
E�cient Deadlock Detection in Distributed SystemsShigang Chen, Yi Deng, Cyril Orji and Wei SunSchool of Computer ScienceFlorida International UniversityMiami, Florida 33199AbstractThe performance of a deadlock detection scheme,in terms of number of message transmission and thesize of the messages, is an important concern in dis-tributed systems. In this paper, we propose an in-cremental approach for deadlock detection, which candramatically improve the performance of previouslypublished centralized and hierarchical deadlock detec-tion schemes. Two deadlock detection algorithms, acentralized and a hierarchical, are proposed. Thesealgorithms are capable of detecting all deadlocks anddetecting no false deadlock. Correctness proofs anddetailed performance analysis are provided.1 IntroductionFor distributed systems, the performance of a dead-lock detection algorithm, in terms of number of mes-sage transmission required and the size of the mes-sages, is an important concern, because it directly con-tributes to the load of, and has great impact on theperformance of the entire system in which the dead-lock detection algorithm is deployed [8].Generally speaking, deadlock detection algorithmsfor distributed systems can be classi�ed into threeclasses: centralized, hierarchical and distributed. Hi-erarchical deadlock detection represents a good com-promise between centralized and distributed deadlockdetection algorithms [9]. On one hand, the hierarchi-cal solutions do not have the problems of single pointfailure and communication congestion around controlsites as in centralized deadlock detection algorithms.On the other hand, comparing to distributed dead-lock detection algorithms [1, 2, 3, 6, 7, 10] they havesimpler control structure, require much less messagetransmission for deadlock detection, and allow simplerdeadlock resolution strategies [5].In hierarchical deadlock detection algorithms [4, 5],sites are grouped as clusters based on resource ac-cess patterns, and clusters are organized in a hier-

archical fashion. In each cluster, a designated con-trol site is responsible for detecting deadlock withinthe cluster using a centralized algorithm. The con-trol site accomplishes this by collecting system statusinformation from its descendant sites, constructing acluster resource graph (RG) (also often called wait-for graph (WFG)), and detecting directed cycle(s) inthe graph. For the global system, a site is designatedas the central control site. The central control siteis responsible for detecting inter-cluster deadlocks byperiodically collecting inter-cluster status informationfrom its immediate descendant cluster control sites,and constructing inter-cluster RG in a similar central-ized fashion (the central controller and its immediatedescendant cluster controllers form a cluster represent-ing the entire system).The performance of a hierarchical deadlock detec-tion algorithm, in particular, highly depends on itsunderlying centralized deadlock detection algorithm.In the previous proposed algorithms [4], every timea cluster control site initiates a new round of dead-lock detection, every site in the cluster must send thecomplete status information about the site in orderfor the control site to construct a RG that re
ects thestate of the cluster. This complete status informa-tion not only includes the status changes occurred be-tween the last and the current rounds of detection, butalso include the entire history of resource allocationsand requests, as well as the status of the transactions(processes) at the site. Consequently, the deadlockdetection algorithms requires transmitting large-sizedmessages.In this paper, we propose an incremental ap-proach for deadlock detection in distributed systems,which can dramatically reduce communication cost incentralized and hierarchical deadlock detections. We�rst present a new centralized deadlock detection algo-rithm. In this algorithm, the control site maintains aRG, which records the history of wait-for and holdingrelations between the transitions (processes) and re-sources in the system (or cluster). Every time the



control site initiates a new round of deadlock detec-tion, each site in the system only sends the necessarystatus changes at the site occurred between the lastround and the current round of deadlock detection tothe control site. Because each site only sends statuschanges (which may be none) to the control site, ouralgorithm dramatically reduces the size of the mes-sages sent, and may reduce the number of messageneeded as well. Correctness proofs and performanceanalysis of the algorithm are provided. Followed theabove discussion, we then present a hierarchical dead-lock detection algorithm by combining our new ap-proach with a similar hierarchical algorithm as in [4].We show that with a straightforward addition to ourcentralized algorithm, a low cost hierarchical deadlockdetection algorithm is produced.The rest of the paper is organized as follows: InSection 2, the new centralized deadlock detection al-gorithm and its correctness proofs are provided, fol-lowed by its performance analysis in Section 3. Thehierarchical deadlock detection algorithm is presentedin Section 4. We conclude the paper in Section 5.2 An E�cient Deadlock DetectionSchemeIn this section, an e�cient centralized deadlockalgorithm based on the idea of Imprecise ResourceGraph (IRG), which supports the incremental ap-proach for deadlock detection, is �rst presented. Thediscussion about the algorithm is followed by correct-ness proofs. The algorithm serves as the basis of thehierarchical deadlock detection algorithm to be dis-cussed in Section 4.It is assumed that a distributed system is composedof a collection of sites (machines) with local mem-ory and CPU connected by a communication network.Transactions and resources are spread over all sites inthe system. For simplicity and without losing gener-ality, we assume that each transaction resides at onesite, and it acquires one resource at a time. Everysite and every transaction have a unique identi�cationcalled Site ID and Trans ID, respectively. It is furtherassumed that communication channels are error free.2.1 The algorithmAs a centralized deadlock detection scheme, our al-gorithm shares the same characteristics of other cen-tralized algorithms, namely, a designated control siteis responsible for deadlock detection. The control site

