Efficient Deadlock Detection in Distributed Systems

Shigang Chen, Yi Deng, Cyril Orji and Wei Sun
School of Computer Science
Florida International University

Miami, Florida 33199

Abstract

The performance of a deadlock detection scheme,
in terms of number of message transmission and the
size of the messages, is an important concern in dis-
tributed systems. In this paper, we propose an in-
cremental approach for deadlock detection, which can
dramatically improve the performance of previously
published centralized and hierarchical deadlock detec-
tion schemes. Two deadlock detection algorithms, a
centralized and a hierarchical, are proposed. These
algorithms are capable of detecting all deadlocks and
detecting no false deadlock. Correctness proofs and
detailed performance analysis are provided.

1 Introduction

For distributed systems, the performance of a dead-
lock detection algorithm, in terms of number of mes-
sage transmission required and the size of the mes-
sages, is an important concern, because it directly con-
tributes to the load of, and has great impact on the
performance of the entire system in which the dead-
lock detection algorithm is deployed [8].

Generally speaking, deadlock detection algorithms
for distributed systems can be classified into three
classes: centralized, hierarchical and distributed. Hi-
erarchical deadlock detection represents a good com-
promise between centralized and distributed deadlock
detection algorithms [9]. On one hand, the hierarchi-
cal solutions do not have the problems of single point
failure and communication congestion around control
sites as in centralized deadlock detection algorithms.
On the other hand, comparing to distributed dead-
lock detection algorithms [1, 2, 3, 6, 7, 10] they have
simpler control structure, require much less message
transmission for deadlock detection, and allow simpler
deadlock resolution strategies [5].

In hierarchical deadlock detection algorithms [4, 5],
sites are grouped as clusters based on resource ac-
cess patterns, and clusters are organized in a hier-

archical fashion. In each cluster, a designated con-
trol site is responsible for detecting deadlock within
the cluster using a centralized algorithm. The con-
trol site accomplishes this by collecting system status
information from its descendant sites, constructing a
cluster resource graph (RG) (also often called wait-
for graph (WFQG)), and detecting directed cycle(s) in
the graph. For the global system, a site is designated
as the central control site. The central control site
is responsible for detecting inter-cluster deadlocks by
periodically collecting inter-cluster status information
from its immediate descendant cluster control sites,
and constructing inter-cluster RG in a similar central-
ized fashion (the central controller and its immediate
descendant cluster controllers form a cluster represent-
ing the entire system).

The performance of a hierarchical deadlock detec-
tion algorithm, in particular, highly depends on its
underlying centralized deadlock detection algorithm.
In the previous proposed algorithms [4], every time
a cluster control site initiates a new round of dead-
lock detection, every site in the cluster must send the
complete status information about the site in order
for the control site to construct a RG that reflects the
state of the cluster. This complete status informa-
tion not only includes the status changes occurred be-
tween the last and the current rounds of detection, but
also include the entire history of resource allocations
and requests, as well as the status of the transactions
(processes) at the site. Consequently, the deadlock
detection algorithms requires transmitting large-sized
messages.

In this paper, we propose an incremental ap-
proach for deadlock detection in distributed systems,
which can dramatically reduce communication cost in
centralized and hierarchical deadlock detections. We
first present a new centralized deadlock detection algo-
rithm. In this algorithm, the control site maintains a
RG, which records the history of wait-for and holding
relations between the transitions (processes) and re-
sources in the system (or cluster). Every time the

control site initiates a new round of deadlock detec-
tion, each site in the system only sends the necessary
status changes at the site occurred between the last
round and the current round of deadlock detection to
the control site. Because each site only sends status
changes (which may be none) to the control site, our
algorithm dramatically reduces the size of the mes-
sages sent, and may reduce the number of message
needed as well. Correctness proofs and performance
analysis of the algorithm are provided. Followed the
above discussion, we then present a hierarchical dead-
lock detection algorithm by combining our new ap-
proach with a similar hierarchical algorithm as in [4].
We show that with a straightforward addition to our
centralized algorithm, a low cost hierarchical deadlock
detection algorithm is produced.

