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Abstract 

We present a new algorithm for detecting generalized 
deadlocks in distributed systems. Our algorithm incremen- 
tally constructs and reduces a wait-for graph (WFG) at an 
initiator process. This WFG is then searched for deadlock. 
The proposed algorithm has two primary advantages: First, 
it avoids sending messages along the edges of the global 
wait-for graph (WFG), thereby achieving a worst-case mes- 
sage complexity of 2n, where n is the number of processes 
in the WFG. Since information must be obtained from ev- 
ery process reachable from the initiatol; this is optimal to 
within a constant factol: All the existing algorithms for the 
same problem construct a distributed snapshot of the WFG. 
As this involves sending messages along the edges of the 
WFG, the best available message complexity among these 
algorithms is 4e - 2n + 21, which is O ( n 2 )  in the worst 
case, where e and 1 are the number of edges and leaves in 
the WFG, respectively. Second, since the information about 
a detected deadlock is readily available at the initiatorpro- 
cess, rather lhan distributed among dizerent processes, it 
significantly !rimplifies the task of deadlock resolution, and 
helps to reduce system overhead associated with the reso- 
lution. The time complexity of our algorithm is also better 
than or equal to the existing algorithms. 

1. Introduction 

A deadlock is a system state in which every process in 
some group requests resources from other processes in the 
group, and then waits indefinitely for these requests to be 
satisfied. Because distributed systems are vulnerable to 

*This work was supported in part by Rome Laboratory, U.S. Air 
F30602-93-C-0247, by NASA under Grant 

___- 

Force under Contract No. 
No. NAGW-4080, and by NSF under Grant No. CDA-9313624. 

1063-6927/!36 $5.00 0 1996 IEEE 
Proceedings of the 16th ICDCS 

Miami, FL 33 199 
{ deng,attie,weisun} .cs.fiu.edu 

deadlocks, the problems of deadlock detection and resolu- 
tion have long been considered important problems in such 
systems. 

Existing deadlock detection algorithms can be classified 
in terms of their underlying resource request models [8], 
such as AND [2,4, 5, 13, 14, 151, OR [2,7, 11, 121, AND- 
OR [6], andp-out-of-q [ l ,  9,161 models. In an AND model, 
all requested resources are required. In an OR model, any 
one of a number of requested resources is sufficient. Finally, 
in the p-out-of-q model, requests are issued for q resources, 
and the issuing process remains blocked until any p of these 
are acquired. A distributed deadlock based on thep-out-of-q 
model is called a generalized deadlock. When p = q (resp. 
p=l), we obtain the AND (resp. OR) model as a special 
case of the p-out-of-q model. 

To detect deadlocks in a distributed system, the global 
state of the system is commonly modeled by a logical struc- 
ture called the wait-for graph (WFG). A WFG is a directed 
graph, in which a vertex represents a process, and an edge 
(i, j) indicates that process i has requested a resource from 
process j, and j has not granted the request. As indicated 
in [9], detecting generalized deadlocks in distributed sys- 
tems is a difficult problem, because it requires detection of 
a complex topology in the global WFG. Among the dis- 
tributed deadlock detection algorithms in the literature, only 
[l ,  9, 161 address this problem. All three algorithms use 
a distributed snapshot-based approach. The basic idea be- 
hind these algorithms can be briefly described! as follows: 
They have either two distinct phases [l, 161, or one phase 
consisting of two overlapped sweeps [9], of message trans- 
mission. In the first phase (or the outward sweep), they 
record a snapshot of the WFG, which is distributed among 
all the processes in the system. In the second phase (or the 
inward sweep), they reduce the distributed WFG by simu- 
lating the unblocking of those processes whose requests can 
be granted. 

