
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017 1475

Lightweight Anonymous Authentication
Protocols for RFID Systems

Min Chen, Shigang Chen, Fellow, IEEE, and Yuguang Fang, Fellow, IEEE, Member, ACM

Abstract— Radio-frequency identification (RFID) technologies
are making their way into retail products, library books, debit
cards, passports, driver licenses, car plates, medical devices,
and so on. The widespread use of tags in traditional ways of
deployment raises a privacy concern: they make their carriers
trackable. To protect the privacy of the tag carriers, we need
to invent new mechanisms that keep the usefulness of tags
while doing so anonymously. Many tag applications, such as toll
payment, require authentication. This paper studies the problem
of anonymous authentication. Since low-cost tags have extremely
limited hardware resource, we propose an asymmetric design
principle that pushes most complexity to more powerful RFID
readers. With this principle, we develop a lightweight technique
that generates dynamic tokens for anonymous authentication.
Instead of implementing complicated and hardware-intensive
cryptographic hash functions, our authentication protocol only
requires tags to perform several simple and hardware-efficient
operations such as bitwise XOR, one-bit left circular shift, and bit
flip. The theoretical analysis and randomness tests demonstrate
that our protocol can ensure the privacy of the tags. Moreover,
our protocol reduces the communication overhead and online
computation overhead to O(1) per authentication for both tags
and readers, which compares favorably with the prior art.

Index Terms— RFID, lightweight, anonymous authentication,
dynamic token.

I. INTRODUCTION

RADIO frequency identification (RFID) technologies inte-
grate simple communication, storage and computation

components in attachable tags that can communicate with
readers wirelessly over a distance [1], [2]. Each tag uniquely
identifies its carrier, which can be a product in a warehouse,
a merchandize in a retail store, an animal in a zoo, or a piece
of medical equipment in a hospital. Active research in recent
years has been continuously expanding the RFID application
scope [3]–[5], and practical RFID systems are applied to
inventory and logistics management, object tracking, access
control, automatic toll payment, theft prevention, localization,
intelligent transportation systems, etc. The market size of
RFID has reached $8.89 billion in 2014, and is projected to
rise to $27.31 billion after a decade according to a market
research conducted by IDTechEx [6].

Manuscript received February 25, 2016; revised September 24, 2016;
accepted November 15, 2016; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor Y. Liu. Date of publication January 9, 2017; date of
current version June 14, 2017. This work was supported by the National
Science Foundation under Grant CNS-1409797.

M. Chen and S. Chen are with the Department of Computer and Information
Science and Engineering, University of Florida, Gainesville, FL 32611 USA
(e-mail: min@cise.ufl.edu; sgchen@cise.ufl.edu).

Y. Fang is with the Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL 32611 USA (e-mail: fang@ece.ufl.edu).

Digital Object Identifier 10.1109/TNET.2016.2631517

The proliferation of tags in their traditional ways of deploy-
ment is introducing a hidden problem: They make their carriers
trackable. Should future tags penetrate into everyday products
and be carried around (oftentimes unknowingly), people’s
privacy would become a serious concern. A typical tag will
automatically transmit its ID in response to the query from
a nearby reader. If we carry tags in our pockets or by our
cars, these tags will give off their IDs to any readers that
query them, allowing others to track us. As an example, for a
person who carries a tag in her purse (a tagged card or a smart
phone that implements tag function), she may be unknowingly
tracked by retailers equipped with readers in the stores to
learn when she visits which product section for how long.
For a person whose car carries a tag (automatic toll payment
or tagged plate), he may be unknowingly tracked over years
by toll booths or others who install readers at locations of
interest to learn when and where he has been. To protect the
privacy of tag carriers, we need to invent ways of keeping the
usefulness of tags while doing so anonymously [7]–[10].

Many RFID applications such as toll payment require
authentication. A reader will accept a tag’s information only
after authenticating the tag and vice versa. What is the
challenge to make authentication anonymous? Let us answer
this question through an example: Consider an RFID tag for
toll payment such as SunPass [11]. Suppose the reader has
access to a database of all secret keys that are pre-installed in
the toll-payment tags. When a vehicle approaches, the reader
has to know which key it should use to perform authentication.
In a typical authentication protocol, the tag transmits a key
identifier (i.e., user ID) to the reader, which allows the reader
to identify the right key. However, the key identifier, unique to
each tag, can be used to identify the carrier. Unauthorized read-
ers from an adversary can initiate the authentication process at
any chosen locations and obtain the key identifiers of passing
vehicles, which allows them to track the whereabout of the
vehicles. Therefore, anonymous authentication should prohibit
the transmission of any identifying information, such as tag
ID, key identifier or any fixed number that may be used for
identification purpose. As a result, there comes the challenge
that how can a legitimate reader efficiently identify the right
key for authentication without any identifying information of
the tag?

The importance and challenge of anonymous authentication
attract much attention from the RFID research community.
Many anonymous authentication protocols have been pro-
posed. However, all prior work has some potential problems,
either incurring high computation or communication overhead,
or having security or functional concern. Moreover, most prior

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1476 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

work employs cryptographic hash functions, which requires
considerable hardware [12], to randomize authentication data
in order to make the tags untrackable. The high hardware
requirement makes them not suited for low-cost tags with
limited hardware resource. Some hardware-efficient Linear
Feedback Shift Registers (LFSR) [13], [14] are proposed
as pseudo-random number generators for RFID tags. How-
ever, it is well known that LFSRs alone are not sufficiently
secure [15], [16], and therefore they cannot replace crypto-
graphic hash functions in authentication. Hence, designing
anonymous authentication protocols for low-cost tags remains
an open and challenging problem [17].

Our Contribution: In this paper, we make a fundamental
shift from the traditional design paradigm for anonymous
RFID authentication. First, we release the resource-constrained
RFID tags from implementing any complicated functions (e.g.,
cryptographic hashes). Since the readers are not needed in a
large quantity as tags do, they can have much more hardware
resource. Given the significant capability disparity between the
readers and tags, we propose an asymmetry design principle
which pushes most complexity to the readers while leaving
the tags as simple as possible. More specifically, our protocol
only requires the tags to perform a few hardware-efficient
operations such as bitwise XOR, one-bit left circular shift, and
bit flip, while all other complicated work is done by the readers
or servers. Second, we develop a novel technique to generate
random tokens on demand for anonymous authentication.
Our protocol only requires O(1) communication overhead
and online computation overhead per authentication for both
readers and tags, which is a significant improvement over
the prior art. Hence, our protocol is scalable to large RFID
systems. Finally, extensive theoretic analysis, security analysis,
simulations and statistical randomness tests are provided to
verify the effectiveness of our protocol.

II. PRIOR ART

Prior work on anonymous authentication can be generally
classified to two categories: non-tree-based and tree-based.

A. Non-Tree Based Protocols

The Hash-lock [18] takes advantage of random hash values
for anonymous authentication. After receiving an authentica-
tion request from a reader, a tag sends back (r, id ⊕ fk(r)),
where r is a random number, id is the tag’s ID, k is a pre-
shared secret between the tag and the reader, and {fn}n∈N

is a pseudo-random number function ensemble. The reader
exhaustively searches its database for a tag whose ID and key
can produce a match with the received data. The hash-lock
protocol has a serious efficiency problem that the reader needs
to perform O(n) hash computations on line per authentication,
where n is the number of tags in the system. Some
variants [19]–[22] of the hash-lock scheme try to improve
the search efficiency, but they have other issues. The OKS
protocol [19] uses hash-chain for anonymous authentication.
The OSK/AO protocol [20], [21] leverages the time-memory
tradeoff to reduce the search complexity to O(n

2
3) (still too

large) at the cost of O(n
2
3) units of memory. However, both

OKS and OSK/AO cannot guarantee anonymity under denial-
of-service (DoS) attack [23]. The YA-TRAP protocol [22]
makes use of monotonically increasing timestamps to achieve
anonymous authentication. YA-TRAP is also susceptible to
DoS attack, and a tag can only be authenticated once in
each time unit. The DoS attack in OSK/AO and YA-TRAP
is in nature a desynchronization attack, which tricks a tag
into updating its keys unnecessarily and makes it fail to
be authenticated by an authorized reader later. The protocol
in [24] addresses the DoS attack of YA-TRAP but sacrifices
some time efficiency.

Burmester et al. introduced a generic compiler that maps
each challenge-response RFID authentication protocol into
another that supports key-lookup operations in constant
cost [25]. However, the scheme cannot guarantee anonymity
since a tag reuses the same pseudonym in the following session
if an authentication session fails. In addition, it does not
provide forward secrecy due to the use of a fixed secret key.
Moreover, the scheme requires tags to implement a one-way
trapdoor function.