has the knowledge of all other sites in the system. Peri-odically, the control site initiates a new round of dead-lock detection by broadcasting a message to all othersites. Upon receiving the message, each site reportsits local information to the control site. Once the in-formation from all the sites are received, the controlsite constructs a global Resource Graph (RG) (such agraph is called a demand graph in [4]), and tries todetect directed cycle in the RG. However, a problemwith previously proposed algorithms, e.g. [4], is thatevery time the control site initiates a deadlock detec-tion, every site has to send the complete local informa-tion, e.g. the entire local RG, to the control site, eventhough part of the information has been sent to thecontrol site in the previous rounds of detection, and/orpart of the information sent does not contribute to thedetection of the deadlock. Consequently, these algo-rithms su�er from large communication overhead interms of both number of messages sent and the size ofthe messages.The key di�erence between our algorithm and thosein [4] is that, in our algorithm, the control site keepsa RG, called Imprecise RG (IRG), which contains thedeadlock detection information collected in the previ-ous rounds of detections, and only partially re
ects thereal status of the system (see discussion below). Ev-ery time a new round of detection is initiated, a siteonly sends the minimal update information (which hasnot been reported before) to the control site, whichin turn uses the information to incrementally updatethe IRG. No same piece of information will be senttwice, and certain classes of information, which aretransmitted (possibly more than once) in the existingalgorithms, e.g. [4], are never transmitted in our algo-rithm. Therefore, our algorithm dramatically reducesthe communication overhead.De�nition 1 (1) A RG is a directed graph composedof two classes nodes, transactions or resources. Anedges from a resource R to a transaction T indicatesthat T is holding R; an edge from a T to a Rmeans T iswaiting for R. (2) For a transaction node T in the RG,the set of its incoming edges is called its holding set(HSet for short); an edge in the set is called a HEdge.Its outgoing edge, if any, is called its waiting-for edge(WFEdge for short) 1.Generally speaking, there are four types of eventsthat may change a RG (or WFG) in deadlock detec-tion:1Since a transaction requests one resource at a time, thetransaction node has at most one outgoing edge.



1. A transaction requests a resource, and the re-source is granted to the transaction immediately.2. A transaction requests a resource and the resourcecan't be granted immediately (The transaction isthus blocked).3. A resource is granted to a blocked transaction(The transaction is unblocked).4. A transaction releases one or more resources itholds.In our algorithm, however, only the informationabout type 2 and 3 events are stored at a local site andmay be transmitted to the control site (one of the rea-sons that improves the performance of our algorithm,see Section 4 for details).The name of IRG comes from the fact that awaiting-for (or holding) edge in IRG doesn't neces-sarily mean that there is a waiting-for (or holding) re-lationship between the corresponding transaction andresource (because such a relation may be outdated atthe time of observation). On the other hand, when atransaction is waiting-for (or holding) a resource, theremay not be such a waiting-for (or holding) edge in theIRG (because the true status information is not sentto the control site).Each site maintains two tables called ForePool andBackPool, which are used to store status informationabout the transactions local to the site. The poolshave the following structure and are manipulated inthe following way (Pool update rules):1. A transaction T is blocked if it requests a re-source, but fails to get it immediately (type2 event). Whenever this happens, an entry< trans id; wfedge; hset > is inserted into theBackPool, where trans id is the identi�cation ofT, wfedge represents the resource waited by Tand hset represents the set of resources currentlyheld by T. Such an entry is called a BlockEntry.2. Whenever a transition is unblocked due to theresource it is waiting for is granted (type 3 event),one of the following actions are taken:2.1. If there is a BlockEntry in the ForePoolor BackPool with the same trans id, remove theBlockEntry.2.2. Otherwise, insert an entry < trans id > tothe ForePool. Such an entry is called an Un-blockEntry.Clearly, the above rules guarantee that for eachtransaction T, there is at most one entry in the

