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Abstract—Radio frequency identification (RFID) technologies
are making their way into retail products, library books,
debit cards, passports, driver licenses, car plates, medical
devices, etc. The widespread use of tags in traditional ways
of deployment raises a privacy concern: They make their
carriers trackable. To protect the privacy of the tag carriers,
we need to invent new mechanisms that keep the usefulness
of tags while doing so anonymously. Many tag applications
such as toll payment require authentication. This paper studies
the problem of anonymous authentication. Since low-cost tags
have extremely limited hardware resource, we propose an
asymmetric design principle that pushes most complexity to more
powerful RFID readers. Thus, we develop a lightweight technique
that generates dynamic tokens for anonymous authentication.
Instead of implementing complicated and hardware-intensive
cryptographic hash functions, our authentication protocol only
requires tags to perform several simple and hardware-efficient
operations such as bitwise XOR, one-bit left circular shift, and
bit flip. The theoretic analysis and randomness tests demonstrate
that our protocol can ensure the privacy of the tags. Moreover,
our protocol reduces the communication overhead and online
computation overhead to O(1) per authentication for both tags
and readers, which compares favorably with the prior art.

I. INTRODUCTION

Radio frequency identification (RFID) technologies

integrate simple communication, storage and computation

components in attachable tags that can communicate with

readers wirelessly over a distance [1]–[3]. Each tag uniquely

identifies its carrier, which can be a product in a warehouse,

a merchandize in a retail store, an animal in a zoo, or a piece

of medical equipment in a hospital. Active research in recent

years has been continuously expanding the RFID application

scope, [4]–[9], and practical RFID systems are applied to

inventory and logistics management, object tracking, access

control, automatic toll payment, theft prevention, localization,

intelligent transportation systems, etc. The market size of

RFID has reached $8.89 billion in 2014, and is projected to

rise to $27.31 billion after a decade according to a market

research conducted by IDTechEx [10].
The proliferation of tags in their traditional ways of

deployment is introducing a hidden problem: They make their

carriers trackable. Should future tags penetrate into everyday

products and be carried around (oftentimes unknowingly),

people’s privacy would become a serious concern. A typical

tag will automatically transmit its ID in response to the query

from a nearby reader. If we carry tags in our pockets or by

our cars, these tags will give off their IDs to any readers that

query them, allowing others to track us. As an example, for a

person who carries a tag in her purse (a tagged card or a smart

phone that implements tag function), she may be unknowingly

tracked by retailers equipped with readers in the stores to learn

when she visits which product section for how long. For a

person whose car carries a tag (automatic toll payment [11]

or tagged plate [12]), he may be unknowingly tracked over

years by toll booths or others who install readers at locations

of interest to learn when and where he has been. To protect

the privacy of tag carriers, we need to invent ways of keeping

the usefulness of tags while doing so anonymously.

Many RFID applications such as toll payment require

authentication. A reader will accept a tag’s information only

after authenticating the tag and vice versa. What is the

challenge to make authentication anonymous? Let us answer

this question through an example: Consider an RFID tag

for toll payment such as SunPass [11]. Suppose the reader

has access to a database of all secret keys that are pre-

installed in the toll-payment tags. When a vehicle approaches,

the reader has to know which key it should use to perform

authentication. In a typical authentication protocol, the tag

transmits a key identifier (i.e., user ID) to the reader, which

allows the reader to identify the right key. However, the key

identifier, unique to each tag, can be used to identify the

carrier. Unauthorized readers from an adversary can initiate

the authentication process at any chosen locations and obtain

the key identifiers of passing vehicles, which allows them to

track the whereabout of the vehicles. Therefore, anonymous

authentication should prohibit the transmission any identifying

information, such as tag ID, key identifier or any fixed number

that may be used for identification purpose. As a result,

there comes the challenge that how can a legitimate reader

efficiently identify the right key for authentication without any

identifying information of the tag?

The importance and challenge of anonymous authentication

attract much attention from the RFID research community.

Many anonymous authentication protocols have been

proposed. However, all prior work has some potential

problems, either incurring high computation or communication

overhead, or having security or functional concern (will be

explained shortly). Moreover, most prior work, if not all,

employs cryptographic hash functions, which requires

considerable hardware [13], to randomize authentication data

in order to make the tags untrackable. The high hardware
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requirement makes them not suited for low-cost tags with

limited hardware resource. Hence, designing anonymous

authentication protocols for low-cost tag remains an open and

challenging problem [14].

Our contribution: In this paper, we make a fundamental

shift from the traditional design paradigm for anonymous

RFID authentication. First, we release the resource-constrained

RFID tags from implementing any complicated functions (e.g.,

cryptographic hashes). Since the readers are not needed in a

large quantity as tags do, they can have much more hardware

resource. Given the significant capability disparity between the

readers and tags, we propose an asymmetry design principle

which pushes most complexity to the readers while leaving

the tags as simple as possible. More specifically, our protocol

only requires the tags to perform a few hardware-efficient

operations such as bitwise XOR, one-bit left circular shift, and

bit flip, while all other complicated work is done by the readers

or servers. Second, we develop a novel technique to generate

random tokens on demand for anonymous authentication.

Our protocol only requires O(1) communication overhead

and online computation overhead per authentication for both

readers and tags, which is a significant improvement over

the prior art. Hence, our protocol is scalable to large RFID

systems. Finally, extensive theoretic analysis, security analysis,

simulations and statistical randomness tests are provided to

verify the effectiveness of our protocol.

II. PRIOR ART

Prior work on anonymous authentication can be generally

classified to two categories: non-tree-based and tree-based.

A. Non-Tree based Protocols

The Hash-lock [15] takes advantage of random hash

values for anonymous authentication. After receiving an

authentication request from a reader, a tag sends back (r, id⊕
fk(r)), where r is a random number, id is the tag’s ID, k
is a pre-shared secret between the tag and the reader, and

{fn}n∈N is a pseudo-random number function ensemble. The

reader exhaustively searches its database for a tag whose ID

and key can produce a match with the received data. The

hash-lock protocol has a serious efficiency problem that the

reader needs to perform O(n) hash computations on line

per authentication, where n is the number of tags in the

system. Some variants [16]–[19] of hash-lock scheme try to

improve the search efficiency, but they have issues. The OKS

protocol [16] uses hash-chain for anonymous authentication.