The LAST protocol was proposed based on a weak privacy
model [26]. Key identifiers are employed to facilitate the
reader to identify the tags quickly. After each authentication,
the reader uploads a new 〈identifier, key〉 pair to the tag.
LAST only requires the reader and tag to compute O(1) hashes
per authentication, but the overhead for the reader to search
a given key identifier is not considered. Moreover, since the
key identifier is only updated after a successful authentication,
the tag keeps sending the same key identifier between two
consecutive successful authentications. Therefore, LAST is
not anonymous in the strict sense. In addition, the process of
uploading a new 〈identifier, key〉 pair to the tag after each
authentication incurs extra communication overhead.

B. Tree Based Protocols

Tree-based protocols organize the shared keys in a balanced
tree to reduce the complexity of authenticating a tag to
O(log n). However, the tree-based protocols generally require
each tag to store O(log n) keys, which is O(1) for non-tree
based protocols.

In Dimitriou’s protocol [27], the non-leaf nodes of the tree
store auxiliary keys that can be used to infer the path leading
to leaf nodes that store the authentication keys. For each
authentication, the computation overhead for both the reader
and the tag is O(log n), and the tag needs to transit O(log n)
hash values. This protocol is vulnerable to the compromising
attack since different tags may share auxiliary keys [28], [29].

The ECNP protocol [30] leverages a cryptographic encoding
technique to compress the authentication data transmitted by
tags. ECNP can reduce the computation overhead of the
reader and the transmission overhead of the tag by multifold
compared with Dimitriou’s protocol [27], but they remain
O(log n) due to the use of tree structure. Moreover, ECNP
is not resistant against the compromising attack since the
children of one node in the tree share the same group keys.

The ACTION protocol [29] was designed to be resistant
against the compromising attack. It adopts a sparse tree
architecture to make the keys of each tag independent from

CHEN et al.: LIGHTWEIGHT ANONYMOUS AUTHENTICATION PROTOCOLS FOR RFID SYSTEMS 1477

Fig. 1. A hierarchical distributed RFID system.

one another. In ACTION, each tag is randomly assigned with a
path key, which is further segmented into link indices to guide
the reader to walk down the tree towards the leaf node that
carries the secret key k of the tag. For each authentication, a
tag needs to compute and transmit O(log n) hashes and the
reader needs to perform O(log n) hashes to locate the shared
key. The key problem of ACTION is that the size of link
indices is too small after segmentation (e.g., 4 bits), rendering
them easy to guess.

The prior work [31] dealt with a different category of
problems on anonymous authentication—batch-type authenti-
cation. The proposed MAP protocol can authenticate a batch
of tags concurrently by enabling collaboration among multiple
tags.

III. SYSTEM MODEL AND SECURITY MODEL

A. System Model

Consider a hierarchical distributed RFID system as shown
in Fig. 1. Each tag is pre-installed with some keys for
authentication. The readers are deployed at chosen locations,
responsible for authenticating tags entering their coverage
areas. In addition, the readers at each location are connected
to a backend server, serving as a supplement to provide more
storage and computation resources. All backend servers are
further connected to the central server, where every tag’ keys
are stored. Any authorized backend server can fetch the tags’
keys from the central server. Since the keys of each tag are
only stored at the central server, they are synchronized from
the view of different backend servers. Moreover, the high-
speed links connecting the central server, backend servers and
readers make the latency of transmitting small authentication
data negligible. Therefore, a reader, its connected backend
server, and the central server can be thought as single entity,
and will be used interchangeably.

In this paper, we concentrate on low-cost RFID tags, par-
ticularly passive backscatter tags that are ubiquitously used
nowadays. The simplicity of these tags contributes to their
low prices, which in turn restricts their computation, com-
munication, and storage capabilities. In contrast, the readers,
which are not needed in a large quantity as tags do, can
have much richer resource. Moreover, the backend server can
provide the readers with extra resource when necessary. The
communication between a reader and a tag works in the
request-and-response mode. The reader initiates the commu-
nication by sending a request. Upon receiving the request,
the tag makes an appropriate transmission in response. We
divide the transmissions between the readers and tags into two

types: (1) Invariant transmissions contain the content that is
invariant between any tag and any reader, such as the beacon
transmission from a reader which informs the incoming tag
of what to do next. (2) Variant transmissions contain the
content that may vary for different tags or the same tag at
different times, such as the exchanged data for anonymous
authentication.

B. Security Model

Threat Model: An adversary may eavesdrop on any wireless
transmissions made between the tags and the readers. In
addition, the adversary may plant unauthorized readers at
chosen locations, which communicate with passing tags and
try to identify the tag carriers. However, such unauthorized
readers have no access to the backend servers or the central
server since the servers will authenticate the readers before
granting access permissions. In the sequel, a reader without
further notation means an authorized one by default. Moreover,
we assume that the adversary may compromise some tags and
obtain their keys, but it cannot compromise any authorized
readers.

Anonymous Model: The anonymous model requires that all
variant transmissions must be indistinguishable by the adver-
sary, meaning that (1) any variant transmission in the protocol
should not carry a fixed value that is unchanged across mul-
tiple authentications, and (2) the transmission content should
appear totally random and unrelated across different authen-
tications to any eavesdropper that captures the transmissions.
Therefore, no adversary will have a non-negligible advantage
in successfully guessing the next variant transmission of a tag
based on the previous transmissions [23].

IV. A STRAWMAN SOLUTION

Before moving to our main contributions, we propose a
strawman solution for lightweight anonymous authentication.

A. Motivation

Most prior wok employs cryptographic hash functions to
randomize authentication data for the purpose of keeping
anonymity. Implementing a typical cryptographic hash func-
tion such as MD4, MD5, and SHA-1 requires at least 7K
logic gates [12]. However, widely-used passive tags only have
7K-15K logic gates, of which 2K-5K are reserved for security
purposes [32]. The hardware constraint necessitates a new
design paradigm for lightweight anonymous authentication
protocols that are more supportive for low-cost tags. The
commercial success of RFID tags lies with their simplicity.
Although there is no specification on how simple these tags
should be, it is safe to say that we will always prefer a solution
that achieves the comparable goal with less hardware require-
ment. On the other hand, the significant disparity between the
readers and tags points out an asymmetry design principle that
we will follow: push most complexity to the readers while
leaving the tags as simple as possible.

B. A Strawman Solution

Consider an RFID system with n tags t1, t2, . . . , tn, each
pre-installed with an array of m unique random tokens, [tk1

i ,

1478 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

TABLE I

KEY TABLE FOR THE PRELIMINARY DESIGN

Fig. 2. Three steps of token-based mutual authentication.

tk2
i , . . . , tkm

i] (1 ≤ i ≤ n). Tag ti also has a token index pti
(initialized to 1) pointing to its first unused token. The tokens
and token index of each tag are also stored in the database of
the central server, as illustrated in Table I.

In the sequel, we consider the authentication process
between an arbitrary reader R and an arbitrary tag t having
a token array [tk1, tk2, . . . , tkm] and a token index pt. To
authenticate t, R sends a request to t. Upon receiving the
request, t sends its first unused token tkpt to R. After that,
t increases pt by 1 to guarantee that the same token will not
be used twice. Otherwise, t will always send the same token
when an unauthorized reader requests a token, which breaks
the anonymity. After receiving the token, R has to search the
token in the database since it does not know the tag’s identity.
Starting from i = 1, R checks if tkpti

i = tkpt one by one. If
there exists an i ∈ [1, n] such that tkpti

i = tkpt, t is success-
fully authenticated; otherwise, t fails the authentication. In the
former case, R sends back the token tkpti+1

i to t to authenti-
cate itself, and sets pti = pti +2. Tag t compares the received
token with tkpt to authenticate R, and increases pt by 1 again.
As long as the token length is large enough, which means a
large token space, the probability that an adversary can pass
the authentication by sending a random token is negligible.
Fig. 2 shows the three steps of the mutual authentication.

In this approach, the online computation overhead of the tag
is low — only one comparison (requires far less hardware than
implementing a cryptographic hash) per authentication. The
online computation complexity of the reader is O(n) since at
most n comparisons (though one comparison is much cheaper
than computing one hash value) are needed for searching the
received token. The communication overhead for both the
reader and the tag is O(1).

To avoid the leakage of the tag’s identity, the tokens used
for authentication should look random. In addition, each token
can be used only once. Hence, the tag must be replenished
with new tokens after m

2 mutual authentications, e.g., pur-
chasing new tokens from an authorized branch. Therefore,
the tag should store as many tokens as possible to reduce
the inconvenience caused by token replenishment. A low-cost

TABLE II

KEY TABLE STORED BY THE CENTRAL SERVER FOR TAP

tag, however, only has a tiny memory. For example, a passive
UHF tag generally has a 512-bit user memory for storing
user-specific data (tokens in our case). Some high-end tags
with large memory [33], [34] are prohibitively expensive to
be applied in large quantities. As an example, x Sky-ID tags
[33] with an 8KB user memory cost $25 each. In addtion, this
design has some security issues, which will be explained in
the next section.