The rest of the paper is organized as follows: In
Section 2, the new centralized deadlock detection al-
gorithm and its correctness proofs are provided, fol-
lowed by its performance analysis in Section 3. The
hierarchical deadlock detection algorithm is presented
in Section 4. We conclude the paper in Section 5.

2 An Efficient Deadlock Detection
Scheme

In this section, an efficient centralized deadlock
algorithm based on the idea of Imprecise Resource
Graph (IRG), which supports the incremental ap-
proach for deadlock detection, is first presented. The
discussion about the algorithm is followed by correct-
ness proofs. The algorithm serves as the basis of the
hierarchical deadlock detection algorithm to be dis-
cussed in Section 4.

It is assumed that a distributed system is composed
of a collection of sites (machines) with local mem-
ory and CPU connected by a communication network.
Transactions and resources are spread over all sites in
the system. For simplicity and without losing gener-
ality, we assume that each transaction resides at one
site, and it acquires one resource at a time. Every
site and every transaction have a unique identification
called Site_ID and Trans_ID, respectively. It is further
assumed that communication channels are error free.

2.1 The algorithm

As a centralized deadlock detection scheme, our al-
gorithm shares the same characteristics of other cen-
tralized algorithms, namely, a designated control site
is responsible for deadlock detection. The control site

has the knowledge of all other sites in the system. Peri-
odically, the control site initiates a new round of dead-
lock detection by broadcasting a message to all other
sites. Upon receilving the message, each site reports
its local information to the control site. Once the in-
formation from all the sites are received, the control
site constructs a global Resource Graph (RG) (such a
graph is called a demand graph in [4]), and tries to
detect directed cycle in the RG. However, a problem
with previously proposed algorithms, e.g. [4], is that
every time the control site initiates a deadlock detec-
tion, every site has to send the complete local informa-
tion, e.g. the entire local RG, to the control site, even
though part of the information has been sent to the
control site in the previous rounds of detection, and/or
part of the information sent does not contribute to the
detection of the deadlock. Consequently, these algo-
rithms suffer from large communication overhead in
terms of both number of messages sent and the size of
the messages.

The key difference between our algorithm and those
in [4] is that, in our algorithm, the control site keeps
a RG, called Imprecise RG (IRG), which contains the
deadlock detection information collected in the previ-
ous rounds of detections, and only partially reflects the
real status of the system (see discussion below). Ev-
ery time a new round of detection is initiated, a site
only sends the minimal update information (which has
not been reported before) to the control site, which
in turn uses the information to incrementally update
the IRG. No same piece of information will be sent
twice, and certain classes of information, which are
transmitted (possibly more than once) in the existing
algorithms, e.g. [4], are never transmitted in our algo-
rithm. Therefore, our algorithm dramatically reduces
the communication overhead.

Definition 1 (1) A RG is a directed graph composed
of two classes nodes, transactions or resources. An
edges from a resource R to a transaction T indicates
that T is holding R; an edge from a T to a R means T is
waiting for R. (2) For a transaction node T in the RG,
the set of its incoming edges is called its holding set
(HSet for short); an edge in the set is called a H Edge.
Its outgoing edge, if any, is called its waiting-for edge
(WFEdge for short) .

Generally speaking, there are four types of events
that may change a RG (or WFG) in deadlock detec-
tion:

1 Since a transaction requests one resource at a time, the
transaction node has at most one outgoing edge.

1. A transaction requests a resource, and the re-
source is granted to the transaction immediately.

2. A transaction requests a resource and the resource
can’t be granted immediately (The transaction is

thus blocked).

3. A resource is granted to a blocked transaction
(The transaction is unblocked).

4. A transaction releases one or more resources it

holds.