The OSK/AO protocol [17], [18] leverages the time-memory

tradeoff to reduce the search complexity to O(n
2

3 ) (still too

large) at the cost of O(n
2

3 ) units of memory. However, both

OKS and OSK/AO cannot guarantee anonymity under denial-

of-service (DoS) attack [20]. The YA-TRAP protocol [19]

makes use of monotonically increasing timestamps to achieve

anonymous authentication. YA-TRAP is also susceptible to

DoS attack, and a tag can only be authenticated once in

each time unit. The DoS attack in OSK/AO and YA-TRAP

is in nature a desynchronization attack, which tricks a tag

into updating its keys unnecessarily and makes it fail to be

authenticated by an authorized reader later.

The LAST protocol was proposed based on a weak privacy

model [21]. Key identifiers are employed to facilitate the

reader to identify the tags quickly. After each authentication,

the reader uploads a new 〈identifier, key〉 pair to the tag.

LAST only requires the reader and tag to compute O(1) hashes

per authentication, but the overhead for the reader to search

a given key identifier is not considered. Moreover, since the

key identifier is only updated after a successful authentication,

the tag keeps sending the same key identifier between two

consecutive successful authentications. Therefore, LAST is

not anonymous in the strict sense. In addition, the process of

uploading a new 〈identifier, key〉 pair to the tag after each

authentication incurs extra communication overhead.

B. Tree based Protocols

Tree-based protocols organize the shared keys in a balanced

tree to reduce the complexity of identifying a tag to O(log n).
However, the tree-based protocols generally require each tag

to store O(logn) keys, which is O(1) for non-tree based

protocols.

In Dimitriou’s protocol [22], the non-leaf nodes of the tree

store auxiliary keys that can be used to infer the path leading

to leaf nodes that store the authentication keys. For each

authentication, the computation overhead for both the reader

and the tag is O(logn), and the tag needs to transit O(log n)
hash values. This protocol is is vulnerable to the compromising

attack since different tags may share auxiliary keys [23], [24].

The ECNP protocol [25] leverages a cryptographic encoding

technique to compress the authentication data transmitted by

tags. ECNP can reduce the computation overhead of the

reader and the transmission overhead of the tag by multifold

compared with Dimitriou’s protocol [22], but they remain

O(logn) due to the use of tree structure. Moreover, ECNP

is not resistant against the compromising attack since the

children of one node in the tree share the same group keys.

The ACTION protocol [24] was designed to be resistant

against the compromising attack. It adopts a sparse tree

architecture to make the keys of each tag independent from

one another. In ACTION, each tag is randomly assigned with a

path key, which is further segmented into link indices to guide

the reader to walk down the tree towards the leaf node that

carries the secret key k of the tag. For each authentication, a

tag needs to compute and transmit O(logn) hashes and the

reader needs to perform O(log n) hashes to locate the shared

key. The key problem of ACTION is that the size of link

indices is too small after segmentation (e.g., 4 bits), rendering

them easy to guess.

III. SYSTEM MODEL AND SECURITY MODEL

A. System Model

Consider a hierarchical distributed RFID system as shown

in Fig. 1. Each tag is pre-installed with some keys for

authentication. The readers are deployed at chosen locations,

responsible for authenticating tags entering their coverage
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Fig. 1: A hierarchical distributed RFID system.

areas. In addition, the readers at each location are connected

to a backend server, serving as a supplement to provide more

storage and computation resources. All backend servers are

further connected to the central server, where every tag’ keys

are stored. Any authorized backend server can fetch the tags’

keys from the central server. Since the keys of each tag are

only stored at the central server, they are synchronized from

the view of different backend servers. Moreover, the high-

speed links connecting the central server, backend servers and

readers make the latency of transmitting small authentication

data negligible. Therefore, a reader, its connected backend

server, and the central server can be thought as single entity,

and will be used interchangeably.

In this paper, we concentrate on low-cost RFID tags,

particularly passive backscatter tags that are ubiquitously

used nowadays. The simplicity of these tags contributes to

their low prices, which in turn restricts their computation,

communication, and storage capabilities. In contrast, the

readers, which are not needed in a large quantity as tags

do, can have much richer resource. Moreover, the backend

server can provide the readers with extra resource when

necessary. The communication between a reader and a tag

works in the request-and-response mode. The reader initiates

the communication by sending a request. Upon receiving the

request, the tag makes an appropriate transmission in response.

We divide the transmissions between the readers and tags

into two types: (1) Invariant transmissions contain the content

that is invariant between any tag and any reader, such as the

beacon transmission from a reader which informs the incoming

tag of what to do next. (2) Variant transmissions contain the

content that may vary for different tags or the same tag at

different times, such as the exchanged data for anonymous

authentication.

B. Security Model

Threat model: An adversary may eavesdrop on any wireless

transmissions made between the tags and the readers. In

addition, the adversary may plant unauthorized readers at

chosen locations, which communicate with passing tags and

try to identify the tag carriers. However, such unauthorized

readers have no access to the backend servers or the central

server since the servers will authenticate the readers before

granting access permissions. In the sequel, a reader without

further notation means an authorized one by default. Moreover,

we assume that the adversary may compromise some tags and

Tag Token Array Token Index

t1 [tk1
1

, tk2
1

, . . . , tkm
1

] pt1
t2 [tk1

2
, tk2

2
, . . . , tkm

2
] pt2

.

.

.
.
.
.

.

.

.

tn [tk1n, tk2n, . . . , tkmn ] ptn

TABLE I: Key table for the preliminary design.

obtain their keys, but it cannot compromise any authorized

readers.

Anonymous model: The anonymous model requires that

all variant transmissions must be indistinguishable by the

adversary, meaning that (1) any variant transmission in the

protocol should not carry a fixed value that is unchanged

across multiple authentications, and (2) the transmission

content should appear totally random and unrelated across

different authentications to any eavesdropper that captures

the transmissions. Therefore, no adversary will have a non-

negligible advantage in successfully guessing the next variant

transmission of a tag based on the previous transmissions [20].

IV. A STRAWMAN SOLUTION

Before moving to our main contributions, we propose a

strawman solution for lightweight anonymous authentication.

A. Motivation

Most prior wok, if not all, employs cryptographic hash

functions to randomize authentication data for the purpose

of keeping anonymity. Implementing a typical cryptographic

hash function such as MD4, MD5, and SHA-1 requires

at least 7K logic gates [13]. However, widely-used passive

tags only have 7K-15K logic gates, of which 2K-5K are

reserved for security purposes [26]. The hardware constraint

necessitates a new design paradigm for lightweight anonymous

authentication protocols that are more supportive for low-

cost tags. The commercial success of RFID tags lies with

their simplicity. Although there is no specification on how

simple these tags should be, it is safe to say that we will

always prefer a solution that achieves the comparable goal with

less hardware requirement. On the other hand, the significant

disparity between the readers and tags points out an asymmetry

design principle that we will follow: push most complexity to

the readers while leaving the tags as simple as possible.

