
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Identifying State-Free Networked Tags
Min Chen, Shigang Chen, You Zhou, and Youlin Zhang

Abstract— Traditional radio frequency identification (RFID)
technologies allow tags to communicate with a reader but not
among themselves. By enabling peer communications between
nearby tags, the emerging networked tags represent a funda-
mental enhancement to today’s RFID systems. They support
applications in previously infeasible scenarios where the readers
cannot cover all tags due to cost or physical limitations. This
paper is the first study on identifying state-free networked
tags, which is a basic, fundamental function for most tagged
systems. To prolong the lifetime of networked tags and make
identification protocols scalable to large systems, energy efficiency
and time efficiency are most critical. Our investigation reveals
that the traditional contention-based protocol design will incur
too much energy overhead in multihop tag systems. Surprisingly,
a reader-coordinated design that serializes tag transmissions
performs much better. In addition, we show that load balancing is
important in reducing the worst case energy cost to the tags, and
we present a solution based on serial numbers. We also show that,
by leveraging the request aggregation and transmission pipelining
techniques, the time efficiency of serialized ID collection can be
greatly improved.

Index Terms— Networked tag, RFID, identification, efficiency.

I. INTRODUCTION

RFID (radio frequency identification) tags are becom-
ing ubiquitously available as they make their way into

retail products, library books, debit cards, passports, driver
licenses, car plates, medical devices, etc [1]. Each tag carries
a unique ID for identifying the object it is attached to. Today’s
commercial tags can be classified into three categories: (1)
passive tags, which are powered by the radio wave from
an RFID reader and communicate with the reader through
backscattering; (2) active tags, which are powered by their own
energy sources; and (3) semi-active tags, which use internal
energy sources to power their circuits while communicating
with the reader through backscattering. All these tags can only
communicate with RFID readers but not amongst themselves.
Therefore the coverage of an RFID system is strictly limited
to the communication range of its readers.

The emerging networked tags [2] promise to bring a fun-
damental enhancement by enabling tags to communicate with
each other. An example of such tags is a new class of ultra-
low-power energy-harvesting networked tags designed and
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prototyped at Columbia University [3], [4]. Tagged objects
that are not traditionally networked, e.g., warehouse products,
books, furniture, and clothing, can now form a network [5],
which provides great flexibility in applications. Consider a
large warehouse where a great number of readers and antennas
must be deployed to provide full coverage. Not only is this
costly, but obstacles and piles of tagged objects may prevent
signals from penetrating into every corner of the deployment,
causing a reader to fail in accessing some of the tags. This
problem will be solved if the tags can relay transmissions
toward the otherwise-inaccessible reader. Similar situations
arise in retail stores (or libraries, chicken factories, livestock
ranches) where continuously packed products (or books, ani-
mals) provide an ideal environment for tag-to-tag communica-
tions, which can drastically alleviate the coverage requirement
for reader deployment, reduce the number of readers needed,
and more importantly provide additional assurance for tag
access under practical conditions. For example, a new shelf
can be immediately installed as needed in a location without
prior reader coverage as long as any part of the shelf is within
tag-to-tag communication range of another shelf. More
broadly, with emergence of the Internet of Things [5], we
envision that networked tags will play an important role as
an enhancement to the current RFID technologies.

The new feature of networked tags opens up new research
opportunities. This paper focuses on the tag identifica-
tion problem, which is to collect the IDs of all tags
in a system. This is the most fundamental problem for
RFID systems [6]–[9], but has not been studied in the context
of networked tags, where one can take advantage of the
networking capability to facilitate the ID collection process,
e.g., collecting IDs of tags that are not within the reader’s cov-
erage. Beyond the coverage of the readers, the networked tags
are powered by batteries or rechargeable energy sources that
opportunistically harvest solar, piezoelectric, or thermal energy
from surrounding environment [4], [10]. Energy efficiency is
a first-order performance criterion for operations carried out
by networked tags.

There are two types of networked tags. The stateful net-
worked tags maintain network state such as neighbors and
routing tables and update the information to keep it up-to-date.
These tags resemble the nodes in a typical sensor network.
It is energy-consuming to keep track of the changes in network
topology in real time (e.g., using as frequent beacon exchange
between neighbors), especially for dynamic networked sys-
tems. Therefore, for the purpose of energy conservation, the
state-free tags only gather necessary network information after
they wake up to perform some tasks, rather than maintaining
any network state prior to operation (when they are sleeping).
In addition, maintaining all network states can incur a large
storage overhead at each tag in a dense network, which is
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not affordable for simple networked tags. This property of
state-free networked tags makes them different from traditional
networks, including sensor networks — virtually all literature
on data-collecting sensor networks assumes the stateful model,
where the sensor nodes maintain information about who are
their neighbors and/or how to route data in the network.
For example, the Collection Tree Protocol [11] uses adaptive
beaconing and datapath validation to maintain reliable routing
information in highly dynamic topologies. This paper consid-
ers state-free networked tags, not only because there is little
prior work on this type of networked nodes, but also because
it makes more sense for the tag identification problem: First,
establishing neighborship and then routing tables across the
network is expensive and may incur much more overhead
than tag identification itself, which only requires each tag to
deliver one number (its ID) to the reader. Second, maintaining
the neighbor relationship and updating the routing tables (as
tags may move between operations) require frequent network-
wide communications, which is not worthwhile for infrequent
operation of tag identification.

It is challenging to design an identification protocol for
state-free networked tags. First, because power is a scarce
resource for tags, the protocol must be energy-efficient in
order to reduce the risk of network failure caused by energy
depletion. Second, we should also make the protocol time-
efficient so that it can scale to a large tag system where the
communication channel works at a very low rate for energy
conservation. Third, in order to eliminate overhead of state
maintenance and thus conserve energy, tags are assumed to be
state-free, which means that they do not know who are their
neighbors and there is no existing routing structure for them
to send IDs to the reader.

To the best of our knowledge, this is the first work that tries
to solve the problem of collecting IDs of state-free networked
tags. The existing RFID identification [12]–[15] protocols
cannot be applied because they assume that the readers can
reach all tags directly. We have to make a fundamental shift
in the protocol design for networked tags. This paper presents
two solutions: a contention-based ID collection protocol and a
serialized ID collection protocol. Our investigation reveals an
interesting result that the traditional contention-based protocol
design will incur too much overhead in multihop networked
tag systems due to progressively increased collision in the
network towards a reader, which results in excessive energy
cost. Surprisingly, a reader-coordinated design that attempts
to serialize tag transmissions performs much better. Moreover,
we discover that load balancing is critical in controlling the
worst-case energy cost incurring to the tags. We find that
the worst-case energy cost is high for both contention-based
and serialized protocol designs due to imbalanced load in the
network. For the serialized ID collection protocol, however,
we are able to provide a solution based on serial numbers
that balances the load and reduces the worst-case energy
cost. With serialization and load balancing, we show through
simulations that the transmission and receiving overheads per
tag are reduced by up to 90.2% and 86.7% respectively,
with a comparable protocol execution time. We also show
that, by leveraging the techniques of request aggregation and

transmission pipelining, we can improve the time efficiency of
serialized ID collection, with the execution time cut by more
than half.