In our algorithm, however, only the information
about type 2 and 3 events are stored at a local site and
may be transmitted to the control site (one of the rea-
sons that improves the performance of our algorithm,
see Section 4 for details).

The name of IRG comes from the fact that a
waiting-for (or holding) edge in IRG doesn’t neces-
sarily mean that there is a waiting-for (or holding) re-
lationship between the corresponding transaction and
resource (because such a relation may be outdated at
the time of observation). On the other hand, when a
transaction is waiting-for (or holding) a resource, there
may not be such a waiting-for (or holding) edge in the
IRG (because the true status information is not sent
to the control site).

Each site maintains two tables called ForePool and
Back Pool, which are used to store status information
about the transactions local to the site. The pools
have the following structure and are manipulated in
the following way (Pool update rules):

1. A transaction T is blocked if it requests a re-
source, but fails to get it immediately (type
2 event). Whenever this happens, an entry
< trans_id,wfedge, hset > is inserted into the
Back Pool, where trans_id is the identification of
T, wfedge represents the resource waited by T
and hset represents the set of resources currently
held by T. Such an entry is called a BlockEntry.

2. Whenever a transition is unblocked due to the
resource it is waiting for is granted (type 3 event),
one of the following actions are taken:

2.1. If there is a BlockEntry in the ForePool
or BackPool with the same trans_id, remove the
Block Entry.

2.2. Otherwise, insert an entry < trans_id > to
the ForePool. Such an entry is called an Un-
blockEntry.

Clearly, the above rules guarantee that for each
transaction T, there is at most one entry in the

ForePool. The same properties holds for the
BackPool as well. The proposed deadlock detection
algorithm is described as follows:

Algorithm 1 1. Periodically, the control site initi-
ates a round of deadlock detection by broadcast-
ing an (initiation) message to all sites.

2. Whenever a site S receives the initiation message,
the following actions are taken:

2.1. If the ForePool at S is not empty, send the
ForePool to the control site; otherwise, simply
send the Site_ID of S to the control.

2.2. Replace the ForePool with the content of
the BackPool, and set the BackPool empty. The
reply message sent by a site to the control site is
called a Site Message.

3. When the control site receives replies from all the
sites, for each ForePool message (F P M) received
it takes the following steps:

3.1.

For each BlockEntry < trans_id, wfedge, hset >
in FPM, use the wfedge and hset to replace the
W F Edge and H set of the node associated with
trans_id in the IRG.

3.2. For each Unblock Entry < trans_id > in the
FPM, remove the WF Edge of the transaction
node associated with trans_id in the IRG.

4. Search for directed cycle in the IRG. The system
is deadlocked iff there is a directed cycle in the
IRG.

2.2 Correctness Proof

In this sub-section, we show that the deadlock de-
tection algorithm presented in the previous sub-section
is capable of detecting all deadlocks and no false dead-
lock is detected.

The following lemmas demonstrate the properties
of the TRG at the control site after the Site Messages
from every sites in the system are received (i.e. no
SiteMessage is under transmission), and all the up-
dates of the graph defined in Algorithm 1 are com-
pleted.

Lemma 1 If a transaction node T has a W F Edge in
the TRG, the last status information about T received
by the control site must be a Block Entry of T; if T has
no W F Edge in the IRG, the last status information
about T received must be an Unblock Entry.

Proof: A direct consequence of the algorithm. O

Lemma 2 For a transaction node T in the IRG, if T
has a W F Edge, one of the following two statements
must be true:

1. There is an Unblock Entry in the ForePool of the
site where T resides.

2. 1) T is still blocked; ii) the W F Edge of T reflects
a true waiting-for relation; and iii) every H Edge
in HSet of T reflects a true holding relation.