B. A Strawman Solution

Consider an RFID system with n tags t1, t2, . . . , tn, each

pre-installed with an array of m unique random tokens, [tk1i ,

tk2i , . . . , tkmi ] (1 ≤ i ≤ n). Tag ti also has a token index pti
(initialized to 1) pointing to its first unused token. The tokens

and token index of each tag are also stored in the database of

the central server, as illustrated in Table I.

In the sequel, we consider the authentication process

between an arbitrary reader R and an arbitrary tag t having

a token array [tk1, tk2, . . . , tkm] and a token index pt.
To authenticate t, R sends a request to t. Upon receiving

the request, t sends its first unused token tkpt to R. After
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Reader R Tag t
1. Request

2. Token tk

3. Response and tk

pt

pt+1

Fig. 2: Three steps of token-based mutual authentication.

that, t increases pt by 1 to guarantee that the same token

will not be used twice. Otherwise, t will always send the

same token when an unauthorized reader requests a token,

which breaks the anonymity. After receiving the token, R
has to search the token in the database since it does not

know the tag’s identity. Starting from i = 1, R checks if

tkptii = tkpt one by one. If there exists an i ∈ [1, n] such that

tkptii = tkpt, t is successfully authenticated; otherwise, t fails

the authentication. In the former case, R sends back the token

tkpti+1
i to t to authenticate itself, and sets pti = pti+2. Tag t

compares the received token with tkpt to authenticate R, and

increases pt by 1 again. Fig. 2 shows the three steps of the

mutual authentication.

In this approach, the online computation overhead of the tag

is low — only one comparison (requires far less hardware than

implementing a cryptographic hash) per authentication. The

online computation complexity of the reader is O(n) since at

most n comparisons (though one comparison is much cheaper

than computing one hash value) are needed for searching the

received token. The communication overhead for both the

reader and the tag is O(1).
To avoid the leakage of the tag’s identity, the tokens used for

authentication should look random. In addition, each token can

be used only once. Hence, the tag must be replenished with

new tokens after m
2 mutual authentications, e.g., purchasing

new tokens from an authorized branch. Therefore, the tag

should store as many tokens as possible to reduce the

inconvenience caused by token replenishment. A low-cost tag,

however, only has a tiny memory. For example, a passive

UHF tag generally has a 512-bit user memory for storing

user-specific data (tokens in our case). Some high-end tags

with large memory [27], [28] are prohibitively expensive to be

applied in large quantities. As an example, x Sky-ID tags [27]

with an 8KB user memory cost $25 each. We will introduce

the security issues of this design in the next section.

V. DYNAMIC TOKEN BASED AUTHENTICATION PROTOCOL

In this section, we propose our first dynamic Token based

Authentication Protocol (TAP). TAP can produce tokens for

anonymous authentication on demand, and therefore does not

require the tags to pre-install many tokens. However, we will

show shortly that TAP still has some problems, which will be

solved by our final design in the next section.

A. Motivation

Given the memory constraint, each tag can only store

a few tokens. Frequent token replenishment brings about

unacceptable inconvenience in practice. Hence, we want to

invent a way to enable dynamic token generation from the

few pre-installed tokens. In addition, the time for the reader

to search a particular token is O(n) in the preliminary design.

We desire to reduce this overhead to O(1). More importantly,

we hope all advantages of the preliminary design, including no

requirement of cryptographic hash functions, low computation

overhead for the tag, and low communication overhead for

both the reader and the tag, can be retained in our new design.

B. Overview

Let an arbitrary tag t in the system be pre-installed with u
base tokens, denoted by [bt1, bt2, . . . , btu], each being a-bit

long. These base tokens can be used to derive dynamic tokens

for authentication. In addition, we introduce another type of

auxiliary keys called base indicators to generate indicators that

support the derivation of dynamic tokens. Suppose t stores v
base indicators denoted by [bi1, bi2, . . . , biv], each being b-bit

long. Let tk represent the current a-bit token, and ic be the

current b-bit indicator. All the base tokens, base indicators,

token and indictor are also stored at the central server. Our

idea is to let the reader and the tag independently generate

the same random tokens by following the instruction encoded

in the indicator. TAP consists of three phases: initialization

phase, authentication phase, and updating phase, which will

be elaborated one by one.

C. Initialization Phase

The central server stores all tags’ keys in a key table,

denoted by KT . As shown in Table II, each entry is indexed

by the tag index, supporting random access in O(1) time. With

the tag index idx, the keys of t can be found at KT [idx].
When t joins the system, the reader randomly generates

an array of u base tokens [bt1, bt2, . . . , btu], an array of v
base indicators [bi1, bi2, . . . , biv], a token tk and an indicator

ic for t. After that, the reader requests the central server to

store those keys of t in the database. The central server inserts

the keys to the first empty entry in KT . The search process

for an empty entry can be sped up by maintaining a small

table recording all empty entries in KT (e.g., due to tags’

departure). If KT is fully occupied, the central server doubles

its size to accommodate more tags.

To identify a tag based on its token in O(1) time, the central

server maintains a hash table HT , mapping the token of each

tag to its tag index. Let HT consist of l slots. At first, every

slot in HT is initialized to zero. After t joins the system,

the reader computes the hash value h(tk), where the hash

function h(·) yields random values in [1, l], and then puts the

tag index idx of t in the h(tk)th slot of the hash table, i.e.,

HT [h(tk)] = idx (the potential problem of hash collisions

will be addressed shortly). Fig. 3 presents an illustration of

the hash table built for the tokens of five tags.

D. Authentication Phase

The authentication process of TAP is similar to that of the

preliminary design as shown in Fig. 2. One difference is that

the reader can quickly identify the tag from its token using
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Tag Tag Base Token Token Base Indicator Indicator
Index Array Array

1 t1 [bt1
1

, . . . , btu
1

] tk1 [bi1
1

, . . . , biv
1

] ic1
2 t2 [bt1

2
, . . . , btu

2
] tk2 [bi1

2
, . . . , biv

2
] ic2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

n tn [bt1n, . . . , btun] tkn [bi1n, . . . , bivn] icn

TABLE II: Key table stored by the central server for TAP.

tk1

1

tk2 tk3 tk4 tk5

2 4 5 3

Tokens

Hash

Hash Table 0 0 0 0 0

Fig. 3: A hash table used by TAP. The tokens of the five tags

t1, t2, t3, t4, t5 are tk1, tk2, tk3, tk4, tk5, respectively. Each

token is randomly mapped to a slot in the hash table, where

the corresponding tag index is stored.

the hash table. After receiving a token tk from tag t, the

reader first calculates h(tk), and then accesses HT [h(tk)] to

retrieve the tag index of t, which is idx. If the reader finds

idx = 0, it asserts the tag is fake and informs the tag of

authentication failure. Otherwise, the reader refers to KT [idx]
in the key table to fetch the token, and compares it with the

received token tk. Only if the two tokens are identical will

the tag pass the authentication. In case that t is successfully

authenticated, the reader will generate and transmit a new

token to authenticate itself. The generation of tokens with

good randomness requires the reader (more exactly, the central

server) and the tag to update their shared keys synchronously.

