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Abstract— Per-flow traffic measurement, which is to count the
number of packets for each active flow during a certain mea-
surement period, has many applications in traffic engineering,
classification of routing distribution or network usage pattern,
service provision, anomaly detection, and network forensics. In
order to keep up with the high throughput of modern routers
or switches, the online module for per-flow traffic measurement
should use high-bandwidth SRAM that allows fast memory
accesses. Due to limited SRAM space, exact counting, which
requires to keep a counter for each flow, does not scale to large
networks consisting of numerous flows. Some recent work takes
a different approach to estimate the flow sizes using counter
architectures that can fit into tight SRAM. However, existing
counter architectures have limitations, either still requiring
considerable SRAM space or having a small estimation range.
In this paper, we design a scalable counter architecture called
Counter Tree, which leverages a 2-D counter sharing scheme
to achieve far better memory efficiency and in the meantime
extend estimation range significantly. Furthermore, we improve
the performance of Counter Tree by adding a status bit to
each counter. Extensive experiments with real network traces
demonstrate that our counter architecture can produce accurate
estimates for flows of all sizes under very tight memory space.

Index Terms— Traffic measurement, flow size, counter archi-
tecture, virtual counter, counter sharing.

I. INTRODUCTION

PER-FLOW traffic measurement is one of the fundamental
problems in network traffic measurement [1]–[11]. It is

to count the number of packets (or called flow size) for each
active flow during a measurement period. The flows under
measurement can be per-source flows, per-destination flows,
per-source/destination flows, TCP flows, http flows, or any
user-defined logical flows. Each flow is uniquely identified
by its flow label — for example, the flow labels for per-
source flows are the source addresses. Per-flow traffic measure-
ment has many important applications in traffic engineering,
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classification of routing distribution or network usage pattern,
service provision, anomaly detection and network forensics.
For example, ISPs can use the per-flow information to optimize
traffic routing in their backbone networks to reduce conges-
tion; SDN networks may decide which flows to be re-routed
on which paths based on the flow sizes and the bandwidth
availability on those paths; per-flow measurement can also help
determine the distribution of traffic transmitted in the networks
and the characteristics of traffic sent from a particular source
or destined to a particular address; network administrators can
perform per-source traffic measurement to identify scanners or
estimate the scanning rates of malicious hosts.

We stress that per-flow traffic measurement significantly
differs from a related problem called flow cardinality estima-
tion [12]–[16], which is to estimate the number of distinct
elements in each flow. Consider a per-source flow. Suppose
the source sends 1,000 packets to a single destination during
a measurement period. The flow size is 1,000 in terms of the
number of packets, but the flow cardinality is 1 if destination
addresses are considered as elements under measurement. We
will discuss flow cardinality estimation with more details in
the related work section.

Technical Challenge: The challenge of per-flow traffic
measurement mainly results from the lack of affordable
high-density high-bandwidth memory devices. Commercially
available DRAM, whose access time (the time needed to
locate and retrieve/update a single piece of information) is
approximately 50 to 150 nanoseconds [17], cannot keep up
with the dramatically increasing line speed (NEC and Corn-
ing achieved a transmission rate of 1.05 Petabit/sec using a
12-core fiber design [18]). On the contrary, SRAM with
much smaller access time has low density, so large SRAM
is expensive and difficult to implement on chip. Moreover, the
limited on-chip SRAM is shared by different functions, such
as routing, scheduling, traffic measurement, and security. Even
for traffic measurement alone, there can be multiple functions
performed concurrently for different purposes, each requiring
some SRAM. Therefore, the SRAM dedicated for per-flow
traffic measurement can be very small, necessitating memory-
efficient measurement approaches. In addition, we need to
minimize the processing overhead required by per-flow traffic
measurement, particularly the number of memory accesses,
such that the implementation of the measurement module will
not deteriorate throughput of routers or switches.

With high-speed networks routinely carrying large numbers
of flows, it is often impossible to keep a counter for each
flow in SRAM. Exact counting generally adopts a hybrid
SRAM-DRAM architecture [1]–[3], where small counters in
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SRAM are incremented at high speed, and occasionally written
back to larger counters in DRAM. However, the hybrid archi-
tecture incurs costly SRAM-to-DRAM updates. Furthermore,
the flow-to-counter association requires considerable extra
SRAM [5].

Prior Art and Limitation: To fit the measurement module
in tight SRAM, some schemes only provide the distribu-
tion of flow sizes [19], [20], or measure the sizes of large
flows [21], [22]. Other work lessens the space requirement
by estimating the sizes of the flows instead of counting
their exact sizes. The state-of-the-art estimation approaches
include bitmap-based MSCBF, Counter Braids, and random-
ized counter sharing, which will be briefly reviewed below.

The Multiresolution Space-Code Bloom Filter (MSCBF) [4]
employs multiple Bloom filters [23] to encode packets with
different sampling probabilities. Filters with high sampling
probabilities can keep track of small flows, while filters with
low sampling probabilities can track large flows. However, the
bitmap nature of MRSCBF determines that it is not memory-
efficient for counting [7]. TinyTable [24] is a novel hash
table based data structure that represents multiset membership.
It improves the query and update efficiency of Bloom filters.
However, for per-flow traffic measurement, it still requires a
high memory cost, which is tens of bits per flow [24].

The Counter Braids (CB) [5], [6] are a counting architecture
for flow size measurement. It avoids the storage of flow-
to-counter association by hashing flows to counters on the
fly, and it reduces memory requirement by sharing counters
among flows. A typical implementation of CB consists of
two layers of counters, and employs three hash functions.
To record a packet, it hashes the flow label of the packet
to three counters, which are all incremented by one. If any
of the first-layer counter overflows, another three second-layer
counters will be used. Since each counter is shared by multiple
flows, it counts all associated flows. Therefore, the counters
essentially form a set of linear equations of the flow sizes.
A message passing reconstruction algorithm was proposed to
estimate the flow sizes in an iterative way. CB can recover
the exact flow sizes when sufficient memory is available, e.g.,
10 bits per flow. However, CB has three limitations. First, CB
yields very biased or even meaningless estimates under a tight
memory, e.g., less than 4 bits per flow. In fact, we find that the
estimation results of CB do not converge even with 8 bits per
flow, though it may occasionally produce very accurate results
if we manually terminate the process after some iterations.
Second, it performs 6 (occasionally 12) memory accesses to
record one packet. Third, CB does not support efficient on-
demand queries of selected flows. The sizes of all flows must
be computed together.

The scheme of randomized counter sharing [7] was
proposed to further reduce the memory requirement and
processing overhead of per-flow traffic measurement. The idea
is to split each flow among a number of counters (called the
storage vector of the flow) that are randomly selected from
a counter pool. When recording a packet of a certain flow, it
maps the flow label to a counter in the flow’s storage vector,
and increments the counter by one. This scheme requires
only 2 memory accesses for recording one packet, achieving

the optimal processing speed. Moreover, it can still yield
reasonably accurate estimates under a tight memory space
where CB no longer works. Two estimation methods CSM
and MLM are used to estimate flow sizes. The most serious
problem of this scheme is that its estimation range is limited,
e.g., a few thousands of packets in a typical implementation.
For large flows with sizes beyond the estimation range, the
scheme leads to very negatively biased estimates since over-
flowed counters lose information. In the full version [8], some
approaches were provided to extend the estimation range,
which however cannot address the issue fundamentally. The
first approach is to increase the number of bits in each counter.
This approach degrades estimation accuracy because accuracy
is related to the total number of counters available in the
system [8] and increasing the counter size reduces the number
of counters under the same memory constraint. The second
approach employs a sampling module. Each arriving packet
is sampled with a probability p before being recorded to a
counter. Aggressive sampling not only introduces significant
error [4], but also fails to measure some small-size or even
moderate-size flows. For example, if we let p = 0.001, flows
with sizes less than 1,000 packets are hardly captured. The
final approach resorts to the hybrid SRAM/DRAM design,
which requires costly SRAM-to-DRAM updates.

