3]. Again in [3], both the
deadlock detection algorithm and the deadlock resolution
algorithm for the p-out-of-q model are modified to detect
deadlocks in the AND-OR model.

[l] G. Bracha and S. Toueg. Distributed deadlock detection.
Distributed Computing, 2:127 - 138, 1987.

[2] K. M. Chandy and J. Misra. Distributed deadlock detection.
ACM Trans. on Computer Systems, 1(2):144 .- 156, May
1983.

[3] S. Chen, Y. Deng, and P. C. Attie. Deadlock dletection and
resolution in distributed systems based on locally constructed
wait-for graphs. Tech. Rep., School of Compuiter Science,
Florida International University, August 1995.

[4] A. N. Choudhary, W. H. Kohler, J. A. Stamnkovic, and
D. Towsley. A modified priority based probe algorithm for
distributed deadlock detection and resolution. .IEEE Trans.
on Soft. Eng., 15(1):10 - 17, January 1989.

[SI V. D. Gligor and S. H. Shattuck. On deadlock detection in
distributed systems. IEEE Trans. on Soft. Eng., SE-6(5):435
- 440, September 1980.

[6] T. Herman and K. M. Chandy. A distributed procedure to de-
tect AND/OR deadlocks. Department of Computer Science,
Tech. Rep., TR-LCS-8301, University of Texas. Austin, TX,
February 1983.

[7] S. T. Huang. A distributed deadlock detection algorithm
for CSP-like communication. ACM Trans. on Programming
knguages and Systems, 12(1): 102 - 122, January 1990.

[8] E. Knapp. Deadlock detection in distributed database. ACM
Computing Surveys, 19(4):303 - 328, December 1987.

[9] A. D. Kshemkalyani and M. Singhal. Efficient detection and
resolution of generalized distributed deadlocks. IEEE Trans.
on Soft. Eng., 20(1):43 - 54, January 1994.

[lo] L. Lamport. Time, clocks, and the order of events in a
distributed system. CACM, 21:558 - 565, July 1978.

[111 J. Misra and K. M. Chandy. A distributed graph algorithm:
Knot. detection. ACM Trans. on Programming Languages
and Systems, 4(4):678 - 686, October 1982.

[I21 N. Natarajan. A distributed scheme for detecting communi-
cation deadlocks. IEEE Trans. on So$. Ertg., SE-12(4):531

[131 R. Obermarck. Distributed deadlock detection. ACM Trans.
on Database Systems, 7(2):187 -208, June 198'2.

[14] M. Roesler and W. A. Burkhard. Resolution of deadlocks in
object-oriented distributed systems. IEEE Trans. on Com-
puters, 38(8):1212 - 1224, August 1989.

[I51 M. K. Sinha and N. Natarajan. A priority base.d distributed
deadlock detection algorithm. IEEE Trans. on Soft. Eng.,
SE-I 1(1):67 - 80, January 1985.

[16] J. Wang, S. Huang, and N. Chen. A distributed ;algorithm for
detecting generalized deadlocks. Tech. Rep., Dlepartment of
Computer Science, National Tsing-Hua University, 1990.

- 537, April 1986.

619

