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Abstract—Traditional radio frequency identification (RFID)
technologies allow tags to communicate with a reader but not
among themselves. By enabling peer communications between
nearby tags, the emerging networked tags represent a funda-
mental enhancement to today’s RFID systems. They support
applications in previously infeasible scenarios where the readers
cannot cover all tags due to cost or physical limitations. This
paper is the first study on identifying state-free networked tags,
which is a basic, fundamental function for most tagged systems.
To prolong the lifetime of networked tags and make identification
protocols scalable to large systems, energy efficiency and time
efficiency are most critical. Our investigation reveals that the
traditional contention-based protocol design will incur too much
energy overhead in multihop tag systems. Surprisingly, a reader-
coordinated design that significantly serializes tag transmissions
performs much better. In addition, we show that load balancing
is important in reducing the worst-case energy cost to the tags,
and we present a solution based on serial numbers.

I. INTRODUCTION

RFID (radio frequency identification) tags are becoming
ubiquitously available as they make their way into retail prod-
ucts, library books, debit cards, passports, driver licenses, car
plates, medical devices, etc [1]–[3]. Each tag carries a unique
ID for identifying the object it is attached to [4], [5]. Today’s
commercial tags can be classified into three categories: (1)
passive tags, which are powered by the radio wave from
an RFID reader and communicate with the reader through
backscattering; (2) active tags, which are powered by their own
energy sources; and (3) semi-active tags, which use internal
energy sources to power their circuits while communicating
with the reader through backscattering. All these tags can only
communicate with RFID readers but not amongst themselves.
Therefore the coverage of an RFID system is strictly limited
to the communication range of its readers.

The emerging networked tags promise to bring a funda-
mental enhancement by enabling tags to communicate with
each other. An example of such tags is a new class of ultra-
low-power energy-harvesting networked tags designed and
prototyped at Columbia University [6], [7]. Tagged objects
that are not traditionally networked, e.g., warehouse products,
books, furniture, and clothing, can now form a network [8],
which provides great flexibility in applications. Consider a
large warehouse where a great number of readers and antennas
must be deployed to provide full coverage. Not only is this
costly, but obstacles and piles of tagged objects may prevent
signals from penetrating into every corner of the deployment,
causing a reader to fail in accessing some of the tags. This

problem will be solved if the tags can relay transmissions to-
ward the otherwise-inaccessible reader. Similar situations arise
in retail stores (or libraries, chicken factories, livestock ranch-
es) where continuously packed products (or books, animals)
provide an ideal environment for tag-to-tag communications,
which can drastically alleviate the coverage requirement for
reader deployment, reduce the number of readers needed, and
more importantly provide additional assurance for tag access
under practical conditions. For example, a new shelf can be
immediately installed as needed in a location without prior
reader coverage as long as any part of the shelf is within tag-
to-tag communication range of another shelf. More broadly,
with emergence of the Internet of Things [8], we envision that
networked tags will play an important role as an enhancement
to the current RFID technologies.

The new feature of networked tags opens up new research
opportunities. This paper focuses on the tag identification
problem, which is to collect the IDs of all tags in a system.
This is the most fundamental problem for RFID systems,
but has not been studied in the context of networked tags,
where one can take advantage of the networking capability to
facilitate the ID collection process, e.g., collecting IDs of tags
that are not within the reader’s coverage. Beyond the coverage
of the readers, the networked tags are powered by batteries
or rechargeable energy sources that opportunistically harvest
solar, piezoelectric, or thermal energy from surrounding envi-
ronment [7], [9]. Energy efficiency is a first-order performance
criterion for operations carried out by networked tags.

There are two types of networked tags. The stateful net-
worked tags maintain network state such as neighbors and
routing tables and update the information to keep it up-to-date.
These tags resemble the nodes in a typical sensor network.
On the contrary, for the purpose of energy conservation, the
state-free tags do not maintain any network state prior to oper-
ation, which makes them different from traditional networks,
including sensor networks — virtually all literature on data-
collecting sensor networks assume the stateful model, where
the sensor nodes maintain information about who are their
neighbors and/or how to route data in the network. This paper
considers state-free networked tags, not only because there
is little prior work on this type of networked nodes, but also
because it makes more sense for the tag identification problem:
First, establishing neighborship and then routing tables across
the network is expensive and may incur much more overhead
than tag identification itself, which only requires each tag to



deliver one number (its ID) to the reader. Second, maintaining
the neighbor relationship and updating the routing tables (as
tags may move between operations) require frequent network-
wide communications, which is not worthwhile for infrequent
operation of tag identification.

It is challenging to design an identification protocol for
state-free networked tags. First, because power is a scarce
resource for tags, the protocol must be energy-efficient in
order to reduce the risk of network failure caused by energy
depletion. Second, we should also make the protocol time-
efficient so that it can scale to a large tag system where the
communication channel works at a very low rate for energy
conservation. Third, in order to eliminate overhead of state
maintenance and thus conserve energy, tags are assumed to be
state-free, which means that they do not know who are their
neighbors and there is no existing routing structure for them
to send IDs to the reader.