Our Contributions: To address the issues of existing
counter architectures, we design Counter Tree, a novel on-chip
SRAM-based counter architecture, with new contributions
summarized as follows:

1) The main contribution of Counter Tree is a two-
dimensional counter sharing scheme, where physical
counters are shared to compose different virtual coun-
ters, which are in turn shared among different flows.
This new scheme is able to work with very tight on-chip
space when Counter Braids [5] no longer work, and in
the meantime solve the estimation range limitation of
the randomized counter sharing scheme [7].

2) Counter Tree has low processing overhead. Record-
ing a packet only requires a little more than
2 memory accesses on average, which is near
optimal.

3) It supports efficient query on the size of an arbitrary flow,
without having to compute the sizes of other flows as
Counter Braids do. Two offline methods are proposed
for flow-size estimation. Extensive experiments with
real network traces demonstrate that both methods can
generate good estimation results even with very tight
memory.

The rest of the paper is organized as follows. Section II
defines performance metrics used in the paper. Section III
presents the design of Counter Tree architecture. Section IV
shows how to record a packet in the Counter Tree. Section V
and Section VI propose and analyze two estimation methods.
Section VII describes the enhanced Counter Tree architecture.
Section VIII evaluates the proposed Counter Tree architectures
through experiments. The related work is given in Section IX.
Sections X draws the conclusion.



CHEN et al.: COUNTER TREE: A SCALABLE COUNTER ARCHITECTURE FOR PER-FLOW TRAFFIC MEASUREMENT 1251

Fig. 1. Flow size distribution, where each point represents the number
(y coordinate) of flows that have a particular size (x coordinate).

II. PERFORMANCE METRICS

In this paper, we employ three metrics to evaluate the per-
formance of different per-flow traffic measurement schemes:

Memory Requirement: Due to the constraint of on-chip
space, we want to use as small memory as possible to achieve
per-flow traffic measurement. In the sequel we refer to SRAM
simply as memory. This focuses on the memory requirement
for implementing the counter architectures. The collection of
flow labels is beyond the scope of this paper. Some memory-
efficient schemes [6] for flow label collection can be found in
literature.

Processing Overhead: To keep up with the line speed, the
processing overhead for recording a packet should be small,
such that the implementation of the measurement module
will not cause a performance bottleneck. In most counter
architectures [4], [5], [7], the processing overhead for record-
ing a packet mainly results from memory accesses and hash
computations.

Estimation Accuracy: With a given memory space, we want
the estimates of flow sizes to be as accurate as possible. Let the
true size of a flow be s and the estimated size be ŝ. We use the
relative bias Bias( ŝ

s) and relative standard error StdErr( ŝ
s) to

evaluate the estimation accuracy, which are defined as follows:

Bias(
ŝ

s
) = E(

ŝ

s
)− 1, (1)

StdErr(
ŝ

s
) =

√
V ar(

ŝ

s
) =

√
V ar(ŝ)

s
. (2)

III. DESIGN OF COUNTER TREE ARCHITECTURE

A. Motivation

Many studies have revealed a common observation that a
small percentage of large flows account for a high percentage
of the traffic (also known as the heavy-tailed distribution).
The study in [25] showed that the top 15% of the destination
prefixes (per-destination flows) account for over 95% of the
byte traffic. As an example, we use a network trace obtained
from the main gateway of University of Florida, which con-
tains about 68 million TCP flows and 750 million packets.
The distribution of flow sizes is shown in Fig. 1, where each
point represents the number (y coordinate) of flows that have
a particular size (x coordinate). This log-scale figure demon-
strates that the vast majority of flows have small or medium
sizes, while only a small number of flows have large sizes.

Without knowing the flow sizes beforehand (which are in
fact what we want to measure), the length of counters have to
be set large according to the maximum flow size to handle the
worse case. However, most flows will turn out to be small or
medium. For flows of a few packets, most of the counter bits
will be wasted. This observation motivates us to save memory
by utilizing the waste.

B. Two-Dimensional Counter Sharing

To reduce the memory waste caused by small or medium
flows, we should enable counter sharing. In this paper, we pro-
pose a novel counter sharing scheme called two-dimensional
counter sharing, including horizontal counter sharing and ver-
tical counter sharing. The available memory space is divided
into many small physical counters, which are logically orga-
nized in a tree structure with multiple layers. Each flow is
pseudo-randomly mapped to a number of counters at the
bottom layer, and the flow will be recorded by these counters.
As different flows randomly choose their counters, multiple
flows may be mapped to the same counter, which results in
horizontal counter sharing. Whenever a bottom-layer counter
is overflowed, its parent counter in the tree is increased by
one. When that parent is overflowed, its next-layer parent is
increased by one. There are fewer parents than children at
each layer in the tree. Hence, children counters share parent
counters as their high-order bits, which is vertical counter
sharing. Note that horizontal counter sharing happens at each
layer (not just the bottom layer). The reason is that as the
bottom-layer counters are overflowed to higher layers, each
higher-layer counter may again be shared by multiple flows to
record their packets.

In horizontal counter sharing, each counter is shared by
multiple flows. The rationale is to let large flows borrow
memory from small or medium flows that will not fully
use their counters. But each counter will have to store the
combined size of multiple flows, particularly if the number of
counters is much smaller than the number of flows. To alleviate
this problem, the CountMin approach [26] maps each flow to
multiple counters and use the smallest counter value as the
flow size. The problems are that each packet of a flow will
result in multiple counter updates (which reduces the process-
ing throughput multiple folds) and that the smallest counter
may still be the sum of multiple flow sizes, causing positive
bias in estimation. Our new design in the next subsection
will keep the benefit of counter sharing, while ensuring that
approximately one counter is updated per packet and in the
meantime avoiding the positive bias in estimation. The idea of
our design is to split each flow to multiple counters through
random mapping, and each counter can therefore be shared by
different flows.

Horizontal counter sharing allows some bits wasted by small
or medium flows to be used by large flows. However, since
small flows account for a dominant percentage of network
flows, many bits in counters occupied only by small flows can
still be wasted. This observation leads to the idea of vertical
counter sharing below, which allows the more significant bits
(i.e., higher-order bits) to be shared by more flows.
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Fig. 2. An example of organizing counters into a binary tree.

We introduce the concept of virtual counters, each of which
is the concatenation of multiple small physical counters, which
are also called the component counters of the virtual counter.
Physical counters do not share their bits, but virtual counters
share bits by sharing their component counters, particularly
those representing more significant bits in virtual counters.
In essence, vertical counter sharing implements seamless
dynamic memory allocation based on flow sizes, without
having to allocate or deallocate physical counters of different
sizes on the fly (which is too costly to implement on chip).
Suppose we have three physical counters, each with 3 bits. The
first counter is allocated to f , the second is for g, while the
third is reserved for whoever needs it. These three component
counters only require 9 bits to successfully record f and g.

The scheme of two-dimensional counter sharing contributes
to significant memory saving, but it also introduces noise
among virtual counters due to space sharing. Fortunately,
we can employ statistical tools to remove such noise as we
will show shortly. In the sequel, when we use the word
“counter” without preceding it with “virtual”, we mean a
physical (component) counter by default unless the context
clearly suggests otherwise.

C. Counter Tree Architecture

We design a Counter Tree architecture to implement
two-dimensional counter sharing. The architecture can be used
to record flows of all sizes (small, medium or large). Given
a memory space of M bits, we divide it into small counters,
each consisting of b bits. We organize those counters into a
tree structure from the bottom up. Let the leaf nodes be the
layer 0 which consists of m counters. The degree of each non-
leaf node is d. Therefore, the number of counters on a upper
layer is 1

d of it lower layer. Denote the height of the tree by h,
with layers indexed from 0 to h − 1. We have the following
constraint

h−1∑
j=0

m

dj
× b ≤M. (3)

Therefore,

m ≤ dh−1M

(dh − 1)b
. (4)

If the (h−1)th layer contains more than one counter, namely,
m

dh−1 > 1, we put an extra node as the root of the tree,

called virtual root. Fig. 2 gives an example of organizing the
14 counters into a binary tree with 3 layers, where m = 8
and d = 2. Starting from a leaf node C[i] (0 ≤ i < m), the
h counters along the path to the root form a virtual counter,
denoted as V [i]. As a result, there will be m virtual counters
in total, denoted as an array V .