E. Updating Phase

To guarantee anonymity, the tokens exchanged between the

reader and the tag should have good randomness. Therefore,

the reader (central server) and the tag need to synchronously

update their shared keys after the current token is used. We

stress that the tag will update its keys once it uses its current

token. Therefore, the same token will never be used in two

consecutive authentications, which fundamentally differs from

LAST [21] where the tag only updates its key identifier after

a successful authentication (which breaks the anonymity).

The tag t relies on its current indicator ic to update its keys.

Fig. 4 shows the structure of an indicator, which includes two

parts: The low-order (b − 2) bits form a selector, indicating

which base tokens/base indicators should be used to derive the

new token/indicator, while the high-order two bits encode the

update pattern. When the updating phase begins, t calculates a
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Fig. 4: The Structure of a b-bit indicator.

1

1

1

1

MSB

LSB

0

0

0

0

bt1

bt2

bt3

bt4

bt5

bt6

yes

yes

yes

no

no

no

tk

1

1

1

1

MSB

LSB

0

0

0

0

bi1

bi2

bi3

bi4

bi5

bi6

yes

yes

yes

no

no

no

ic

update

update
pattern

update

selector

update
pattern

selector

Fig. 5: Left plot: Generation of a new token using the base

tokens and the selector. Right plot: Generation of a new

indicator using the base indicators and the selector.

new token from the base tokens according to the selector. Each

of the low-order u bits (u ≤ b− 2) in the selector encodes a

choice of the corresponding base token: ‘0’ means not selected,

while ‘1’ means selected. For all selected base tokens, they are

XORed to compute the new token. Therefore,

tk =
u⊕

j=1

ic[j]bkj , (1)

where ic[j] is the jth bit in ic (assume one-based indexes are

used) and ⊕ is the XOR operator. The left plot in Fig. 5 gives

an example of token update, where bt1, bt3, and bt5 among

the six base tokens happen to be selected. Similarly, t derives

a new indicator from the base indicators as follows:

ic =
v⊕

j=1

ic[j]bij . (2)

At the server’s side, the same new token and new indicator

can be generated because it shares the same keys with the tag.

In addition, the server also needs to update the hash table.

First, the server sets HT [h(tk)] (the old token) to 0, and after

generating the new token, it sets HT [h(tk)] = idx.
After updating the token and the indicator, the central server

and the tag need to further update the selected base tokens

and base indicators. The update process for any selected base

token or base indicator includes two steps: A one-bit left

circular shift, and bit flip by following the particular 2-bit

update pattern:

1) Pattern (00)2: no flip is performed;

2) Pattern (01)2: flip the jth bit if j ≡ 0 (mod 3);
3) pattern (10)2: flip the jth bit if j ≡ 1 (mod 3);
4) Pattern (11)2: flip the jth bit if j ≡ 2 (mod 3).

Obviously, the ith and jth bits can be flipped together if and

only if i ≡ j (mod 3). This rationale of the updating scheme

is that if the parameters a and b are set properly, any two bits in

a base token or a base indicator have a chance to not be flipped

together, thereby reducing their mutual dependence. We will

provide the formal proof shortly. We emphasize that all keys

are only stored at the central server rather than every single

reader. Hence, the update process of a tag’s keys triggered by

one reader is transparent to other readers (a tag carrier can

only appear at one location at a time.).
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F. Randomness Analysis

As required by our anonymous model, the tokens generated

by TAP should be random and unpredictable. Randomness is

a probabilistic property that should be described in terms of

probability. We first prove the following theorem.

Theorem 1. If a ≥ 2 and a 	≡ 0 (mod 3), there must exist

a positive integer w, where 1 ≤ w ≤ a, such that any two

different bits in one base token will move to positions that

cannot be flipped together after the base token is updated w
times.

Proof: We track two arbitrary bits in the base token btj ,

denoted by random variables X and Y ∈ {0, 1}. Suppose X
and Y are initially located at the pth bit and qth bit of btj (1 ≤
p < q ≤ a), respectively, and w updates are performed (1 ≤
w ≤ a). Two possible cases need to be considered according

to their initial positions:

Case 1: q − p 	≡ 0 (mod 3) and a + p − q 	≡ 0 (mod 3).
First, if q + w ≤ a, X and Y have moved to btj [p + w] and

btj [q+w], respectively. Since (q+w)−(p+w) 	≡ 0 (mod 3),
they cannot be flipped together. Second, if p+w ≤ a < q+w,

then X moves to btj [p+ w] and Y moves to btj [q + w − a].
Because (p+w)− (q+w−a) 	≡ 0 (mod 3), they still cannot

be flipped together. Finally, if p+ w > a, X and Y are now

at btj [p + w − a] and btj [q + w − a], respectively. Similarly,

since (q + w − a) − (p + w − a) 	≡ 0 (mod 3), they cannot

be flipped together. Hence, X and Y will never be flipped

together under such conditions.

Case 2: q−p ≡ 0 (mod 3) or a+p−q ≡ 0 (mod 3) (Note

that by no means will q−p ≡ a+p−q ≡ 0 (mod 3) because

a 	≡ 0 (mod 3)). If q − p ≡ 0 (mod 3) and a − q < w ≤
a− p, X moves to btj [p+w] and Y moves to btj [q+w− a].
Because (p + u) − (q + u − a) 	≡ 0 (mod 3), they move

to positions that cannot flipped together. On the contrary, if

a+p− q ≡ 0 (mod 3), X and Y will not be flipped together

at the beginning, but it becomes possible after w updates as

long as a− q < w ≤ a− p.

Hence, X and Y have a chance to not be flipped together

within a updates regardless of their initial positions.

Before investigating the randomness of the derived tokens,

we first study the randomness of an arbitrary base token during

its updates. We have the following lemma:

Lemma 1. If the update pattern in the indicator is random,

an arbitrary bit in a base token becomes 0 or 1 with equal

probability using our update scheme.

Proof: Let us track one arbitrary bit in btj , denoted

by a random variable X ∈ {0, 1}. Suppose X is currently

located at position btj [i], where 1 ≤ i ≤ a. When

btj is updated, X is left shifted and then flipped with

a probability of 0.25 if the update pattern is random.