To the best of our knowledge, this is the first work that tries
to solve the problem of collecting IDs of state-free networked
tags. The existing RFID identification [10]–[13] protocols
cannot be applied because they assume that the readers can
reach all tags directly. We have to make a fundamental shift
in the protocol design for networked tags. This paper presents
two solutions: a contention-based ID collection protocol and a
serialized ID collection protocol. Our investigation reveals an
interesting result that the traditional contention-based protocol
design will incur too much overhead in multihop networked
tag systems due to progressively increased collision in the
network towards a reader, which results in excessive energy
cost. Surprisingly, a reader-coordinated design that attempts
to serialize tag transmissions performs much better. Moreover,
we discover that load balancing is critical in controlling the
worst-case energy cost incurring to the tags. We find that
the worst-case energy cost is high for both contention-based
and serialized protocol designs due to imbalanced load in the
network. For the serialized ID collection protocol, however,
we are able to provide a solution based on serial numbers that
balance the load and reduce the worst-case energy cost. With
serialization and load balancing, we show through simulations
that the transmission and receiving overheads per tag are
reduced by up to 90.0% and 88.8% respectively, with a
comparable protocol execution time.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Networked Tag System

We consider a reader and a large number of objects, each
of which is attached with a tag. We will use tag, node and
networked tag interchangeably in the sequel. Each tag has a
unique ID that identifies the object it is attached to. The reader
also has a unique ID that differentiates itself from the tags.

A networked tag system is different from a traditional
RFID system with a fundamental change: Tags near each
other can directly communicate. This capability allows a
multihop network to be formed amongst the tags. Developed
at Columbia University recently [7], prototype networked
tags can communicate using variants of CSMA and slotted

ALOHA. The transmission range of inter-tag communications
is usually short, about 1 to 10 meters [8]. But the reader is a
more powerful device, and its transmission range can be much
larger. Tags that can perform direct two-way communicate
with a node form the neighborhood of the node.

Networked tags are expected to carry sufficient internal
energy for long-term operations or have the capability of
harvesting energy from the environment where they are de-
ployed. Tags of the highest energy demand are located in the
reader’s neighborhood (i.e., coverage area) because they have
to relay the information from all other tags as the data converge
towards the reader. Fortunately, these tags can be powered by
the reader’s radio waves, similar to what today’s passive RFID
tags do; their energy supply is ensured. In contrast, tags that
are beyond the reader’s coverage need to use their own energy.
The operations of these tags must be made energy-efficient.

The reader and the tags in the system form a connected
network. In other words, there exists at least one path between
the reader and any tag such that they can communicate by
transmitting data along that path. Tags that are not reachable
from the reader are not considered to be in the system.

B. Problem Statement

The problem of tag identification is for a reader to collect
IDs from all networked tags that can be reached by the reader
over multiple hops with the help of intermediate tags relaying
the IDs of tags that are not in the immediate coverage area of
the reader. Our goal is to develop tag identification protocols
that are efficient in terms of energy cost and protocol execution
time. We will consider both average energy cost per tag and
maximum energy cost among all tags in the system. The
average energy cost is an overall measurement of energy drain
across the whole system, and the maximum energy cost is a
measurement for the worst hot spot which may cause power-
exhausted tags and network partition.

C. System Model

What makes tags attractive is their simplicity. There is no
specification on how simple future networked tag tags should
be, but it is safe to say that we will always prefer protocol
designs that achieve comparable efficiency with less hardware
requirement. Generally speaking, each tag has very limited
energy, memory, and computing resources. In this paper,
we do not require tags to implement GPS, any localization
mechanism, or other complex functions. We consider state-
free tags, which do not spend energy in maintaining any state
information prior to operation.

Since each tag is only equipped with a single transceiver,
it cannot perform transmission and reception simultaneously.
Assume that the reader and tags cannot resolve collided signal-
s. Therefore, a node can successfully receive the transmission
only if there is only one neighbor transmitting.

For state-free tags, there is no mechanism (such as frequent
beacon exchange between neighbors) that keeps track of the
changes in network topology in real time. We assume that the
tags are stationary during the operation of tag identification.



For example, in a warehouse, the daily tag identification
may be performed automatically in after-work hours when
objects are not moved around. During the daytime between
the previous identification and the next one, objects can
still be freely moved around. In case that the identification
operation needs to be performed during the daytime, we need
to design a protocol that takes as little time as possible to avoid
significant interruption to other warehouse operations due to
the stationary requirement at the time of identification.

To conserve energy, networked tags are likely configured
to sleep and wait up periodically for operations. After wake-
up, a tag will listen for a request broadcast from the reader
into the network, which either puts the tag back to sleep or
asks the tag to participate in an operation such as reporting
its ID. The broadcast request will serve the purpose of loosely
re-synchronizing the tag clock. The reader will time its next
request a little later than the timeout period set by the tags
to compensate for the clock drift and the clock difference
at the tags due to broadcast delay. The exact sleep time of
the tags and the inter-request interval of the reader should
be set empirically based on application needs and physical
parameters of the tags.

III. CONTENTION-BASED ID COLLECTION PROTOCOL
(CICP) FOR NETWORKED TAG SYSTEMS

We are not aware of any existing data collection protocol
specifically designed for the state-free model which makes
sense in the domain of tags but was not adopted in the main-
stream literature of sensor networks or other types of wireless
systems. However, it is not hard to design an ID collection
protocol for networked tags based on techniques known in
existing wireless systems. For example, in this section, we will
follow an obvious design path based on broadcast, spanning
tree and contention-based transmission. The resulting protocol
will be used as a benchmark for performance comparison
(since there is no prior work on identifying networked tags). In
the next section we will point out that the obvious techniques
are however inefficient and other less-obvious design choices
can produce much better performance.

A. Motivation

One straightforward approach for tags to deliver their IDs
to the reader is through flooding: As each tag broadcasts
its ID and every other ID it receives for the first time into
its neighborhood, the IDs will eventually reach the reader.
However, flooding causes a lot of communication overhead.
In addition, each tag has to store the IDs that it has received
in order to avoid duplicate broadcast. Due to the nature of
flooding, it means that eventually each tag will store all IDs
in the system, which demands too much memory.