ForePool. The same properties holds for theBackPool as well. The proposed deadlock detectionalgorithm is described as follows:Algorithm 1 1. Periodically, the control site initi-ates a round of deadlock detection by broadcast-ing an (initiation) message to all sites.2. Whenever a site S receives the initiation message,the following actions are taken:2.1. If the ForePool at S is not empty, send theForePool to the control site; otherwise, simplysend the Site ID of S to the control.2.2. Replace the ForePool with the content ofthe BackPool, and set the BackPool empty. Thereply message sent by a site to the control site iscalled a SiteMessage.3. When the control site receives replies from all thesites, for each ForePoolmessage (FPM ) receivedit takes the following steps:3.1.For each BlockEntry < trans id; wfedge; hset >in FPM , use the wfedge and hset to replace theWFEdge and Hset of the node associated withtrans id in the IRG.3.2. For each UnblockEntry < trans id > in theFPM , remove the WFEdge of the transactionnode associated with trans id in the IRG.4. Search for directed cycle in the IRG. The systemis deadlocked i� there is a directed cycle in theIRG.2.2 Correctness ProofIn this sub-section, we show that the deadlock de-tection algorithmpresented in the previous sub-sectionis capable of detecting all deadlocks and no false dead-lock is detected.The following lemmas demonstrate the propertiesof the IRG at the control site after the SiteMessagesfrom every sites in the system are received (i.e. noSiteMessage is under transmission), and all the up-dates of the graph de�ned in Algorithm 1 are com-pleted.Lemma 1 If a transaction node T has a WFEdge inthe IRG, the last status information about T receivedby the control site must be a BlockEntry of T ; if T hasno WFEdge in the IRG, the last status informationabout T received must be an UnblockEntry.



Proof: A direct consequence of the algorithm. 2Lemma 2 For a transaction node T in the IRG, if Thas a WFEdge, one of the following two statementsmust be true:1. There is an UnblockEntry in the ForePool of thesite where T resides.2. i) T is still blocked; ii) the WFEdge of T re
ectsa true waiting-for relation; and iii) every HEdgein HSet of T re
ects a true holding relation.Proof: We show that (2) must be true if (1) isfalse. Suppose there is no UnblockEntry of T in theForePool at the site where T resides. Because T hasa WFEdge in the IRG, the last status information ofT received by the control site must be a BlockEntry(Lemma 1). Since no SiteMessage is on the wayto the control site and no UnblockEntry of T is inthe ForePool, T hasn't yet been unblocked. There-fore, the WFEdge of T re
ects a true waiting-for re-lation. Because T remains to be blocked after the lastBlockEntry of T received by the control site, T can'trelease any resource it holds. So All the HEdges inits HSet are also true. 2Lemma 3 If an UnblockEntry is created in the sys-tem before a BlockEntry, regardless whether or notthey are created by the same transaction, and regard-less whether or not they are created at the same site,the UnblockEntry will arrive at the control site beforethe BlockEntry, or they will arrive in the same roundof deadlock detection.Proof: Suppose an UnblockEntry A is created before aBlockEntry called B, where A and B may be createdby the same or di�erent transactions.Case 1: A and B are created in the same site. Ac-cording to the algorithm, an UnblockEntry is alwaysput in the ForePool and a BlockEntry is always putin the BackPool. The ForePool will be sent to thecontrol site before BackPool. So A will be sent to thecontrol site at least one round of deadlock detectionbefore B.Case 2: A and B are created at di�erent sites.When B is put in the BackPool of some site, A hasbeen put in the ForePool of some other site, or hasbeen already sent to the control site. Based on thealgorithm, in the former, A will be sent to the controlsite in the current or next round of deadlock detection;but the earliest time B will be sent is the next round.Therefore, the lemma is true. 2