The proposed algorithm is based on a new approach that 
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differs from the above. A process initiates the algorithm 
when it blocks on a resource request. Instead of recording a 
distributed snapshot, the algorithm incrementally constructs 
an “image” of the WFG, which is stored locally at the ini- 
tiator process. The algorithm is composed of a sequence of 
stages. In the first stage, the initiator process i sends an in- 
quiry (called FORWARD) message to each process j which 
it is waiting for, and then each j reports its state informa- 
tion to i via a BACKWARD message; in the second stage, i 
sends a FORWARD message to each process k which some 
j which was involved in the first stage is waiting for, and 
then each k reports its state information to z via a BACK- 
WARD message. This process continues stage-by-stage in 
a similar manner. At each stage, the new processes are those 
processes that the processes of the previous stage are waiting 
for. At the end of each stage, the WFG is locally (at process 
i) updated (based on the new information from the received 
BACKWARDS), reduced, and checked for the existence of 
a deadlock. 

This new algorithm may be seen as a “hybrid” algo- 
rithm, with both centralized and distributed aspects. We 
argue that it combines the simplicity and efficiency (with 
respect to the total number of messages generated) of a cen- 
tralized algorithm, and the flexibility and robustness of a 
distributed algorithm. A single instance of our algorithm 
is executed in an essentially centralized fashion, with the 
initiator being responsible for collecting system state infor- 
mation, constructing a WFG, and reducing it to detect a 
deadlock. Consequently, in addition to a simpler structure, 
each instance of our algorithm only requires 2n messages 
in the worst case, compared to the best available message 
complexity [9] of 4e - 2n+21 among the existing algorithms 
[1, 9, 161, where n, e, and 1 are the number of nodes, edges, 
and leaf nodes in the WFG, respectively. The latter com- 
plexity is O ( n 2 )  in the worst case. Since information must 
be obtained from every process involved in a deadlock, the 
message complexity of our algorithm is optimal to within 
a constant factor. Also, worst case time complexity of our 
algorithm is better than or equal to the existing algorithms. 
(See Section 5 for detailed analysis.) 

From the global view of the system, however, our al- 
gorithm is a distributed algorithm in nature. There is no 
designated central controller in our system, as in a typical 
centralized algorithm, to control the detection of deadlocks 
in the system. All processes in our algorithm play the same 
symmetric role. Any process may initiate deadlock detec- 
tion as necessary, and all instances of deadlock detection are 
executed independently and concurrently, as in other dis- 
tributed deadlock detection algorithms. Furthermore, any 
distributed deadlock detection algorithm will typically have 
many instances active at any one time. Thus the centralized 
aspect of our algorithm does not lead to a communication 
bottleneck around the initiator(s). 

Another primary advantage of our approach is its support 
to deadlock resolution. Because the WFG is constructed at 
the initiator, deadlock resolution is simplified because the 
global state information required is locally available at the 
initiator process rather than distributed among all the in- 
volved processes. Thus the choice of which process(es) 
to abort in order to break the deadlock can be made lo- 
cally by the initiator, rather than requiring another round of 
communication. In addition, the availability of the global 
information makes it possible to construct optimal or near 
optimal deadlock resolution strategies, e.g. to minimize the 
number of processes needed to be aborted in order to break 
the deadlock. Based on the proposed deadlock detection al- 
gorithm, we have developed a simple and efficient deadlock 
resolution algorithm, which requires only a slight increase 
in message complexity. [3] Unlike [1, 9, 161, the proposed 
algorithm does not require any storage whose size is pre- 
determined by the size of the system. Hence, it is suitable 
for use in an environment where processes are created and 
terminated dynamically. 

The rest of the paper is organized as follows. In Section 2,  
the model of computation is defined. In Section 3, the dead- 
lock detection algorithm is provided. Section 4 provides a 
proof of correctness, and section 5 analyzes the complexity 
of the algorithm. We conclude the paper in Section 6. 