Starting from C[i] at layer 0, the counter at layer j (0 ≤
j < h) that V [i] will include, denoted by V [i][j], is

V [i][j] = C[� i

dj
�+

j∑
t=1

m

dt−1
]. (5)

Therefore, the Counter Tree in Fig. 2 can yield 8 virtual
counters as shown in the upper half of Fig. 3. We can see
that a counter located at a higher layer (which corresponds to
more significant bits in a virtual counter) is shared by more
virtual counters but will be used only by large flows. This
embodies the idea of vertical counter sharing. Later we will
show that each virtual counter can be shared by multiple flows,
corresponding to the idea of horizontal counter sharing.

We note that multiple layers of counters are also used by
Counter Braids [5], [6] under a different design. For Counter
Braids, each flow is randomly mapped to u counters at the
bottom layer, where u may be 3. Any packet of a flow will
cause all u counters of the flow to increase by one. Hence,
each counter records the total number of packets for all flows
that are mapped to it. That is, each counter represents a linear
equation on the sizes of some flows (that are mapped to
the counter). When there are enough counters, there will be
enough linear equations, which we can solve (by the method
of message passing in [5]) for the sizes of all flows. But this
approach requires updating u counters per packet and it needs
a sufficient number of counters. What about the memory space
is too tight and thus the number of counters is insufficient?
Our method can work under such tight space where Counter
Braids no longer work. In Counter Tree, each flow is randomly
mapped to r counters at the bottom layer, where r should be
large, e.g., in hundreds. Any packet of a flow will cause one
of the r counters to increase by one. Therefore, each counter
no longer represents a linear equation on the sizes of some
flows, which also means that the estimation method of Counter
Braids cannot be applied here. Instead, we view the r counters
of a flow f as a whole, whose sum carries both the size of
flow f and the noise from other flows due to counter sharing.
We do not know exactly who those other flows are, but nev-
ertheless the noise can be statistically measured and removed.

D. Counting Range

The counting range of each virtual counter is 2bh. To extend
the counting range, one way is to increase b. However, larger b
means fewer counters are available, e.g., if we double b,
the number of available counters will be reduced by half.
Moreover, if b is set overly large, some bits in each counter will
be wasted. Alternatively, we can increase h for the purpose of
extending the counting range, which is more memory efficient
as we will show shortly. Suppose M ′ bits are allocated for
layer-0 counters, which translates into M ′

b counters. Hence,
the height of the counter tree can be up to logd

M ′
b +1. Since
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Fig. 3. Virtual counters and virtual counter arrays for flows. The virtual
counter array for a particular flow consists of multiple counters pseudoran-
domly chosen from the counters.

the number of counters on the jth layers is reduced to 1
d of

the (j − 1)th layer, the following memory constraint should
hold

h−1∑
j=0

M ′

dj
≤M.

Since
∑h−1

j=0
M ′
dj < d

d−1M ′, and we have

M ′ >
d− 1

d
M, (6)

which means that only 1
d of the memory needs to be reserved

for non-leaf counters. Therefore, each virtual counter can have
up to b × (logd

M ′
b + 1) bits, which translates to a counting

range of 2b(logd
M′
b +1). In contrast, the counting range of each

counter is only 2b − 1. This means that as long as we spare
1
dM memory for upper layers and set M ′ = d−1

d M , we can

extend the counting range from 2b − 1 to 2b(logd
M′
b +1). The

randomized counter sharing scheme [8] is a special case of
Counter Tree with h = 1. Since it only records flows by one-
layer physical counters, the estimation range of randomized
counter sharing scheme is very limited, whereas the estimation
range of Counter Tree with multiple layers is much larger.
As an example, suppose M = 1MB, b = 4, d = 2, and
M ′ is therefore 0.5MB. The counting range of each counter
is 24 − 1 = 15, while each virtual counter can count up to
24(log2

0.5MB
4bit +1) = 284 packets. Therefore, Counter Tree can

significantly extend the estimation range to accommodate large
flows.

IV. ONLINE PACKET RECORDING

In this section, we show how to record a packet in the
Counter Tree.

A. Recording

Consider an arbitrary flow f . We pseudorandomly choose
r (r � m) out of the m virtual counters to logically form a
virtual counter array of f , denoted by Vf . The selection can

Fig. 4. The process for recording a packet in a virtual counter.

be achieved by applying r independent hash functions to the
flow label. The ith counter of Vf , denoted by Vf [i], is chosen
from V as follows

Vf [i] = V [hi(f)], (7)

where 0 ≤ i < r and hi(·) is a hash function ∈ [0, m − 1].
To reduce the overhead of implementing r independent hash
functions, we can use one master hash function H and a set
S of random seeds, and let

hi(f) = H(f ⊕ S[i]), (8)

where ⊕ is the XOR operator. Since r � m, the prob-
ability that r distinct virtual counters are selected by the
hash functions to form the virtual counter array of f is
m(m−1)(m−r+1)

mr ≈ 1. The bottom half of Fig. 3 illustrates the
virtual counter arrays for f and g, where r = 3 and the virtual
counter V [4] is shared by both flows. We point out that our
design does not limit the number of flows to be supported.
There can be many more flows than the number of virtual
vectors, m.

At the beginning of each measurement period, all counters
are initialized to 0s. When a packet of flow f arrives, the
router extracts its flow label f , chooses a virtual counter from
Vf uniformly at random, and increments that virtual counter
by 1. More specifically, the router generates a random number
i ∈ [0, r − 1], computes the hash value u = hi(f), and sets
V [u] ← V [u] + 1. Note that the update of V [u] may involve
the updates of multiple counters. Based on (5), the router
first fetches counter C[u] from memory and increases it by 1.
If C[u] does not overflow, the recording for this packet is done.
Otherwise, the router further fetches C[�u

d �+m], and adds the
overflowed 1 to C[�u

d �+ m]. The process continues until no
overflow happens or the counter on the highest layer has been
reached. In the latter case, the virtual counter is overflowed
beyond the upper bound that it is designed to handle. Fig. 4
gives an example of the online recording process for a packet
of f . Suppose b = 4 (i.e., the counting range of each counter
is 15), h = 3, and V [0] is chosen for recording that packet.
The router first fetches C[0] whose value is 15. After adding 1
to C[0], C[0] becomes 0 and leads to an overflow. Hence, the
router writes back C[0] = 0, further fetches C[8] with value 9,
and assigns C[8]← C[8]+ 1. Since C[8] = 10 does overflow,
the router writes it back and the recording process terminates.

B. Number of Memory Accesses

To record a packet, the router at least needs to read and
write 1 counter, which requires 2 memory accesses. Hence, the
lower bound of the number of memory accesses for recording
a packet is 2. In the worst case, the router needs to update h
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Fig. 5. Amortized number of memory accesses per packet with respect to b.

counters, which requires 2h memory accesses. The good thing
is that the router needs to fetch another counter only when the
current counter overflows, which happens after recording at
least 2b packets. Hence, the amortized number of memory
accesses per packet is much smaller than the worst case.
We have the following theorem:

Theorem 1: A tight upper bound of the amortized number
of memory accesses for recording a packet in the Counter Tree
is 2 + 2

2b−1 , where b is length of each counter.
Proof: Suppose n packets are recorded. Each packet

causes one counter at layer 0 to be updated, requiring 2 mem-
ory accesses. In total, there are 2n memory accesses at
layer 0. The number of counter overflows at layer 0 is at most
� n

2b � ≤ n
2b , which means that counters at layer 1 will be

updated for no more than n
2b times, requiring no more than

2n
2b memory accesses. By simple induction, we know that the
number of memory accesses at layer j is no more than 2n

2jb .
Hence, the total number of memory accesses over all layers
is no more than

h−1∑
j=0

2n

2jb
=

2n(1− 1
2bh )

1− 1
2b

< 2n(1 +
1

2b − 1
).