Proof: We show that (2) must be true if (1) is
false. Suppose there is no Unblock Entry of T in the
ForePool at the site where T resides. Because T has
a W F Edge in the IRG, the last status information of
T received by the control site must be a Block Entry
(Lemma 1). Since no SiteMessage is on the way
to the control site and no UnblockEntry of T is in
the ForePool, T hasn’t yet been unblocked. There-
fore, the W F Edge of T reflects a true waiting-for re-
lation. Because T remains to be blocked after the last
Block Entry of T received by the control site, T' can’t
release any resource it holds. So All the H Fdges in
its H Set are also true. O

Lemma 3 If an Unblock Entry is created in the sys-
tem before a BlockEntry, regardless whether or not
they are created by the same transaction, and regard-
less whether or not they are created at the same site,
the Unblock Entry will arrive at the control site before
the Block Entry, or they will arrive in the same round
of deadlock detection.

Proof: Suppose an Unblock Entry A is created before a
Block Entry called B, where A and B may be created
by the same or different transactions.

Case 1: A and B are created in the same site. Ac-
cording to the algorithm, an Unblock Entry is always
put in the ForePool and a BlockEntry is always put
in the BackPool. The ForePool will be sent to the
control site before BackPool. So A will be sent to the
control site at least one round of deadlock detection
before B.

Case 2: A and B are created at different sites.
When B is put in the BackPool of some site, A has
been put in the ForePool of some other site, or has
been already sent to the control site. Based on the
algorithm, in the former, A will be sent to the control
site in the current or next round of deadlock detection;
but the earliest time B will be sent is the next round.
Therefore, the lemma is true. O

Theorem 1 If the system is not in a deadlock, there
will be no direct cycle in IRG.

Proof: Assume the system is not in a deadlock, and
there is a directed cycle, Ty — Rog — T1 — ... —
Tn—l — Rn—l — To, in the IRG.

First, we show that there is at least one transaction
in the cycle having an Unblock Entry in the ForePool
of the site where it resides. That is, Lemma 2 (1) is
true for at least one transaction in the cycle, because
otherwise, from Lemma 2 (2), every transaction in the
cycle is blocked; and all the edges in the cycle repre-
sents the true (waiting-for or holding) relations, which
means the system in in the deadlock, thus contradicts
the assumption.

Second, without losing generality, assume transac-
tion Tp has an UnblockEntry Uy in ForePool, and
To creates Ug at time to, we further show that every
transaction in the cycle must has an Unblock Entry in
the ForePool of the site where it resides. According
to Lemma 1, the last status information about T; re-
ceived by the control site is a Block Entry (called By).
Let B; be created at time ¢;. According to Lemma 3,
B; must be created before Ug. At time t1, Ro is held
by Ti (see the rule for updating BackPool). Before
Up can be created at time tg, Ro has to be acquired
by Tp to unblock Tp. For this to happen, the following
sequence of events must occur during the time period
[t1, to]: (a) T1 is unblocked, so that (b) 71 can release
Ry, and then (c) Rg is granted to Tp.

When T; is unblocked, an Unblock Entry called U
is created (see Pool update rules), thus U; is created
before Uy. Because the control site hasn’t received U;
when the cycle in the IRG is detected, U; must be in
the ForePool of the site where T} resides. By the same
token, there are Unblock Entries U,,.., U, for Ty .. T,
in the ForePools at the sites where T3,..,T,, reside,
respectively. Furthermore, U(;11) moq n is created be-
fore U;, « = 0..n — 1. However, this implies that Uy is
created before itself, thus cause a contradiction.

Therefore, the theorem holds. O

Theorem 2 If the system is in deadlock, a direct cy-
cle in IRG will be detected within the following two
rounds of deadlock detection.

Proof: Suppose the system is in deadlock and the
deadlock cycle is Tp — Rg — T1 — ... & Tp,_1 —
R, 1 — Tp. We show that, once the deadlock is
formed, the above cycle appear in the IRG within two
rounds of deadlock detection.