Another approach is to ask tags to discover their neighbors
and run a routing protocol to form routing paths towards the
reader right before sending the IDs (even though the tags
are state-free prior to operation). However, as the number of
neighbors can be in hundreds in a packed system, the overhead
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of doing so will be high, considering that only one ID per tag
will be delivered.

As the above two approaches do not work well, our idea is
to establish routing paths for free. For a reader to begin the
tag identification process, it needs to broadcast a request to all
tags. We can make extra use of this network-wide broadcast
to piggyback the function of establishing a spanning tree that
covers all tags, with the reader at the root of the tree. This tree
will be used for transmitting the IDs to the reader. We use the
ALOHA protocol to resolve the contention among concurrent
transmissions made by close-by tags.

B. Request Broadcast Protocol (RBP)

The classical broadcast protocol is for each node to transmit
a message when it receives the message for the first time. But it
becomes more complicated to guarantee that all nodes receive
the message: If each node knows its neighbors, it may keep
transmitting the message until receiving acknowledgements
from all neighbors. However, more care must be taken if the
nodes do not know their neighbors. Below we briefly describe
a request broadcast protocol (RBP) that guarantees delivering
a request from the reader to all state-free tags.

To initiate tag identification, the reader broadcasts a request
notifying the tags to report their IDs. The request initially
carries the reader’s ID, which will later be replaced with a
tag’s ID when the tag forwards the request to others. The
state transition diagram of the protocol is depicted in Fig. 1,
which is explained below.

State of Waiting for Request: Each tag begins in this state
and takes action based on one of three possible events.
(1) Idle Channel: The channel is idle, i.e., no neighbor is
transmitting anything.
(2) Request Received: Only one neighbor is forwarding the
request, so the tag can receive the request correctly.
(3) Collision: Multiple neighbors are forwarding the request,
resulting in a collision.

In event (1), the tag does nothing. In event (2), the tag will
reply with an acknowledgement (ACK) to inform the sender
that it has successfully received the request. Meanwhile, it



extracts the ID from the request and saves it as its parent. After
that, it moves to the state of Forwarding Request. As we will
see shortly, it is not important whether the ACK is correctly
received by the sender of the request or not. The sender will
know that all its neighbors have received the request when it
does not hear any response (since the neighbors all move to
the state of Forwarding Request). In event (3), the tag cannot
resolve the collided. It sends a negative acknowledge (NAK)
and stays in the state of Waiting for Request.

State of Forwarding Request: To ensure that the request
will be propagated across the network, each tag having re-
ceived the request will keep broadcasting it with exponential
backoff upon collision until all its neighbors receive the
request. Each time after the tag broadcasts the request (which
carries the tag’s ID), there are three possible events:
(1) No Response: No response is received from any neighbor.
(2) One ACK/NAK: Only one ACK/NAK response is received.
(3) Collision: Multiple ACK/NAK responses are sent by the
neighbors, leading to a collision.

Recall that any neighbor in the state of Wait for Request
will respond either ACK or NAK regardless of whether it
can successfully receive the request or not. Event (1) must
mean that all the neighbors have already received the request
and moved to other states. In this case, the tag does not
need to broadcast the request any more. If no response is
heard after broadcasting the request for the first time, the tag
knows it has no child and it is therefore a leaf node in the
spanning tree. In event (2), if a single ACK is received, the
tag knows that all its neighbors now have received the request.
Hence, it can stop broadcasting the request. If a single NAK
is received, the tag knows that there must have been collision
at a neighbor, which did not receive the request successfully.
Therefore, the tag should perform an exponential backoff to
avoid continuous collision in the channel. In event (3), the
tag cannot resolve the received ACK/NAK correctly and it
also performs an exponential backoff. As an example, Fig. 2
illustrates the spanning tree built in a networked tag system
after it executes RBP, where the reader has an ID 0.

The wireless transmissions in RBP can be implemented
either based on unslotted ALOHA or based on slotted ALO-
HA. Slotted ALOHA is more efficient but requires the tags to
synchronize their slots. When the reader transmits its request
to nodes in its neighborhood, the preamble of the transmission
provides the clock and slot synchronization. Similarly, when a
distant tag receives the request for the first time from another
tag, the preamble of the latter synchronizes the clock and slot.

Theorem 1: Every tag will receive a copy of the request
sent out by the reader under RBP.

Proof: To prove by contradiction, let’s assume there exists
a tag T that does not receive the request after executing RBP.
It must be true that none of its neighbors has received the
request. Otherwise, according to the protocol, any neighbor
having received the request would continue broadcasting the
request until T receives it and acknowledges its receipt —
each time the request is transmitted, if T does not receive the
request successfully, it will respond NACK, causing the sender

Reader 

0

1 2 3

4 5 6

7 8

1
4 3

T6

2

7
8

T

T
T

T

T

T

5T

Fig. 2: An example of the spanning tree built by RBP, where
the ID of tag Ti is assumed to be i. Each dotted circle on the
left gives the neighbors of a tag at the center of the circle.

to retransmit. By the same token, the neighbors of any T ’s
neighbor must not receive the request. Applying this argument
recursively, all nodes reachable from T must not receive the
request. By the assumption that the network is connected,
at least one neighbor T ′ of the reader is reachable from T .
Therefore, T ′ must not receive the request. This contradicts
to the fact that T ′ is located in the reader’s coverage area
and should receive the request at the very beginning when the
reader broadcasts the request for the first time. Therefore, the
theorem must hold.