Hence, the amortized number of memory accesses per packet
is no more than

2n(1 + 1
2b−1

)
n

= 2 +
2

2b − 1
. (9)

The upper bound is tight when n ≡ 0 (mod 2(h−1)b) and
exactly n

2(j+1)b overflows happen at the jth layer, 0 ≤ j <
h− 1.
Fig. 5 shows the upper bound of the amortized number of
memory accesses for recording a packet with respect to b. We
find that it quickly converges to 2 (the lower bound) with the
increase of b. In contrast, Counter Braids need to perform at
least 2u memory accesses since each packet is recorded by u
counters on each layer, where u can be 3.

The non-deterministic counter access time per packet may
introduce stalls into the datapath pipeline, resulting in reduced
datapath bandwidth. Counter Braids [5], [6] and any other
counter architectures with variable access time [3] face the
same problem. The key issue is how frequent the variable
access time will occur. In case that access time for most pack-
ets is constant but only varies for a tiny fraction of packets,
the impact on datapath bandwidth will be limited, particularly
if we are able to reduce the chance of variable access time to
an arbitrarily small level through a system parameter. This is
the case for Counter Tree. More specifically, the overflow of

a layer-0 counter occurs once every 2b packets. On average,
one out of 2b packets has longer access time because a counter
at the higher layer is involved, but the other 2b − 1 packets
have constant access time because they do not cause counter
overflow. The fraction of all packets that have longer access
time is 1

2b , which can be exponentially reduced by increasing
the value of b, i.e., the number of bits in a counter.

V. COUNTER TREE BASED ESTIMATION

After the measurement period, offline estimation should
be performed to recover flow sizes from the Counter Tree.
Counter Tree estimates flow sizes through some statistical
methods, and it supports efficient query on the size of an
arbitrary flow, without having to compute the sizes of other
flows as Counter Braids do (the computation overhead is high).
In this section, we first propose and analyze the Counter Tree
based Estimation (CTE) method.

A. CTE method

Consider the ith virtual counter Vf [i] in the virtual counter
array of flow f . According to (7), Vf [i] = V [u], where
u = hi(f). We know V [u] records some of f ’s packets, as
well as the noise introduced by other flows. There are two
sources of noise: First, V [u] is shared by other flows; Second,
all component counters in V [u] except C[u] are shared by
other virtual counters. To accurately recover the number of
packets in f recorded by V [u], we need to figure out how to
remove such noise.

The component counter of V [u] at the highest layer is C[v],
where v = � u

dh−1 � +
∑h−1

t=1
m

dt−1 according to (5). Consider
the subtree rooted at C[v], denoted as T , consisting of dh−1

leaf nodes, which correspond to dh−1 virtual counters. Let
k = dh−1. Due to counter sharing, flows mapped to those k
virtual counters may introduce noise to V [u]. We treat T as an
aggregate, called a subtree counter, when dealing with noise.
We denote the value of T by a random variable Xi. As an
example, in Fig. 2, the value of the subtree counter rooted at
C[12] is C[12]× 22b + (C[8] + C[9])× 2b + (C[0] + C[1] +
C[2] + C[3]). Note that the total number n of packets in all
flows can be obtained from the entire Counter Tree in a similar
way. Let random variable Yi be the portion of Xi contributed
by flow f , and Zi be the portion of Xi contributed by all other
flows. Hence, Xi = Yi + Zi.

Let s be the true flow size of f during the measurement
period. Assume there is a large number of flows, n is large,
the size of each flow is negligibly small when comparing with
n, r is much larger than 1, and r� m.

Flow f has r virtual counters (including V [u]) in its virtual
counter array. Each packet of f has a probability 1

r to be
mapped to V [u] and increment it by one. Therefore, Yi follows
a binomial distribution:

Yi ∼ B(s,
1
r
). (10)

Consider an arbitrary packet belonging to a different flow g.
The probability for the virtual counter array of g to
include a particular virtual counter in T is approximately
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1 − (m−1
r )

(m
r ) = r

m . When that happens, the conditional prob-

ability for this particular virtual counter to record the packet
is approximately 1

r . Combining the above analysis, the proba-
bility for this particular virtual counter to record the packet is
approximately r

m × 1
r = 1

m . Since there are k virtual counters
in T , the probability that T records the packet is (1− 1

m)k ≈ k
m

for k � m. There are n− s packets outside of f . Since there
are numerous flows under measurement, the total number n
of packets can be much larger than the size s of any single
flow, even for large flows, as we observe in our traffic traces.
With s � n and n − s ≈ n, Zi roughly follows a binomial
distribution

Zi ∼ B(n,
k

m
). (11)

Given the distributions of Yi and Zi, we know E(Yi) = s
r ,

and E(Zi) = nk
m . Therefore,

E(Xi) = E(Yi + Zi) = E(Yi) + E(Zi) =
s

r
+

nk

m
.

Hence, we have

s = rE(Xi)− nkr

m
. (12)

We do not know the exact value of E(Xi), but we have
the r instance values, also denoted as Xi, 0 ≤ i < r,
that can be directly counted from the Counter Tree as sub-
tree counters. Replacing E(Xi) with the measured average
�r−1

i=0 Xi

r , we obtain an estimate of s, denoted as ŝ, as follows:

ŝ =
r−1∑
i=0

Xi − nkr

m
, (13)

where the first term is the number of all packets recorded
by the r subtree counters and the second term captures the
average noise presented in r counters.

B. Analysis of ŝ

Since Yi and Zi follow binomial distributions, we have

V ar(Yi) =
s

r
(1− 1

r
), V ar(Zi) =

nk

m
(1− k

m
). (14)

In addition, Yi and Zi are independent with each other. Hence,
Cov(Yi, Zi) = 0. Hence, we have

V ar(Xi) = V ar(Yi) + V ar(Zi) + 2Cov(Yi, Zi)

=
s

r
(1− 1

r
) +

nk

m
(1− k

m
). (15)

Therefore,

E(ŝ) = E(
r−1∑
i=0

Xi)− ndr

m
= r(

nkr

m
)− nkr

m
= s, (16)

which means the estimator ŝ is unbiased. In addition, we have

V ar(ŝ) = V ar(
r−1∑
i=0

Xi) = r2V ar(Xi)

= s(r − 1) +
nr2b(dh − 1)

M
(1− b(dh − 1)

M
), (17)

where we have used m = dh−1M
b(dh−1)

and k = dh−1. Hence, the

standard error of the ratio ŝ
s is

StdErr(
ŝ

s
) =

√
s(r − 1) + nr2b(dh−1)

M (1− b(dh−1)
M )

s
. (18)

When n is sufficiently large, the binomial distribution,
Zi ∼ B(n, k

m ), can be approximated by a normal distribution,
N(nk

m , nk
m (1− k

m )). Similarly, Yi
approx∼ N( s

r , s
r (1− 1

r )). Since
the linear combination of independent normal distributions
also follows normal distribution, Xi

approx∼ N(μ, σ2), where
μ = nk

m + s
r , and σ2 = nk

m (1 − k
m) + s

r (1 − 1
r ). According

to (13), we have

ŝ
approx∼ N(s, s(r − 1) +

nkr2

m
(1− k

m
)). (19)

Therefore, the α confidence interval for s is

ŝ± Zα

√
s(r − 1) +

nkr2

m
(1− k

m
), (20)

where Zα is the 1+α
2 percentile for the standard normal

distribution.

VI. COUNTER TREE BASED MAXIMUM

LIKELIHOOD ESTIMATION

In this section, we propose another flow-size esti-
mator called Counter Tree based Maximum likelihood
Estimation (CTM).