2. Model of computation 

A distributed system is composed of n processes, each 
of which has a system-wide unique identity. Each pair 
of processes is connected by a logical channel [9]. There 
is no shared memory in the system. Processes communi- 
cate by message passing, and message delays on a chan- 
nel are arbitrary but finite. A destination process receives 
messages in the same order as they are sent by a source 
process. Messages are neither lost nor duplicated, and 
are transmitted error-free. There are two types of mes- 
sages. Computation messages are generated by the un- 
derlying computation of processes in the system, includ- 
ing REQUEST, REPLY, CANCEL and ACK messages; 
control messages are generated by the execution of the 
deadlock detection algorithm, including FORWARD and 
BACKWARD messages which will be discussed in Section 
3. 

The following data structure is used at a process i, i = 
l...n, to keep track of its state. We assume that the logical 
time at each process is maintained as specified in [lo]. 

t,: the current logical time at i, 
t-block,: the logical time at which i last blocked, 
outZ: the set of processes for which i is waiting, 
inZ: the set of tuples < k ,  t-blockk >, where 

k is a process waiting for i and 
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tblock, is the logical time at which k sent its 
request to i, 
the number of replies required fori  to unblock. pi: 

Each process is either active or blocked. An active 
process can s,end both computation and control messages. 
A blocked process, however, can only send control mes- 
sages or ACK messages, i.e., its underlying computation is 
suspended. A. process i becomes blocked after it sends api- 
out-of-q, request (via REQUEST messages) to q-qi other pro- 
cesses. It records these processes in outi. When a process 
j receives a REQUEST message from process i, it records 
< i, t-block-qi > in inj and immediately sends an ACK back 
to process i to acknowledge the receipt of the request '. A 
REPLY message denotes the granting of a request. When 
j sends a =,PLY to i, < i,t-blocki > i s  removed from 
inj. The process i becomes unblocked (goes from blocked 
to active state:) only when any pi out of the qi requests are 
granted, namely, i receives REPLY messages from at least 
pi out of the q; processes. When i unblocks, it sends CAN- 
CEL messages to withdraw the remaining (qi - pi) requests 
it had sent. 

Each REQUEST, REPLY, or ACK message is times- 
tamped with the requester's logical clock value [ IO] at which 
it blocked, so that an ACK or a REPLY can be matched with 
its corresponding request. ACK or REPLY messages with 
unmatched tirnestamps are discarded. 

When j is in out;, we say process i is waiting for process 
j or there is a wait.-for edge from i to j .  The set of 
processes in outi is called the dependent set of process 
i. If pi # 0, then process i is blocking on a pi-out-of- 
loutil request. When i receives a REPLY message from 
j ( E  outi), j is removed from outi and pi is decreased by 
one. (Ioutil -. pi) remains a constant. When pi is decreased 
to zero, i unblocks. 

A process is deadlocked when it belongs to a generalized 
deadlock set vvhich is defined as follows. 

Definition 1 A generalized deadlock set (deadlock set in 
short) is a set S of processes in the system which satisfies 
the following conditions: 
(1) V i  E S, z blocks on a pa-out-of-q, request, 
(2)Vi  E S, 32% E out,, C, 2 S A  IC,/ 2 qz -pa + 1, and 
(3) V i  E S, V j  E C,, ~ I Q  REPLY message is under transmis- 
sion from j to i. 

We use a data structure called WFG to model a distributed 
system. 

Definition 2 14 wait-for graph WFG < N, E > is a directed 
graph, where a vertex in N models a process, and an edge in 

'Notice that this ACK can he the same acknowledgement used by the 
underlying network to guarnntee reliable communication channels. There 
is no need to send a separate message to deliver such information. 

E from vertex i to vertex j indicates that i blocks and waits 
for j to grant some resource. Every vertex i has two pieces 
of information: i.p and i.q, which indicates that i blocks on 
a ipout-of-i.q request, where i . q  is the outdegree of a. 

A process j is said to be reachable from process i iff 
there is a directed path in the WFG from i io j. 