When the last time T3, ¢ = 1..n — 1, is blocked be-
fore the formation of the deadlock, a BlockEntry Br,

for T; is created in the BackPool at the site where T;
resides. Since T; remains to be blocked after Br, is
created, and its status remains unchanged, according
to the algorithm, the entry Br, will be send to the
control site within two rounds of detection. There-
fore, the waiting-for and holding relations between T;
and the resources it waits for and it holds are cor-
rectly reflected in the TRG. This also implies that,
if T;,0 < j < n — 1, is the transition causing the
deadlock, Br; will also be received by the control
site within two rounds of deadlock detection after the
deadlock is formed. O

3 Performance Analysis

Our algorithm provides a better performance be-
cause the IRG at the control site are built incremen-
tally instead of built from scratch in every round of
deadlock detection as in the existing algorithms. In
any round of detection, a site only sends the status
changes occurred between the last and current rounds
of detection. Furthermore, as shown in Section 2, only
part of the changes will be transmitted to the control
site. In this section, detailed performance analysis
about our new algorithm is provided, and compared
with previously published algorithms. The following
notations and conventions are used in the analysis:

R is the average rate the transactions at a site request
resources, that is, there are on average R requests
issued at a site per unit of time.

P is the probability that a request is blocked (i.e. not
granted immediately). Such a request is called a
blocked request in the sequel. Every occurrence of
such an event will create a Block Entry.

Blocking time of the blocked request (or the
BlockEntry) is the time interval from the mo-
ment the request is issued to the moment the re-
quest is granted.

To is the number of time units between two consecu-
tive rounds of deadlock detection.

M is the probability for the blocking time of a
blocked request to be > 1.5T5.

Ty is the expected mean of blocking time.

N, is the average number of transactions at a site at
a given instant.

Let’s first consider the average size of the messages
transmitted between a site and the control site in the
system.

A BlockEntry (or UnblockEntry) will be inserted
to BackPool (or ForePool) only when a transaction
is blocked(unblocked). No action will be taken either
when a transaction requests a resource and receives
it immediately, or when it releases some resources it
holds. Furthermore, when an UnblockEntry A about
a transaction T is created, if there is a BlockEntry
B about T in ForePool (or BackPool), then both A
and B will be removed from ForePool (or BackPool).
This means a blocked request with short blocking time
will never be known by the control site. Due to the
above reasons, the Site Message in our algorithm has
a much shorter average size than traditional central-
ized deadlock detection algorithms. A quantitative
analysis is given below:

On average there are R x Tp requests in a site during
each Ty, among which P X R x Ty are blocked requests.
This means that P x R x Ty BlockEntries will be cre-
ated during each Ty. For each BlockEntry created,
there will be a corresponding Unblock Entry when the
blocked request is granted. The average time for a
BlockEntry to stay in the BackPool is 0.5Ty, and
the time for the same entry to stay in the ForePool
is Tp. So the total average time for a BlockEniry
to stay in the Pools is 1.5Tp (Therefore, on aver-
age, for a BlockEntry to be sent to the control site,
the blocking time of the entry has to be larger than
1.5T5). So on average a SiteMessage will consist of
M x P x R x Ty BlockEntries and M x P x R x
To UnblockEntries (see definition for M). For every
transaction, it may have either a BlockEntry or an
UnblockEntry in a SiteMessage, but not the both.
Therefore, M x P x R x Ty < 1/2N;. Because the
body of an UnblockEntry only contains Trans_ID,
the size of an UnblockEntry is a constant c (several
bytes). The size of BlockEntries differ from transac-
tion to transaction and from time to time. Suppose
the average size of a BlockEntry is C. The average
size for Site Message is M x P x Rx To(c+C'). There-
fore, the average SiteMessage size in our algorithm is

bound by 1/2N;(c + C).