A. CTM Method

From (11), the probability of Zi = zi is

Prob{Zi = zi} =
(

n

zi

)
(

k

m
)zi(1− k

m
)n−zi .

The value of n is known from the Counter Tree. The values
of m and k are determined by prescribed system parameters
M , b and d, h. Hence, P{Zi = zi} can be written as a function
of zi, denoted as p(zi). Therefore, the probability for observing
Xi = xi can be calculated by

Prob{Xi = x}) = Prob{Yi + Zi = xi}

=
xi∑

zi=0

p(zi)Prob{Yi = xi − z})

=
xi∑

zi=0

p(zi)q(s, yi), (21)

where yi = xi − zi, q(s, yi) =
(

s
yi

)
(1

r )yi(1− 1
r )s−yi , and we

have used Yi ∼ B(s, 1
r ). Hence, the likelihood function for

observing X0 = x0, X1 = x1, …, Xr−1 = xr−1 is

L(s; x0, x1, . . . , xr−1) =
r−1∏
i=0

xi∑
zi=0

p(zi)q(s, yi). (22)

Therefore, we have

d ln L

ds
=

r−1∑
i=0

∑xi

zi=0 p(zi)q(s, yi)(
∑yi−1

j=0
1

s−j + ln(1− 1
r ))∑xi

zi=0 p(zi)q(s, yi)
.

(23)
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Fig. 6. A b-bit counter consists of (b − 1) counting bits and a status bit.

The derivation process is given in Appendix A. The value
of s that satisfies d ln L

ds = 0 will maximize ln L and thereby
the likelihood function L. In addition, we observe that d ln L

ds
is monotonically decreasing with respect to s. Therefore, the
bisection search method can be used to find the s value such
that d ln L

ds = 0. As a result, we obtain an estimator for s as
follows:

ŝ = arg max
s
{ln L} = {s|d ln L

ds
= 0}. (24)

B. Analysis of ŝ

Due to space limitation, the analysis of ŝ is given in
Appendix B. The standard relative error is

StdErr(
ŝ

s
) =

√
2r3σ4

2rσ2+(r−1)2

s
, (25)

and the α confidence interval for s is

ŝ± Zα

√
2r3σ4

2rσ2 + (r − 1)2
. (26)

VII. ENHANCED COUNTER TREE ARCHITECTURE

A. Motivation

Recall that the design of vertical counter sharing in the
Counter Tree reserves counters at higher layers for large flows.
However, the question that which flows have actually used the
high-layer counters is left open since each high-layer counter
can be shared by multiple virtual counters. If two flows share
a high-layer counter and only one of them uses the counter
for recording its packets, there is no way to figure out which
of the two actually uses that counter from the values in the
Counter Tree, which leads to ambiguity. Consider a simple
example in which f is a small flow with size 1 and g is
large flow with size 30,000. As shown in Fig. 3, we assume
the packet of f is recorded in V [1] (more specifically C[1]
since other counters in V [1] are not used), and 10,000 of
g’s packets are recorded in V [3]. As a result, C[12] is used
by g to accommodate such a large number of packets. We
know that V [1] and V [3] share the component counter C[12].
Although C[12] has never been used by f , it is also included
as a component in f ’s virtual counter V [1]. As a result, a
great noise is introduced by g when we estimate the size of
f since C[12] is included in the estimation of f . To handle
this problem, our previous design relies on mapping each flow
to many virtual counters (which helps amortizing the noise)
and using statistical means to remove the noise. However,
we suspect that large noise introduced at higher layers can
nevertheless degrade the estimation accuracy. In this section,
we introduce additional mechanism to address this issue.

We define the length of each virtual counter as the number
of component counters it truly uses. In the previous example,

Fig. 7. After introducing status bits, we can calculate the lengths of virtual
counters based on the status bits in their component counters. The length of
V [1] that f is mapped to is 1 since the status bit of C[1] is not set, and the
length of V [3] that g is mapped to is 3 since the status bits of C[3] and C[9]
are set while the status bit of C[12] is not set.

the length V [1] is 1 since only C[1] is used, while the length
of V [3] is 3 since C[3], C[9] and C[12] have been used.
We observe that the aforementioned ambiguity results from
the uncertainly of the length of each virtual counter after
recording. In the previous design of Counter Tree, we simply
assume every virtual counter has the same length, which is
equal to the height h of the tree. The experiment results in
Section VIII will demonstrate that Counter Tree works well
when the tree height h is set small, e.g., h = 2. However,
the performance of Counter Tree seriously deteriorates when
the tree height grows for the purpose of extending estimation
range. Theoretically, this observation is embodied by the fact
that the variance of ŝ increases exponentially with h according
to (17). To accommodate large flows, reasonably large h
should be used, leading to large estimation error. Therefore,
we must figure out how to resolve the ambiguity.

B. Counters With Status Bits

To address this issue, we propose an Enhanced Counter
Tree (ECT) architecture which determines the length of each
virtual counter and thereby resolves the ambiguity by adding
a status bit to each counter. For each b-bit counter, its
lower (b− 1) bits are used for counting packets, and its
most significant bit is used as the status bit. See Fig. 6 for
illustration. Only if the counter overflows, will the status bit
of that counter be set. With the status bits, we can calculate
the true length for each individual virtual counter, thereby
reducing the noise caused by vertical counter sharing among
virtual counters. More specifically, to build a virtual counter
according to its length, we traverse along the path from its
layer-0 counter to the root, and include all counters until
the first counter (included) whose status bits has not been
set. Following the aforementioned example, Fig. 7 shows that
the introduction of status bits can alleviate the ambiguity in
sharing at higher layers. In the figure, C[1] is a component
counter of V [1] that f is mapped to. Since C[1] does not
overflow (i.e., its status bit is not set), the length of V [1] must
be 1 and therefore the component counter C[12] should has
been included. In contrast, the length of V [3] (which g is
mapped to) is 3 since the status bits of both C[3] and C[9] are
set while the status bit of C[12] is not. In conclusion, the extra
status bits can provide better resolution for virtual counters and
help resolve ambiguity about whether a high-layer component
counter should be included in a virtual counter or not.



CHEN et al.: COUNTER TREE: A SCALABLE COUNTER ARCHITECTURE FOR PER-FLOW TRAFFIC MEASUREMENT 1257

If a counter overflows due to a large flow, the small flows
that share the counter will observe a large counter value.
However, each flow is assigned to r counters at the bottom
layer, where r is large, e.g., in hundreds. The number of large
flows is much smaller than the number of small/medium flows
in real traffic. For a small flow, if a few of its counters are
overflowed due to sharing with large flows, the values of these
counters will be large. But as long as most of the small flow’s
counters have small values, the effect of counter crosstalk
will be dampened by the maximum likelihood estimation (24),
which discounts the outliers (large counter values).

For the first estimator (13), when there are many, many
flows, even without a large flow, the sheer number of small
flows mapped to a counter may cause the counter to overflow.
But this noise can be statistically measured and removed
when r is sufficiently large. Among the r counters, statistically,
some will carry larger-than-average noise and some will carry
smaller-than-average noise. When r is large enough, such
difference will be evened out due to the law of large numbers.
The average noise term is captured by the second term in (13).

C. Recording and Estimation

After employing status bits, the process of online packet
recording remains the same except that we need to set its
status bit when a counter overflows. For the offline estima-
tion process, we should slightly modify the estimators given
in (13) and (24) to reflect the change. Consider the estimation
of flow f . Let li be the length of the virtual counter Vf [i]
after the measurement period, where 0 ≤ i < r. Instead of
using a unified height h for all subtree counters, the height of
the subtree counter corresponding to Vf [i] should be li, and
the value k, meaning the number of leaf nodes in the subtree,
is therefore dli−1. For example, in Fig. 7, the height of the
subtree counter corresponding to V [1] is 1 and it contains
only one leaf node, while the height of the subtree counter
corresponding to V [3] is 3 and it contains 23−1 leaf nodes.
Everything else remains the same for the offline estimation.
Our experiments in Section VIII will show that the ECT with
status bits remarkably improves the estimation accuracy of CT.