V. DYNAMIC TOKEN BASED AUTHENTICATION PROTOCOL

In this section, we propose our first dynamic Token based
Authentication Protocol (TAP). TAP can produce tokens for
anonymous authentication on demand, and therefore does not
require the tags to pre-install many tokens. However, we will
show shortly that TAP still has some problems, which will be
solved by our final design in the next section.

A. Motivation

Given the memory constraint, each tag can only store
a few tokens. Frequent token replenishment brings about
unacceptable inconvenience in practice. Hence, we want to
invent a way to enable dynamic token generation from the
few pre-installed tokens. In addition, the time for the reader
to search a particular token is O(n) in the preliminary design.
We desire to reduce this overhead to O(1). More importantly,
we hope all advantages of the preliminary design, including no
requirement of cryptographic hash functions, low computation
overhead for the tag, and low communication overhead for
both the reader and the tag, can be retained in our new design.

B. Overview

Let an arbitrary tag t in the system be pre-installed with u
secret keys, called base tokens and denoted by [bt1, bt2, . . . ,
btu], each being a-bit long. These base tokens can be used
to derive dynamic tokens for authentication. In addition, we
introduce another type of auxiliary keys called base indicators
to generate indicators that support the derivation of dynamic
tokens. Suppose t stores v base indicators denoted by [bi1,
bi2, . . . , biv], each being b-bit long. Let tk represent the
current a-bit token, and ic be the current b-bit indicator. All
the base tokens, base indicators, token and indictor are also
stored at the central server. Our idea is to let the reader and the
tag independently generate the same random tokens following
the instruction encoded in the indicator. TAP consists of
three phases: initialization phase, authentication phase, and
updating phase, which will be elaborated one by one.

C. Initialization Phase

The central server stores all tags’ keys in a key table,
denoted by KT . As shown in Table II, each entry is indexed

CHEN et al.: LIGHTWEIGHT ANONYMOUS AUTHENTICATION PROTOCOLS FOR RFID SYSTEMS 1479

by the tag index, supporting random access in O(1) time. With
the tag index idx, the keys of t can be found at KT [idx].

When t joins the system, the reader randomly generates an
array of u base tokens [bt1, bt2, . . . , btu], an array of v base
indicators [bi1, bi2, . . . , biv], a token tk and an indicator ic
for t. After that, the reader requests the central server to store
those keys of t in the database. The central server inserts
the keys to the first empty entry in KT . The search process
for an empty entry can be sped up by maintaining a small
table recording all empty entries in KT (e.g., due to tags’
departure). If KT is fully occupied, the central server doubles
its size to accommodate more tags.

To identify a tag based on its token in O(1) time, the central
server maintains a hash table HT , mapping the token of each
tag to its tag index. Let HT consist of l slots. At first, every
slot in HT is initialized to zero. After t joins the system,
the reader computes the hash value h(tk), where the hash
function h(·) yields random values in [1, l], and then puts the
tag index idx of t in the h(tk)th slot of the hash table, i.e.,
HT [h(tk)] = idx (the potential problem of hash collisions
will be addressed shortly). Fig. 3 presents an illustration of
the hash table built for the tokens of five tags.

D. Authentication Phase

The authentication process of TAP is similar to that of the
preliminary design as shown in Fig. 2. One difference is that
the reader can quickly identify the tag from its token using
the hash table. After receiving a token tk from tag t, the
reader first calculates h(tk), and then accesses HT [h(tk)] to
retrieve the tag index of t, which is idx. If the reader finds
idx = 0, it asserts the tag is fake and informs the tag of
authentication failure. Otherwise, the reader refers to KT [idx]
in the key table to fetch the token, and compares it with the
received token tk. Only if the two tokens are identical will
the tag pass the authentication. In case that t is successfully
authenticated, the reader will generate and transmit a new
token to authenticate itself. The generation of tokens with
good randomness requires the reader (more exactly, the central
server) and the tag to update their shared keys synchronously.

E. Updating Phase

To guarantee anonymity, the tokens exchanged between the
reader and the tag should have good randomness. Therefore,
the reader (central server) and the tag need to synchronously
update their shared keys after the current token is used. We
stress that the tag will update its keys once it uses its current
token. Therefore, the same token will never be used in two
consecutive authentications, which fundamentally differs from
LAST [26] where the tag only updates its key identifier after
a successful authentication (which breaks the anonymity).

The tag t relies on its current indicator ic to update its keys.
The structure of an indicator includes two parts: The low-order
(b−2) bits form a selector, indicating which base tokens/base
indicators should be used to derive the new token/indicator,
while the high-order two bits encode the update pattern. When
the updating phase begins, t calculates a new token from the
base tokens according to the selector. Each of the low-order
u bits (u ≤ b − 2) in the selector encodes a choice of the

Fig. 3. A hash table used by TAP. The tokens of the five tags t1, t2, t3, t4,
t5 are tk1, tk2, tk3, tk4, tk5, respectively. Each token is randomly mapped
to a slot in the hash table, where the corresponding tag index is stored.

corresponding base token: ‘0’ means not selected, while ‘1’
means selected. For all selected base tokens, they are XORed
to compute the new token. Therefore,

tk =
u⊕

j=1

ic[j]btj, (1)

where ic[j] is the jth bit in ic (assume one-based indexes are
used) and ⊕ is the XOR operator. Note that if all bits in the
selector happen to be 0s, no base token will be chosen. In
this case, our protocol will instead choose all base tokens to
generate the new token by default. The left plot in Fig. 4 gives
an example of token update, where bt1, bt3, and bt5 among
the six base tokens happen to be selected. Similarly, t derives
a new indicator from the base indicators as follows:

ic =
v⊕

j=1

ic[j]bij. (2)

At the server’s side, the same new token and new indicator
can be generated because it shares the same keys with the tag.
In addition, the server also needs to update the hash table.
First, the server sets HT [h(tk)] (the old token) to 0, and after
generating the new token, it sets HT [h(tk)] = idx.

After updating the token and the indicator, the central server
and the tag need to further update the selected base tokens
and base indicators. The update process for any selected base
token or base indicator includes two steps: A one-bit left
circular shift, and bit flip by following the particular 2-bit
update pattern:

1) Pattern (00)2: no flip is performed;
2) Pattern (01)2: flip the jth bit if j ≡ 0 (mod 3);
3) Pattern (10)2: flip the jth bit if j ≡ 1 (mod 3);
4) Pattern (11)2: flip the jth bit if j ≡ 2 (mod 3).

Obviously, the ith and jth bits can be flipped together if and
only if i ≡ j (mod 3). This rationale of the updating scheme
is that if the parameters a and b are set properly, any two bits in
a base token or a base indicator have a chance to not be flipped
together, thereby reducing their mutual dependence. We will
provide the formal proof shortly. We emphasize that all keys
are only stored at the central server rather than every single
reader. Hence, the update process of a tag’s keys triggered by
one reader is transparent to other readers (a tag carrier can
only appear at one location at a time.).

F. Randomness Analysis

As required by our anonymous model, the tokens generated
by TAP should be random and unpredictable. Note that only
one update is performed after generating each token. However,
since randomness is a probabilistic property, the randomness of
tokens generated by our protocol should be described in terms

1480 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

Fig. 4. Left plot: Generation of a new token using the base tokens and the selector. Right plot: Generation of a new indicator using the base indicators and
the selector.

of probability. In other words, token randomness is evaluated
through a large number of tokens generated during consecutive
updates. We first prove the following theorem.

Theorem 1: If a ≥ 2 and a 	≡ 0 (mod 3), there must exist
a positive integer w, where 1 ≤ w ≤ a, such that any two
different bits in one base token will move to positions that
cannot be flipped together after the base token is updated
w times.

Proof: We track two arbitrary bits in the base token btj ,
denoted by random variables X and Y ∈ {0, 1}. Suppose X
and Y are initially located at the pth bit and qth bit of btj (1 ≤
p < q ≤ a), respectively, and w updates are performed (1 ≤
w ≤ a). Two possible cases need to be considered according
to their initial positions:

Case 1: q − p 	≡ 0 (mod 3) and a + p − q 	≡ 0 (mod 3).
First, if q + w ≤ a, X and Y have moved to btj [p + w] and
btj [q+w], respectively. Since (q+w)−(p+w) 	≡ 0 (mod 3),
they cannot be flipped together. Second, if p+w ≤ a < q+w,
then X moves to btj [p + w] and Y moves to btj [q + w − a].
Because (p+w)− (q +w−a) 	≡ 0 (mod 3), they still cannot
be flipped together. Finally, if p + w > a, X and Y are now
at btj [p + w − a] and btj [q + w − a], respectively. Similarly,
since (q + w − a) − (p + w − a) 	≡ 0 (mod 3), they cannot
be flipped together. Hence, X and Y will never be flipped
together under such conditions.