The rest of this paper is organized as follows. Section II
presents the system model and the problem statement.
Section III describes the contention-based ID collection pro-
tocol for networked tag Systems. Section IV introduces the
serialized ID collection protocol. Section V proposes two
techniques to improve the time efficiency of serialized ID
collection. Section VI evaluates the performance of our pro-
tocols by simulations. Section VII discusses the related work.
Section VIII draws the conclusion.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Networked Tag System

We consider a reader and a large number of objects, each
of which is attached with a tag. Note that multiple readers can
also be deployed in a networked-tag system when necessary.
These readers are scheduled by a central server one by one
or in non-colliding groups where readers in the same group
do not cause collisions. We will use tag, node and networked
tag interchangeably in the sequel. Each tag has a unique ID
that identifies the object it is attached to. The reader also has
a unique ID that differentiates itself from the tags.

A networked tag system is different from a traditional
RFID system with a fundamental change: Tags near each
other can directly communicate. This capability allows a
multihop network to be formed amongst the tags. Developed
at Columbia University recently [4], prototype networked
tags can communicate using variants of CSMA and slotted
ALOHA. The transmission range of inter-tag communications
is usually short, about 1 to 10 meters [5]. But the reader is a
more powerful device, and its transmission range can be much
larger. Tags that can perform direct two-way communication
with a node form the neighborhood of the node.

Networked tags are expected to carry sufficient internal
energy for long-term operations or have the capability of har-
vesting energy from the environment where they are deployed.
Tags of the highest energy demand are located in the reader’s
neighborhood (i.e., coverage area) because they have to relay
the information from all other tags as the data converge
towards the reader. Fortunately, these tags can be powered by
the reader’s radio waves, similar to what today’s passive RFID
tags do; their energy supply is ensured. In contrast, tags that
are beyond the reader’s coverage need to use their own energy.
The operations of these tags must be made energy-efficient.

The reader and the tags in the system form a connected
network. In other words, there exists at least one path between
the reader and any tag such that they can communicate by
transmitting data along that path. Tags that are not reachable
from the reader are not considered to be in the system.

B. Problem Statement

The problem of tag identification is for a reader to collect
IDs from all networked tags that can be reached by the
reader over multiple hops with the help of intermediate tags
relaying the IDs of tags that are not in the immediate coverage
area of the reader. Our goal is to develop tag identification
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protocols that are efficient in terms of energy cost and protocol
execution time. We will consider both average energy cost per
tag and maximum energy cost among all tags in the system.
The average energy cost is an overall measurement of energy
drain across the whole system, and the maximum energy cost
is a measurement for the worst hot spot which may cause
power-exhausted tags and network partition.

C. System Model

What makes tags attractive is their simplicity. There is no
specification on how simple future networked tag tags should
be, but it is safe to say that we will always prefer protocol
designs that achieve comparable efficiency with less hardware
requirement. Generally speaking, each tag has very limited
energy, memory, and computing resources. In this paper,
we do not require tags to implement GPS, any localization
mechanism, or other complex functions. We consider state-
free tags, which do not spend energy in maintaining any state
information prior to operation.

Since each tag is only equipped with a single transceiver,
it cannot perform transmission and reception simultaneously.
Assume that the reader and tags cannot resolve collided
signals. Therefore, a node can successfully receive the trans-
mission only if there is only one neighbor transmitting.

In practice, tags may change their locations, new tags may
move into the system, and existing tags may move out of the
system when the tag identification protocol is not running.
For state-free tags, there is no mechanism (such as frequent
beacon exchange between neighbors) that keeps track of the
changes in network topology in real time. We assume that the
tags are stationary during the operation of tag identification,
which takes very short time. For example, in a warehouse,
the daily tag identification may be performed automatically in
after-work hours when objects are not moved around. During
the daytime between the previous identification and the next
one, objects can be freely moved. In case that the identification
operation needs to be performed during the daytime, we need
to design a protocol that takes as little time as possible to avoid
significant interruption to other warehouse operations due to
the stationary requirement at the time of identification.

To conserve energy, networked tags are likely configured
to sleep and wake up periodically for operations. After wake-
up, a tag will listen for a request broadcast from the reader
into the network, which either puts the tag back to sleep or
asks the tag to participate in an operation such as reporting
its ID. The broadcast request will serve the purpose of loosely
re-synchronizing the tag clock. The reader will time its next
request a little later than the timeout period set by the tags
to compensate for the clock drift and the clock difference
at the tags due to broadcast delay. The exact sleep time of
the tags and the inter-request interval of the reader should
be set empirically based on application needs and physical
parameters of the tags.

Notations used in the paper are given in Table I for quick
reference.

TABLE I

NOTATIONS

III. CONTENTION-BASED ID COLLECTION PROTOCOL

(CICP) FOR NETWORKED TAG SYSTEMS

We are not aware of any existing data collection protocol
specifically designed for the state-free model which makes
sense in the domain of tags but was not adopted in the main-
stream literature of sensor networks or other types of wireless
systems. However, it is not hard to design an ID collection
protocol for networked tags based on techniques known in
existing wireless systems. For example, in this section, we will
follow an obvious design path based on broadcast, spanning
tree and contention-based transmission. The resulting protocol
will be used as a benchmark for performance comparison
(since there is no prior work on identifying networked tags).
In the next section we will point out that the obvious tech-
niques are however inefficient and other less-obvious design
choices can produce much better performance.

A. Motivation

One straightforward approach for tags to deliver their IDs
to the reader is through flooding: As each tag broadcasts
its ID and every other ID it receives for the first time into
its neighborhood, the IDs will eventually reach the reader.
However, flooding causes a lot of communication overhead.
In addition, each tag has to store the IDs that it has received
in order to avoid duplicate broadcast. Due to the nature of
flooding, it means that eventually each tag will store all IDs
in the system, which demands too much memory.

Another approach is to ask tags to discover their neigh-
bors [16], [17] and run a routing protocol to form routing
paths towards the reader right before sending the IDs (even
though the tags are state-free prior to operation). However,
as the number of neighbors can be in hundreds in a packed
system, the overhead of doing so will be high, considering
that only one ID per tag will be delivered.

As the above two approaches do not work well, our idea is
to establish routing paths for free. For a reader to begin the
tag identification process, it needs to broadcast a request to all
tags. We can make extra use of this network-wide broadcast
to piggyback the function of establishing a spanning tree that
covers all tags, with the reader at the root of the tree. This tree
will be used for transmitting the IDs to the reader. We use the
ALOHA protocol to resolve the contention among concurrent
transmissions made by close-by tags.
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Fig. 1. State transition diagram of the RBP protocol. Each circle is a state,
and each arrow is a transition, where the event triggering the transition is
above the line and the action is below the line.

B. Request Broadcast Protocol (RBP)

The classical broadcast protocol is for each node to transmit
a message when it receives the message for the first time. But it
becomes more complicated to guarantee that all nodes receive
the message: If each node knows its neighbors, it may keep
transmitting the message until receiving acknowledgements
from all neighbors. However, more care must be taken if the
nodes do not know their neighbors. Below we briefly describe
a request broadcast protocol (RBP) that guarantees delivering
a request from the reader to all state-free tags.

To initiate tag identification, the reader broadcasts a request
notifying the tags to report their IDs. The request initially
carries the reader’s ID, which will later be replaced with a
tag’s ID when the tag forwards the request to others. The
state transition diagram of the protocol is depicted in Fig. 1,
which is explained below.