However, the actual average SiteMessage size is
smaller than the above bound. From the above dis-
cussion, the size of SiteMessage depends on the
production of M and T,. For simplicity, assume
the blocking times of all blocked requests evenly dis-
tributed in the interval (0, 27;]. This assumption is
reasonable because T} is the average blocking time.
In practice, there may be a very small number of

blocked requests whose blocking time is greater than
2Ty, but the number is so small that can be negligi-
ble. Based on the assumption, it can be derived that
M =1-3xT5/(4 x Ty). For the above equation,
it can be seen that M x T, will reach its maximum
value (= T3/3) when Tp is equal to 2/3T;. P X R is
the average rate of blocked requests in a site. N;/T,
is the maximum rate of blocked requests, which only
occurs in the case that whenever a transition at a site
is unblocked, it becomes blocked again immediately.
PxR < N;/T; (normally, Px R <« N;/T}). Therefore,
the average size of SiteMessage is M x P x RxTo(c+C)
< (Ty/3) x (N4/Tp) x (c+ C) = Ne(c + C)/3.

Notice that the above result is extremely conser-
vative. In practise, the average message size in our
algorithm should be much smaller than N;(c + C)/3.
Consider the following: (a) it is extremely unlikely
that P x R = N;/T} (i.e. Every transaction becomes
blocked immediately after it is unblocked); (b) It is
reasonable to choose T to be larger 4/37}, which im-
plies 1.5Ty > 2T3. If so, M x Ty will be much smaller
Ty/3, because most BlockEntries will be removed
from the ForePool (or BackPool) before the entries
have a chance to be moved to the ForePool, and sent
to the control site. (Recall that, for a BlockEntries
to be sent to the control site, the blocking time of its
corresponding blocked requests has to > 1.5Tp.)

Even with the upper bound, this average message
size is much better than the previously published algo-
rithms of the same class, e.g. [4], in which the average
message sizes in their two-phase and one-phase algo-
rithms are N;C , 2N;C, respectively. Normally c is
much less than C, thus the average SiteMessage size
in our algorithm is approximately 1/3 of the message
size in the two-phase algorithm and 1/6 of the one-
phase algorithm in the worst case.

In terms of the number of messages transmitted
during a round of deadlock detection, our algorithm, in
the worst case, has the same complexity comparing to
previously published algorithms, e.g. the one-phase al-
gorithm in [4]. This is because that all the algorithms
in this class follow the same basic framework, that is,
in each round, the control site initiates deadlock de-
tection by broadcast a message to all other sites, and
they in turn send a SiteMessage to report the sta-
tus information at each site. More specifically, in the
worst case, our algorithm needs 1 broadcast message
+ N, SiteMessages (N; is the number of sites in the
system).

However, in average cases, our algorithm requires
less number of messages. Recall from our algorithm,
if the ForePool at a site S is empty at the time when

the initiation message from the control site is received,
S only needs to send its Site_ID to the control site.
This communication between S and the control site
can be easily implemented by attaching a flag bit in
the Acknowledgement (ACK) (which is required by
the network communication protocol to realize error-
free message passing) to the control site. No actual
message needs to be sent.

Therefore, the only time that S needs to send a
SiteMessage to its control site is when S’s ForePool
is not empty. The ForePool is empty if the fol-
lowing conditions are true: (a) The blocking time
of all the BlockEntries in the ForePool of S 1is
smaller than 1.57p (this condition ensures that all
the BlockEntries in the ForePool will be removed
before the receipt of the message from the control
site); and (b) for every UnblockEntry created, there
is a Block Entry in either the ForePool or BackPool
with the same Trans_ID (this condition prevent any
generated UnblockEntry from being added to the
ForePool). Based on the earlier analysis, if T, >
4/3T,, there is a large possibility that both of the
above conditions can be satisfied.