Case 2: q−p ≡ 0 (mod 3) or a+p−q ≡ 0 (mod 3) (Note
that by no means will q−p ≡ a+p−q ≡ 0 (mod 3) because
a 	≡ 0 (mod 3)). If q − p ≡ 0 (mod 3) and a − q < w ≤
a− p, X moves to btj [p+w] and Y moves to btj [q +w− a].
Because (p + u) − (q + u − a) 	≡ 0 (mod 3), they move
to positions that cannot flipped together. On the contrary, if
a+p− q ≡ 0 (mod 3), X and Y will not be flipped together
at the beginning, but it becomes possible after w updates as
long as a − q < w ≤ a − p.

In conclusion, within a times of updates, X and Y will
move to two positions that cannot be flipped together, regard-
less of their initial positions.

Before investigating the randomness of the derived tokens,
we first study the randomness of an arbitrary base token during
its updates. We have the following lemma:

Lemma 1: If the update pattern in the indicator is random,
an arbitrary bit in a base token becomes 0 or 1 with equal
probability using our update scheme.

Proof: Let us track one arbitrary bit in btj , denoted by a
random variable X ∈ {0, 1}. Suppose X is currently located
at position btj[i], where 1 ≤ i ≤ a. When btj is updated, X is
left shifted and then flipped with a probability of 0.25 if the
update pattern is random. Therefore, the transition matrix for

X during each update is P1 =
(

3
4

1
4

1
4

3
4

)
. Using singular value

decomposition (SVD) [35],

P1 =

⎛

⎜⎝

√
2

2

√
2

2√
2

2
−
√

2
2

⎞

⎟⎠

(
1 0

0
1
2

)⎛

⎜⎝

√
2

2

√
2

2√
2

2
−
√

2
2

⎞

⎟⎠ .

Hence, the transition matrix for X after w updates is

P1
w =

⎛

⎜⎝

√
2

2

√
2

2√
2

2
−
√

2
2

⎞

⎟⎠

(
1 0

0
1
2

)w
⎛

⎜⎝

√
2

2

√
2

2√
2

2
−
√

2
2

⎞

⎟⎠

=

⎛

⎜⎝
1
2

+
1
2

w+1 1
2
− 1

2

w+1

1
2
− 1

2

w+1 1
2

+
1
2

w+1

⎞

⎟⎠ ,

which converges to

(
1
2

1
2

1
2

1
2

)
. Therefore, X becomes 0 or 1

with equal probability.
Now let us further investigate two arbitrary bits in a base

token, and we have the following lemma:
Lemma 2: If the update pattern in the indicator is random,

two arbitrary bits in a base token are independent under our
update scheme.

Proof: Consider two arbitrary bits, denoted by random
variables X and Y , in base token btj . Suppose X and Y are
initially located at the pth bit and qth bit of btj (1 ≤ p <
q ≤ a), respectively. The transition matrices when X and Y
cannot be flipped together and can be flipped together are

P2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
4

1
4

0

1
4

1
2

0
1
4

1
4

0
1
2

1
4

0
1
4

1
4

1
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and P3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
2

0 0
1
2

0
1
2

1
2

0

0
1
2

1
2

0
1
2

0 0
1
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

CHEN et al.: LIGHTWEIGHT ANONYMOUS AUTHENTICATION PROTOCOLS FOR RFID SYSTEMS 1481

respectively. Assume that among the w (w ≥ a) updates,
X and Y cannot be flipped together for β times, while can be
flipped together for γ times. We know from Theorem 1 that
β ≥ 1, so we have β ≥ 1, γ ≥ 0, and β + γ = w.

Case 1: γ > 0. We have

P2
β × P3

γ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

for any combinations of β and γ.
Case 2: γ = 0. Hence, P2

β × P3
γ = P2

w. Using SVD, we
can calculate

P2
w =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4

+
1
2

w+1 1
4

1
4

1
4
− 1

2

w+1

1
4

1
4

+
1
2

w+1 1
4
− 1

2

w+1 1
4

1
4

1
4
− 1

2

w+1 1
4

+
1
2

w+1 1
4

1
4
− 1

2

w+1 1
4

1
4

1
4

+
1
2

w+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

each entry converging to 1
4 . Therefore, two arbitrary bits in a

base token are pairwise independent.
With the two lemmas above, we can prove the following

theorem regarding the randomness of the derived tokens.
Theorem 2: If the indicator is random, any bit in the

derived token has an equal probability to be 1 or 0, and two
arbitrary bits in the derived token are independent using our
update scheme.

Proof: Consider the ith bit of the derived token tk,
denoted by tk[i] (1 ≤ i ≤ a). We know tk[i] =⊕u

j=1 ic[j]btj[i]. Let N0 be the random variable of the number
of base tokens whose ith bit is 0, and N1 be the random
variable of the number of base tokens whose ith bit is 1,
subjecting to N0 ≥ 0, N1 ≥ 0 and N0 + N1 = u. According
to Lemma 1 and the independence of different base tokens,
N0 follows the binomial distribution B(u, 0.5), and P (N0 =
x) =

(
u
x

) × (1
2

)u
, where 0 ≤ x ≤ u. To calculate tk[i], we

need to consider two possible cases:
Case 1: N0 = u, namely, there is no 1 in those u bits.

In this case, tk[i] must be 0.
Case 2: 00 ≤ N0 < u. In this case, tk[i] can be 0 or 1.

If tk[i] = 0, it implies that an even number of base tokens
whose ith bit is 1 are chosen, and the conditional probability
is:

P (tk[i] = 0 | 0 ≤ N0 < u) =
2N0 ×

�N1
2 �∑

x=0

(
N1
2x

)− 1

2u − 1

=
2n0[j] × 2n1[j]−1 − 1

2N − 1

=
2u−1 − 1
2u − 1

. (3)

Hence, the probability for tk[i] = 0 is:

P (tk[i] = 0) = P (N0 = u) × P (tk[i] = 0 |N0 = u)
+P (0 ≤ N0 <u) × P (tk[i] = 0|0≤N0<u)

=
1
2u

× 1 + (1 − 1
2u

) × 2u−1 − 1
2u − 1

=
1
2
. (4)

Therefore, P (tk[i] = 1) = P (tk[i] = 0) = 1
2 . Moreover,

because tk[i] is determined only by the ith bits of the base
tokens, and two arbitrary bits in a base tokens are independent
according to Lemma 2, two arbitrary bits in the derived token
are also independent.

Note that the randomness analysis above replies on the
assumption that the indicator value is random. We will show
shortly that the indicator is XORed with a random nonce
generated by the reader in each authentication, which improves
its randomness. In addition, randomness is a probabilistic
property, and the simulation results in VIII will demonstrate
that the tokens and indicators generated by our protocol have
very good randomness.

G. Discussion

Memory Requirement: To implement TAP, each tag needs
(u + 1)a + (v + 1)b bits of memory to store the keys. Our
simulation results in Section VIII will show that a, b, u
and v can be set as small constants. Therefore, the memory
requirement for the tag is small. The memory requirement at
the central server is O(n) for storing the key table and hash
table.

Communication Overhead: For each authentication, the tag
only needs to transmit one a-bit token, and the reader sends
an authentication request and one a reponse, both incurring
O(1) communication overheads.

Online Computation Overhead: For each authentication, the
tag generates two tokens and performs one comparison to
authenticate the reader. All operations performed by the tag,
including bit-wise XOR, bit flip, and one-bit left circular shift,
are simple and hardware efficient. The reader (or the server)
needs to calculate two extra hash values: one for the token
received from the tag to identify the tag, and the other for
the new token to update the hash table. Both the tag and the
reader have O(1) computation overhead.

H. Potential Problems of TAP

TAP has three potential problems that should be addressed.
Desynchronization Attack: An unauthorized reader can also

initiate an authentication by sending a request. The tag will
reply with its current token, and then update its keys as usual.
As a result, its keys differ from what are stored by the central
server. When the tag encounters a legitimate reader later, it
will probably fail the authentication as its current token does
not match the one stored in the central server.

Replay Attack: When performing a desynchronization
attack, the adversary can record the received token. Later it
can retransmit the token to authenticate itself. Since the token
is valid, it will pass the authentication. The above two issues
also exist in the preliminary design.