State of Waiting for Request: Each tag begins in this state
and takes action based on one of three possible events.
(1) Idle Channel: The channel is idle, i.e., no neighbor is
transmitting anything.
(2) Request Received: Only one neighbor is forwarding the
request, so the tag can receive the request correctly.
(3) Collision: Multiple neighbors are forwarding the request,
resulting in a collision.

In event (1), the tag does nothing. In event (2), the tag will
reply with an acknowledgement (ACK) to inform the sender
(The sender can be the reader or a neighboring tag that is
forwarding the request.) that it has successfully received the
request. Meanwhile, it extracts the ID from the request and
saves it as its parent. After that, it moves to the state of
Forwarding Request. As we will see shortly, it is not important
whether the ACK is correctly received by the sender of the
request or not. The sender will know that all its neighbors have
received the request when it does not hear any response (since
the neighbors all move to the state of Forwarding Request). In
event (3), the tag cannot resolve the collided signal. It sends a
negative acknowledge (NAK) and stays in the state of Waiting
for Request. Channel error, which may be caused by noise,
fading channel or multi-path effect, can result in failure of
correctly decoding the received data, which is detected through
CRC checksum. The ACK/NAK used in the proposal can
handle such situations. The sender will retransmit its message
when it receives a NAK or when it cannot determine whether
an ACK or NAK is received due to collision or channel error.

Fig. 2. An example of the spanning tree built by RBP, where the ID of
tag Ti is assumed to be i. Each dotted circle on the left gives the neighbors
of a tag at the center of the circle.

State of Forwarding Request: To ensure that the request will
be propagated across the network, each tag having received
the request will keep broadcasting it with exponential backoff
upon collision until all its neighbors receive the request. Each
time after the tag broadcasts the request (which carries the
tag’s ID), there are three possible events:
(1) No Response: No response is received from any neighbor.
(2) One ACK/NAK: Only one ACK/NAK response is received.
(3) Collision: Multiple ACK/NAK responses are sent by the
neighbors, leading to a collision.

Recall that any neighbor in the state of Wait for Request
will respond either ACK or NAK regardless of whether it
can successfully receive the request or not. Event (1) must
mean that all the neighbors have already received the request
and moved to other states. In this case, the tag does not
need to broadcast the request any more. If no response is
heard after broadcasting the request for the first time, the tag
knows it has no child and it is therefore a leaf node in the
spanning tree. In event (2), if a single ACK is received, the
tag knows that all its neighbors now have received the request.
Hence, it can stop broadcasting the request. If a single NAK
is received, the tag knows that there must have been collision
at a neighbor, which did not receive the request successfully.
Therefore, the tag should perform an exponential backoff to
avoid continuous collision in the channel. In event (3), the
tag cannot resolve the received ACK/NAK correctly and it
also performs an exponential backoff. As an example, Fig. 2
illustrates the spanning tree built in a networked tag system
after it executes RBP, where the reader has an ID 0.

The wireless transmissions in RBP can be implemented
either based on unslotted ALOHA or based on slotted
ALOHA. Slotted ALOHA is more efficient but requires the
tags to synchronize their slots. When the reader transmits
its request to nodes in its neighborhood, the preamble of
the transmission provides the clock and slot synchronization.
Similarly, when a distant tag receives the request for the first
time from another tag, the preamble of the latter synchronizes
the clock and slot.

Proposition 1: Every tag will receive a copy of the request
sent out by the reader under RBP.

Proof: To prove by contradiction, let’s assume there exists
a tag T that does not receive the request after executing RBP.
It must be true that none of its neighbors has received the
request. Otherwise, according to the protocol, any neighbor
having received the request would continue broadcasting the
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request until T receives it and acknowledges its receipt —
each time the request is transmitted, if T does not receive the
request successfully, it will respond NACK, causing the sender
to retransmit. By the same token, the neighbors of any T ’s
neighbor must not receive the request. Applying this argument
recursively, all nodes reachable from T must not receive the
request. By the assumption that the network is connected,
at least one neighbor T ′ of the reader is reachable from T .
Therefore, T ′ must not receive the request. This contradicts
to the fact that T ′ is located in the reader’s coverage area
and should receive the request at the very beginning when the
reader broadcasts the request for the first time. Therefore, the
theorem must hold.

C. ID Collection Protocol (ICP)

When a tag transmits its ID, it will include its parent’s
ID in the message, such that the parent node will receive it
while other neighbors will discard the message. This unicast
transmission is performed based on the classical ALOHA with
acknowledgement and exponential backoff to resolve collision.
The parent node will forward the received ID to its parent, and
so on, until the ID reaches the reader.

The execution of ICP is performed in parallel with RBP:
Once a tag knows its parent ID from RBP, it will begin
transmitting its ID to the parent. When a tag needs to forward
both an ID for ICP and a request for RBP, we give priority to
ID forwarding because it is easier for unicast to complete.

Proposition 2: The reader will receive the IDs of all tags
in the system after the execution of ICP.

Proof: From Theorem 1, each tag is guaranteed to receive
the request and therefore find a parent (from which the request
is received). Consider an arbitrary tag T . According to the
design of ICP, the ID of T will be sent to its parent until
positively acknowledged. The parent will forward the ID to
its parent, and as this process repeats, the ID will eventually
reach the reader at the root of the spanning tree.

IV. SERIALIZED ID COLLECTION PROTOCOL (SICP)

A. Motivation

The contention-based protocol ICP allows parallel transmis-
sions by non-interfering tags through spatial channel reuse.
In the conventional wisdom, this is an advantage. However,
we find in our simulations that the contention-based protocol
performs poorly for tag identification. The reason is that
although parallel transmissions are enabled among the tags
in the network, the reader can only take one ID at a time.
Essentially, the operation of ID collection is serialized at
the reader, regardless of how much parallelism is achieved
inside the network of tags. Furthermore, the parallelism is
actually harmful because the more the IDs are crowded to
the reader in parallel, the more the contention is caused
at the reader, resulting in many failed transmissions due to
collision, which translates into high energy cost and long
protocol execution time. When tags are densely deployed, this
problem can severely degrade the system performance. With
this observation, we take a different design path by trying
to partially serialize the tag transmissions, such that only a
(small) portion of tags will attempt to transmit at any time.

Fig. 3. At any time, only one node is active in collecting IDs from its
lower-tier neighbors.

By lessening the level of contention, we see a drastic per-
formance improvement. Another serious problem of RBP/ICP
is that the spanning tree is unbalanced, causing significantly
higher energy expenditure by some tags than others. This
problem of biased energy consumption and a solution will
be explained in details later.

B. Overview

We give an overview of our serialized protocol, SICP. The
reader begins by collecting IDs in its neighborhood using the
framed slotted ALOHA protocol. An illustrative example is
shown in Figure 3, where the reader collects the IDs from
neighbors T1 through T4 (which form tier 1), while all other
nodes stay idle. When the reader receives a tag’s ID (say, T2)
free of collision, T2 must be the only tag that is transmitting
in the whole network. It also means that other neighbors of T2

can hear the transmission free of collision. These tier-2 nodes,
T5 through T7, set T2 as their parent.