Definition 3 Ageneralized tie (tie in short) is a subgraph 
< Nt,  Et > of a WFG, where Nt is a nonempty set of 
vertices, and Et is the set of wait-for edges between the 
vertices in Nt, such that each i E Nt has at least i.q - i . p f  1 
outgoing edges in Et. 

3. An Efficient Distributed Deadlock Detection 
Algorithm 

Whenever a process i blocks on a pi-out-of-q-qi request, 
it initiates an instance of deadlock detection (i is called the 
initiator of the instance). Every instance of the algorithm is 
treated independently from others. The control .messages of 
a particular instance of the algorithm are identifiled by times- 
tamps which consist of the initiator's identity and the logical 
time at which the initiator blocked. Control mlessages be- 
longing to different instances of the algorithm have different 
timestamps, and thus can be distinguished. We will thus fo- 
cus our attention on a single instance of deadlock detection 
in the ensuing discussion. The following preconldition needs 
to be satisfied for the algorithm to be invoked: 

Precondition for invocation of the algorithm: 
The precondition for i to invoke the algorithm is that i is 
blocked on a pi-out-of-qi request and has received an ACK 
message from every process j in its dependent set. 

This is to ensure that < i,t-blocki > has already been 
recorded in inj. The precondition is necessary to guarantee 
that the proposed algorithm will detect every deadlock in the 
system. The initiator i will then incrementally construct a 
data structure called W FG;, which will be used for deadlock 
detection. 

3.1 Outline of the Algorithm 

The proposed algorithm consists of a series of similar 
stages. In the first stage, the initiator i sends a FOR- 
WARD message to every process j E outi. When j 
receives the FORWARD, it sends the current values of 
t-blockj, outj, inj, andpj viaaBACKWARDmessageback 
to i. When i receives the BACKWARD, it expands W F G ,  
by inserting a vertex j and edges associated ,with j into 
W FGi. After i receives all BACKWARD messages sent by 
the processes in outi, the algorithm enters the second stage. 
At the second stage, the same process is repeated between i 
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and the processes in outj for every j E out;. This process 
continues stage-by-stage in a similar manner. At the end of 
each stage, a reduction is performed to W F G ,  to remove 
those edges that will not belong to any tie and those vertices 
that are unreachable from the initiator; deadlock detection is 
then attempted by searching for a tie in the reduced W FGi. 
The algorithm terminates in one of the following three cases: 
(a) A tie is found in W F G ; ,  (b) all outgoing edges of vertex 
i are removed during the reduction, and (c) all processes 
reachable from i have been inserted into W F G ;  and no tie 
is found in WFG,.  A deadlock is detected only in case (a). 
W FG; is deleted and the memory space is released in case 
(b) or (c). 

3.2 Definitions and conventions 

We first define the data structure used to store WFGi.  
(Note: The data structure described here plays a different 
role from the one defined in Section 2.) A vertex j in WFGi  
is represented by a tuple < j . t ,  j . m t ,  j.in, j .p  >. 

The rule for constructing W F G i  is as follows: 
When the initiator i receives a BACKWARD message 
(t-blockj, outj, inj, p j )  from a process j ,  it inserts a 
new vertex j into W F G i ,  with the following assignments: 

j .t  := t-blockj; 

j.in := inj; and 
3.p := pj. 

j.out := outj;  

loutj I and j . p  specify that process j blocks on a j.p-out- 
of-loutjl request when j .p  > 0 (Definition 2) .  

Definition 4 (1) An edge ( j ,  k) belongs to WFG; if j and 
k are two vertices in W F G i  and k E j.out. ( 2 )  There are 
two types of edges in W F G ; :  An edge ( j ,  k )  is a matched 
edge if < j , j . t  >E k.in; otherwise, it is an unmatched 
edge. 