Therefore, the transition matrix for X during each update is

P1 =

(
3
4

1
4

1
4

3
4

)
. Using singular value decomposition (SVD)

[29], P1 =

( √
2
2

√
2
2√

2
2 −

√
2
2

)(
1 0
0 1

2

)( √
2
2

√
2
2√

2
2 −

√
2
2

)
.

Hence, the transition matrix for X after w updates is

P1
w =

( √
2
2

√
2
2√

2
2 −

√
2
2

)(
1 0
0 1

2

)w
( √

2
2

√
2
2√

2
2 −

√
2
2

)
=(

1
2 + 1

2

w+1 1
2 − 1

2

w+1

1
2 − 1

2

w+1 1
2 + 1

2

w+1

)
, which converges to(

1
2

1
2

1
2

1
2

)
. Therefore, X becomes 0 or 1 with equal

probability.

Now let us further investigate two arbitrary bits in a base

token, and we have the following lemma:

Lemma 2. If the update pattern in the indicator is random,

two arbitrary bits in a base token are independent under our

update scheme.

Proof: Consider two arbitrary bits, denoted by random

variables X and Y , in base token btj . Suppose X and Y are

initially located at the pth bit and qth bit of btj (1 ≤ p <
q ≤ a), respectively. The transition matrices when X and Y
cannot be flipped together and can be flipped together are

P2 =

⎛
⎜⎜⎝

1
2

1
4

1
4 0

1
4

1
2 0 1

4
1
4 0 1

2
1
4

0 1
4

1
4

1
2

⎞
⎟⎟⎠ , and P3 =

⎛
⎜⎜⎝

1
2 0 0 1

2
0 1

2
1
2 0

0 1
2

1
2 0

1
2 0 0 1

2

⎞
⎟⎟⎠ ,

respectively. Assume that among the w (w ≥ a) updates, X
and Y cannot be flipped together for β times, while can be

flipped together for γ times. We know from Theorem 1 that

β ≥ 1, so we have β ≥ 1, γ ≥ 0, and β + γ = w.

Case 1: γ > 0. We have

P2
β × P3

γ =

⎛
⎜⎜⎝

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⎞
⎟⎟⎠

for any combinations of β and γ.

Case 2: γ = 0. Hence, P2
β × P3

γ = P2
w. Using SVD, we

can calculate

P2
w =

⎛
⎜⎜⎜⎝

1
4 + 1

2

w+1 1
4

1
4

1
4 − 1

2

w+1

1
4

1
4 + 1

2

w+1 1
4 − 1

2

w+1 1
4

1
4

1
4 − 1

2

w+1 1
4 + 1

2

w+1 1
4

1
4 − 1

2

w+1 1
4

1
4

1
4 + 1

2

w+1

⎞
⎟⎟⎟⎠ ,

each entry converging to 1
4 . Therefore, two arbitrary bits in a

base token are pairwise independent.

With the two lemmas above, we can prove the following

theorem regarding the randomness of the derived tokens.

Theorem 2. If the indicator is random, any bit in the derived

token has an equal probability to be 1 or 0, and two arbitrary

bits in the derived token are independent using our update

scheme.

Proof: Consider the ith bit of the derived token tk,

denoted by tk[i] (1 ≤ i ≤ a). We know tk[i] =
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⊕u
j=1 ic[j]bt

j [i]. Let N0 be the random variable of the number

of base tokens whose ith bit is 0, and N1 be the random

variable of the number of base tokens whose ith bit is 1,

subjecting to N0 ≥ 0, N1 ≥ 0 and N0 + N1 = u.

According to Lemma 1 and the independence of different

base tokens, N0 follow the binomial distribution B(u, 0.5),
and P (N0 = x) =

(
u
x

)
×
(
1
2

)u
, where 0 ≤ x ≤ u. To calculate

tk[i], we need to consider two possible cases:

Case 1: N0 = u, namely, there is no 1 in those u bits. In

this case, tk[i] must be 0.

Case 2: 0 ≤ N0 < u. In this case, tk[i] can be 0 or 1. If

tk[i] = 0, it implies that an even number of base tokens whose

ith bit is 1 are chosen, and the conditional probability is:

P (tk[i] = 0 | 0 ≤ N0 < u) =

2N0 ×
�N1

2
�∑

x=0

(
N1

2x

)
− 1

2u − 1

=
2u−1 − 1

2u − 1
.

(3)

Hence, the probability for tk[i] = 0 is:

P (tk[i] = 0) =P (N0 = u)× P (tk[i] = 0 |N0 = u)

+P (0 ≤ N0 < u)× P (tk[i] = 0 | 0 ≤ N0 < u)

=
1

2u
× 1 + (1−

1

2u
)×

2u−1 − 1

2u − 1
=

1

2
.

(4)

Therefore, P (tk[i] = 1) = P (tk[i] = 0) = 1
2 . Moreover,

because tk[i] is determined only by the ith bits of the base

tokens, and two arbitrary bits in a base tokens are independent

according to Lemma 2, two arbitrary bits in the derived token

are also independent.

The randomness analysis of the indicators follows the same

path. The simulation results provided in VIII demonstrate that

the tokens and indicators have very good randomness.

G. Discussion

Memory requirement: To implement TAP, each tag needs

(u + 1)a + (v + 1)b bits of memory to store the keys. Our

simulation results in Section VIII show that a, b, u and v can

be set as small constants. Therefore, the memory requirement

for the tag is small. The memory requirement at the central

server is O(n) for storing the key table and hash table.

Communication overhead: For each authentication, the tag

only needs to transmit one a-bit token, and the reader sends

an authentication request and one a reponse, both incurring

O(1) communication overheads.

Online computation overhead: For each authentication, the

tag generates two tokens and performs one comparison to

authenticate the reader. All operations performed by the tag,

including bit-wise XOR, bit flip, and one-bit left circular shift,

are simple and hardware efficient. The reader (or the server)

needs to calculate two extra hash values: one for the token

received from the tag to identify the tag, and the other for

the new token to update the hash table. Both the tag and the

reader have O(1) computation overhead.

H. Potential Problems of TAP

TAP has three potential problems that should be addressed.

Desynchronization attack: An unauthorized reader can also

initiate an authentication by sending a request. The tag will

reply with its current token, and then update its keys as usual.

As a result, its keys differ from what are stored by the central

server. When the tag encounters a legitimate reader later, it

will probably fail the authentication as its current token does

not match the one stored in the central server.