After collecting all tier-1 IDs, the reader sequentially
informs each tier-1 node to further collect IDs from its
children. For example, when the reader informs T2 to do so, all
other tier-1 nodes will stay silent. As T2 sends out a request for
IDs, only its children (T5, T6 and T7) will respond. The same
process as described in the previous paragraph will repeat;
only this time T2 takes the role of the reader.

After T2 collects the IDs of all its children, it will forward
the IDs to the reader, which will then move to the next tier-1
node. Once it exhausts all tier-1 nodes, it will move to tier-2
nodes, one by one and tier by tier, until the IDs of all nodes
in the network are collected.

Below we will first introduce the problem of biased energy
consumption, give a solution, and then describe iterative
serialization.

C. Biased Energy Consumption

When a tag is transmitting its ID to the reader, its neighbors
outside of the reader’s coverage can overhear the ID. They may
use this tag as their parent. As illustrated in the left plot of
Fig. 4, we prefer a roughly balanced spanning tree where each
node serves as the parent for a similar number of children.
In reality, however, a tag that delivers its ID to the reader
early on will tend to have many more children. An example
is given in the right plot of Fig. 4. Suppose tag 1 transmits its
ID to the reader first. Overhearing its ID, tags 5-9 will pick
tag 1 as their parent. When tag 2 transmits its ID at a later
time, no tag will be left to choose tag 2 as parent even though
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Fig. 4. Left Plot: a roughly balanced spanning tree; Right Plot: a biased
spanning tree, where tag 1 delivers its ID to the reader first and a large
number of nodes in its neighborhood chooses it as their parent, causing a
biased tree. Each arrow represents a child-parent relationship.

Fig. 5. A tag may choose its parent from multiple candidates. Arrows
represent ID transmissions (or broadcast).

tags 7-8 are in the range of tag 2 — recall that they have
already chosen tag 1. In this case, tag 1 will have to forward
more IDs, resulting in quicker energy drain than others. The
severity of the problem grows rapidly with an increasing
number of tiers because the numerous children of tag 1 tend to
acquire even more numerous children of their own and those
IDs will pass through tag 1 to the reader.

Uneven energy consumption causes some tags to run out
of energy earlier, which can result in network partition. The
same problem also exists for RBP/ICP where tags that receive
and forward the request early on during the network-wide
broadcast may end up with a large number of children.

To alleviate this problem, we observe that a tag may
overhear multiple ID transmissions over time and thus have
multiple candidates to choose its parent from, as shown by
Fig. 5 where T may choose its parent from three tier-1 nodes.
Ideally, the tag should choose its parent uniformly at random
from the candidates. However, because of collision, each
candidate may have to retransmit its ID for a different number
of times before the reader successfully receives it. To avoid
giving more chance to a candidate that retransmits its ID more
times, the tag may keep the IDs of all known candidates to
filter out duplicate overhearing. However, a serious drawback
of this approach is that the memory cost can be high if a
tag has numerous candidates for its parent in a system where
tagged objects are packed tightly together. We want to point
out that typical tags have very limited memory.

D. Serial Numbers

We propose a solution to biased energy consumption based
on serial numbers. In our protocol, each tag will be dynami-
cally assigned a serial number from 1 to N , where N is the
number of tags. The reader’s serial number is 0.

Let’s first consider the reader’s neighborhood only; other
tiers will be explained later. The reader initiates the protocol
by broadcasting an ID collection request denoted by RQST1,

Fig. 6. T ′ sets T as its parent.

carrying its serial number and a frame size f . The request is
followed by a time frame of f slots. Each tag that receives
the request will set the serial number 0 (i.e., the reader) as its
parent and then randomly chooses a slot in the time frame.
It waits until the chosen slot to report its ID to the reader.
If only one tag selects a certain slot, its ID will be correctly
received by the reader, which replies an ACK to the tag in the
same slot. The ACK carries the number of IDs that the reader
has successfully received so far. This number is assigned
as the serial number of the tag; the number is system-wide
unique due to its monotonically-increasing nature. A tag can
be identified either by its ID or its assigned serial number.
After receiving the ACK, we require the tag to broadcast the
assigned serial number in its neighborhood. Hence, each time
slot contains an ID transmission, an ACK transmission, and a
serial-number transmission. If the ID transmission is collision-
free, so do the other two transmissions. Even though a tag may
need to retransmit its ID multiple times due to collision, it will
transmit its assigned serial number once, only at the time when
an ACK is received.

If the reader observes any collision in the time frame, it will
broadcast another request with another time frame to collect
more IDs. If no collision is observed, the reader has collected
all IDs from its neighborhood and it will perform iterative
serialization (to be discussed) to collect IDs outside of its
neighborhood.

E. Parent Selection

Consider an arbitrary neighbor of T , denoted as T ′, which
has not set its parent yet. As illustrated in Fig. 6, T ′ must
not be in the reader’s neighborhood because the tags in that
neighborhood set the serial number 0 as their parent when they
receive the request from the reader for the first time. When T ′

receives a serial number for the first time, it will set the number
as its parent, which is subject to change when T ′ receives
more serial numbers from other tags (candidates for parent).
Recall that each tag broadcasts its serial number only once.
This property allows us to design the following parent selec-
tion algorithm (PSA) which guarantees every candidate has an
equal chance to be selected as the parent: Each tag maintains
two values, its parent and a counter c for the number of
candidates having been discovered so far. The counter is
initialized to zero. Each time when T ′ receives a serial number
s′ from a neighbor, it increases c by one and then replaces the
current parent with s′ by a probability 1

c . T ′ will fix its parent
after receiving the first ID collection request. Using this PSA,
we have the following theorem:



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: IDENTIFYING STATE-FREE NETWORKED TAGS 7

Proposition 3: Suppose a tag has v candidates for parent.
Each candidate has an equal probability of 1

v to be chosen as
the tag’s parent in the end.

Proof: For the jth (1 ≤ j ≤ v) discovered candidate,
it becomes the final parent only if it replaces the previously
selected parent, and is never substituted by the subsequently
discovered candidates. Therefore, the probability that it is
chosen by the tag as the parent in the end is

1
j

v∏

u=j+1

(1 − 1
u

) =
1
v
, (1)

implying every candidate is equally likely to be the
parent. �

Another advantage of using the serial number instead of ID
for parent identification is that an ID — typically 96 or more
bits for RFID tags — is much longer than the size of the serial
number, �log2 N�, where N is the maximum number of tags
in a system. For example, even if N = 1, 000, 000, the serial
number is just 20 bits long.

F. Serialization at Tier 2

After the reader collects all IDs from its neighborhood, each
tag in the neighborhood will obtain a unique serial number.
Recall that these tags constitute the first tier of the network.
The reader then serializes the subsequent ID collection process
by sending the serial numbers of tier-1 tags one by one, in
order to command the corresponding tag to collect IDs from
its neighbors, with other tier-1 tags staying idle.