C. ID Collection Protocol (ICP)

When a tag transmits its ID, it will include its parent’s
ID in the message, such that the parent node will receive it
while other neighbors will discard the message. This unicast
transmission is performed based on the classical ALOHA with
acknowledgement and exponential backoff to resolve collision.
The parent node will forward the received ID to its parent, and
so on, until the ID reaches the reader.

The execution of ICP is performed in parallel with RBP:
Once a tag knows its parent ID from RBP, it will begin
transmitting its ID to the parent. When a tag needs to forward
both an ID for ICP and a request for RBP, we give priority to
ID forwarding because it is easier for unicast to complete.

Theorem 2: The reader will receive the IDs of all tags in
the system after the execution of ICP.

Proof: From Theorem 1, each tag is guaranteed to receive
the request and therefore find a parent (from which the request
is received). Consider an arbitrary tag T . According to the
design of ICP, the ID of T will be sent to its parent until
positively acknowledged. The parent will forward the ID to
its parent, and as this process repeats, the ID will eventually
reach the reader at the root of the spanning tree.

IV. SERIALIZED ID COLLECTION PROTOCOL (SICP)

A. Motivation

The contention-based protocol ICP allows parallel transmis-
sions by non-interfering tags through spatial channel reuse.
In the conventional wisdom, this is an advantage. However,
we find in our simulations that the contention-based protocol
performs poorly for tag identification. The reason is that
although parallel transmissions are enabled among the tags
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in the network, the reader can only take one ID at a time.
Essentially, the operation of ID collection is serialized at
the reader, regardless of how much parallelism is achieved
inside the network of tags. Furthermore, the parallelism is
actually harmful because the more the IDs are crowded to
the reader in parallel, the more the contention is caused
at the reader, resulting in many failed transmissions due to
collision, which translates into high energy cost and long
protocol execution time. When tags are densely deployed, this
problem can severely degrade the system performance. With
this observation, we take a different design path by trying
to partially serialize the tag transmissions, such that only a
(small) portion of tags will attempt to transmit at any time. By
lessening the level of contention, we see a drastic performance
improvement. Another serious problem of RBP/ICP is that
the spanning tree is unbalanced, causing significantly higher
energy expenditure by some tags than others. This problem of
biased energy consumption and a solution will be explained
in details later.

B. Overview

We give an overview of our serialized protocol, SICP. The
reader begins by collecting IDs in its neighborhood using
framed ALOHA. An illustrative example is shown in Figure 3,
where the reader collects the IDs from neighbors T1 through
T4 (which form tier 1), while all other nodes stay idle. When
the reader receives a tag’s ID (say, T2) free of collision,
T2 must be the only tag that is transmitting in the whole
network. It also means that other neighbors of T2 can hear the
transmission free of collision. These tier-2 nodes, T5 through
T7, set T2 as their parent.

After collecting all tier-1 IDs, the reader sequentially in-
forms each tier-1 node to further collect IDs from its children.
For example, when the reader informs T2 to do so, all other
tier-1 nodes will stay silent. As T2 sends out a request for
IDs, only its children (T5, T6 and T7) will respond. The same
process as described in the previous paragraph will repeat;
only this time T2 takes the role of the reader.

After T2 collects the IDs of all its children, it will forward
the IDs to the reader, which will then move to the next tier-1
node. Once it exhausts all tier-1 nodes, it will move to tier-2
nodes, one by one and tier by tier, until the IDs of all nodes
in the network are collected.
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first and a large number of nodes in its neighborhood chooses
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Below we will first introduce the problem of biased energy
consumption, give a solution, and then describe recursive
serialization.

C. Biased Energy Consumption

When a tag is transmitting its ID to the reader, its neighbors
outside of the reader’s coverage can overhear the ID. They may
use this tag as their parent. As illustrated in the left plot of
Fig. 4, we prefer a roughly balanced spanning tree where each
node serves as the parent for a similar number of children. In
reality, however, a tag that delivers its ID to the reader early
on will tend to have many more children. An example is given
in the right plot of Fig. 4. Suppose tag 1 transmits its ID to
the reader first. Overhearing its ID, tags 5-9 will pick tag 1
as their parent. When tag 2 transmits its ID at a later time,
no tag will be left to choose tag 2 as parent even though tags
7-8 are in the range of tag 2 — recall that they have already
chosen tag 1. In this case, tag 1 will have to forward more IDs,
resulting in quicker energy drain than others. The severity of
the problem grows rapidly with an increasing number of tiers
because the numerous children of tag 1 tend to acquire even
more numerous children of their own and those IDs will pass
through tag 1 to the reader.

Uneven energy consumption causes some tags to run out
of energy earlier, which can result in network partition. The
same problem also exists for RBP/ICP where tags that receive
and forward the request early on during the network-wide
broadcast may end up with a large number of children.

To alleviate this problem, we observe that a tag may
overhear multiple ID transmissions over time and thus have
multiple candidates to choose its parent from, as shown by
Fig. 5 where T may choose its parent from three tier-1 nodes.
Ideally, the tag should choose its parent uniformly at random
from the candidates. However, because of collision, each
candidate may have to retransmit its ID for a different number
of times before the reader successfully receives it. To avoid
giving more chance to a candidate that retransmits its ID more
times, the tag may keep the IDs of all known candidates to
filter out duplicate overhearing. However, a serious drawback
of this approach is that the memory cost can be high if a
tag has numerous candidates for its parent in a system where
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tagged objects are packed tightly together. We want to point
out that typical tags have very limited memory.

D. Serial Numbers

We propose a solution to biased energy consumption based
on serial numbers. In our protocol, each tag will be dynami-
cally assigned a serial number from 1 to N , where N is the
number of tags. The reader’s serial number is 0.