(j, I C )  is a matched edge in W F G ;  if and only if the 
wait-for relation recorded at vertex j and the waited-by re- 
lation recorded at vertex k refer to the same request. All 
unmatched edges must be removed from W F G ; .  The rules 
for removing an unmatched edge ( j ,  I C )  are as follows: (1) 
Remove k from j . m t ,  (2) decrease j . p  by one, and (3) set 
j.mt to empty if j.p is decreased to zero (i.e., remove all 
outgoing edges of j from WFG;) .  

Definition 5 A matched edge ( j ,  I C )  in W F G i  is a reducible 
edge if k.out = 0. 

A reducible edge ( j ,  k )  means the request from j to 
k is grantable. Therefore, all reducible edges should also 
be removed from W F G ;  because they will not contribute 
to a deadlock. The rules for removing a reducible edge 

( j ,  I C )  are as follows: (1) Remove k from j.out, (2) decrease 
j . p  by one, (3) set j.out to empty if j . p  is decreased to 
zero (which will cause the edges incident to j to become 
reducible), and (4) remove the new reducible edges created 
in (3) recursively. 

Definition 6 A vertex j (J’ # i) in W F G i  is an invalid 
vertex if there is no directed path from i to j in W F G i .  

We remove invalid vertices from W F G ;  and put them in 
Pool, which is a data structure consisting of invalid vertices 
removed from W F G ; .  Initially, Pooli is empty. 

3.3 The algorithm 

A more formal description of the algorithm is presented 
below. The initialization of the proposed algorithm is com- 
posed of three steps: (1) W F G ;  is created at the initia- 
tor a ,  containing only one vertex i, where i.t := t-blocki, 
i.out := mti, i.in := in i ,  and2.p := pi ;  (2) Newi := out,; 
and (3 )  Pooli := 0.  New; is the set of new vertices which 
will be inserted into W FGi at the next stage. 

Each stage of the algorithm can be divided into the fol- 
lowing five steps: 

1. For every j E Newi, if it is in Pooli, then remove it 
from Pool; and insert it into WFG,;  otherwise, send 
a FORWARD message to process j .  

2. When i receives a BACKWARD message from j ,  a new 
vertex j is inserted into WFGi.  (The edges associated 
with j are inserted automatically.) After i receives all 
BACKWARD messages sent by the processes in N e w ,  
go to the next step. 

3. (a) Remove all unmatched edges from W FG; . 
(b) Remove all reducible edges from W F G ; .  
(c) Remove all invalid vertices from W F G ;  and 

Newi. 

4. New, = ( C j E N e w , j . m t )  - WFGi.N,  where 

5. One of the following actions is taken: 

WFG;.N is the set of vertices in WFG,. 

(a) If there is a tie in W F G i ,  a deadlock is detected 
and the algorithm terminates. 

(b) If i.p = 0, the algorithm terminates, with no 
deadlock detected. 

(c) If Newi = 0 and there is no tie in W F G ; ,  the 
algorithm terminates, with no deadlock detected. 

(d) Otherwise, go to the next stage. 

When a process j receives a FORWARD message from 
the initiator i, it responds simply by sending a BACKWARD 
message (t-blockj, inj, out j ,p j )  to i. 
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4. Correctness of the Algorithm 

It suffices to prove correctness by considering only a 
single instance of the algorithm. Without loss of generality, 
assume that i is the initiator. Due to space limitations, only 
a proof sketch is presented here. The detailed formal proof 
is provided in [ 31. 

We first introduce the notations and conventions used in 
the proof. For the purpose of the correctness proof only, 
we introduce T as the global physical (or real) time of the 
system, in contrast to the logical rime t used in the algorithm. 
It should be noted that our algorithm does not depend on a 
global (physical time) clock. 

Tj : the physical time at which process j sends a BACK- 
WARD message to the initiator i .  

Rj : the last p j  -out-of-qj request issued by j before Tj. 

Lemma 1 If a matched edge ( j ,  k )  is added to WFGi  dur- 
ing the execution of the algorithm, then no REPLY message 
for Rj is sent from k to j before Tk . 