VIII. EXPERIMENTS

A. Experiment Setup

We have implemented the two estimators based on the
Counter Tree, i.e., CTE and CTM, from Section V and
Section VI, respectively. CTE and CTM share the same mod-
ule for online packet recording, which performs the operations
described in Section IV. Hence, when we evaluate the online
operations of the Counter Tree, we use CT as the abbre-
viation. We have also implemented the Enhanced Counter
Tree architectures. We compare them with the most related
counter architectures: (1) randomized counter sharing (MLM)
[7], [8] and (2) Counter Braids (CB) [5], [6]. The bitmap-based
MSCBF is less memory efficient than the counter architec-
tures [7]. Hence, we do not include it for comparison. Without
losing generality, we use TCP flows for presentation, and we
have obtained similar results when carrying out experiments
with other types of flows. The network trace we use was

captured by Cisco’s NetFlow at the main gateway of Uni-
versity of Florida, and we are authorized to store the packets
headers in disk for our experiments. The trace contains about
68 million TCP flows and 750 million packets. We implement
those counter architectures in software and evaluate their per-
formance by running experiments on the trace. Suppose each
measurement period contains 10 million packets. We divide
the trace into measurement periods, and perform different
estimators in each period. We use all 750 million packets
in our experiments, for 75 periods. We randomly pick the
results from one period to report. In fact, the results from
different periods are quite similar. During the chosen period,
there are 1,070,632 TCP flows and 10,053,234 packets, and
the minimum, average, and maximum flow size is 1,939, and
10,972 packets, respectively.

We conduct four sets of experiments. The first set is used for
comparing the estimation accuracy and range of CT, MLM and
CB. We vary the available memory space M from 0.125MB,
0.25MB, 0.5MB, to 1MB, which translate to about 1bit/flow,
2bits/flow, 4bits/flow, and 8bits/flow, respectively. For Counter
Braids, we use the same settings as in the original paper [5]:
A two-layer CB and three hash functions at both layers. The
layer-0 counters are 8 bits deep and the layer-1 counters are
56 bits deep. For MLM, we set the counter length to 6 bits
and the size of each storage vector to 100 as in [7]. For CTE
and CTM, we implement a 2-layer tree (which is sufficient
for our experiments) with d = 2 and b = 4 by default. For
fair comparison with MLM, we set the size r of each virtual
counter array to 100. The second set of experiments compare
the processing overhead of online packet recording of these
counter architectures. In the third set of experiments, we will
vary the values of d, b and r to study their respective impact
on performance. In the fourth set of experiments, we compare
the performance of Counter Tree and Enhanced Counter Tree
under different tree heights.

B. Estimation Accuracy and Range

Recall that the main objective of the paper is to design
a new counter architecture that can work in very tight space
where existing counter architectures no long work well. So we
first compare Counter Tree with CB and MLM in terms of
estimation accuracy and range to see how they work under
the same available memory. The estimation results of CB are
shown in Fig. 8 which includes four plots for different values
of M . Each point in the plots represents an (s, ŝ) pair for a
particular flow, where the x coordinate is the true flow size s
and the y coordinate is the estimated flow size ŝ. The equality
line, y = x, is presented for reference: The closer a point is to
the equality line, the more accurate the estimate is. We can see
that when a very tight memory M = 0.125MB is used, CB
cannot produce any meaningful results. When M = 0.5MB,
CB generates positively biased results that are all above the
equality line. When the available memory space increases to
1MB, the estimation results of CB do not converge. So we
terminate the process after 1000 iterations. We find that when
M ≥ 2MB, CB can yield very accurate estimates (which is
not shown in the figure). Therefore, CB does not suite for
traffic measurement under very tight memory.
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Fig. 8. Fig. 8a shows estimation results by Counter Braids when M = 0.125MB. Each point in the plot represents an (s, ŝ) pair for a particular flow, where
the x coordinate is the true flow size s and the y coordinate is the estimated flow size ŝ. The equality line, y = x, is presented for reference: A point closer
to the equality line is more accurate. Fig. 8b shows estimation results by Counter Braids when M = 0.25MB. Fig. 8c shows estimation results by Counter
Braids when M = 0.5MB. Fig. 8d shows estimation results by Counter Braids when M = 1MB.

Fig. 9. (a)–(d) Estimation results by MLM when M = 0.125MB, 0.25MB, 0.5MB, and 1MB, respectively.

Fig. 10. (a)–(d) Estimation results by CTE when M = 0.125MB, 0.25MB, 0.5MB, and 1MB, respectively.

Fig. 11. (a)–(d) Estimation results by CTM when M = 0.125MB, 0.25MB, 0.5MB, and 1MB, respectively.

Fig. 9 presents the estimation results of MLM. MLM does
not work when M = 0.125MB. Although MLM can yield
accurate estimates for small or moderate flows when more
memory is available, it produces very negatively biased results
for large flows. Because large flows may lead to counter
overflows, some packets cannot be recorded when the counters
are fully used. Although the increase of M can enlarge the
estimation range of MLM to some extent, it does not address
the problem fundamentally. For example, the estimation range
is about 6000 when M = 1MB.

The estimation results of CTE and CTM are given in
Fig. 10 and Fig. 11, respectively. As expected, the employment
of the Counter Tree architecture significantly extends the
counting range than MTM. Both CTE and CTM can yield
very accurate estimates for all flows, including flows with
very large sizes, even under a tight memory. The estimates
become more accurate when more memory space is available.
The relative estimation bias Bias( ŝ

s) and the relative standard

error
√

V ar(ŝ)

s of CTE and CTM are presented in Fig. 12.
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Fig. 12. Fig. 12a shows the relative estimation bias Bias( ŝ
s
) of CTE. Fig. 12b shows the relative standard error StdErr( ŝ

s
) of CTE. Fig. 12c shows the

relative estimation bias Bias( ŝ
s
) of CTM. Fig. 12d shows the relative standard error StdErr( ŝ

s
) of CTM.

Fig. 13. Impact of b on the performance of CTE, where M = 0.5MB, d = 2, and r = 100. Fig. 14a shows estimation results of CTE when b = 4. Fig.
14b shows estimation results of CTE when b = 6. Fig. 14c shows estimation results of CTE when b = 8. Fig. 14d shows the comparison of relative standard
error when b = 4, 6, 8.

We find that CTE and CTM in fact have comparable estimation
accuracy. Fig. 12 shows that the relative errors for large flows

are small. Generally, Bias( ŝ
s) and

√
V ar(ŝ)

s decrease with the
increase of s. Although the relative errors for small flows can
be large, the results in Fig. 10 and Fig. 11 demonstrate that no
small flows will deviate significantly from the equality line for
large absolute errors (which would cause mis-classification).
It is expected and true that the relative errors for small flows
are large for virtually all estimation methods. We use an
extreme example to bring out the idea: There is a difference
in interpreting the results for small flows and those for large
flows. Consider a small flow of size 1. If the estimation is 2
(which is in fact a good result because it is off by just 1), the
relative error is 100%. For a large flow of 10,000, if the relative
error is 100%, it will be 20,000, a truly bad estimation. For
the same large flow, if the estimation is off by 10, it is a great
estimation because the relative error is just 0.1%. However, if
the previous small flow is off by 10, the relative error is 1000%
— even with such a relative error, we would not necessarily
say this is a bad estimation because a flow of 11 packets
will not be mis-classified as a large flow, in applications of
identifying elephant flows or classifying all flows into a few
categories based on their sizes.