Hash Collision: For two tags in the system, the hash values
of their current tokens may happen to be the same, called

1482 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

Fig. 5. Our scheme against desynchronization attack.

hash collision. In this case, their tag indexes cannot be stored
in the same slot of the hash table. Otherwise, the reader
cannot uniquely identify the tag through the received token.
In addition, since each tag generates its tokens independently,
it may happen that two tags have the same token, called token
collision. Token collision is a special case of hash collision,
and token collision must lead to hash collision. We find
that hash collisions, though the probability is low, can cause
problems to all anonymous RFID authentication protocols
using cryptographic hashes, but the potential problems are
never carefully addressed.

VI. ENHANCED DYNAMIC TOKEN BASED

AUTHENTICATION PROTOCOL

To address the issues of TAP, we propose the Enhanced
dynamic Token based Authentication Protocol (ETAP).

A. Resistance Against Desynchronization and Replay Attacks

Since the desynchronization attack and replay attack can
be carried out simultaneously, we tackle them together. Our
objective is two-fold: First, the valid tag can still be suc-
cessfully authenticated by a legitimate reader after some
desynchronization attacks; Second, even if the adversary has
captured some tokens from the valid tag, it cannot use those
tokens to authenticate itself.

To make our protocol resistant against desynchronization
attack, we let the central server pre-calculate an array of
k tokens [tk1, tk2, . . . , tkk] from the base tokens, and any
token can be used to identify the tag. The reader needs at
least one token to identify the tag, and thus at most k − 1
desynchronization attacks can be tolerated.1 After a successful
mutual authentication, the reader will replenish the token array
with k new tokens. Furthermore, we use a double verification
process to guard against replay attacks. Table III shows the
key table stored by the central server for implementing ETAP.
With k tokens per tag, the size of the hash table should be
proportionally increased in order to avoid the increase in hash
collision. In practice, k is a system parameter set by the server
based on the performance and resource constraints. During the
authentication in Fig. 6, the processing overhead of the server

1An exponentially increasing timeout period can be enforced between
unsuccessful authentications to prevent an adversary from depleting the
k tokens too quickly.

includes the lookup of the hash table, the lookup of the key
table, and the generation of k new tokens, which incurs most of
the overhead linear in k. If there is a performance requirement
of authenticating a certain number of tags per second, that will
set an upper bound on the execution time allowed for each tag
authentication, which in turn sets an upper bound on k. For
example, using a HP Z440 Workstation with Intel Xeon CPU
E5-1650 (3.50GHz, 12 Cores) and 32GB memory, when we
limit the execution time per tag authentication to 1 ms, we find
that the value of k can be up to 5000. There are also resource
constraints on k. For example, if the size of the key table is
limited to 1GB and there are 1000 tags in the system, then each
tag can use 1MB table space, which translates to a k value of
up to 65000, with each token is 128 bits (The overhead for
storing other fields in each entry of Table III is negligible.).
In order to maximize the resistance against desynchronization
attacks, the server should choose the maximum value for k as
long as the performance and resource constraints are met.

Now let us elaborate ETAP with an example given in
Fig. 5. Suppose k = 4 and the reader pre-calculates four
tokens tk1, tk2, tk3 and tk4 for tag t with tag index idx.
In addition, suppose the current token stored by t is tk = tk2,
which means t may have been under one desynchronization
attack and the adversary has captured tk1. Note that the tag
only uses each token once to ensure anonymity. When the
reader receives tk2 from t, it accesses HT [h(tk2)] to fetch
the tag index idx of the t, and then the token array of t from
KT [idx]. The reader then traverses the token array until it
finds tk2. After that, the reader uses the next token in the
token array, tk3 in this example, to authenticate itself. If the
received token happens to be at tail of the array, the reader
needs to derive a new token for authentication. To prevent the
adversary from passing authentication using tk1, we adopt the
double verification as illustrated in Fig. 6. In step 5, the reader
includes a b-bit random nonce in its message, and challenges
the tag to send another token. After the tag authenticates the
reader, it updates its indicator by XORing the indicator with
the received nonce (so does the reader), which contributes to
randomizing the indicator as well. After that, the tag derives a
new token based on the updated indicator, and sends it to the
reader for the second verification. Since the adversary does not
know the base tokens and the indicator, it cannot derive the
correct token to pass the second verification, rendering replay
attack infeasible. After the successful mutual authentication,
the reader generates four new tokens to replenish the token
array. In addition, the reader updates HT by setting the slots
corresponding to the old tokens to 0, and setting the slots
corresponding to the new tokens to idx. Note that the token
replenishment is performed off line by the central server,
which is therefore not a performance concern.

B. Resolving Hash Collisions

Suppose the central server pre-computes k tokens for each
tag. Let nt = nk be the number of total tokens, and l be the
size of the hash table. A slot in the hash table is called an
empty slot, a singleton slot, and a collision slot respectively,
if zero, one and multiple tokens are mapped to it.

CHEN et al.: LIGHTWEIGHT ANONYMOUS AUTHENTICATION PROTOCOLS FOR RFID SYSTEMS 1483

TABLE III

KEY TABLE STORED BY THE CENTRAL SERVER FOR ETAP

Fig. 6. Double verification mechanism of ETAP.

We observe that two different tokens causing a hash col-
lision under one hash function probably will not have a col-
lision under another hash function. Therefore, using multiple
hash functions provides an alternative way for resolving hash
collisions.

When a single hash function is used, the probability ps that
an arbitrary slot is a singleton slot is

ps =
(

nt

1

)
1
l

(
1 − 1

l

)nt−1

≈ nt

l
e−

nt−1
l

≈ nt

l
e−

nt
l . (5)

It is easy to prove that ps ≤ 1
e ≈ 0.368 and it is maximized

when l = nt. In contrast, if we apply two independent hash
functions to map tokens to slots, a slot will have a probability
of up to 1− (1− 0.368)2 ≈ 0.601 to be a singleton in one of
the two mappings. Similarly, if we apply r independent hash
functions from tokens to slots, the probability that a slot will
be a singleton in one of the r mappings can increase to 1 −
(1−0.368)r, which quickly approaches to 1 with the increase
of r. Fig. 7 presents an example showing the advantage of
using multiple hash functions in reducing hash collisions. In
the left plot, only one hash function is used, and there is only
one singleton slot, while in the right plot, three hash functions
are employed and every token is mapped to a singleton slot.

Inspired by the above observation, ETAP employs r inde-
pendent hash functions, denoted by h1, h2, . . . , hr, to resolve
hash collisions and improve memory efficiency. Every hash
function can generate hash values uniformly distributed over
[1, l]. To insert a token tk of tag t to the hash table, the
reader calculates hi(tk) in sequence starting from i = 1.

Fig. 7. An example of using multiple hash functions to reduce hash collisions,
where the left plot uses one hash function, and the right plot uses three hash
functions. h, h1, h2 and h3 are hash functions. ‘e’ means an empty slot, ‘s’
means a singleton slot, and ‘c’ means a collision slot.

Fig. 8. A toy example of hash table used by ETAP. Each slot stores a token
and the index of the associated tag.

If the hi(tk)th slot in the hash table has not been occupied by
any token, tk can be added to this slot immediately. Each slot
needs to store both the token value and the tag index associated
with the token to facilitate identification of which token indeed
uses a certain slot. As the example in Fig. 8, a token tk2 of
t2 is mapped by the hash function h3(·) to the first slot (a
singleton slot) of HT . Hence, HT [0] records tag index 2 and
the token value tk2. Instead of implementing r independent
hash functions, we can use one master hash function H and
a set S of random seeds, and let

hi(tk) = H(tk ⊕ S[i]), (6)

1484 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

TABLE IV

ESTIMATED COSTS OF TYPICAL CRYPTOGRAPHIC HARDWARE

where ⊕ is the XOR operator. When the reader receives a
token tk from a tag for authentication, it computes hi(tk)
(1 ≤ i ≤ r) until it finds that the token value in slot
HT [hi(tk)] matches tk, where it can obtain the correct tag
index of that tag. If no matching token is found, the tag fails
authentication.

We will evaluate the effectiveness of our scheme for
resolving hash collisions caused by different tokens through
simulations. The issue of token collisions, however, may not be
solved by this approach. If the two identical tokens happen to
be associated with the same tag, it will not cause any problem.
But if they are associated with different tags, the reader cannot
uniquely identify the tag from the received token. Therefore,
such collided tokens cannot be used for authentication. The
central server can store those tokens in a CAM (Content
Addressable Memory) [36] or a Bloom filter for quick lookup.
When the reader receives a token, it first checks if it will cause
token collision; if so, the reader needs to request another token
from the tag for identification purpose. We expect that the
chance for token collisions is small as long as the generated
tokens have good randomness.