Pro08 We establish the contrapositive of the lemma. Let 
t-block3(R3) denote the logical time at which j blocked 
immediately before issuing the request R3 . Since R3 is the 
last request issued by j before T3, the variable j.t will be 
set to t-block3(R3) upon receipt by i of the BACKWARD 
message sent by j (by construction of the algorithm). Now 
suppose k sends a reply to R3 before time Tk. Upon sending 
this reply, k reimoves i: j, t-block3((R3) > from ink. There 
are now two caises. 

Case 1: k does not receive another request from j before 

Then, the ink field of the BACKWARD message that k 
sends to j will not contain a tuple of the form < j, t > (for 
some value t) .  Upon receipt by i ,  k.in will be assigned this 
value of ink. Since k.i,n and j . t  are assigned to exactly once 
during the construction of WFGi,  it follows, by definition 4, 
that WFGi  will never contain a matched edge ( j ,  k ) .  

Case 2: k receives another request from j before T k  . 
Call this request Ri. Then, the ink field of the BACK- 
WARD message that k sends to j will contain the tuple 
< j ,  t-blockj(R;) >, where t-blockj(R;) denotes the logi- 
cal time at which j blocked immediately before issuing the 
request Ri, and no other tuples with j as the first element. 
Upon receipt by i, k.in will be assigned this value of ink. 
Since the receipt by j of IC‘s reply to Rj occurs between 
the first time j blocked (immediately before issuing Rj) and 
the second time j blocked (immediately before issuing R;), 
we have t-blockj(Rj) < t-blockj(Ri), by Lamport’s clock 
condition [lo].. Since ji.t is set to t-blockj(Rj) (see above), 

Tk. 

and t-blockj(Rj) # t-blockj(Ri), we have, again by def- 
inition 4, that W F G ;  will never contain a matched edge 

In both cases we have established the contrapositive, and 
U 

( j ,  IC). 

so the lemma is established. 

Theorem 1 No false deadlock is detected by the proposed 
algorithm. That is, every tie in the WFG construlcted by the 
algorithm corresponds to a deadlock set in the system. 

Pro08 The proposed algorithm detects a deadlock only 
when there is a tie in WFG,. We prove by contradiction that, 
if a tie G is found in WFG,,  then every process iinvolved in 
G never unblocks. Without loss of generality, assume that j 
is the first process in G which unblocks (on R3). Let N3 be 
the set of vertices in G that j has edges outstanding at. Every 
vertex in NJ represents a process in the system for which j is 
waiting at time T3. There are at least (q3 -p3 + 1) vertices in 
N3 because G is a tie. Hence, before process j unblocks on 
R3, at least one process in N3 must send a REPLY message 
to it. Suppose k is such a process. By Lemma 1, process 
k sends the REPLY to process j after Tk. But process k 
is blocked on Rk at Tk because k E G. Before process IC 
sends the REPLY, k has to unblock on Rk first. That is in 
contradiction with the assumption that j is the first process 
in G to unblock. 0 

Theorem 2 Every deadlock in the system will be detected 
by the proposed algorithm. That is, there will be a tie in 
the WFG constructed by some instance of the algorithm for 
every deadlock set in the system. 

Pro08 Let G be a tie in the underlying system. For all j E G, 
j blocks on a pj-out-of-qj request. Let i be the 1,ast process 
in G to initiate an instance of deadlock detection. We prove 
by contradiction that i detects a deadlock. Suppose i does 
not detect a tie in WFGi .  Let W F G ;  be the final WFGi  
before the deadlock detection initiated by i terminates. 

Consider an arbitrary vertex j of G. Since j is a member 
of a tie G ,  j will be blocked forever (after the physical time 
at which G was formed, and in the absence of de,adlock res- 
olution). This is easily seen by considering the first member 
j ’  of G to unblock, and noting that (by definition 3), there 
is at least one member j ”  of G which must re:ply to j”s 
outstanding request before j ’  can unblock. Since j ”  is itself 
blocked, j ”  must unblock before replying, which contradicts 
the fact that j ‘  is the first member of G to unblock. 