4 A Hierarchical Deadlock Detection
Algorithm

A purely centralized algorithm is not desirable to
large distributed systems, because (1) it may cause
communication congestions around the control site,
and (2) the failure of the central control site will dis-
able the entire system. For these reasons, hierarchical
deadlock detection schemes are proposed [4], [5], which
effectively remedy the above problems, while having
much simpler control structures than distributed dead-
lock detection algorithms. Such hierarchical schemes
are particularly effective if the resource access pattern
is very localized.

In this section, we show that with a trivial addi-
tion to our centralized deadlock detection algorithm,
our algorithm can be combined with the hierarchical
scheme [4]. However, because the cost of our central-
ized algorithm is much smaller than the one in [4],
the resulting hierarchical deadlock detection algorithm
will have a much better performance. In the following,
we first briefly describe a hierarchical deadlock scheme
[4], and then show how to adapt our algorithm to the
scheme.

In this hierarchical scheme, the sites in a distributed
system are grouped into a number of clusters based
on the resource access pattern. Periodically, a central

control site is chosen as the control of all the clusters,
and a site in each cluster is chosen as the cluster con-
trol site.

Definition 2 (1) In the RG of a cluster, a transaction
node T is called an input transection node (or output
transaction node) if its W F Edge (or at least one of its
HEdge) connects a resource node in another cluster.
(2) A resource node R is called an input resource node
(or output resource node) if at least one of its incoming
edge is from (or at least one of its outgoing edge is to)
another cluster.

Definition 3 For a cluster, its Compressed IRG
(CIRG) is defined as follows: (1) all the nodes in CIRG
are input/output (transaction or resource) nodes; (2)
an input node I is in CIRG iff there is a directed path
from I to an output node O, and vice versa; (3) For
every path in (2), there is an edge I — O in CIRG.

An example CIRG is shown in Figure 4.

(a) IRG constructed at the control site S

(b) CIRG constructed from (a)

Figure 1: An Example of Constructing CIRG

Definition 4 A waiting-for (holding) edge is called
an inter-cluster edge if it is across two clusters.

The hierarchical deadlock detection algorithm is de-
scribed as follows:

1. The central control site broadcasts an (initia-
tion) message to all cluster control sites requesting
them to send their CIRGs and inter-cluster edges,
and waits until all information is received.

2. When a cluster control site receives the initiation
message, it

(a) performs the deadlock detection algorithm of
Section 2 within the cluster, and

(b) constructs its CIRG (see below), and send
the CIRG and its inter-cluster edges to the
central control site.

3. When the central control site receives replies from
all the cluster control sites, it constructs a RG of
the whole system using both the CIRGs and inter-
cluster edges. The system is deadlocked if there
is a directed cycle in the constructed RG.

Based on Definition 3, to construct CIRG for each
cluster, we need to know the input/output (transac-
tion/resource) nodes in the IRG of the cluster. The
information about input/output transaction nodes is
readily available in the IRG. However, the information
about the input/output resource nodes can not be di-
rectly derived from the graph. To find these nodes,
additional information is needed. We first have the
following definition:

Definition 5 A ResourceEniry is defined as a tu-
ple: < Res_ ID,Trans_ID,In,Out >, where Res_ID
and Trans_ID are resource and transaction identifi-
catlons, respectively; and In and Out are integers in
the domain of {—1, 0, 1}, where —1 means the resource
node (represented by Res_ID) is no longer an input
(In = —1) or output (Out = —1) node, 1 means the
node becomes an input/output node, and 0 means no
change. < Res_ID,Trans_ID > is called the header
of the entry.

Definition 6

Given two ResourceEntries, < R, T, Iny, Out; > and
< R,T,Inyi,Out; >, their addition ”+” is defined as
< R,T,Iny + Iny, Outy + Outs >.