Let’s first consider the reader’s neighborhood only; other
tiers will be explained later. The reader initiates the protocol
by broadcasting an ID collection request, carrying its serial
number and a frame size f . The request is followed by a
time frame of f slots. Each tag that receives the request will
set the serial number 0 (i.e., the reader) as its parent and
then randomly chooses a slot in the time frame. It waits until
the chosen slot to report its ID to the reader. If only one
tag selects a certain slot, its ID will be correctly received
by the reader, which replies an ACK to the tag in the same
slot. The ACK carries the number of IDs that the reader
has successfully received so far. This number is assigned
as the serial number of the tag; the number is system-wide
unique due to its monotonically-increasing nature. A tag can
be identified either by its ID or its assigned serial number.
After receiving the ACK, we require the tag to broadcast the
assigned serial number in its neighborhood. Hence, each time
slot contains an ID transmission, an ACK transmission, and a
serial-number transmission. If the ID transmission is collision-
free, so do the other two transmissions. Even though a tag may
need to retransmit its ID multiple times due to collision, it will
transmit its assigned serial number once, only at the time when
an ACK is received.

If the reader observes any collision in the time frame, it will
broadcast another request with another time frame to collect
more IDs. If no collision is observed, the reader has collected
all IDs from its neighborhood and it will perform recursive
serialization (to be discussed) to collect IDs outside of its
neighborhood.

E. Parent Selection

Consider an arbitrary neighbor of T , denoted as T ′, which
has not set its parent yet. As illustrated in Fig. 6, T ′ must
not be in the reader’s neighborhood because the tags in that
neighborhood set the serial number 0 as their parent when they
receive the request from the reader for the first time. When
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Fig. 6: T ′ sets T as its parent.

T ′ receives a serial number for the first time, it will set the
number as its parent, which is subject to change when T ′

receives more serial numbers from other tags (candidates for
parent). Recall that each tag broadcasts its serial number only
once. This property allows us to design the following parent
selection algorithm (PSA) which guarantees every candidate
has an equal chance to be selected as the parent: Each tag
maintains two values, its parent and a counter c for the number
of candidates having been discovered so far. The counter is
initialized to zero. Each time when T ′ receives a serial number
s′ from a neighbor, it increases c by one and then replaces the
current parent with s′ by a probability 1

c . Using this PSA, we
have the following theorem:

Theorem 3: Suppose a tag has m candidates for parent.
Each candidate has an equal probability of 1

m to be chosen
as the tag’s parent in the end.
Proof: For the jth (1 ≤ j ≤ m) discovered candidate, it
becomes the final parent only if it replaces the previously
selected parent, and is never substituted by the subsequently
discovered candidates. Therefore, the probability that it is
chosen by the tag as the parent in the end is

1

j

m∏
l=j+1

(1− 1

l
) =

1

m
, (1)

implying every candidate is equally likely to be the parent. 2
Another advantage of using the serial number instead of ID

for parent identification is that an ID — typically 96 or more
bits for RFID tags — is much longer than the size of the serial
number, ⌈log2 N⌉, where N is the maximum number of tags
in a system. For example, even if N = 1, 000, 000, the serial
number is just 20 bits long.

F. Serialization at Tier 2

After the reader collects all IDs from its neighborhood, each
tag in the neighborhood will obtain a unique serial number.
Recall that these tags constitute the first tier of the network.
The reader then serializes the subsequent ID collection process
by sending the serial numbers of tier-1 tags one by one, in
order to command the corresponding tag to collect IDs from
its neighbors, with other tier-1 tags staying idle.

The reader begins by transmitting the serial number 1,
together with the number s of IDs it has received so far.
In response, the tag with the serial number 1, denoted as
T1, transmits an ID collection request, carrying its own serial



number 1 and a frame size f . The request causes the neighbors
that are not tier-1 to finalize their parent selection; these nodes
are tier-2. Note that some of them may have selected nodes
other than T1 as their parents. Hence, when a tier-2 node
receives the request from T1, only if its chosen parent matches
the serial number in the request, it will transmit its ID in the
subsequent time frame; otherwise, it can sleep for a duration
of f slots. If T1 correctly receives an ID in a slot from a
child T ′

1, it increases the value of s by one and sends back
an ACK with s as the serial number assigned to T ′

1, which in
turn broadcasts its serial number and tier number (i.e., 2) in
its neighborhood such that the neighbors at the next tier can
discover it as one of their candidates for parent. When a tag
sets (or later replaces) its parent, it also sets its tier number as
the tier number of its parent plus one; it should never replace
its current parent with one whose tier number is larger.

It may take T1 multiple requests to finish reading all IDs
from its children. It then forwards the IDs to the reader. After
acknowledging T1, the reader sends a command to trigger the
ID collection process at the next tier-1 tag.

After the reader finishes this process with all tier-1 tags, it
has collected the IDs of all tier-2 tags. The reader also has the
information to construct a spanning tree covering tier-1 and
tier-2 nodes, as illustrated in Fig. 3 where the assigned serial
numbers are shown inside the circles.

G. Recursive Serialization

After the reader commands all tier-1 tags one by one to
collect the IDs of tier-2 tags, it repeats this serialization process
recursively to collect other IDs tier by tier. Suppose the reader
has collected the IDs from all tags at tier 1 through tier i
and the range of serial numbers at tier i is from x to y. The
reader will send a command to each tier-i tag in sequence.
The command includes a concatenation of the serial numbers
along the path in the spanning tree from the root (excluded)
to that tag, in addition to the number s of IDs that the reader
has received so far. For example, for tag 7 in Fig. 3, the
command will carry two serial numbers, 2 and 7. (Note that
since each serial number is of fixed size, there is no ambiguity
on interpreting the sequence of serial numbers.)