Now if i is the last process in G to initiate deadlock de- 
tection, then G must already be formed when i initiates this 
instance, by virtue of our precondition (given on page 3) for 
invoking the deadlock detection algorithm. Since: every pro- 
cess in G is blocked forever from this moment (in physical 
time) onwards, all state variables (i.e., ti, t-block,, outi, ini) 
of all processes in G will remain unchanged. From this fact 
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and the construction of our algorithm (in particular, none of 
the edges in G will be eliminated by step 3 of the algorithm) 
we see that: 

If an arbitrary process j of G is a process of 
W F G f ,  then so is k ,  for every k E G such that j 
waits for k.  Furthermore, ( j ,  k )  is a matched edge 
in w F G ~ .  (*) 

Suppose Gf =< Nf, Ef > is a sub-graph of WFG, f ,  
where N* is the set of vertices in both WFG! and G, and 
Ef is the set of edges between vertices in Nf. Nf # 0 
because i E Nf. For all j E Nf, since j is a process in 
the tie G ,  there are at least (q,  - p,  + 1) processes in G for 
which j is waiting. By (*) above, each of these processes is a 
vertex in Gf , and the wait-for edges from process j to these 
processes are also in Gf . That is, j has at least (4, - p ,  + 1) 
edges outstanding at other vertices in Gf. Hence, Gf is a 
tie, which contradicts the assumption that there is no tie in  
WFG, .  Hence the theorem holds. 0 

5. Performance Analysis 

In this section, we consider the time, message, data- 
traffic and space complexities of the proposed algorithm. 
In calculating the message complexity, we only consider 
logical message transfers. Based on the type of underlying 
communication network, a logical message may result in 
the transfer of a number of physical messages, which is 
not an issue here. Assume that message delay on a logical 
channel (one hop) is 1 unit of time. It is important to notice 
that a WFG is a logical structure. An edge in the WFG 
does not correspond to a physical communication channel. 
Therefore, whether a message is sent along an edge of the 
WFG has no affect on the cost of transmitting the message. 
For simplicity, we consider, in the following analysis, that a 
message transmisstion between any pair of processes in the 
system has the same cost. 

The message complexity is the number of messages trans- 
mitted; the time complexity is the time it takes for the initiator 
to detect a deadlock; the datu-tr@c complexity is the total 
length of data transmitted by the algorithm. For simplicity, 
consider the length of a control message in [ 1,9,16] as 1 unit. 
We now analyze the proposed algorithm. Consider a system 
depicted by W F G ,  with n processes, e wait-for edges and a 
diameter of d, and suppose every process is reachable from 
the initiator i .  Each process in W F G ,  receives at most one 
FORWARD message and sends at most one BACKWARD 
message in a single instance of the algorithm. The number of 
FORWARD (or BACKWARD) messages is not greater than 
n. Hence, the worst-case message complexity is 2n. The 
proposed algorithm is composed of a series of stages. Let 
H ( j )  denote the stage number when j sends a BACKWARD 

to the initiator. H ( j )  equals to the length of the shortest path 
from i to j in WFG,. Thus, H ( j )  5 d, which implies that 
the number of stages of the algorithm can not be greater than 
d. Each stage takes two (hops). Hence, the worst-case time 
complexity of the proposed algorithm is 2d. The worst-case 
data-traffic complexity of the proposed algorithm is e + 272, 
which is still better (by a constant factor) than the best result 
(4e - 2n + 21) of the other three algorithms. The detailed 
analysis for the data-traffic complexity is provided in [3]. 