Theorem 1 If the system is not in a deadlock, therewill be no direct cycle in IRG.Proof: Assume the system is not in a deadlock, andthere is a directed cycle, T0 ! R0 ! T1 ! ::: !Tn�1 ! Rn�1 ! T0, in the IRG.First, we show that there is at least one transactionin the cycle having an UnblockEntry in the ForePoolof the site where it resides. That is, Lemma 2 (1) istrue for at least one transaction in the cycle, becauseotherwise, from Lemma 2 (2), every transaction in thecycle is blocked; and all the edges in the cycle repre-sents the true (waiting-for or holding) relations, whichmeans the system in in the deadlock, thus contradictsthe assumption.Second, without losing generality, assume transac-tion T0 has an UnblockEntry U0 in ForePool, andT0 creates U0 at time t0, we further show that everytransaction in the cycle must has an UnblockEntry inthe ForePool of the site where it resides. Accordingto Lemma 1, the last status information about T1 re-ceived by the control site is a BlockEntry (called B1).Let B1 be created at time t1. According to Lemma 3,B1 must be created before U0. At time t1, R0 is heldby T1 (see the rule for updating BackPool). BeforeU0 can be created at time t0, R0 has to be acquiredby T0 to unblock T0. For this to happen, the followingsequence of events must occur during the time period[t1, t0]: (a) T1 is unblocked, so that (b) T1 can releaseR0, and then (c) R0 is granted to T0.When T1 is unblocked, an UnblockEntry called U1is created (see Pool update rules), thus U1 is createdbefore U0. Because the control site hasn't received U1when the cycle in the IRG is detected, U1 must be inthe ForePool of the site where T1 resides. By the sametoken, there are UnblockEntries U2,..,Un for T2 .. Tnin the ForePools at the sites where T2,..,Tn reside,respectively. Furthermore, U(i+1) mod n is created be-fore Ui, i = 0::n� 1. However, this implies that U0 iscreated before itself, thus cause a contradiction.Therefore, the theorem holds. 2Theorem 2 If the system is in deadlock, a direct cy-cle in IRG will be detected within the following tworounds of deadlock detection.Proof: Suppose the system is in deadlock and thedeadlock cycle is T0 ! R0 ! T1 ! ::: ! Tn�1 !Rn�1 ! T0. We show that, once the deadlock isformed, the above cycle appear in the IRG within tworounds of deadlock detection.When the last time Ti, i = 1::n� 1, is blocked be-fore the formation of the deadlock, a BlockEntry BTi



for Ti is created in the BackPool at the site where Tiresides. Since Ti remains to be blocked after BTi iscreated, and its status remains unchanged, accordingto the algorithm, the entry BTi will be send to thecontrol site within two rounds of detection. There-fore, the waiting-for and holding relations between Tiand the resources it waits for and it holds are cor-rectly re
ected in the IRG. This also implies that,if Tj; 0 � j � n � 1, is the transition causing thedeadlock, BTj will also be received by the controlsite within two rounds of deadlock detection after thedeadlock is formed. 23 Performance AnalysisOur algorithm provides a better performance be-cause the IRG at the control site are built incremen-tally instead of built from scratch in every round ofdeadlock detection as in the existing algorithms. Inany round of detection, a site only sends the statuschanges occurred between the last and current roundsof detection. Furthermore, as shown in Section 2, onlypart of the changes will be transmitted to the controlsite. In this section, detailed performance analysisabout our new algorithm is provided, and comparedwith previously published algorithms. The followingnotations and conventions are used in the analysis:R is the average rate the transactions at a site requestresources, that is, there are on average R requestsissued at a site per unit of time.P is the probability that a request is blocked (i.e. notgranted immediately). Such a request is called ablocked request in the sequel. Every occurrence ofsuch an event will create a BlockEntry.Blocking time of the blocked request (or theBlockEntry) is the time interval from the mo-ment the request is issued to the moment the re-quest is granted.T0 is the number of time units between two consecu-tive rounds of deadlock detection.M is the probability for the blocking time of ablocked request to be > 1:5T0.Tb is the expected mean of blocking time.Nt is the average number of transactions at a site ata given instant.