Replay attack: When performing a desynchronization attack,

the adversary can record the received token. Later it can

retransmit the token to authenticate itself. Since the token is

valid, it will pass the authentication. The above two issues also

exist in the preliminary design.

Hash collision: For two tags in the system, the hash values

of their current tokens may happen to be the same, called

hash collision. In this case, their tag indexes cannot be stored

in the same slot of the hash table. Otherwise, the reader

cannot uniquely identify the tag through the received token.

In addition, since each tag generates its tokens independently,

it may happen that two tags have the same token, called token

collision. Token collision is a special case of hash collision,

and token collision must lead to hash collision. We find

that hash collisions, though the probability is low, can cause

problems to all anonymous RFID authentication protocols

using cryptographic hashes, but the potential problems are

never carefully addressed.

VI. ENHANCED DYNAMIC TOKEN BASED

AUTHENTICATION PROTOCOL

To address the issues of TAP, we propose the Enhanced

dynamic Token based Authentication Protocol (ETAP).

A. Resistance Against Desynchronization and Replay Attacks

Since the desynchronization attack and replay attack can

be carried out simultaneously, we tack them together. Our

objective is two-fold: First, the valid tag can still be

successfully authenticated by a legitimate reader after some

desynchronization attacks; Second, even if the adversary has

captured some tokens from the valid tag, it cannot use those

tokens to authenticate itself.

To make our protocol resistant against desynchronization

attack, we let the central server pre-calculate an array of

k tokens [tk1, tk2, . . . , tkk] from the base tokens, and

any token can be used to identify the tag, where k is a

system parameter that can be set large or small, depending

on the available memory at the server. The reader needs

at least one token to identify the tag, and thus at most

k − 1 desynchronization attacks can be tolerated1. After a

successful mutual authentication, the reader will replenish

the token array with k new tokens. Furthermore, we uses a

two-step verification process to guard against replay attacks.

1An exponentially increasing timeout period can be enforced between
unsuccessful authentications to prevent an adversary from depleting the k

tokens too quickly.
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TABLE III: Key table stored by the central server for ETAP.
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Fig. 6: Our scheme against desynchronization attack.

Table III shows the key table stored by the central server for

implementing ETAP.

Now let us elaborate ETAP with an example given in Fig.

6. Suppose k = 4 and the reader pre-calculates four tokens

tk1, tk2, tk3 and tk4 for tag t with tag index idx. In addition,

suppose the current token stored by t is tk = tk2, which

means t may have been under one desynchronization attack

and the adversary has captured tk1. When the reader receives

tk2 from t, it accesses HT [h(tk2)] to fetch the tag index

idx of the t, and then the token array of t from KT [idx].
The reader then traverses the token array until it finds tk2.

After that, the reader uses the next token in the token array,

tk3 in this example, to authenticate itself. If the received

token happens to be at tail of the array, the reader needs to

derive a new token for authentication. To prevent the adversary

from passing authentication using tk1, we adopt the two-

step verification as illustrated in Fig. 7. In step 3, the reader

includes a b-bit random nonce in its message, and challenges

the tag to send another token. After the tag authenticates the

reader, it updates its indicator by XORing the indicator with

the received nonce (so does the reader), which contributes to

randomizing the indicator as well. After that, the tag derives a

new token based on the updated indicator, and sends it to the

reader for the second verification. Since the adversary does not

know the base tokens and the indicator, it cannot derive the

correct token to pass the second verification, rendering replay

attack infeasible. After the successful mutual authentication,

the reader generates four new tokens to replenish the token

array. In addition, the reader updates HT by setting the slots

corresponding to the old tokens to 0, and setting the slots

corresponding to the new tokens to idx. Note that the token

replenishment is performed off line by the central server,

which is therefore not a performance concern.

Reader R Tag t
1. Request

2.

5. nonce, 

11. Reponse

j=1

u

ic[j]bkjtk =
3.
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v
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j
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j

  ic=
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j
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j
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j=1

v

nonce

1

2

3

Fig. 7: Two-step verification mechanism of ETAP.

B. Resolving Hash Collisions

One candidate approach for reducing hash collisions is to

use a very large hash table, which is however not memory

efficient. We observe that two different tokens causing a

hash collision under one hash function probably will not

have a collision under another hash function. Therefore,

using multiple hash functions provides an alternative way for

resolving hash collisions. A slot in the hash table is called an

empty slot, a singleton slot, and a collision slot respectively, if

zero, one and multiple tokens are mapped to it. Suppose the

size of the hash table is l, and the central server pre-computes

k tokens for each tag. When a single hash function is used,

the probability ps that an arbitrary slot is a singleton slot is

ps =

(
nk

1

)
1

l

(
1−

1

l

)nk−1

≈
nk

l
e−

nk
l . (5)

It is easy to prove that ps ≤ 1
e ≈ 0.368 and it is maximized

when l = nk.

We find that if we apply two independent hash functions

to map tokens to slots, a slot will have a probability of up

to 1 − (1 − 0.368)2 ≈ 0.601 to be a singleton in one of the

two mappings. If we apply r independent hash functions from

tokens to slots, the probability that a slot will be a singleton

in one of the r mappings can increase to 1 − (1 − 0.368)r,

which quickly approaches to 1 with the increase of r. Fig. 8

presents an example showing the advantage of using multiple

hash functions in reducing hash collisions. In the left plot, only

one hash function is used, and there is only one singleton slot,

while in the right plot, three hash functions are employed and

every token is mapped to a singleton slot.

To identify which hash function maps a token of which tag

to a certain singleton slot, that slot needs to store both the

index of that hash function, called hash index, as well as the

tag index. Fig. 9 shows the hash table used by ETAP. For

example, a token tk2 of t2 is mapped by the hash function

h3(·) to the first slot (a singleton slot) of HT . Hence, HT [1]
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Fig. 8: An example of using multiple hash functions to reduce

hash collisions, where the left plot uses one hash function, and

the right plot uses three hash functions. ‘e’ means an empty

slot, ‘s’ means a singleton slot, and ‘c’ means a collision slot.
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Fig. 9: A toy example of hash table used by ETAP. Each slot

stores both hash index and tag index.

records the hash index 3, and the tag index 2. When the reader

receives a token tk from a tag, it computes hi(tk) (1 ≤ i ≤ r)

till it finds the hash index in slot HT [hi(tk)] is equal to i,
where it can obtain the correct tag index of that tag.