Looking at Table 1, we see that the proposed algorithm is 
comparable to the algorithms given in [l, 9, 161 in terms of 
the time complexity and the data-traffic complexity. In terms 
of message complexity however, the message complexity of 
the proposed algorithm is O(n) ; the message complexities of 
thealgorithmsin[1,9,16]areallO(e)(= O(n2)intheworst 
case). This is the first deadlock detection algorithm to our 
knowledge with message complexity linear in the number 
of processes of the system, i.e., optimal to within a constant 
factor. Although the data-traffic complexity of our algo- 
rithm is comparable to the other algorithms, we remark that 
the reduced message complexity of our algorithm reduces 
the overhead associated with message creation, transmis- 
sion, and receipt, which are significant in a practical sense, 
considering the very small-sized messages used in [ I ,  9, 161. 
For example, because a message in [ 1, 9, 161 contains only 
several integers, the message header may be much larger 
than the message body. 

The worst-case time, message, and data-traffic complex- 
ities are often unreached in our algorithm. The algorithm 
may terminate (due to the detection of a tie or due to the 
reduction of the initiator) before every process reachable 
from the initiator gets involved in the deadlock detection. 
Therefore, the average message, time, and data-traffic com- 
plexities are expected to be better than the worst-case com- 
plexities. Unlike our algorithm, the algorithms in [1, 9, 161 
require the involvement of every process reachable from the 
initiator for every instance of the algorithm, and thus require 
corresponding message transfers. 

In algorithms [ 1, 91, the memory space needed by each 
process to store the snapshots for different instances of dead- 
lock detection is O(n2). Therefore, the total space required 
is O(n3). In our algorithm, no snapshot needs to be stored 
at any process. The initiator requires at most O(n2) space 
to store the constructed WFG. In the worst case, when all 
the n processes initiate deadlock detections simultaneously, 
0(n3)  space in all is needed. Thus our algorithm is compa- 
rable to the other algorithms in its space complexity. Unlike 
[ l ,  9, 161, our algorithm does not require any array whose 
size is determined by n, and hence is suitable for use in 
an environment where processes are created and terminated 
dynamically. 
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Number of' Messages Sent I 4e 
I Delav I 4cl I 3 d + l  I 2d ~ -T ~~ 2d ~ 

6e 1 4e-2n+21 I 

Table I. Performance comparison between our and existing algorithms. Given a WFG, n = nuniber of 
processes, 1 = number of leaf processes, e = number of edges, d = diameter. 

6. Conclusion and Discussion References 

We have presented a new algorithm for detecting 
generalized-deadlock in distributed systems, and proved its 
correctness. Our approach differs from the existing algo- 
rithms in that, instead of using distributed snapshot, our 
algorithm is based on the idea of locally constructing a wait- 
for graph at an initiator. Instead of using the diffusion com- 
putation to propagate control messages level-by-level from 
the initiator to ,all reachlable processes, our algorithm lets the 
initiator communicate directly with those processes. Under 
this new approach, our algorithm combines the simplicity 
and efficiency of centralized algorithms, and the flexibility 
and robustness of distributed ones. It is shown that the pro- 
posed algorithm requires only 2n messages in the worst case, 
compared to the best message complexity, 4e - 2n -+ 21, of 
the existing algorithms (which is O(n2) in the worst case), 
where n, e and 1 are the number of vertices, edges and leaves 
of the WFG, respectively. Its time complexity is better than 
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An equally important contribution of the algorithm is that 
it significantly eases the task of deadlock resolution in dis- 
tributed systems. For every deadlock set in the system, a 
corresponding tie will be present in the WFG constructed by 
some instance of the algorithm. Not only deadlocked pro- 
cesses but also the wait-for relations between them are de- 
tected by our algorithm; whereas no other distributed dead- 
lock detection algoritlhm known to us tries to provide the 
whole structuire of a deadlock set. This nice property not 
only makes deadlock resolution much easier, but also makes 
optimum deadlock resolution possible. The issues of dead- 
lock resolution are discussed in [3]. Again in [3], both the 
deadlock detection algorithm and the deadlock resolution 
algorithm for the p-out-of-q model are modified to detect 
deadlocks in the AND-OR model. 
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