Let's �rst consider the average size of the messagestransmitted between a site and the control site in thesystem.A BlockEntry (or UnblockEntry) will be insertedto BackPool (or ForePool) only when a transactionis blocked(unblocked). No action will be taken eitherwhen a transaction requests a resource and receivesit immediately, or when it releases some resources itholds. Furthermore, when an UnblockEntry A abouta transaction T is created, if there is a BlockEntryB about T in ForePool (or BackPool), then both Aand B will be removed from ForePool (or BackPool).This means a blocked request with short blocking timewill never be known by the control site. Due to theabove reasons, the SiteMessage in our algorithm hasa much shorter average size than traditional central-ized deadlock detection algorithms. A quantitativeanalysis is given below:On average there are R�T0 requests in a site duringeach T0, among which P�R�T0 are blocked requests.This means that P �R�T0 BlockEntries will be cre-ated during each T0. For each BlockEntry created,there will be a corresponding UnblockEntry when theblocked request is granted. The average time for aBlockEntry to stay in the BackPool is 0:5T0, andthe time for the same entry to stay in the ForePoolis T0. So the total average time for a BlockEntryto stay in the Pools is 1.5T0 (Therefore, on aver-age, for a BlockEntry to be sent to the control site,the blocking time of the entry has to be larger than1:5T0). So on average a SiteMessage will consist ofM � P � R � T0 BlockEntries and M � P � R �T0 UnblockEntries (see de�nition for M). For everytransaction, it may have either a BlockEntry or anUnblockEntry in a SiteMessage, but not the both.Therefore, M � P � R � T0 � 1=2Nt. Because thebody of an UnblockEntry only contains Trans ID,the size of an UnblockEntry is a constant c (severalbytes). The size of BlockEntries di�er from transac-tion to transaction and from time to time. Supposethe average size of a BlockEntry is C. The averagesize for SiteMessage isM�P�R�T0(c+C). There-fore, the average SiteMessage size in our algorithm isbound by 1=2Nt(c+ C).However, the actual average SiteMessage size issmaller than the above bound. From the above dis-cussion, the size of SiteMessage depends on theproduction of M and T0. For simplicity, assumethe blocking times of all blocked requests evenly dis-tributed in the interval (0, 2Tb]. This assumption isreasonable because Tb is the average blocking time.In practice, there may be a very small number of



blocked requests whose blocking time is greater than2Tb, but the number is so small that can be negligi-ble. Based on the assumption, it can be derived thatM = 1 � 3 � T0=(4 � Tb). For the above equation,it can be seen that M � T0 will reach its maximumvalue (= Tb=3) when T0 is equal to 2=3Tb. P � R isthe average rate of blocked requests in a site. Nt=Tbis the maximum rate of blocked requests, which onlyoccurs in the case that whenever a transition at a siteis unblocked, it becomes blocked again immediately.P�R � Nt=Tb (normally,P�R� Nt=Tb). Therefore,the average size of SiteMessage isM�P�R�T0(c+C)� (Tb=3)� (Nt=Tb)� (c+ C) = Nt(c +C)=3.Notice that the above result is extremely conser-vative. In practise, the average message size in ouralgorithm should be much smaller than Nt(c + C)=3.Consider the following: (a) it is extremely unlikelythat P � R = Nt=Tb (i.e. Every transaction becomesblocked immediately after it is unblocked); (b) It isreasonable to choose T0 to be larger 4=3Tb, which im-plies 1:5T0 > 2Tb. If so, M � T0 will be much smallerTb=3, because most BlockEntries will be removedfrom the ForePool (or BackPool) before the entrieshave a chance to be moved to the ForePool, and sentto the control site. (Recall that, for a BlockEntriesto be sent to the control site, the blocking time of itscorresponding blocked requests has to > 1:5T0.)Even with the upper bound, this average messagesize is much better than the previously published algo-rithms of the same class, e.g. [4], in which the averagemessage sizes in their two-phase and one-phase algo-rithms are NtC , 2NtC, respectively. Normally c ismuch less than C, thus the average SiteMessage sizein our algorithm is approximately 1/3 of the messagesize in the two-phase algorithm and 1/6 of the one-phase algorithm in the worst case.In terms of the number of messages transmittedduring a round of deadlock detection, our algorithm, inthe worst case, has the same complexity comparing topreviously published algorithms, e.g. the one-phase al-gorithm in [4]. This is because that all the algorithmsin this class follow the same basic framework, that is,in each round, the control site initiates deadlock de-tection by broadcast a message to all other sites, andthey in turn send a SiteMessage to report the sta-tus information at each site. More speci�cally, in theworst case, our algorithm needs 1 broadcast message+ Ns SiteMessages (Ns is the number of sites in thesystem).However, in average cases, our algorithm requiresless number of messages. Recall from our algorithm,if the ForePool at a site S is empty at the time when