To numerically evaluate how large flows affect the estima-
tion results of small flows, we only consider small flows that
share counters with large flows, and omit the small flows that
do not share any counters with large flows. More specifically,
we consider all flows with sizes smaller than 100 as small,
while those with sizes larger than 1000 as large. However, we
observe that all small flows share multiple counters with large
flows. The reason is that each flow uses a large number r of
counters, which means a small flow will have a good chance to
share at least one counter with one of the large flows. We stress
that our method is designed to handle such sharing through

noise removal or maximum likelihood estimation.
In conclusion, CT works much better than CB and MLM

under a tight memory, and it significantly extends the estima-
tion range when compared with MLM.

C. Processing Overhead of Online Packet Recording

The processing overhead for recording a packet is mainly
due to memory accesses to read and write counters and
the computations of hash values. A typical implementation
of Counter Braids requires 3 hash functions at each layer,
mapping each flow to the corresponding counters. To record
a packet, the router needs to read the 3 counters at the first
layer, increment them by 1, and then write them back to the
memory. If any of the 3 counters overflows, the router has to
read and write another 3 counters at the second layer, which
requires 3 more hash computations. Hence, the lower bounds
on the number of memory accesses and the number of hash
computations by CB are 6 and 3, respectively. In contrast,
MLM aligns all counters at the same layer, and each packet
is hashed to only one counter, which requires 2 memory
access and 1 hash computation. CT also only requires 1 hash
computation to determine the virtual counter for a packet.
Recall that (9) gives an upper bound of amortized number of
memory accesses by CT. When b = 4, the amortized number
of memory accesses is bounded by 2 + 1

24−1 ≈ 2.13. In the
first set of experiments, we record the average number of
memory accesses and average number of hash computations
for recording a packet by CB, MLM and CT. The results are
shown in Table I. We can see that CT is almost as efficient
as MLM, and they improve over CB by a factor of about 3.
achieve Moreover, the average number of memory accesses
of CT decreases when more memory (counters) are available
since each counter is shared by fewer flows, which reduces
the overflows.
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Fig. 14. Impact of r on the performance of CTE, where M = 0.5MB, b = 4 and d = 2. (a)–(c) Estimation results by CTE when r = 50, 100, and 200,
respectively. (d) The comparison of relative standard error when r = 50, 100, 200.

Fig. 15. Impact of d on the performance of CTE, where M = 0.5MB, b = 4 and r = 100. (a)–(c) Estimation results by CTE when d = 2, 3, and 4,
respectively. (d) The comparison of relative standard error when d = 2, 3, 4.

Fig. 16. Performance of CTE with different tree height h, where M = 0.5MB, b = 4, d = 2 and r = 100. (a)–(c) Estimation results by CTE when h = 2,
4, and 6, respectively. (d) The comparison of relative standard error when h = 2, 4, 6.

TABLE I

COMPARISON OF AVERAGE PROCESSING OVERHEAD FOR

RECORDING A PACKET BY CB, MLM AND CT

D. Impact of b, r and d

We now vary the system parameters b, r and d to study
their impacts on the performance of CT, while M is fixed to
0.5MB. The parameters are set as follows:

1) Impact of b: we fix d = 2, r = 100, h = 2 and vary b
from 4, 6 to 8.

2) Impact of r: we fix b = 4, d = 2, h = 2 and vary r
from 50, 100 to 200.

3) Impact of d: we fix b = 4, r = 100, h = 2 and vary d
from 2, 3 to 4.

We find that those parameters affect CTE and CTM in a
similar way. Hence, we only present the estimation results of
CTE in Fig. 13, Fig. 14, and Fig. 15. When we increase the
b, r or d, the estimation range will be increased accordingly.
But this does not come for free. Since the increase of b, r

or d makes more flows share each counter, it is expected that
the estimation accuracy will degrade due to elevated noise.
However, the experimental results show that such degradation
is small, and the performance of CTE is not very sensitive to
the change of b, r or d (We will show shortly that the change
of h can significantly affect the estimation accuracy of CTE).

E. Comparison of CTE and E-CTE

Recall that our analysis in Section VII points out that the
increase of tree height h can degrade the performance of
CTE and CTM. To demonstrate this, we run experiments
using the CTE method (similar results can be observed if the
CTM method is adopted) with different tree heights. We fix
M = 0.5MB, b = 4, d = 2, r = 100, and vary h from 2,
4, to 6. The results are presented in Fig. 16. As we expect,
the estimation accuracy of CTE becomes much worse with
the increase of h. The fourth plot in Fig. 16 demonstrates
that a larger h significantly increases the relative standard
error of the estimates. We use E-CTE to stand for the CTE
method under the Enhanced Counter Tree architecture which
is designed to address this issue. For comparison, we conduct
the same experiments on E-CTE, and the results are depicted
in Fig. 17. Owing to the status bits in E-CTE, the increase of
h only slightly degrades the performance of ECT. Therefore,
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Fig. 17. Performance of E-CTE with different tree height h, where M = 0.5MB, b = 4, d = 2 and r = 100.

Fig. 18. Estimation results of E-CTE for a trace with 100 million packets. We set b = 4, d = 2, r = 100, h = 4, and (a)–(d) M = 0.125MB, 0.25MB,
0.5MB, and 1MB, respectively.

ECT dramatically outperforms CTE when a relatively large h
is adopted, e.g., h = 6.

F. Scalability of Counter Tree
To evaluate the scalability of Counter Tree, we apply

it to a larger trace, which contains 8,253,368 TCP flows
and 100,000,015 packets, and the minimum, average, and
maximum flow size is 1, 12.12 and 295,451 packets,
respectively. The available memory space M remains to
be 0.125MB, 0.25MB, 0.5MB, and 1MB, which trans-
late to about 0.125bits/flow, 0.25bits/flow, 0.5bits/flow, and
1bits/flow, respectively. We implement Counter Tree with
different system parameters. Due to space limitation, Fig. 18
only shows the estimation results of E-CTE with b = 4, d = 2,
r = 100, and h = 4 (similar results are observed under other
settings). It is clear that Counter Tree can still yield reasonably
accurate estimation results under an extremely tight memory
space, e.g., 0.125 bits/flow.

IX. RELATED WORK

The Counter Braids [5], [6], the randomized counter shar-
ing scheme [7], and our Counter Tree architecture improve
the memory efficiency for per-flow traffic measurement by
enabling statistical sharing among physical counters. Some
prior work takes a different design path to save memory
consumption of each counter (with the same counting range),
thereby improving the memory efficiency. Small Active Coun-
ters (SAC) [27] divides each counter into two parts: an
estimation part A and an exponent part B. SAC derives
an estimator ŝ = A2qB , where q is a global parameter.
In [28], a memory-efficient method called DIScount COunt-
ing (DISCO) is proposed for measuring the flow size or flow
byte. DISCO regulates the counter value to be a real increasing
concave function of the actual flow size or flow byte, such that
the counter value increases more slowly than the number of
encoded flow packets or flow bytes. Note that both SAC and

DISCO can be applied to those sharing counter architectures,
including Counter Tree, to further improve memory efficiency.

Some prior art studies a related but different problem called
flow cardinality estimation, which is to estimate the number of
distinct elements in each flow during a measurement period.
A significant difference is that flow cardinality estimation
needs to remove duplicate elements.

Bitmap [12] is a compact data structure that can be used
for cardinality estimation. All bits are initialized to zeros.
When an element arrives, it is hashed to a bit that will be
set to one. Duplicate elements mapped to the same bit are
automatically filtered out. At the end of a measurement period,
the cardinality is estimated based on the size of the bitmap and
the ratio of zeroes in the bitmap.

MultiResolutionBitmap [13] employs an array of bitmaps,
each having a different sampling probability, to extend
estimation range. Probabilistic Counting with Stochastic
Averaging (PCSA) [14] (also known as FM sketch) maps each
element to the ith (zero-based indexing) bit with a probability

1
2i+1 . An FM sketch, also referred to as a register in the
literature, can give an estimation up to 2w, where w is the
number of bits in the register.