C. Discussion

Memory Requirement: The memory requirement for the tag
to implement ETAP is the same as TAP, i.e., (u+1)a+(v+1)b
bits. The memory requirement at the central server moderately
increases because of the larger key table and hash table for
storing multiple tokens for each tag.

Communication Overhead: For each authentication, the tag
only needs to transmit two a-bit tokens, and the reader needs
to send an authentication request, one a-bit token, one b-bit
nonce, and a response, both incurring O(1) communication
overheads.

Online Computation Overhead: For each authentication, the
tag generates three tokens and performs one comparison to
authenticate the reader. ETAP requires some extra computation
overhead from the reader (server). First, the reader should
check if a received token is a collided one, which requires
O(1) computation. In addition, the reader needs to calculate
at most r hash values to identify the tag, and perform at most
k comparisons to locate the received token in the token array.
Since r and k are small constants, the online computation
overhead for the reader is still O(1).

Hardware Cost: The hardware for RFID tags to implement
ETAP consists of a circular shift register, two registers for
storing intermediate results, some XOR gates, and some RAM
to store u base tokens, v base indicators, one token and one
indicator. Table IV provides the estimated costs of typical
cryptographic hardware [32], [37], which will also be used
for estimating the hardware cost of ETAP. The circular shift

register is a group of flip-flops connected in chain, which
requires 12×max(a, b) logic gates. Similarly, the two registers
for intermediate results need 2 × 12 × max(a, b) logic gates.
In addition, it takes 2.5 × max(a, b) logic gates to implement
the XOR gates. Finally, the cost of the RAM for storing
the base tokens, base indicators, token and indicator is about
(u+1)a

8 × 12 + (v+1)b
8 × 12 logic gates. Therefore, the total

number of required logic gates for implementing ETAP is
approximately 38.5×max(a, b)+1.5×(u+1)a+1.5×(v+1)b.
For example, if we set a = b = 16, u = 10 and v = 6, ETAP
only requires about 1K logic gates. Our simulation results in
Section VIII will demonstrate that a small number of base
tokens and base indicators can guarantee good randomness of
the generated tokens.

VII. SECURITY ANALYSIS

ETAP is designed to be resistant against desynchronization
attack and replay attack. In this section, we further analyze
the security of ETAP under both passive and active attacks.

Known Token Attack: In ETAP, the tokens are transmitted
without any protection, which may lead to a potential security
loophole. The adversary can capture all tokens exchanged
between the reader and the tag, and use them to infer the
base tokens. However, we have the following theorem:

Theorem 3: Cracking the base tokens from the captured
tokens is computationally intractable if a sufficient number
of base tokens are used.

Proof: According to (1), each captured token provides an
equation of the base tokens. Since there are u base tokens, at
least u independent equations are needed to obtain a solution
of the base tokens. However, the adversary has no clue about
the current value of the indicator, which can have very good
randomness as shown in Section VIII. Therefore, the adversary
has no better way than trying each possible value of the
indicator by brute force. Hence, the u bits in the selector
and the 2-bit update pattern give 2u+2 instantiations of each
equation. Therefore, the adversary has to solve (2u+2)u =
2u(u+2) different equation sets. For each candidate solution,
the adversary derives another token, and compares it with
the captured one to verify if the solution is correct, which
requires another 2u trials. As a result, the total computation
overhead for the adversary to crack the base tokens is 2u ×
2u(u+2) = 2u(u+3), which is computationally intractable if u
is set reasonably large, e.g., u = 10.

Anonymity: Due to the randomness of the tokens (verified
in Section VIII), the adversary cannot associate any tokens
with a certain tag. According to Theorem 2, the probability
that the adversary can successfully guess any bit z of a tag’s
next token based on its previous tokens is

Prob(z′ = z) ≤ 1
2

+
1

ploy(s)
, (7)

where z′ is the adversary’s guess of z, and poly(s) is an
arbitrary polynomial with a security parameter s. Therefore,
the adversary does not have a non-negligible advantage in
guess z, and ETAP can preserve the anonymity of tags.

Compromising Resistance: In ETAP, the keys of each tag are
initialized and updated independently. Even if all tags except

CHEN et al.: LIGHTWEIGHT ANONYMOUS AUTHENTICATION PROTOCOLS FOR RFID SYSTEMS 1485

two are compromised by an adversary, it still cannot infer the
keys of the two remaining tags or distinguish them based on
their transmitted tokens. Therefore, ETAP is robust against
compromising attack.

Forward Secrecy: Forward secrecy requires that an adver-
sary cannot crack the previous messages sent by a tag even if
the adversary obtains the current keys of the tag. ETAP has
perfect forward secrecy because in step 7 of each authenti-
cation, the tag will XOR its current indicator with a random
nonce. Even if the adversary obtains all current keys of the tag,
it does not know the previous values of the indicator without
capturing all random nonces. Therefore, the adversary cannot
perform reverse operations of the updating process to calculate
the previous tokens. However, if the adversary can capture all
random nonces and crack all secret keys, it can recalculate all
previously used tokens. In this case, forward secrecy cannot
be guaranteed.

Man in the Middle (MITM) Attack: Without public key cer-
tificates or any additional secure channel, it is difficult to fend
against MITM attacks, and most prior RFID authentication
protocols do not consider such attacks in their designs. An
MITM attack happens as follows: An unauthorized reader R′

is placed near a legitimate tag t. A fake tag t′ is placed near an
authorized reader R. Reader R′ records data received from t,
and passes it to t′, which replays the data to R. Similarly,
t′ records data received from r, and passes it to R′, which
replays the data to t. In this way, t′ will pass the authentication
of R. Fortunately, the nature of RFID operations makes it
much more difficult for an adversary to successfully carry
out the MITM attack due to the short communication range
between a reader and a tag, which is typically a few meters.
Moreover, we can re-enforce such RFID-specific advantage
in our protocol to make MITM attacks largely impractical.
First, if the legitimate tag t is within the coverage area of the
authentic reader R, its data will be received by R, which foils
the MITM attack. Second, if t is at a remote location, as the
unauthorized reader R′ tricks it into performing authentication,
the authentication between t and R′ will fail. If the owner of
tag t has a way to inform the server, the MITM attack will
be foiled. If not, there is still a defense technique: It will take
some time for data to be transmitted over a network (which
may be the Internet) between t′ and R′. If the authorized reader
enforces a very small inter-message delay in the protocol of
Fig. 6 (such as less than 1ms), then it will not leave enough
time for R′ and t′ to communicate for their MITM attack.

VIII. EVALUATION

In this section, we first compare different anonymous
authentication protocols, including our ETAP protocol. After
that, we evaluate the effectiveness of the multi-hash scheme
in resolving hash collisions and improving memory efficiency
as well. After that, we run randomness tests on the tokens
generated by ETAP.

A. Comparison of Authentication Protocols

Table V summarizes the comparison of different RFID
authentication protocols. ETAP not only reduces the commu-
nication overhead and online computation overhead to O(1)

Fig. 9. Memory utilization ratio of the hash table when multiple hash
functions are used.

Fig. 10. Ratio of tests that have no hash collision when 10 hash functions
are used (r = 10).

per authentication at both the tag and the reader, but also
guarantees the tags’ anonymity, which compares favorably
with the prior art.

B. Effectiveness of Multi-Hash Scheme

We define a performance metric for memory efficiency of
the hash table at the central server. It is called the utilization
ratio, denoted as ρ, and defined as the number of singleton
slots divided by the total number of slots in the hash table
when there is no hash collision. In the first set of simulations,
the number nt of tokens is set to 100, 500, 1000 and 5000,
respectively. We vary the number r of hash functions from
1 to 20. Under each parameter setting, we repeat the simulation
500 times and obtain the average value of utilization ratio.
Results in Fig. 9 demonstrate that ρ increases significantly
with the increase of r at first, and gradually flattens out when
r is sufficiently large. Consider the case that nt = 5000. When
r = 1, less than 0.3% of slots are used. In contrast, when
r = 10, more than 50% of slots are occupied. In addition,
we observe that for larger nt, the corresponding ρ is slightly
smaller when the same number of hash functions are used.

Next, we investigate the effectiveness of the multi-hash
approach in resolving hash collisions. We fix the number r
of hash functions to 10, and vary the number nt of tokens
from 1000 to 10000 at steps of 1000. The number l of slots in
the hash table is set to 2×, 3× and 5× the number of tokens,
respectively. Under each parameter setting, we run 500 tests
and calculate the ratio of tests that no hash collision occurs.
The results in Fig. 10 show that when l = 2nt, hash collisions
can occur with high probability, particularly for large nt; when
l is increased to 5nt, there is no hash collision any more.