the initiation message from the control site is received,S only needs to send its Site ID to the control site.This communication between S and the control sitecan be easily implemented by attaching a 
ag bit inthe Acknowledgement (ACK) (which is required bythe network communication protocol to realize error-free message passing) to the control site. No actualmessage needs to be sent.Therefore, the only time that S needs to send aSiteMessage to its control site is when S's ForePoolis not empty. The ForePool is empty if the fol-lowing conditions are true: (a) The blocking timeof all the BlockEntries in the ForePool of S issmaller than 1:5T0 (this condition ensures that allthe BlockEntries in the ForePool will be removedbefore the receipt of the message from the controlsite); and (b) for every UnblockEntry created, thereis a BlockEntry in either the ForePool or BackPoolwith the same Trans ID (this condition prevent anygenerated UnblockEntry from being added to theForePool). Based on the earlier analysis, if T0 >4=3Tb, there is a large possibility that both of theabove conditions can be satis�ed.4 A Hierarchical Deadlock DetectionAlgorithmA purely centralized algorithm is not desirable tolarge distributed systems, because (1) it may causecommunication congestions around the control site,and (2) the failure of the central control site will dis-able the entire system. For these reasons, hierarchicaldeadlock detection schemes are proposed [4], [5], whiche�ectively remedy the above problems, while havingmuch simpler control structures than distributed dead-lock detection algorithms. Such hierarchical schemesare particularly e�ective if the resource access patternis very localized.In this section, we show that with a trivial addi-tion to our centralized deadlock detection algorithm,our algorithm can be combined with the hierarchicalscheme [4]. However, because the cost of our central-ized algorithm is much smaller than the one in [4],the resulting hierarchical deadlock detection algorithmwill have a much better performance. In the following,we �rst brie
y describe a hierarchical deadlock scheme[4], and then show how to adapt our algorithm to thescheme.In this hierarchical scheme, the sites in a distributedsystem are grouped into a number of clusters basedon the resource access pattern. Periodically, a central



control site is chosen as the control of all the clusters,and a site in each cluster is chosen as the cluster con-trol site.De�nition 2 (1) In the RG of a cluster, a transactionnode T is called an input transaction node (or outputtransaction node) if its WFEdge (or at least one of itsHEdge) connects a resource node in another cluster.(2) A resource node R is called an input resource node(or output resource node) if at least one of its incomingedge is from (or at least one of its outgoing edge is to)another cluster.De�nition 3 For a cluster, its Compressed IRG(CIRG) is de�ned as follows: (1) all the nodes in CIRGare input/output (transaction or resource) nodes; (2)an input node I is in CIRG i� there is a directed pathfrom I to an output node O, and vice versa; (3) Forevery path in (2), there is an edge I ! O in CIRG.An example CIRG is shown in Figure 4.
T1

T2

T3

R1

R2

R3

T1

T3

R1

S S

(a) IRG constructed at the control site S (b) CIRG constructed from (a)Figure 1: An Example of Constructing CIRGDe�nition 4 A waiting-for (holding) edge is calledan inter-cluster edge if it is across two clusters.The hierarchical deadlock detection algorithm is de-scribed as follows:1. The central control site broadcasts an (initia-tion) message to all cluster control sites requestingthem to send their CIRGs and inter-cluster edges,and waits until all information is received.2. When a cluster control site receives the initiationmessage, it(a) performs the deadlock detection algorithmofSection 2 within the cluster, and(b) constructs its CIRG (see below), and sendthe CIRG and its inter-cluster edges to thecentral control site.

3. When the central control site receives replies fromall the cluster control sites, it constructs a RG ofthe whole system using both the CIRGs and inter-cluster edges. The system is deadlocked if thereis a directed cycle in the constructed RG.Based on De�nition 3, to construct CIRG for eachcluster, we need to know the input/output (transac-tion/resource) nodes in the IRG of the cluster. Theinformation about input/output transaction nodes isreadily available in the IRG. However, the informationabout the input/output resource nodes can not be di-rectly derived from the graph. To �nd these nodes,additional information is needed. We �rst have thefollowing de�nition:De�nition 5 A ResourceEntry is de�ned as a tu-ple: < Res ID; Trans ID; In;Out >, where Res IDand Trans ID are resource and transaction identi�-cations, respectively; and In and Out are integers inthe domain of f�1; 0; 1g, where �1 means the resourcenode (represented by Res ID) is no longer an input(In = �1) or output (Out = �1) node, 1 means thenode becomes an input/output node, and 0 means nochange. < Res ID; Trans ID > is called the headerof the entry.De�nition 6Given two ResourceEntries, < R; T; In1; Out1 > and< R; T; In1; Out1 >, their addition "+" is de�ned as< R; T; In1 + In2; Out1 + Out2 >.Consider that a transaction T in site S1 needs aresource R in site S2, and S1 and S2 belong to di�erentclusters. There are four possible relations between Tand R:� T issues a request for R and the request cannotbe granted immediately. This case is representedby a ResourceEntry RE =< R; T; 1; 0 >;� T issues a request for R, and the request is grantedimmediately, represented by RE =< R; T; 0; 1 >;� T is unblocked due to the receipt of R, representedby RE =< R; T;�1; 1 >; and� T releases R, represented byRE =< R; T; 0;�1 >.When one of the above events occurs, the followingaction is taken at site S2:� If there is no ResourceEntry in the ForePool ofS2 with the same header as RE, insert RE to theForePool; or