LogLog [15] and HyperLogLog [16] reduce the size of
each register from 32 bits to 5 bits while retaining the same
estimation range of 232. As a result, there will be many more
registers available under the same memory constraint. There-
fore, LogLog and HyperLogLog significantly improve the esti-
mation accuracy of PCSA. In [29], a series of improvements
to HyperLogLog are proposed to further reduce its memory
requirements and increase its accuracy for an important range
of cardinalities.

X. CONCLUSION

In this paper, we design a scalable counter architecture
called Counter Tree. We propose a two-dimensional sharing
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scheme, where each counter can be shared by multiple virtual
counters and each virtual counter can be shared by multiple
flows. As a result, Counter Tree significantly reduces memory
requirement and extends estimation range. To record a packet,
Counter Tree only requires a little more than 2 memory
accesses on average. We propose two offline methods to esti-
mate flow sizes. Moreover, we propose the Enhanced Counter
Tree architecture by adding a status bit for each counter to
further improve the performance. The extensive experiments
with real network trace demonstrate that our methods can yield
good estimates even under very tight memory space.

REFERENCES
[1] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown, “Analysis of a

statistics counter architecture,” in Proc. Hot Interconnects, Aug. 2001,
pp. 107–111.

[2] S. Ramabhadran and G. Varghese, “Efficient implementation of a
statistics counter architecture,” ACM SIGMETRICS Perform. Eval. Rev.,
vol. 31, no. 1, pp. 261–271, Jun. 2003.

[3] Q. Zhao, J. Xu, and Z. Liu, “Design of a novel statistics counter
architecture with optimal space and time efficiency,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 34, no. 1, pp. 323–334, Jun. 2006.

[4] A. Kumar, J. Xu, and J. Wang, “Space-code bloom filter for efficient
per-flow traffic measurement,” IEEE J. Sel. Areas Commun., vol. 24,
no. 12, pp. 2327–2339, Dec. 2006.

[5] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: A novel counter architecture for per-flow measure-
ment,” in Proc. ACM SIGMETRICS, Jun. 2008, pp. 121–132.

[6] Y. Lu and B. Prabhakar, “Robust counting via counter braids: An error-
resilient network measurement architecture,” in Proc. IEEE INFOCOM,
Apr. 2009, pp. 522–530.

[7] T. Li, S. Chen, and Y. Ling, “Fast and compact per-flow traffic measure-
ment through randomized counter sharing,” in Proc. IEEE INFOCOM,
Apr. 2011, pp. 1799–1807.

[8] T. Li, S. Chen, and Y. Ling, “Per-flow traffic measurement through
randomized counter sharing,” IEEE/ACM Trans. Netw., vol. 20, no. 5,
pp. 1622–1634, Oct. 2012.

[9] M. Chen and S. Chen, “Counter tree: A scalable counter architecture
for per-flow traffic measurement,” in Proc. IEEE ICNP, Nov. 2015,
pp. 111–122.

[10] Y. Zhou, Y. Zhou, M. Chen, Q. Xiao, and S. Chen, “Highly compact vir-
tual counters for per-flow traffic measurement through register sharing,”
in Proc. IEEE GLOBECOM, Dec. 2016.

[11] S. Chen, M. Chen, and Q. Xiao, Traffic Measurement for Big Network
Data, “Wireless Networks.” Cham, Switzerland: Springer, 2016.

[12] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-time
probabilistic counting algorithm for database applications,” ACM Trans.
Database Syst., vol. 15, no. 2, pp. 208–229, Jun. 1990.

[13] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high-speed links,” IEEE/ACM Trans. Netw., vol. 14,
no. 5, pp. 925–937, Oct. 2006.

[14] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for
database applications,” J. Comput. Syst. Sci., vol. 31, pp. 182–209,
Sep. 1985.

[15] M. Durand and P. Flajolet, “Loglog counting of large cardinalities,” in
Proc. Eur. Symp. Algorithms, 2003, pp. 605–617.

[16] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm,” in Proc.
AOFA, 2007, pp. 127–146.

[17] Access Time, accessed on Nov. 5, 2016. [Online]. Available:
http://www.webopedia.com/TERM/A/access_time.html

[18] NEC and Corning Achieve Petabit Optical Transmission, accessed on
Nov. 5, 2016. [Online]. Available: http://optics.org/news/4/1/29

[19] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” in Proc. ACM SIGCOMM, Oct. 2003,
pp. 325–336.

[20] A. Kumar, M. Sung, J. Xu, and J. Wang, “Data streaming algorithms
for efficient and accurate estimation of flow size distribution,” in Proc.
ACM SIGMETRICS, Jun. 2004, pp. 177–188.

[21] N. Kamiyama and T. Mori, “Simple and accurate identification of high-
rate flows by packet sampling,” in Proc. IEEE INFOCOM, Apr. 2006,
pp. 1–13.

[22] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” SIGCOMM Comput. Commun. Rev., vol. 32, no. 1, p. 75,
Jan. 2002.

[23] O. Rottenstreich and I. Keslassy, “The bloom paradox: When not to use
a bloom filter,” IEEE/ACM Trans. Netw., vol. 23, no. 3, pp. 703–716,
Jun. 2015.

[24] G. Einziger and R. Friedman, “Counting with tinytable: Every bit
counts!” in Proc. IEEE INFOCOM Workshops, Apr. 2015, pp. 77–78.

[25] J. Mikians, A. Dhamdhere, C. Dovrolis, p. Barlet-Ros, and J. Solé-
Pareta, “Towards a statistical characterization of the interdomain traffic
matrix,” in Proc. NETWORKING, 2012, pp. 111–123.

[26] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, Apr. 2005.

[27] R. Stanojevic, “Small active counters,” in Proc. IEEE INFOCOM,
May 2007, pp. 2153–2161.

[28] C. Hu et al., “Discount counting for fast flow statistics on flow size and
flow volume,” IEEE/ACM Trans. Netw., vol. 22, no. 3, pp. 970–981,
Jun. 2014.

[29] S. Heule, M. Nunkesser, and A. Hall, “HyperLogLog in practice:
Algorithmic engineering of a state of the art cardinality estimation
algorithm,” in Proc. ACM EDBT, Mar. 2013, pp. 683–692.

[30] E. Lehmann, G. Casella, Theory of Estimation. New York, NY, USA:
Springer-Verlag, 1998

Min Chen received the B.E. degree in information
security from the University of Science and Technol-
ogy of China in 2011 and the M.S. and Ph.D. degrees
in computer science from the University of Florida
in 2015 and 2016, respectively. His advisor is Dr.
S. Chen. His research interests include Internet of
Things, big network data, next-generation RFID
systems, and network security.

Shigang Chen (A’03–M’04–SM’12–F’16) received
the B.S. degree in computer science from the Uni-
versity of Science and Technology of China in 1993,
and the M.S. and Ph.D. degrees in computer science
from the University of Illinois at Urbana–Champaign
in 1996 and 1999, respectively. He was with Cisco
Systems for three years. He joined the University
of Florida in 2002. He served on the Technical
Advisory Board for Protego Networks from 2002 to
2003. He is currently a Professor with the Depart-
ment of Computer and Information Science and

Engineering, University of Florida. He has authored over 100 peer-reviewed
journal/conference papers. He holds 11 U.S. patents. His research interests
include computer networks, internet security, wireless communications, and
distributed computing. He received the IEEE Communications Society Best
Tutorial Paper Award in 1999 and the NSF CAREER Award in 2007.
He served in the Steering Committee of the IEEE IWQoS from 2010 to
2013. He is an Associate Editor of the IEEE/ACM TRANSACTIONS ON NET-
WORKING, Journal of Computer Networks, and the IEEE TRANSACTIONS
ON VEHICULAR TECHNOLOGY.

Zhiping Cai (M’08) received the B.S., M.Sc., and
Ph.D. degrees in computer science from the National
University of Defense Technology, Changsha, China,
in 1996, 2002, and 2005, respectively. He is cur-
rently an Associate Professor with the School of
Computer, National University of Defense Technol-
ogy. His current research interests include network
security and network virtualization.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