When the reader broadcasts the command in its neigh-
borhood, any tag receiving the command will extract and
compare the first serial number with its own. If the two serial
numbers do not match, it discards the command. Otherwise,
it further checks whether there are more serial numbers in the
command. If so, it broadcasts the remaining command. This
process repeats until a tag matches the last serial number in
the command. That tag will performs ID collection in a similar
way as described in Section IV-F. The collected IDs will be
sent through the parent chain to the reader.

Theorem 4: The reader will receive the IDs of all tags in
the system after the execution of SICP.

Proof: Proving by contradiction, we assume at least one
tag T fails in delivering its ID to the reader. T must not have
a parent; we again prove this by contradiction: Assume that
T has a parent T ′. According to the protocol, for T ′ to be

chosen as a parent, it must either the reader or a node that
has already successfully delivered its ID and subsequently
broadcast its assigned serial number. Hence, it will receive
a command from the reader to collect IDs from its children.
After the reader sends a command to T ′, T ′ will broadcast
requests, free of collision due to serialization, to children until
all IDs are collected — which happens when no collision is
detected in the time frame after a request. When T ′ receives
the ID of T , if it is not the reader, it will forward the ID
to the reader along the path with which its own ID has been
successfully delivered, free of collision due to serialization.
This contradicts to the assumption that T fails in delivering
its ID to the reader. Hence, T does not have a parent.

If T does not have a parent, all of its neighbors must
fail in delivering their IDs to the reader because otherwise
any successful neighbor would broadcast its serial number
according to the protocol, which would result in T having
a parent after T receives the serial number.

If all neighbors of T fail in delivering their IDs to the reader,
by the same reasoning as above, all their neighbors must fail
too. Recursively applying this argument, all tags in the network
must fail in delivering their IDs to the reader because the
network is connected, which contradicts at least to the fact
that the reader’s immediate neighbors are able to send their
IDs to the reader through the slotted ALOHA protocol that
SICP employs. Hence, the theorem is proved.

H. Frame Size

When the reader or a tag tries to collect the IDs in its
neighborhood, its request carries a frame size f . Let n be the
number of tags that are children of the reader or tag sending the
request. It is well known that the optimal frame size should be
set as n, such that the probability of each slot carrying a single
ID (without collision) can be maximized. This can be easily
seen as follows: Consider an arbitrary slot. The probability p
that one and only one tag chooses this slot to transmit is

p =

(
n

1

)
1

f

(
1− 1

f

)n−1

≈ n

f
e−

n−1
f ≈ n

f
e−

n
f (2)

when n is large. To find the value of f that maximizes p, we
take the first-order derivative of the right side and set it to
zero. Solving the resulting equation, we have

f = n, (3)

which means the maximal value of p is e−1. In subsequent
requests, as more and more IDs have been collected, fewer
and fewer tags are transmitting their IDs and the frame sizes
should be reduced accordingly.

However, we do not know n. There are numerous estimation
methods for n [14]–[16], which are however intended for a
system with a large number of tags, in tens of thousands.
It is known that these estimation methods will actually be
inefficient if they are applied to a relatively small number of
tags such as a couple of thousands or fewer [17]; if the number
of tags is very small, the estimation time can be much larger
than the time it takes to complete the tag identification task



itself. In the context of this paper, we expect the number of
children of the reader or any tag is relatively small. Hence, it
is not worthwhile to add the overhead of a separate component
for estimating n before the reader (tag) begins collecting IDs
from its neighborhood.

Our solution is to estimate the value of n iteratively from
the frame itself without incurring additional overhead. Initially,
we set f to be a small constant λ in the first request. We
double the value of f in each subsequent request until there
exists at least one empty slot that no tag chooses. From then
on, we will estimate the number of n and set the frame size
accordingly in the subsequent requests. Without the loss of
generality, suppose we want to determine the frame size for
the ith request. Let fj be the frame size used in the jth request,
1 ≤ j < i. After the jth request, let cj , sj , and ej be the
numbers of slots that are chosen by multiple tags (collision),
a single tag, and zero tag, respectively. Let mj be the number
of IDs that are successively collected after the jth request.
All these values are known to the reader (tag). The process
for a tag to randomly choose a slot in a time frame can be
cast into bins and balls problem [18]. In the jth frame, n −
mj−1 tags (balls) are mapped to fj slots (bins). The total
number of different ways for putting n − mj−1 balls to fj
bins is f

n−mj−1

j . The number of ways for choosing ej bins
from fj bins and let them be empty is

(
fj
ej

)
. In addition, the

number of ways for choosing sj balls from n−mj−1 balls and
putting each of them into one of the remaining fj − ej bins
is

(
fj−ej
sj

)(
n−mj−1

sj

)
(sj !). Finally, the remaining n−mj−1 −

sj balls should be thrown into the remaining cj bins, each
containing at least 2 balls (collision slots). We first choose 2cj
balls and put 2 balls into each of the cj bins, which includes(
n−mj−1−sj

2cj

) (2cj)!
2cj

possibilities. After that, the remaining (n−
mj−1−sj−2cj) balls can be put into any of the cj bins, which
involves (n −mj−1 − sj − 2cj)

cj different ways. Therefore,
the likelihood function for observing these values is

L(n) =

i−1∏
j=1

(
fj
ej

)(
fj−ej

sj

)(
n−mj−1

sj

)
(sj !)

(
n−mj−1−sj

2cj

) (2cj)!

2
cj

fj
n−mj−1

× (n−mj−1 − sj − 2cj)
cj .