Consider that a transaction T in site S; needs a
resource R in site Sy, and S; and S; belong to different
clusters. There are four possible relations between T
and R:

e T issues a request for R and the request cannot
be granted immediately. This case is represented
by a ResourceEntry RE =< R,T, 1,0 >;

e T issues arequest for R, and the request is granted
immediately, represented by RF =< R, T,0,1 >;

e T is unblocked due to the receipt of R, represented
by RE =< R,T,—1,1 >; and

o T releases R,
RE =< R,T,0,—1 >.

represented by

When one of the above events occurs, the following
action is taken at site Ss:

e If there is no ResourceEntry in the ForePool of
So with the same header as RE, insert RE to the
ForePool; or

e if there is an ResourceEntry RE’' in the
ForePool of S; with the same header as RF,
replace RE’' with RE' + RE if RE' + RE #<
R,T,0,0 >, otherwise remove RE’ from the pool.

To fine the input/output resource node of a clus-
ter, the cluster control site maintains two variables
for each resource R, counter|[R, I] and counter|[R, O].
The cluster control site performs the following ac-
tion upon the receipt of SiteMessage from each
site in the cluster: for Each ResourceEntry <
R, T, In,Out >, counter[R,I] = counter[R,I| + In,
and counter[R, O] = counter[R, O] + Out.

The CIRG for the cluster is constructed at the end
of each round of deadlock detection in the cluster.
During the construction, a resource node R is an input
resource node iff counter[R, I] > 0; and R is an output
resource node iff counter[R, O] > 0.

5 Conclusion

We have introduced an incremental approach for
deadlock detection in distributed systems, which can
significantly improve the performance of centralized
and distributed deadlock detection schemes in terms
of the number of messages sent, and particularly the
size of the messages transmitted between the sites and
the (system or cluster) control sites. A centralized and
a hierarchical deadlock detection algorithms are pre-
sented under the approach. Comparing to existing al-
gorithms, our algorithms provide better performance,
because the RG at the control site(s) is built incre-
mentally instead of built from scratch in every round
of deadlock detection as in the existing algorithms. In
any round of detection, a site only sends the status
changes occurred between the last and current rounds
of detection. Furthermore, only part of the changes,
which is absolutely necessary for detecting deadlock,
will be transmitted to the control site.

Acknowledgements
This work is supported in part by the National

Science Foundation (NSF) under Grant No. CDA-
9313624.

References

[1] K. M. Chandy and J. Misra. Distributed dead-
lock detection. ACM Trans. on Computer Sys.,
1(2):144 — 156, May 1983.

[2]

A. N. Choudhary, W. H. Kohler, J. A. Stankovic,
and D. Towsley. A modified priority based
probe algorithm for distributed deadlock detec-

tion and resolution. IEEFE Trans. on Software
Eng., 15(1):10 — 17, Jan. 1989.

V. D. Gligor and S. H. Shattuck. On deadlock
detection in distributed systems. IEEE Trans. on
Software Eng., SE-6(5):435 — 440, Sep. 1980.

G. S. Ho and C. V. Ramamoorthy. Protocol for
deadlock detection in distributed database sys-
tems. IEEE Trans. on Software Eng., SE-8(6):554
— 557, Nov. 1982.

D. A. Menasce and R. R. Muntz. Locking and
deadlock detection in distributed data base. IEEE
Trans. on Software Eng., SE-5(3):195 — 202, May
1979.

R. Obermarck. Distributed deadlock detection.
ACM Trans. on Database Sys., 7(2):187 —208,
June 1982.

M. Roesler and W. A. Burkhard. Resolution of
deadlocks in object-oriented distributed systems.
IEEE Trans. on Computers, 38(8):1212 — 1224,
Aug. 1989.

M. Singhal. Deadlock detection in distributed sys-
tems. IEEE Computer, pages 37 — 48, Nov. 1989.

M. Singhal and N. G. Shivaratri. Advanced Con-
cepts in Operating Systems. McGraw-Hills, 1994.

M. K. Sinha and N. Natarajan. A priority based
distributed deadlock detection algorithm. IEEFE
Trans. on Software Eng., SE-11(1):67 — 80, Jan.
1985.