1486 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

TABLE V

COMPARISON OF DIFFERENT RFID AUTHENTICATION PROTOCOLS

Fig. 11. Frequency tests for tokens and indicators generated by ETAP, where a = b = 16. Each point represents a token/indicator and its frequency, and
the two dotted horizontal lines represent the required bounds.

TABLE VI

THE SAMPLE SIZE ms IS 500, AND THE ACCEPTABLE CONFIDENCE INTERVAL OF THE SUCCESS PROPORTION IS [0.97665, 1]

C. Token-Level Randomness
The effectiveness of ETAP relies on the randomness of the

tokens and indicators. An intuitive requirement of randomness
is that any token (indicator) should have approximately the
same probability to appear. The EPC C1G2 standard [1]
specifies that for a 16-bit pseudorandom generator the proba-
bility of any 16-bit RN16 with value x shall be bounded by
0.8
216 < P (RN16 = x) < 1.25

216 . To evaluate the randomness of
tokens and indicators generated by ETAP, we set a = b = 16,
respectively produce 216 × 500 tokens and indicators, and
calculate the frequency of each token or indicator. Note that

we can concatenate multiple tokens to form a longer one
if necessary. In addition, we set u = 10 as suggested by
Theorem 3, and vary v = 2, 4, 6 to investigate its impact
on randomness. Fig. 11 presents the results, where the dotted
horizontal lines represent the bounds specified by EPC C1G2.
We can see that the indicators have better randomness with the
increase of v, while the randomness of tokens is not sensitive
to the value of v since u is already set sufficiently large.
In addition, when u = 10 and v = 4, requiring only 256-bit tag
memory, both the tokens and indicators meet the randomness
requirement.

CHEN et al.: LIGHTWEIGHT ANONYMOUS AUTHENTICATION PROTOCOLS FOR RFID SYSTEMS 1487

D. Bit-Level Randomness

The National Institute of Standards and Technology (NIST)
provides a statistical suite for randomness test [38], including
monobit frequency test, block frequency test, cumulative sums
test, runs test, test for the longest run of ones in a block,
binary matrix rank test, etc. Due to space limitation, we cannot
explain each test here, and interested readers can refer to [38]
for detailed information. Given a sequence of ns bits, it is
accepted as random only if the observed p-value is no less
than a pre-specified level of significance α based on the null
hypothesis H0.

We use two metrics to evaluate the test results: (1) The
proportion of sequences that pass the tests. The acceptable

range is p̂ ± 3
√

p̂(1−p̂)
ms

[38], where p̂ = 1 − α and ms

is the sample size; (2) The uniformity of the observed
p-values. Let X be a random variable with probability density
function fX(x), and Y ∈ [0, 1] be the p-value of X . Since the
cumulative distribution function F (X) of X is monotonically
increasing, we have

P (Y ≤ y) = P (
∫ ∞

X

fX(x)dx ≤ y)

= P (1 − F (X) ≤ y)
= P (F (X) ≥ 1 − y)
= P (X ≥ F−1(1 − y))
= 1 − P (X ≤ F−1(1 − y))
= 1 − (1 − y) = y. (8)

Hence, Y ∼ U(0, 1). We divide (0, 1) into ten equal-length
subintervals, and denote the numbers of p-values in each
subinterval as F1, F2, ..., F10, respectively. We have

χ2 =
10∑

i=1

(Fi − ms

10)2
9ms

100

∼ χ2(9). (9)

The proof is given in the Appendix. Therefore, we can
employ χ2 test. If the observed statistic of χ2 is χ2(obs), the
p-value is

P (χ2 ≥ χ2
obs) =

∫∞
χ2(obs)

e−x/2x9/2−1dx

Γ(9/2)29/2

=

∫∞
χ2(obs)/2

e−xx9/2−1dx

Γ(9/2)

= igamc(
9
2
,
χ2(obs)

2
),

where igamc (c, z) = 1 −
�

z
−∞ e−xxc−1dx

Γ(c) . The uniformity is

acceptable if igamc(9
2 , χ2(obs)

2) ≥ 0.0001 [38].
We set a = b = 16, u = 10 and v = 4, and convert the

tokens generated by ETAP to a bit sequence. We vary ns from
1000, 5000, 10000 to 50000. The NIST suggests that α ≥
0.001, so we set α = 0.01. In addition, we set ms = 500, in
the same order of magnitude as α−1. The block size M should
be selected such that M ≥ 20, M > 0.01ns and NB < 100,

2Matrix rank test requires that the bit sequence consists of at least
38912 bits. Hence, no test is performed when ns < 38912, which is marked
as N.A..

where NB is the number of blocks. We set M = 0.02ns, so
NB = ns

M = 50.
The test results are shown in Table VI. We can see that

the bit sequence generated by ETAP can pass the randomness
tests under all parameter settings, which again verifies that our
protocol can generate tokens with good randomness.

IX. CONCLUSION

In this paper, we propose a lightweight anonymous authen-
tication protocol for RFID systems. To meet the hardware
constraint of low-cost tags, we abandon hardware-intensive
cryptographic hashes and follow the asymmetry design prin-
ciple. Our protocol ETAP uses a novel technique to generate
random tokens on demand for anonymous authentication. The
randomness analysis and tests demonstrate that ETAP can
produce tokens with very good randomness. Moreover, ETAP
reduces the communication overhead and online computation
overhead to O(1) per authentication for both the tags and the
readers, which compares favorably with the prior art.

APPENDIX

PROOF OF EQUATION (9)

Consider the value of Fi, where 1 ≤ i ≤ 10. Let Zij be
the event that the p−value of the jth (1 ≤ j ≤ ms) sequence,
denoted by Yj , belongs to the ith subinterval [i−1

10 , i
10). In

addition, let 1Zij be the corresponding indicator random
variable, namely,

1Zij =

{
1, if Yj ∈ [i−1

10 , i
10),

0, otherwise.

Therefore, we have Fi =
∑ms

j=1 1Zij . Since Yj ∼ U(0, 1), we
have E(1Zij) = 1

10 and V ar(1Zij) = 1
10 × (1 − 1

10) = 9
100 .

Hence, E(Fi) = ms

10 , and V ar(Fi) = 9ms

100 . Based on the Cen-
tral Limit Theorem (CLT), Fi

ms
converges to Norm(1

10 , 9
100ms

)

asymptotically. Therefore, (
Fi
ms

− 1
10

3
10

√
ms

)2 ∼ χ2(1), and χ2 =
∑10

i=1(
Fi
ms

− 1
10

3
10

√
ms

)2 =
∑10

i=1
(Fi−ms

10)2

9ms
100

∼ χ2(9).

REFERENCES

[1] EPC Radio-Frequency Identity Protocols Class-1 Gen-2 UHF RFID
Protocol for Commun.at 860MHz-960MHz, EPCglobal, accessed on
Oct. 23, 2008. [Online]. Available: http://www.gs1.org/sites/default
/files/docs/epc/uhfc1g2_1_2_0-standard-20080511.pdf, Version 1.2.0

[2] J. Wang, H. Hassanieh, D. Katabi, and P. Indyk, “Efficient and reliable
low-power backscatter networks,” in Proc. ACM SIGCOMM, 2012,
pp. 61–72.

[3] M. Shahzad and A. X. Liu, “Expecting the unexpected: Fast and reliable
detection of missing rfid tags in the wild,” in Proc. IEEE INFOCOM,
Apr./May 2015, pp. 1939–1947.

[4] S. Qi, Y. Zheng, M. Li, L. Lu, and Y. Liu, “Collector: A secure
RFID-enabled batch recall protocol,” in Proc. IEEE INFOCOM,
Apr./May 2014, pp. 1510–1518.

[5] Q. Xiao, M. Chen, S. Chen, and Y. Zhou, “Temporally or spatially
dispersed joint RFID estimation using snapshots of variable lengths,” in
Proc. ACM Mobihoc, 2015, pp. 247–256.

[6] (2013). RFID Report. [Online]. Available: http://www.idtechex.com/
research/reports/rfid-forecasts-players-and-opportunities-2014-2024-
000368.asp

[7] M. Chen, J. Liu, S. Chen, and Q. Xiao, “Efficient anonymous category-
level joint tag estimation,” in Proc. IEEE ICNP, Nov. 2016, pp. 1–10.

1488 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

[8] M. Chen, J. Liu, S. Chen, and Q. Xiao, “Anonymous category-
level joint tag estimation: Poster,” in Proc. ACM MobiHoc, 2016,
pp. 363–364.

[9] M. Chen and S. Chen, “Etap: Enable lightweight anonymous RFID
authentication with O(1) overhead,” in Proc. IEEE ICNP, Nov. 2015,
pp. 267–278.