(4)

The estimate of n is the value that maximizes L. Let this value
be n̂, which can be found through exhaustive search since the
range for n is limited in practice, rarely going beyond tens
of thousands. For the ith request, we set the frame size to be
n̂−mi−1.

The above estimator follows the general principle originally
seen in [14], but it takes the information of cj , sj , and ej all in
the same estimator, whereas the estimators in [14] use either
cj or ej .

As our analysis will show, except for the reader, the average
number of children per tag is typically very small (less than
2) for a randomly distributed tag network. In this case, if we
set the initial frame size λ to 4, the chance is high that a tag
successfully collect all IDs from it children in the first time
frame. Therefore, only the reader needs to use (4) to estimate
the number of its children, while the tags can just set the frame
size to a small constant to avoid the computation overhead.

R
Tier 1

Tier 2

Tier 3

R+r

R+2r

Fig. 7: An illustration of a network with three tiers of tags.

i 1 2 3 4 5 6 7 8 9
Di 1.3 1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.1

TABLE I: The values of Di with R = 3r

I. Load Factor Per Tag

We analyze the work load of each tag in terms of how
many children and descendants it has to deal with. While our
load balancing approach is designed for any tag distribution,
to make the analysis tractable, we assume here that tags are
evenly distributed in an area with density ρ, and the tags whose
distances from the reader are no larger than R form the first
tier, while those whose distances from the reader are greater
than R+ (i− 2)r but smaller than R+ (i− 1)r form the ith
(i ≥ 2) tier of the network, where the transmission ranges of
the reader and a tag are R and r, respectively, with R ≥ r.
For example, Fig. 7 presents a network with three tiers. The
number Ni of tags in the ith tier is estimated as

Ni = ρ× (π × (R+ (i− 1)r)2 − π × (R+ (i− 2)r)2)

= πρ(2Rr + (2i− 1)r2).
(5)

One exception is that N1 computed from (5) actually includes
only the portion of tier-1 tags whose distances from the reader
are larger than R−r; these are the tags that can serve as parents
for tier-2 tags.

The children degree of tier-i tags, denoted by Di, is defined
as the average number of children that a tier-i tag has. Because
tags at the ith tier only serve as parents for tags at the (i+1)th
tier, we have

Di =
Ni+1

Ni
=

2R+ (2i+ 1)r

2R+ (2i− 1)r
= 1 +

1
R
r + (i− 1

2 )
. (6)

We have R ≫ r because the reader can transmit at a much
higher power level and it has much more sensitive antenna.
This makes the values of Di very small. For example, if R =
3r, Table I shows the values of Di, 1 ≤ i < 10, which are
smaller than 1.3 and quickly converge toward 1 as i increases.
The values in the table will be even smaller if R > 3r.

i 1 2 3 4 5 6 7 8 9
Li 21.9 16.0 12.1 9.2 7.0 5.2 3.6 2.3 1.1

TABLE II: The values of Li with R = 3r and l = 10



The load factor of tier-i tags, denoted as Li, is defined as
the average number of IDs that a tier-i tag has to forward,
including the IDs of its tier-(i + 1) children as well as other
IDs that its children collects from their descendants. Li is
equal to the total number of tags beyond the ith tier divided
by the number of tags at the ith tier.

Li =

∑l
j=i+1 Nj

Ni
=

∑l
j=i+1 2R+ (2j − 1)r

2R+ (2i− 1)r

=
2(l − i) + r

R (l2 − i2)

2 + (2i− 1) r
R

,

(7)

where l is the total number of tiers and i < l. When R = 3r
and l = 10, Table II shows the values of Li, 1 ≤ i < 10, which
are surprisingly small. Because tier-1 tags can be powered by
the radio wave from the reader, we are only concerned with
the power consumption of tags at other tiers. The tags at tier
2 have to forward more IDs than those at outer tiers. From
the table, a tier-2 tag forwards just 16 IDs on average, which
is modest overhead, considering that there are 8 more tiers
beyond tier 2.

While the average is modest, the worst-case load factor is
also important when we evaluate overhead. SICP is designed
to evenly distribute the work load among tags by balancing the
spanning tree, so that tags at a certain tier have similar numbers
of children (or descendants), which translate to similar children
degrees (or load factors). We will study the worst-case children
degree and load factor by simulations.

V. EVALUATION

A. Simulation setup

There is no prior work on tag identification for networked
tag systems1. But known techniques such as broadcast and
contention-based transmission widely used in other wireless
systems can be used to design a state-free tag identification
protocol, CICP, which we will use as a benchmark for com-
parison. We evaluate the performance of CICP and SICP to
demonstrate two major findings that (1) although the ALOHA-
based protocols are very successful in other wireless systems
(including RFID systems), they are not suitable for networked
tag systems, and that (2) serialization can significantly improve
the tag identification performance.

Three performance metrics are used: (1) execution time
measured in number of time slots, (2) average and maximum
numbers of bits sent per tag, and (3) average and maximum
numbers of bits received per tag. The last two are indirect
measures of energy cost, where tier-1 tags are excluded
because they can be powered by the reader’s radio waves.
Computation by tags in the proposed protocols is very limited.
Most energy is spent on communication. The amount of
communication data serves as an indirect means to compare

1For the special case when all networked tags are within the direct coverage
of the reader, our protocols naturally become the traditional protocols,
literally, because we may actually adopt any existing ALOHA-based RFID
identification protocol for collecting IDs within the reader’s neighborhood in
place of the operations described in Section IV-D, as long as the serial number
is embedded in ACK.

different protocols. For example, if tags in one protocol receive
and send far more than those in another protocol, it is safe to
say that the first protocol costs more energy than the second.