The reader begins by transmitting another type of request,
denoted by RQST2, which includes the serial number 1 and
the number s of IDs it has received so far. In response, the
tag with the serial number 1, denoted as T1, transmits an ID
collection request RQST1, carrying its own serial number 1
and a frame size f . The request causes the neighbors that are
not tier-1 to finalize their parent selection; these nodes are
tier-2. Note that some of them may have selected nodes other
than T1 as their parents. Hence, when a tier-2 node receives the
request from T1, only if its chosen parent matches the serial
number in the request, it will transmit its ID in the subsequent
time frame; otherwise, it can sleep for a duration of f slots.
If T1 correctly receives an ID in a slot from a child T ′

1, it
increases the value of s by one and sends back an ACK with
s as the serial number assigned to T ′

1, which in turn broadcasts
its serial number and tier number (i.e., 2) in its neighborhood
such that the neighbors at the next tier can discover it as one of
their candidates for parent. When a tag sets (or later replaces)
its parent, it also sets its tier number as the tier number of its
parent plus one; it should never replace its current parent with
one whose tier number is larger.

It may take T1 multiple requests to finish reading all IDs
from its children. It then forwards the IDs to the reader. After
acknowledging T1, the reader sends a request to trigger the
ID collection process at the next tier-1 tag.

After the reader finishes this process with all tier-1 tags, it
has collected the IDs of all tier-2 tags. The reader also has the
information to construct a spanning tree covering tier-1 and
tier-2 nodes, as illustrated in Fig. 3 where the assigned serial
numbers are shown inside the circles.

G. Iterative Serialization

After the reader commands all tier-1 tags one by one to
collect the IDs of tier-2 tags, it repeats this serialization process
iteratively to collect other IDs tier by tier. Suppose the reader
has collected the IDs from all tags at tier 1 through tier i and
the range of serial numbers at tier i is from x to y. The reader
will send a RQST2 to each tier-i tag in sequence. The request
includes a concatenation of the serial numbers along the path
in the spanning tree from the root (excluded) to that tag, in
addition to the number s of IDs that the reader has received so
far. For example, for tag 7 in Fig. 3, the requst will carry two
serial numbers, 2 and 7. (Note that since each serial number is
of fixed size, there is no ambiguity on interpreting the sequence
of serial numbers.)

When the reader broadcasts the request in its neighborhood,
any tag receiving the request will extract and compare the first
serial number with its own. If the two serial numbers do not
match, it discards the request. Otherwise, it further checks
whether there are more serial numbers in the request. If so,
it broadcasts the remaining request. This process repeats until
a tag matches the last serial number in the request. That tag
will performs ID collection in a similar way as described in
Section IV-F. The collected IDs will be sent through the parent
chain to the reader.

Theorem 1: The reader will receive the IDs of all tags in
the system after the execution of SICP.

Proof: Proving by contradiction, we assume at least one
tag T fails in delivering its ID to the reader. T must not have
a parent; we again prove this by contradiction: Assume that
T has a parent T ′. According to the protocol, for T ′ to be
chosen as a parent, it must either the reader or a node that
has already successfully delivered its ID and subsequently
broadcast its assigned serial number. Hence, it will receive a
request from the reader to collect IDs from its children. After
the reader sends a request to T ′, T ′ will broadcast requests,
free of collision due to serialization, to children until all IDs
are collected — which happens when no collision is detected
in the time frame after a request. When T ′ receives the ID of
T , if it is not the reader, it will forward the ID to the reader
along the path with which its own ID has been successfully
delivered, free of collision due to serialization. This contradicts
to the assumption that T fails in delivering its ID to the reader.
Hence, T does not have a parent.

If T does not have a parent, all of its neighbors must
fail in delivering their IDs to the reader because otherwise
any successful neighbor would broadcast its serial number
according to the protocol, which would result in T having
a parent after T receives the serial number.

If all neighbors of T fail in delivering their IDs to the
reader, by the same reasoning as above, all their neighbors
must fail too. Recursively applying this argument, all tags in
the network must fail in delivering their IDs to the reader
because the network is connected, which contradicts at least
to the fact that the reader’s immediate neighbors are able
to send their IDs to the reader through the frame slotted
ALOHA protocol that SICP employs. Hence, the theorem is
proved.
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H. Frame Size

When the reader or a tag tries to collect the IDs in its
neighborhood, its request carries a frame size f . Let n be the
number of tags that are children of the reader or tag sending the
request. It is well known that the optimal frame size should be
set as n, such that the probability of each slot carrying a single
ID (without collision) can be maximized. This can be easily
seen as follows: Consider an arbitrary slot. The probability p
that one and only one tag chooses this slot to transmit is

p =
(

n

1

)
1
f

(
1 − 1

f

)n−1

≈ n

f
e−

n−1
f ≈ n

f
e−

n
f (2)

when n is large. To find the value of f that maximizes p, we
take the first-order derivative of the right side and set it to
zero. Solving the resulting equation, we have

f = n, (3)

which means the maximal value of p is e−1. In subsequent
requests, as more and more IDs have been collected, fewer
and fewer tags are transmitting their IDs and the frame sizes
should be reduced accordingly.

However, we do not know n. There are numerous estimation
methods for n [18]–[20], which are however intended for a
system with a large number of tags, in tens of thousands.
It is known that these estimation methods will actually be
inefficient if they are applied to a relatively small number of
tags such as a couple of thousands or fewer [21]; if the number
of tags is very small, the estimation time can be much larger
than the time it takes to complete the tag identification task
itself. In the context of this paper, we expect the number of
children of the reader or any tag is relatively small. Hence, it
is not worthwhile to add the overhead of a separate component
for estimating n before the reader (tag) begins collecting IDs
from its neighborhood.

Our solution is to estimate the value of n iteratively from the
frame itself without incurring additional overhead. Initially, we
set f to be a small constant λ in the first request. We double
the value of f in each subsequent request until there exists
at least one empty slot that no tag chooses. From then on,
we will estimate the number of n and set the frame size
accordingly in the subsequent requests. Without the loss of
generality, suppose we want to determine the frame size for
the ith request, where i > 1. Let fj be the frame size used
in the jth request, 1 ≤ j < i. After the jth request, let cj ,
sj , and ej be the numbers of slots that are chosen by multiple
tags (collision), a single tag, and zero tag, respectively. Let mj

be the number of IDs that are successively collected after the
jth request. All these values are known to the reader (tag).
The process for a tag to randomly choose a slot in a time
frame can be cast into bins and balls problem [22]. In the jth
frame, n − mj−1 tags (balls) are mapped to fj slots (bins).
The total number of different ways for putting n−mj−1 balls
to fj bins is f

n−mj−1
j . The number of ways for choosing ej

bins from fj bins and let them be empty is
(
fj

ej

)
. In addition,

the number of ways for choosing sj balls from n − mj−1

balls and putting each of them into one of the remaining
fj − ej bins is

(
fj−ej

sj

)(
n−mj−1

sj

)
(sj !). Finally, the remaining

Fig. 7. An illustration of a network with three tiers of tags.

n − mj−1 − sj balls should be thrown into the remaining cj

bins, each containing at least 2 balls (collision slots). We first
choose 2cj balls and put 2 balls into each of the cj bins,
which includes

(
n−mj−1−sj

2cj

) (2cj)!
2cj possibilities. After that, the

remaining (n−mj−1 − sj − 2cj) balls can be put into any of
the cj bins, which involves (n−mj−1 − sj − 2cj)cj different
ways. Therefore, the likelihood function for observing these
values is

L(n) =
i−1∏

j=1

(
fj

ej

)(
fj−ej

sj

)(
n−mj−1

sj

)
(sj !)