Our simulations results in Section VIII demonstrate that the

hash collisions caused by different tokens can be resolved by

using a small number of independent hash functions. However,

the issue of token collisions still exists because any hash

functions map the same token to the same slot. Note that

if token collision happens, the reader cannot identify the tag

since the token is associated with multiple tags. Therefore,

such collided tokens are not useful in nature. The central

server can store those tokens in a CAM (Content Addressable

Memory) [30] or another hash table for quick lookup. When

the reader receives a token, it first checks if it is collided one;

if so, the reader needs to request another token to identify the

tag. We expect that the number of collided token is small as

long as the generated tokens have good randomness.

C. Discussion

Memory requirement: The memory requirement for the tag

to implement ETAP is the same as TAP, i.e., (u+1)a+(v+1)b
bits. The memory requirement at the central server moderately

increases because of the larger key table and hash table for

storing multiple tokens for each tag.

Communication overhead: For each authentication, the tag

only needs to transmit two a-bit tokens, and the reader needs

to send an authentication request, one a-bit token, one b-bit

nonce, and a response, both incurring O(1) communication

overheads.

Online computation overhead: For each authentication, the

tag generates three tokens and performs one comparison to

authenticate the reader. ETAP requires some extra computation

overhead from the reader (server). First, the reader should

check if a received token is a collided one, which requires

Functional Block Cost (logic gates)
2 input NAND gate 1
2 input XOR gate 2.5
2 input AND gate 2.5
FF (Flip Flop) 12
n-byte RAM n× 12

TABLE IV: Estimated costs of typical cryptographic hardware.

O(1) computation. In addition, the reader needs to calculate

at most r hash values to identify the tag, and perform at most

k comparisons to locate the received token in the token array.

Since r and k are small constants, the online computation

overhead for the reader is still O(1).
Hardware cost: The hardware for RFID tags to implement

ETAP consists of a circular shift register, two registers for

storing intermediate results, some XOR gates, and some RAM

to store u base tokens, v base indicators, one token and one

indicator. Table IV provides the estimated costs of typical

cryptographic hardware [26], [31], which will also be used

for estimating the hardware cost of ETAP. The circular shift

register is a group of flip-flops connected in chain, which

requires 12×max(a, b) logic gates. Similarly, the two registers

for intermediate results need 2 × 12 × max(a, b) logic gates.

In addition, it takes 2.5× max(a, b) logic gates to implement

the XOR gates. Finally, the cost of the RAM for storing

the base tokens, base indicators, token and indicator is about
(u+1)a

8 × 12 + (v+1)b
8 × 12 logic gates. Therefore, the total

number of required logic gates for implementing ETAP is

approximately 38.5×max(a, b)+1.5×(u+1)a+1.5×(v+1)b.
For example, if we set a = b = 16, u = 10 and v = 6 (the

reason for this setting will be explained shortly), ETAP only

requires about 1K logic gates.

VII. SECURITY ANALYSIS

ETAP is designed to be resistant against desynchronization

attack and replay attack. In this section, we further analyze

the security of ETAP under both passive and active attacks.

Known token attack: In ETAP, the tokens are transmitted

without any protection, which may lead to a potential security

loophole. The adversary can capture all tokens exchanged

between the reader and the tag, and use them to infer the

base tokens. However, we have the following theorem:

Theorem 3. Cracking the base tokens from the captured

tokens is computationally intractable if a sufficient number

of base tokens are used.

Proof: According to (1), each captured token provides

an equation of the base tokens. Since there are u base

tokens, at least u independent equations are needed to obtain

a solution of the base tokens. However, the adversary has

no clue about the current value of the indicator, which

can have very good randomness as shown in Section VIII.

Therefore, the adversary has no better way than trying each

possible value of the indicator by brute force. Hence, the u
bits in the selector and the 2-bit update pattern give 2u+2

instantiations of each equation. Therefore, the adversary has
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to solve (2u+2)u = 2u(u+2) different equation sets. For each

candidate solution, the adversary derives another token, and

compares it with the captured one to verify if the solution

is correct, which requires another 2u trials. As a result, the

total computation overhead for the adversary to crack the base

tokens is 2u × 2u(u+2) = 2u(u+3), which is computationally

intractable if u is set reasonably large, e.g., u = 10.

Anonymity: Due to the randomness of the tokens (verified in

Section VIII), the adversary cannot associate any tokens with

a certain tag. According to Theorem 2, the probability that

the adversary can successfully guess any bit z of a tag’s next

token based on its previous tokens is

Prob(z′ = z) ≤
1

2
+

1

ploy(s)
, (6)

where z′ is the adversary’s guess of z, and poly(s) is an

arbitrary polynomial with a security parameter s. Therefore,

the adversary does not have a non-negligible advantage in

guess z, and ETAP can preserve the anonymity of tags.

Compromising resistance: In ETAP, the keys of each tag are

initialized and updated independently. Even if all tags except

two are compromised by an adversary, it still cannot infer the

keys of the two remaining tags or distinguish them based on

their transmitted tokens. Therefore, ETAP is robust against

compromising attack.

Forward secrecy: Forward secrecy requires that an adversary

cannot crack the previous messages sent by a tag even if the

adversary obtains the current keys of the tag. ETAP has perfect

forward secrecy because in step 3 of each authentication, the

tag will XOR its current indicator with a random nonce. Even

if the adversary obtains all current keys of the tag, it does not

know the previous values of the indicator without capturing

all random nonces. Therefore, the adversary cannot perform

reverse operations of the updating process to calculate the

previous tokens.

VIII. NUMERICAL RESULTS

In this section, we first verify the effectiveness of our

scheme of using multiple hash functions to resolve hash

collisions. After that, we run randomness tests on the tokens

generated by ETAP.

A. Effectiveness of Multi-hash Scheme

First, we determine the number l of slots needed to

guarantee every token is mapped to a singleton slot when

different numbers of hash functions are employed. The number

of tokens is set to 100 and 1000. We vary the number r of

hash functions from 1 to 10. Under each parameter setting,

we repeat the simulation 500 times and obtain the average

number of required slots. Results in Fig. 10 demonstrate that

l is reduced dramatically with the increase of r at first, and

gradually flattens out when r is sufficiently large. For example,

when r = 1, more than 1400 slots are needed to guarantee

each of the 100 tokens is mapped to singleton slot, about 14

slots per token; in contrast, when r = 10, the 100 tokens only

require 103 slots on average, approximately 1 slot per token.
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Fig. 10: Number of slots needed to guarantee every token is

mapped to a singleton slot when different numbers of hash

functions are used. Left Plot: The number of unique tokens is

100. Right Plot: The number of unique tokens is 1000.
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Fig. 11: Ratio of tests that have no hash collision when r = 10.

Left Plot: The number of slots is 1.5× the number of tokens.

Right Plot: The number of slots is 1.8 × the number of tokens.