We vary the number N of tags in the system from 1000
to 10000 at steps of 1000. The tags are randomly distributed
in a circular area with a radius of 50 m. The reader, whose
communication range R is set to 25 m, is located at the center
of the area. For each tag, its inter-tag communication range r
is 5 m. In SICP, the reader sets its frame size of the ith request
to fi = max{n̂−mi−1, fl}, where mi−1 is the number of IDs
that have been collected and n̂ is the estimate number of tags
that maximizes (4). The lower bound fl, fixed to 50, prevents
the frame size from being setting too small or even negative
due to the estimation deviation of n̂. The initial frame size λ
is 50 for the reader. To relieve the tags from estimating the
numbers of children they have, we let them use a fixed frame
size λ with a default value of 4, but we will also vary it from 2
to 10. The length of each tag ID is 96 bits long. The length of
each serial number is ⌈log2 N⌉ bits long. The length of each
tier number is 4 bits long. Following the specification of the
EPC global Class-1 Gen-2 standard [19], we set the length of
the ID collection request in CICP to 20 bits, and set ACK and
NAK to 16 bits and 8 bits, respectively. In SICP, the ACK
will also include a serial number. For each data point in the
figures, we repeat the simulation for 100 times and present the
average result.

B. Children Degree and Load Factor

We first examine the balance of the spanning trees built by
CICP and SICP. It has significant impact on the worst-case
energy cost of the tags. A tag with a larger children degree
(or a larger load factor) has to collect (or forward) more tag
IDs, resulting in additional energy expenditure. Tags that have
the largest children degree or load factor may become the
energy bottleneck in the network. If the residual on-tag energy
is exhausted before the completion of the protocol, the network
may even be partitioned due to dead tags.

Fig. 8 and Fig. 9 present the maximum children degree and
the maximum load factor in the spanning trees built by CICP
and SICP, respectively. As the number N of tags in the system
becomes larger, the increase in these worst-case numbers under
CICP is a lot faster than the increase under SICP, indicating
a much balanced tree for the latter. For example, when N =
10000, the maximum children degree and load factor in CICP
are 83 and 1969, and those numbers in SICP are only 12 and
259.

C. Performance Comparison

We compare the performance of CICP and SICP in Fig.
10, where the first plot shows the protocol execution time
in terms of number of slots used, the second plot shows
the average number of bits sent per tag, and the third plot
shows the average number of bits received per tag. SICP uses
slightly more slots than CICP, meaning that its execution time
is modestly longer. However, its energy cost is much smaller,
thanks to serialization for collision reduction. For example,
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Fig. 10: Performance comparison between CICP and SICP.
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when N = 10000, the numbers of bits sent/received per tag
in CICP are 8783 and 412218, whereas those numbers are just
839 and 46217 — 90.0% and 88.8% reduction, respectively.

Fig. 11 and Fig. 12 show the maximum numbers of bits
sent/received by a tag under the two protocols, respectively.
As expected, the most energy-consuming tags spend much less
energy under SICP than under CICP. For example, when N =
10000, the maximum numbers of bits sent/received by any
tag in CICP are 631412 and 2367899, and those numbers in
SICP are 51787 and 158458 — 91.8% and 93.3% reduction,
respectively.

D. Performance Tradeoff for SICP

Finally, we demonstrate a performance tradeoff for SICP
controlled by the value of λ. We set N = 5000 and vary
λ from 2 to 10. The results are presented in Fig. 13, where
the three plots from left to right show the execution time, the
average number of bits sent per tag, and the average number of
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bits received per tag, respectively. As the value of λ increases,
the execution time increases, but the energy cost for sending
and receiving decreases. This presents a time-energy tradeoff.
However, the time increases almost linearly, but the decrease
in energy flattens out, suggesting that a modest value of λ is
preferred.

VI. RELATED WORK

The tag identification protocols for traditional RFID systems
can be broadly classified into two categories: ALOHA-based
[12], [13], and tree-based [10], [11]. To run an ALOHA-
based identification protocol, the reader first broadcasts a
query, which is followed by a slotted time frame. Each tag
randomly picks a time slot in the frame to report its ID.
Collision happens if a slot is chosen by multiple tags. Tags
not receiving positive acknowledgements from the reader will
continue participating in the subsequent frames. The dynamic
frame slotted ALOHA (DFSA) [20], [21] adjusts the frame
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Fig. 13: Execution time and energy cost of SICP with respect to λ, when N = 5000.

size round by round.
The tree-based protocols organize all IDs into a tree of ID

prefixes. Each in-tree node has two child nodes that have one
additional bit, ‘0’ or ‘1’. The tag IDs are leaves of the tree. The
reader walks through the tree. As it reaches an in-tree node, it
queries for tags with the prefix represented by the node. When
multiple tags match the prefix, they will all respond and cause
collision. Then the reader moves to a child node by extending
the prefix with one more bit. If zero or one tag responds (in
the one-tag case, the reader receives an ID), it moves up in
the tree and follows the next branch.

To further improve the identification efficiency, network
coding and interference cancelation techniques are used to help
the reader recover IDs from collided signals [22], [23].

VII. CONCLUSION

This paper is the first study on tag identification in the
emerging networked tag systems. The multihop nature of
networked tag systems makes this problem different from the
tag identification problem in RFID systems. We propose two
tag identification protocols with two important findings. The
first finding is that the traditional contention-based protocol
design incurs too much energy overhead in networked tag
systems due to excessive collision. The second finding is
that load imbalance causes large worst-case energy cost to
the tags. We address these problems through serialization and
probabilistic parent selection based on serial numbers.
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