� if there is an ResourceEntry RE0 in theForePool of S2 with the same header as RE,replace RE0 with RE0 + RE if RE0 + RE 6=<R; T; 0; 0 >, otherwise remove RE0 from the pool.To �ne the input/output resource node of a clus-ter, the cluster control site maintains two variablesfor each resource R, counter[R; I] and counter[R;O].The cluster control site performs the following ac-tion upon the receipt of SiteMessage from eachsite in the cluster: for Each ResourceEntry <R; T; In;Out >, counter[R; I] = counter[R; I] + In,and counter[R;O] = counter[R;O] +Out.The CIRG for the cluster is constructed at the endof each round of deadlock detection in the cluster.During the construction, a resource node R is an inputresource node i� counter[R; I] > 0; and R is an outputresource node i� counter[R;O]> 0.5 ConclusionWe have introduced an incremental approach fordeadlock detection in distributed systems, which cansigni�cantly improve the performance of centralizedand distributed deadlock detection schemes in termsof the number of messages sent, and particularly thesize of the messages transmitted between the sites andthe (system or cluster) control sites. A centralized anda hierarchical deadlock detection algorithms are pre-sented under the approach. Comparing to existing al-gorithms, our algorithms provide better performance,because the RG at the control site(s) is built incre-mentally instead of built from scratch in every roundof deadlock detection as in the existing algorithms. Inany round of detection, a site only sends the statuschanges occurred between the last and current roundsof detection. Furthermore, only part of the changes,which is absolutely necessary for detecting deadlock,will be transmitted to the control site.AcknowledgementsThis work is supported in part by the NationalScience Foundation (NSF) under Grant No. CDA-9313624.References[1] K. M. Chandy and J. Misra. Distributed dead-lock detection. ACM Trans. on Computer Sys.,1(2):144 { 156, May 1983.

[2] A. N. Choudhary, W. H. Kohler, J. A. Stankovic,and D. Towsley. A modi�ed priority basedprobe algorithm for distributed deadlock detec-tion and resolution. IEEE Trans. on SoftwareEng., 15(1):10 { 17, Jan. 1989.[3] V. D. Gligor and S. H. Shattuck. On deadlockdetection in distributed systems. IEEE Trans. onSoftware Eng., SE-6(5):435 { 440, Sep. 1980.[4] G. S. Ho and C. V. Ramamoorthy. Protocol fordeadlock detection in distributed database sys-tems. IEEE Trans. on Software Eng., SE-8(6):554{ 557, Nov. 1982.[5] D. A. Menasce and R. R. Muntz. Locking anddeadlock detection in distributed data base. IEEETrans. on Software Eng., SE-5(3):195 { 202, May1979.[6] R. Obermarck. Distributed deadlock detection.ACM Trans. on Database Sys., 7(2):187 {208,June 1982.[7] M. Roesler and W. A. Burkhard. Resolution ofdeadlocks in object-oriented distributed systems.IEEE Trans. on Computers, 38(8):1212 { 1224,Aug. 1989.[8] M. Singhal. Deadlock detection in distributed sys-tems. IEEE Computer, pages 37 { 48, Nov. 1989.[9] M. Singhal and N. G. Shivaratri. Advanced Con-cepts in Operating Systems. McGraw-Hills, 1994.[10] M. K. Sinha and N. Natarajan. A priority baseddistributed deadlock detection algorithm. IEEETrans. on Software Eng., SE-11(1):67 { 80, Jan.1985.