Furthermore, we investigate the minimum number of slots

needed to guarantee no hash collision when a fixed number

hash functions are used. We fix r = 10, and vary the number of

tokens from 100 to 1000 at steps of 100. Under each parameter

setting, we run 500 tests and calculate the ratio of tests that

have no hash collision. The left plot of Fig. 11 presents the

results when l is set to 1.5× the number of tokens. In this case,

only a few tests have hash collisions, e.g., when the number

of tokens is 1000, 8 out of the 500 tests have hash collisions.

When l increases to 1.8× the number of tokens, there is no

hash collision any more, as shown in the right plot of Fig. 11.

B. Token-Level Randomness

The effectiveness of ETAP relies on the randomness of the

tokens and indicators. An intuitive requirement of randomness

is that any token (indicator) should have approximately

the same probability to appear. The EPC C1G2 standard

[1] specifies that for a 16-bit pseudorandom generator the

probability of any 16-bit RN16 with value x shall be bounded

by 0.8
216 < P (RN16 = x) < 1.25

216 . To evaluate the randomness

of tokens and indicators generated by ETAP, we set a = b =
16 , respectively produce 216×500 tokens and indicators, and

calculate the frequency of each token or indicator. Note that

we can concatenate multiple tokens to form a longer one if

necessary. In addition, we set u = 10 as suggested by Theorem

3, and vary v = 2, 4, 6 to investigate its impact on randomness.

Fig. 12 presents the results, where the dotted horizontal lines

represent the bounds specified by EPC C1G2. We can see that

the indicators have better randomness with the increase of v,
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Fig. 12: Frequency tests for tokens and indicators generated

by ETAP, where a = b = 16. Each point represents a

token/indicator and its frequency, and the two dotted horizontal

lines represent the required bounds.

while the randomness of tokens is not sensitive to the value

of v since u is already set sufficiently large. In addition, when

u = 10 and v = 4, requiring only 256-bit tag memory, both

the tokens and indicators meet the randomness requirement.

C. Bit-Level Randomness

The National Institute of Standards and Technology (NIST)

provides a statistical suite for randomness test [32], including

monobit frequency test, block frequency test, cumulative sums

test, runs test, test for the longest run of ones in a block,

binary matrix rank test, etc. Due to space limitation, we cannot

explain each test here, and interested readers can refer to

[32] for detail information. Given a sequence of ns bits, it

is accepted as random only if the observed p-value is no less

than a pre-specified level of significance α based on the null

hypothesis H0.
We use two metrics to evaluate the test results: (1) The

proportion of sequences that pass the tests. The acceptable

range is p̂ ± 3
√

p̂(1−p̂)
ms

[32], where p̂ = 1 − α and ms

is the sample size; (2) The uniformity of the observed p-
values. Let X be a random variable with probability density
function fX(x), and Y ∈ [0, 1] be the p-value of X . Since the
cumulative distribution function F (X) of X is monotonically
increasing, we have

P (Y ≤ y) = P (

∫
∞

X

fX(x)dx ≤ y) = P (1− F (X) ≤ y)

= 1− P (X ≤ F
−1(1− y)) = 1− (1− y) = y.

(7)

2Matrix rank test requires that the bit sequence consists of at least 38912
bits. Hence, no test is performed when ns < 38912, which is marked as
N.A..

Hence, Y ∼ U(0, 1). We divide (0, 1) into ten equal-length

subintervals, and denote the numbers of p-values in each

subinterval as F1, F2, ..., F10, respectively. We have

χ2 =
10∑
i=1

(Fi −
ms

10 )
2

9ms

100

∼ χ2(9). (8)

The proof is given in the Appendix. Therefore, we can employ

χ2 test. If the observed statistic of χ2 is χ2(obs), the p-value

is

P (χ2 ≥ χ2
obs) =

∫∞
χ2(obs)

e−x/2x9/2−1dx

Γ(9/2)29/2

=

∫∞
χ2(obs)/2

e−xx9/2−1dx

Γ(9/2)

= igamc(
9

2
,
χ2(obs)

2
),

where igamc (c, z) = 1 −
∫

z

−∞ e−xxc−1dx

Γ(c) . The uniformity is

acceptable if igamc( 92 ,
χ2(obs)

2 ) ≥ 0.0001 [32].

We set a = b = 16, u = 10 and v = 4, and convert the

tokens generated by ETAP to a bit sequence. We vary ns from

1000, 5000, 10000 to 50000. The NIST suggests that α ≥
0.001, so we set α = 0.01. In addition, we set ms = 500, in

the same order of magnitude as α−1. The block size M should

be selected such that M ≥ 20, M > 0.01ns and NB < 100,

where NB is the number of blocks. We set M = 0.02ns, so

NB = ns

M = 50.

The test results are shown in Table V. We can see that

the bit sequence generated by ETAP can pass the randomness

tests under all parameter settings, which again verifies that our

protocol can generate tokens with good randomness.

IX. CONCLUSION

In this paper, we propose a lightweight anonymous

authentication protocol for RFID systems. To meet the

hardware constraint of low-cost tags, we abandon hardware-

intensive cryptographic hashes and follow the asymmetry

design principle. Our protocol ETAP uses a novel technique

to generate random tokens on demand for anonymous

authentication. The randomness analysis and tests demonstrate

that ETAP can produce tokens with very good randomness.

Moreover, ETAP reduces the communication overhead and

online computation overhead to O(1) per authentication for

both the tags and the readers, which compares favorably with

the prior art.
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APPENDIX

PROOF OF (8)

Consider the value of Fi, where 1 ≤ i ≤ 10. Let Zij be

the event that the p−value of the jth (1 ≤ j ≤ ms) sequence,

denoted by Yj , belongs to the ith subinterval [ i−1
10 , i

10 ). In

addition, let 1Zij
be the corresponding indicator random

variable, namely,

1Zij
=

{
1, if Yj ∈ [ i−1

10 , i
10 ),

0, otherwise.

Therefore, we have Fi =
∑ms

j=1 1Zij
. Since Yj ∼ U(0, 1),

we have E(1Zij
) = 1

10 and V ar(1Zij
) = 1

10 × (1 −
1
10 ) = 9

100 . Hence, E(Fi) = ms

10 , and V ar(Fi) = 9ms

100 .

Based on the Central Limit Theorem (CLT), Fi

ms
converges

to Norm( 1
10 ,

9
100ms

) asymptotically. Therefore, (
Fi
ms

− 1

10

3

10
√

ms

)2 ∼

χ2(1), and χ2 =
∑10

i=1(
Fi
ms

− 1

10

3

10
√

ms

)2 =
∑10

i=1
(Fi−ms

10
)2

9ms
100

∼

χ2(9).
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