(
n−mj−1−sj

2cj

) (2cj)!
2cj

fj
n−mj−1

×(n − mj−1 − sj − 2cj)cj . (4)

The estimate of n is the value that maximizes L. Let this value
be n̂, which can be found through exhaustive search since the
range for n is limited in practice, rarely going beyond tens
of thousands. For the ith request, we set the frame size to be
n̂ − mi−1.

The above estimator follows the general principle originally
seen in [18], but it takes the information of cj , sj , and ej all in
the same estimator, whereas the estimators in [18] use either
cj or ej .

As our analysis will show, except for the reader, the average
number of children per tag is typically very small (less than 2)
for a randomly distributed tag network. In this case, if we set
the initial frame size λ to 4, the chance is high that a tag
successfully collect all IDs from it children in the first time
frame. Therefore, only the reader needs to use (4) to estimate
the number of its children, while the tags can just set the frame
size to a small constant to avoid the computation overhead.

I. Load Factor Per Tag

We analyze the work load of each tag in terms of how
many children and descendants it has to deal with. While our
load balancing approach is designed for any tag distribution,
to make the analysis tractable, we assume here that tags are
evenly distributed in an area with density ρ, and the tags whose
distances from the reader are no larger than R form the first
tier, while those whose distances from the reader are greater
than R + (i − 2)r but smaller than R + (i − 1)r form the ith
(i ≥ 2) tier of the network, where the transmission ranges of
the reader and a tag are R and r, respectively, with R ≥ r.
For example, Fig. 7 presents a network with three tiers. The
number Ni of tags in the ith tier is estimated as

Ni = ρ × (π × (R + (i − 1)r)2 − π × (R + (i − 2)r)2)
= πρ(2Rr + (2i − 1)r2). (5)
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TABLE II

THE VALUES OF Di WITH R = 3r

TABLE III

THE VALUES OF Li WITH R = 3r AND l = 10

One exception is that N1 computed from (5) actually includes
only the portion of tier-1 tags whose distances from the reader
are larger than R−r; these are the tags that can serve as parents
for tier-2 tags.

The children degree of a tag is defined as the number of
children it has. Because tags at the ith tier only serve as parents
for tags at the (i + 1)th tier, the average children degree of
tier-i tags, denoted by Di, is

Di =
Ni+1

Ni
=

2R + (2i + 1)r
2R + (2i − 1)r

= 1 +
1

R
r + (i − 1

2 )
. (6)

We have R � r because the reader can transmit at a much
higher power level and it has much more sensitive antenna.
This makes the values of Di very small. For example, if
R = 3r, Table II shows the values of Di, 1 ≤ i < 10,
which are smaller than 1.3 and quickly converge toward 1
as i increases. The values in the table will be even smaller if
R > 3r.

The load factor of a tier-i tag is defined as the number of IDs
it has to forward, including the IDs of its tier-(i+ 1) children
as well as other IDs that its children collects from their
descendants. The average load factor of tier-i tags, denoted
by Li, is equal to the total number of tags beyond the ith tier
divided by the number of tags at the ith tier. We have

Li =

∑l
j=i+1 Nj

Ni
=

∑l
j=i+1 2R + (2j − 1)r

2R + (2i − 1)r

=
2(l − i) + r

R (l2 − i2)
2 + (2i − 1) r

R

, (7)

where l is the total number of tiers and i < l. When
R = 3r and l = 10, Table III shows the values of Li,
1 ≤ i < 10, which are surprisingly small. Because tier-1 tags
can be powered by the radio wave from the reader, we are
only concerned with the power consumption of tags at other
tiers. The tags at tier 2 have to forward more IDs than those
at outer tiers. From the table, a tier-2 tag forwards just 16 IDs
on average, which is modest overhead, considering that there
are 8 more tiers beyond tier 2.

In case that the tags are not evenly distributed, the load
factor of tags at the same tier may vary more significantly,
depending on the tag density of each area. However, thanks to
our load balancing approach, the load factors of tags located
nearby are still likely to be similar.

While the average is modest, the worst-case load factor is
also important when we evaluate overhead. SICP is designed
to evenly distribute the work load among tags by balancing the
spanning tree, so that tags at a certain tier have similar numbers

Fig. 8. An illustration of using request aggregation to improve time efficiency
in SICP.

of children (or descendants), which translate to similar children
degrees (or load factors). We will study the worst-case children
degree and load factor by simulations.

V. IMPROVING TIME EFFICIENCY OF SICP

The serialized ID collection of SICP eliminates most simul-
taneous transmissions for the purpose of reducing collision,
which in turn may degrade the time efficiency. In this section,
we explore potential ways to improve the time efficiency of
SICP. The process for tags to execute SICP includes three
steps: (1) the reader sends a request to a designated tag to
perform ID collection; (2) the designated tag collects IDs
from its children; (3) the collected IDs are forwarded to the
reader. In step (2), IDs are collected using the frame slotted
ALOHA protocol, and the optimal frame size is given by (3).
In practice, the frame size used by tags may be set to a
small constant since each tag only has a few children, thereby
reducing tags’ computation overhead for optimizing the frame
size. Hence, our objective here is to improve time efficiency
of step (1) and step (3).

A. Request Aggregation

Recall that each tag has to receive a RQST2 request from
the reader before collecting IDs from its children. The request
is forwarded over multiple hops along the path from the reader
to the tag. We first use an example to illustrate the idea of
request aggregation. Consider a subtree in Fig. 3 that consists
of the reader, T2, T5, T6 and T7. As shown in the upper half
of Fig. 8, the request to T5 should be forwarded over two hops
reader→ T2 and T2 → T5. Similarly, the request targeted to T6

or T7 needs to be forwarded two times as well. Suppose a one-
hop transmission requires one slot. It requires six slots in total
to forward all three requests to T5, T6 and T7. We observe that
all three requests must be first forwarded to T2, the common
parent of T5, T6 and T7. The reader→ T2 transmission is
carried out three times, which is redundant and unnecessary.
We can indeed aggregate the three requests to a single one to
avoid redundant transmissions. As shown in the bottom half of
Fig. 8, instead of sending separate commands to T5, T6 and T7

individually, the reader first sends an aggregate request to T2,
and T2 then sends requests to the three children to perform ID
collection in sequence. As a result, the total number of slots
for forwarding the requests can be reduced to four. In the
aggregate request, the reader can include the serial numbers
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of T2’s children such that T2 does not need to remember
who are its children. Alternatively, we can slightly modify the
SICP protocol by asking each tag to record the starting serial
number of its children and the number of children its has,
which can be easily achieved while performing ID collection.
With those two values, each tag can recover all serial numbers
of its children when necessary.

Suppose T is a tier-i tag and it has m children. In the
original design of SICP, it takes (i + 1) slots to forward a
RQST2 request to a child of T , which is a tier-(i + 1) tag.
Hence, the total time cost tf for forwarding a request to every
child of T is

tf = (i + 1) × m. (8)

After applying the technique of request aggregation, only one
aggregate request needs to be sent to T . Therefore, the time
cost is reduced to

t′f = i + m. (9)

B. ID-Transmission Pipelining

After collecting all IDs from its children, a tag forwards
the collected IDs to its parent, which may take multiple slots.
Only after receiving all IDs from the tag will the parent start
to forward those received IDs. This process continues until
the IDs are finally delivered to the reader. Consider a tier-i
tag. Suppose it has m children whose IDs are collected, and
k IDs can be transmitted in each slot. The time cost tb, in
number of time slots needed to forward the IDs to the reader,
is approximately

tb = i × m

k
. (10)

This completely serialized way of ID delivery is however
not time-efficient since only one tag is allowed to transmit
at any time. We want to exploit simultaneous transmissions
among non-interfering tags through spatial channel reuse.
Before introducing the idea of transmission pipelining, we first
prove the following theorem.