[10] X. Liu, K. Li, H. Qi, B. Xiao, and X. Xie, “Fast counting the key
tags in anonymous RFID systems,” in Proc. IEEE ICNP, Oct. 2014,
pp. 59–70.

[11] Sunpass, accessed on Dec. 17, 2016. [Online]. Available:
http://en.wikipedia.org/wiki/SunPass

[12] A. Bogdanov et al., “Hash functions and RFID Tags: Mind the gap,” in
Proc. CHES, 2008, pp. 283–299.

[13] J. Meliá-Seguí, J. Garcia-Alfaro, and J. Herrera-Joancomartí,
“Multiple-polynomial LFSR based pseudorandom number generator
for EPC gen2 RFID tags,” in Proc. IEEE IECON, Nov. 2011,
pp. 3820–3825.

[14] J. Meliá-Seguí, J. Garcia-Alfaro, and J. Herrera-Joancomartí, “J3gen: A
prng for low-cost passive rfid,” Sensors, vol. 13, no. 3, pp. 3816–3830,
2013.

[15] N. P. Smart, Cryptography Made Simple. Cham, Switzerland: Springer,
2016.

[16] D. R. Stinson, Cryptography: Theory and Practice. Boca Raton, FL,
USA: CRC press, 2005.

[17] M. Chen and S. Chen, “An efficient anonymous authentication protocol
for RFID systems using dynamic tokens,” in Proc. IEEE ICDCS,
Jun./Jul. 2015, pp. 756–757.

[18] S. Weis, S. Sarma, R. Rivest, and D. Engels, “Security and privacy
aspects of low-cost radio frequency identification systems,” Lecture
Notes in Computer Science. Berlin, Germany: Springer, 2004.

[19] M. Ohkubo, K. Suzuki, and S. Kinoshita, “Efficient hash-chain based
RFID privacy protection scheme,” in Proc. ACM Ubicomp, 2004.

[20] G. Avoine and P. Oechslin, “A scalable and provably secure hash-
based RFID protocol,” in Proc. 3rd IEEE Int. Conf. Pervasive Comput.
Commun. Workshops PerCom Workshops., Mar. 2005, pp. 110–114.

[21] G. Avoine, E. Dysli, and P. Oechslin, “Reducing time complexity in
RFID systems,” in Selected Areas Cryptography. Berlin, Germany:
Springer, 2006, pp. 291–306.

[22] G. Tsudik, “ YA-TRAP: Yet another trivial RFID authentication proto-
col,” in Proc. IEEE PerCom, Mar. 2006, p. 643.

[23] A. Juels and S. A. Weis, “Defining strong privacy for RFID,” in Proc.
IEEE PerCom Workshops, Mar. 2007, pp. 342–347.

[24] C. Chatmon, T. van Le, and M. Burmester, “Secure anonymous rfid
authentication protocols,” Dept. Comput. Sci., Florida State Univ.,
Tallahassee, FL, USA, Tech. Rep., 2006, pp. 1–10.

[25] M. Burmester, B. D. Medeiros, and R. Motta, “Anonymous RFID
authentication supporting constant-cost key-lookup against active adver-
saries,” Int. J. Appl. Cryptol., vol. 1, no. 2, pp. 79–90, 2008.

[26] L. Lu, Y. Liu, and X. Y. Li, “Refresh: Weak privacy model for RFID
systems,” in Proc. IEEE INFOCOM, Mar. 2010, pp. 1–9.

[27] T. Dimitriou, “A secure and efficient RFID protocol that could make
big brother (partially) obsolete,” in Proc. IEEE PERCOM, Mar. 2006,
p. 275.

[28] L. Lu, J. Han, L. Hu, Y. Liu, and L. Ni, “Dynamic key-updating: Privacy-
preserving authentication for RFID systems,” in Proc. IEEE PERCOM,
Mar. 2007, pp. 13–22.

[29] L. Lu, J. Han, R. Xiao, and Y. Liu, “ACTION: Breaking the privacy
barrier for RFID systems,” in Proc. IEEE INFOCOM, Apr. 2009,
pp. 1953–1961.

[30] T. Li, W. Luo, Z. Mo, and S. Chen, “Privacy-preserving RFID authen-
tication based on cryptographical encoding,” in Proc. IEEE INFOCOM,
Mar. 2012, pp. 2174–2182.

[31] Q. Yao, J. Han, S. Qi, and Z. Liu, “Map: Authenticating multiple-tags,”
in Proc. IEEE MASS, Oct. 2011, pp. 332–340.

[32] D. C. Ranasinghe and P. H. Cole, Networked RFID Systems and
Lightweight Cryptography, Chapter 8 An Evaluation Framework. Berlin,
Germany: Springer, Nov. 2008.

[33] High Memory On Metal UHF RFID Tags, accessed on Dec.
17, 2016. [Online]. Available: http://www.xerafy.com/userfiles/misc/
resources/whitepapers/xerafyhighmemoryfaq.pdf

[34] S. Pais and J. Symonds, “Data storage on a RFID tag for a distributed
system,” Int. J. UbiComp, vol. 2, no. 2, pp. 26–39, Apr. 2011.

[35] Singular Value Decomposition, accessed on Dec. 17, 2016. [Online].
Available: http://en.wikipedia.org/wiki/Singular_value_decomposition

[36] L. Chisvin and R. J. Duckworth, “Content-addressable and associative
memory: Alternatives to the ubiquitous RAM,” Computer, vol. 22, no. 7,
pp. 51–64, Jul. 1989.

[37] M. Chen, S. Chen, and Q. Xiao, “Pandaka: A lightweight cipher
for RFID systems,” in Proc. IEEE INFOCOM, Apr./May 2014,
pp. 172–180.

[38] A. Rukhin et al., “A statistical test suite for random and pseudorandom
number generators for cryptographic applications,” Nat. Inst. Standards
Technol., 2010.

Min Chen received the B.E. degree in information
security from the University of Science and Technol-
ogy of China in 2011. He is currently pursuing the
Ph.D. degree with the Department of Computer and
Information Science and Engineering, University of
Florida. His advisor is Dr. S. Chen His research
interests include Internet of Things, big network
data, next-generation RFID systems, and network
security.

Shigang Chen (A’03–M’04–SM’12–F’16) received
the B.S. degree from the University of Science and
Technology of China in 1993, and the M.S. and
Ph.D. degrees from the University of Illinois at
Urbana–Champaign in 1996 and 1999, respectively,
all in computer science. He served on the technical
advisory board for Protego Networks from 2002 to
2003. He was with Cisco Systems for three years.
Since 2002, he has been a Professor with the Depart-
ment of Computer and Information Science and
Engineering, University of Florida. He has authored

over 100 peer-reviewed journal/conference papers. He holds 11 U.S. patents.
His research interests include computer networks, internet security, wireless
communications, and distributed computing. He received the IEEE Commu-
nications Society Best Tutorial Paper Award in 1999 and the NSF CAREER
Award in 2007. He is an Associate Editor of the IEEE/ACM TRANSACTIONS

ON NETWORKING, Computer Networks, and the IEEE TRANSACTIONS ON

VEHICULAR TECHNOLOGY. He served in the Steering Committee of the
IEEE IWQoS from 2010 to 2013.

Yuguang “Michael” Fang (S’92–M’97–SM’99–
F’08) received the M.S. degree from Qufu Normal
University, Shandong, China, in 1987, the Ph.D.
degree from Case Western Reserve University in
1994, and the Ph.D. degree from Boston University
in 1997. He joined the Department of Electrical and
Computer Engineering at the University of Florida
(UF) in 2000 and has been a Full Professor since
2005. He held a University of Florida Research
Foundation (UFRF) Professorship (2006–2009), a
Changjiang Scholar Chair Professorship (Xidian

University, Xi’an, China, 2008–2011; Dalian Maritime University, Dalian,
China, 2015–present), and a Guest Chair Professorship with Tsinghua Uni-
versity, China (2009–2012). Dr. Fang received the U.S. National Science
Foundation Career Award in 2001, the Office of Naval Research Young
Investigator Award in 2002, the 2015 IEEE Communications Society CISTC
Technical Recognition Award, the 2014 IEEE Communications Society WTC
Recognition Award, the Best Paper Award from IEEE ICNP (2006), and
the 2010–2011 UF Doctoral Dissertation Advisor/Mentoring Award. He
is the Editor-in-Chief of IEEE TRANSACTIONS ON VEHICULAR TECH-
NOLOGY, was the Editor-in-Chief of IEEE WIRELESS COMMUNICATIONS

(2009–2012), and serves or has served on several editorial boards of technical
journals. He is a Fellow of the AAAS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