Theorem 2: If tag T is an ancestor node but not the direct
parent node of tag T ′ in the spanning tree built by SICP, T ′

must not be a neighbor of T .
Proof: Proving by contradiction, we assume that T ′ is a

neighbor of T . Denote the parent of T ′ as Tp. Recall that a
tag will determine its parent when receiving the first ID collect
request. Let t′ be the time when T ′ determines its parent, and
t be the time when T broadcasts the ID collection request for
the first time. Because T ′ may hear a request for the first time
from another node, we must have

t′ ≤ t. (11)

Let tp be the time when Tp successfully delivers its ID. Since
T is also an ancestor node of Tp, the delivery of Tp’s ID must
happen after T sends out its ID connection request. Hence,
t < tp. From (11), we have

t′ < tp. (12)

We know that Tp is selected as the parent of T ′ at time t′ (upon
the receipt of an ID collection request). In order to select Tp

Fig. 9. Transmission pipelining of the IDs collected by node 6. Each arrow
represents one transmission of IDs from a node to its parent in a given slot.

as its parent, T must know the existence of Tp earlier, which
happens at time tp (when Tp successfully delivers its ID to its
parent). Namely, it is necessary that

tp < t′, (13)

which contradicts to (12) and thus completes the
proof.

Based on Theorem 2, we can conclude that for an arbitrary
ID transmission from T ′′ to T , the transmissions from any
of T ’s ancestor nodes that are not its parent will cause no
interference to T ’s receipt of transmission by T ′′. We use an
example in Fig. 9 to illustrate the idea of ID-transmission
pipelining. Suppose node 6 has collected the IDs from its
children and begins forwarding the IDs to the reader along the
path 6 → 5 → 4 → 3 → 2 → 1 → 0. Instead of forwarding
all collected IDs to its parent node 5 at once, which is the
method adopted by SICP, node 6 first uses only one slot to
transmit some of the IDs (assuming they cannot all fit in one
slot) to its parent, as shown by slot 1 in Fig. 9. In the following
two slots, only node 5 and node 4 forward the received IDs,
respectively, while node 6 does not perform any transmissions
to avoid collision. In slot 4, when node 3 forwards the received
IDs to node 2, node 6 will transmit another slot of IDs to
node 5. According to Theorem 2, node 3 is not a neighbor
of node 5, and thus its transmission will not interfere with
node 5’s receipt of transmission from node 6. In summary,
node 6 can perform one transmission every three slots in this
example. This is also true for other nodes in the path from
node 6 to the reader. The parallel transmissions effectively
produce a transmission pipeline in delivering the IDs to the
reader.

We generalize the technique of transmission pipelining for
any tag in the system as follows:

1) After a tier-1 tag collects IDs from its children, the tag
will directly deliver the IDs to the reader in continuous
slots without waiting.

2) After a tier-2 tag T collects IDs from its children, the tag
performs one ID transmission every two slots, allowing
its parent to forward the received IDs to the reader
in the time slot immediately following each slot when
T transmits.

3) After a tag T at tier 3 or higher collects IDs from its
children, the tag performs one ID transmission every
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Fig. 10. Maximum children degree in the spanning tree.

Fig. 11. Maximum load factor of tags in the spanning tree.

three slots to support pipelining. When any tag on the
path from T to the reader receives IDs in a slot, it will
transmit the received IDs in the next slot.

Therefore, the time cost t′b for a tier-i tag to forward m
collected IDs to the reader with transmission pipelining is
approximately

t′b =

{
i × m

k if 1 ≤ i ≤ 2
3 × (m

k − 1) + i if i ≥ 3
(14)

It is easy to prove that t′b ≤ tb. Transmission pipelining can
improve the time efficiency of ID collection, particularly for
tags with large tier numbers.

We denote the SICP with request aggregation and transmis-
sion pipelining as p-SICP in the sequel.

VI. EVALUATION

A. Simulation Setup

There is no prior work on tag identification for networked
tag systems.1 But known techniques such as broadcast and
contention-based transmission widely used in other wireless
systems can be used to design a state-free tag identifica-
tion protocol, CICP, which we will use as a benchmark
for comparison. We evaluate the performance of CICP,
SICP and p-SICP to demonstrate three major findings that
(1) although the ALOHA-based protocols are very success-
ful in other wireless systems (including RFID systems),
they are not suitable for networked tag systems, and that
(2) serialization can significantly improve the tag identification

1For the special case when all networked tags are within the direct coverage
of the reader, our protocols naturally become the traditional protocols,
literally, because we may actually adopt any existing ALOHA-based RFID
identification protocol for collecting IDs within the reader’s neighborhood in
place of the operations described in Section IV-D, as long as the serial number
is embedded in ACK.

performance (3) the techniques of request aggregation and
ID-transmission pipelining can significantly improve the time
efficiency of serialized ID collection.

Three performance metrics are used: (1) execution time
measured in number of time slots, (2) average and maximum
numbers of bits sent per tag, and (3) average and maximum
numbers of bits received per tag. The last two are indirect
measures of energy cost, where tier-1 tags are excluded
because they can be powered by the reader’s radio waves.
Computation by tags in the proposed protocols is very limited.
Most energy is spent on communication. The amount of
communication data serves as an indirect means to compare
different protocols. For example, if tags in one protocol receive
and send far more than those in another protocol, it is safe to
say that the first protocol costs more energy than the second.

We vary the number N of tags in the system from 1000 to
10000 at steps of 1000. The tags are randomly distributed in a
circular area with a radius of 50m unless an explicit parameter
is specified. The reader, whose communication range R is set
to 25m, is located at the center of the area. For each tag,
its inter-tag communication range r is 5m. In SICP and p-
SICP, the reader sets its frame size of the ith request to fi =
max{n̂ − mi−1, fl}, where mi−1 is the number of IDs that
have been collected and n̂ is the estimate number of tags that
maximizes (4). The lower bound fl, fixed to 50, prevents the
frame size from being setting too small or even negative due to
the estimation deviation of n̂. The initial frame size λ is 50 for
the reader. To relieve the tags from estimating the numbers of
children they have, we let them use a fixed frame size λ with
a default value of 4, but we will also vary it from 2 to 10. The
length of each tag ID is 96 bits long. The length of each serial
number is �log2 N� bits long. The length of each tier number
is 4 bits long. Following the specification of the EPC global
Class-1 Gen-2 standard [1], we set the length of any types
of requests to 20 bits, and set ACK and NAK to 16 bits and
8 bits, respectively. In SICP and p-SICP, the ACK will also
include a serial number. For each data point in the figures, we
repeat the simulation for 100 times and present the average
result.

B. Children Degree and Load Factor

We first examine the balance of the spanning trees built
by CICP and SICP (the spanning tree in p-SICP is built
in the same way as SICP). It has significant impact on the
worst-case energy cost of the tags. A tag with a larger children
degree (or a larger load factor) has to collect (or forward) more
tag IDs, resulting in additional energy expenditure. Tags that
have the largest children degree or load factor may become
the energy bottleneck in the network. If the residual on-tag
energy is exhausted before the completion of the protocol, the
network may even be partitioned due to dead tags.

Fig. 10 and Fig. 11 present the maximum children degree
and the maximum load factor in the spanning trees built
by CICP and SICP, respectively. As the number N of tags
in the system becomes larger, the increase in these worst-
case numbers under CICP is a lot faster than the increase
under SICP, indicating a much balanced tree for the latter. For
example, when N = 10000, the maximum children degree
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Fig. 12. Performance comparison between CICP and SICP.

Fig. 13. Maximum number of bits sent by any tag.

Fig. 14. Maximum number of bits received by any tag.

and load factor in CICP are 83 and 1969, and those numbers
in SICP are only 14 and 165.

C. Performance Comparison

We compare the performance of CICP, SICP and p-SICP
in Fig. 12, where the first plot shows the protocol execution
time in terms of number of slots used, the second plot shows
the average number of bits sent per tag, and the third plot
shows the average number of bits received per tag. SICP uses
a comparable number of slots as CICP, while p-SICP needs
a much smaller number of slots than SICP, as we expect.
The energy costs of SICP and p-SICP are very close. Both
are much smaller than that of CICP, thanks to serialization
for collision reduction. For example, when N = 10000, the
numbers of bits sent/received per tag in CICP are 8783 and
412218, whereas those numbers are just 862 and 54871 for
SICP, respectively, which represent 90.2% and 86.7% reduc-
tion over CICP. Because of the request aggregation technique,
the average number of bits sent per tag in p-SICP is slightly

smaller than that of SICP. But each tag in p-SICP receives
slightly more bits on average than SICP. The reason is that a
tag in SICP can inform its non-parental neighbors to sleep for
a certain duration without receiving the IDs unnecessarily; in
contrast, the transmission pipelining of p-SICP requires every
neighbor to receive what a tag transmits in each slot. For
p-SICP, its numbers of bits sent/received per tag are 634 and
63716, which represent 92.8% and 84.5% reduction over CICP,
respectively.

Fig. 13 and Fig. 14 show the maximum numbers of bits
sent/received by a tag under the three protocols, respectively.
As expected, the most energy-consuming tags spend much
less energy under SICP and p-SICP than under CICP. For
example, when N = 10000, the maximum numbers of bits
sent/received by any tag in CICP are 631412 and 2367899,
and those numbers in SICP are 38273 and 159431 — 93.9%
and 93.3% reduction, respectively.

D. Performance Tradeoff for SICP and p-SICP

Next, we demonstrate a performance tradeoff for SICP and
p-SICP controlled by the value of λ. We set N = 5000
and vary λ from 2 to 10. The results are presented in
Fig. 15, where the three plots from left to right show the
execution time, the average number of bits sent per tag, and the
average number of bits received per tag, respectively. Similar
time-energy tradeoff can observed in both SICP and p-SCIP.
As the value of λ increases, the execution time increases,
but the energy cost for sending and receiving decreases.
However, the time increases almost linearly, but the decrease
in energy flattens out, suggesting that a modest value of λ is
preferred.

E. Time Efficiency Comparison of SCIP and p-SICP

The analysis in Section V demonstrates that the techniques
of request aggregation and transmission pipelining can reduce
the time of ID collection, particularly for tags with large
tier numbers. We use simulations to verify this conclusion.
We vary the radius of the circular area, where 5000 networked
tags are randomly distributed, from 50m to 100m at steps
of 10m. A larger radius of the distribution area means there
are more tiers in the system, resulting in a larger height of the
spanning tree. Fig. 16 compares the execution time of SICP
and p-SICP. We can see that the gap between the execution
time of SICP and p-SICP becomes larger with the increase of
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Fig. 15. Execution time and energy cost of SICP and p-SICP with respect to λ, when N = 5000.

the radius. When the radius is large, p-SICP cuts the execution
time of SICP by more than half.

VII. RELATED WORK

The tag identification protocols for traditional RFID
systems can be broadly classified into two categories:
ALOHA-based [14], [15], and tree-based [12], [13]. To run an
ALOHA-based identification protocol, the reader first broad-
casts a query, which is followed by a slotted time frame.
Each tag randomly picks a time slot in the frame to report
its ID. Collision happens if a slot is chosen by multiple
tags. Tags not receiving positive acknowledgements from the
reader will continue participating in the subsequent frames.
The dynamic frame slotted ALOHA (DFSA) [23], [24] adjusts
the frame size round by round.

The tree-based protocols [25] organize all IDs into a tree of
ID prefixes. Each in-tree node has two child nodes that have
one additional bit, ‘0’ or ‘1’. The tag IDs are leaves of the
tree. The reader walks through the tree. As it reaches an in-
tree node, it queries for tags with the prefix represented by
the node. When multiple tags match the prefix, they will all
respond and cause collision. Then the reader moves to a child
node by extending the prefix with one more bit. If zero or one
tag responds (in the one-tag case, the reader receives an ID),
it moves up in the tree and follows the next branch.

GenePrint [26] identifies RFID UHF passive tags through
physical-layer information. To further improve the identifica-
tion efficiency, network coding and interference cancelation
techniques are used to help the reader recover IDs from
collided signals [27], [28].

Although there is no prior study on tag identification for
networked tag systems, research on other aspects of networked
tags has been significantly expanded in recent years. The
work [29] investigated how to maximize broadcast through-
put under ultra-low-power constraints. A neighbor discovery
protocol base on a power harvesting budget was proposed
in [30]. The work [31] analyzed max-min fair rate allocation
and routing algorithms in networked tags.

Another related work is data collection in wireless sensor
networks, where each node generally is stateful and maintains
the network states. The prior work [32] investigated the energy
balanced data collection problem in wireless sensor networks,
which aims at balancing the energy consumption among all the
sensor nodes in the data propagation process. A novel TDMA

Fig. 16. Comparison of execution time of SICP and p-SICP when
5000 networked tags are randomly distributed over a circular area with
different radiuses.

schedule [33] was developed to collect sensor data for dynamic
network traffic pattern. TIGRA [34] provides a transmission
schedule base on distributed graph coloring, which guarantees
near-optimal delay on sensor data collection. The work [35]
studied how to optimally (with respect to time) distribute and
collect data in sensor networks.

VIII. CONCLUSION

This paper is the first study on tag identification in the
emerging networked tag systems. The multihop nature of
networked tag systems makes this problem different from the
tag identification problem in RFID systems. We propose three
tag identification protocols with three important findings. The
first finding is that the traditional contention-based protocol
design incurs too much energy overhead in networked tag
systems due to excessive collision. The second finding is
that load imbalance causes large worst-case energy cost to
the tags. We address these problems through serialization and
probabilistic parent selection based on serial numbers. The
third finding is that the techniques of request aggregation and
ID-transmission pipelining can significantly improve the time
efficiency of serialized ID collection. In our future work, we
will implement our protocols on networked tags when they are
available for research purpose.
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