
Searching for Widespread Events in Large

Networked Systems by Cooperative Monitoring

Zhiping Cai† ‡ Min Chen‡ Shigang Chen‡ Yan Qiao§

† College of Computer, National University of Defense Technology,

410073 Changsha, Hunan, P.R.China
‡ Department of Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611, USA
§ Google Inc., CA 94043, USA

Abstract—Searching for widespread events in large networks
is a fundamental function that underlies many important appli-
cations of distributed anomaly detection, traffic measurement,
online data mining, etc. This function can be performed by a
cooperative monitoring system consisting of a central coordinator
and a number of monitors that are deployed at a set of vantage
points. We formulate a network primitive function, called multi-
monitor joint detection, which is to find the common events
observed by all or a given subset of monitors during each mea-
surement period. It is a challenging problem because large-scale
cooperative monitoring can generate tremendous communication
overhead. Therefore, it is critical to design a solution for multi-
monitor joint detection which controls communication overhead
to a low level. We thoroughly examine existing techniques that
may be applied, and identify their performance limitations. We
then propose two new techniques, called combinable filters and
progressive filtering, which address the performance limitations
from different angles. We formally prove the correctness of our
new solutions based on a probabilistic joint detection model.
Numerical evaluation shows that our best solution achieves an
overhead reduction in the range of 63% to 91% over the Bloom
filter solution under various simulation settings when the number
of monitors is 10 or more.

I. INTRODUCTION

Searching for widespread events in large networked sys-

tems is a fundamental function that underlies many important

applications. A number of examples are given below.

1. Consider an ISP or a large enterprise deploying a number

of honeypots (monitors) in its network to detect cyber-attacks

[1]. As honeypots do not provide any real service, those

who contact them are possibly malicious. Each event may be

characterized by a source address (possibly a contacted desti-

nation port as well). Compared to isolated events, widespread

malicious acts demand immediate attention. This will require

the central coordinator to communicate with the honeypots

and identify in real time the common events happening in all

or a subset of honeypots at critical locations (i.e., the source

addresses that contact all of those honeypots).

2. Consider a distributed intrusion detection system where

multiple IDSes (monitors) individually guard geographically

dispersed subnets and they also cooperatively communicate

with a central coordinator to detect threats of common interest,

where each event may also be characterized by an address and

a type of threat from that address.

3. For traffic engineering, ISPs may perform measurement on

their networks to improve QoS [2]. One measurement useful

for resource distribution is to find the set of flows traveling

along a path. To do so, a sniffer device may be collocated

with each router along the path to record the identifiers of

all passing flows by examining TCP SYN packets or some

UDP packets as well, if needed. Later, by calculating the

intersection of the flow sets at all routers along a particular

path in a particular path, we will know the set of flows that

were traveling through that path. In this case, sniffers serve as

monitors and events are flows which can be characterized by

the standard 5-element identifiers.

4. Online search companies such as Google have servers all

over the world, and it is interesting to know the common

hot subjects searched across different geographic regions. A

famous example is the Google FLU Trends project that uses

aggregated query terms to early detect and estimate the flu

activity around the world in near real-time [3]. Suppose each

server (monitor) keeps a list of keywords (events) that were

frequently searched recently. One can perform a join over the

lists of keywords in different areas to find out their shared

concerns.

In this paper, we formulate the search of widespread events

in large networked system as a network primitive function,

called multi-monitor joint detection. Multi-monitor joint de-

tection is performed by a cooperative monitoring system that

consists of a central coordinator and a number of monitors

deployed at a set of vantage points. The goal is to find the

common events observed by all or a given subset of monitors

during each measurement period.

It is a challenging problem to search for widespread

events because large-scale cooperative monitoring can gener-

ate tremendous communication overhead that overburdens the

coordinator. To begin with, consider a straightforward solution,

where each monitor simply reports its observed events at the

end of each period. The coordinator identifies the common

events from the received data, and then notifies the monitors

of the common events for further action, e.g., logging all traffic

related to certain events or blocking the sources that cause the

events. However, this approach may incur significant network

traffic, particularly, at the coordinator where data from all mon-

itors converge. For example, consider the above application of

2015 IEEE 23rd International Conference on Network Protocols

1092-1648/15 $31.00 © 2015 IEEE

DOI 10.1109/ICNP.2015.46

123



finding the set of flows that travel through a common routing

path. Suppose that there are ten millions of such flows in

a measurement period of 1 minute, and each flow identifier

consists of 104 bits for 5-element tuple, including source IP,

source port, destination IP, destination port, and protocol. Each

monitor will need to transmit 10M × 104b = 1.04Gb or more

flow identifiers to the central coordinator after each period.

If there are 10 monitors, the coordinator will receive at least

10× 1.04Gb = 10.4Gb data every minute, which puts at least

173Mbps bandwidth cost on the coordinator. Moreover, it may

also be a space concern for the coordinator to hold so much

data and process them efficiently.

If we want to avoid sending raw data, a natural idea is

for each monitor to send its set of events in a compressed

form: Bloom filters easily come to mind [4], [5]. They have

been heavily applied in distributed and networking systems to

reduce the space and communication cost [6][7]. Each monitor

encodes its event set in a Bloom filter before sending it to the

coordinator. The coordinator combines the Bloom filters from

the monitors into one that encodes the common events, and

sends it back to the monitors. To keep the false positive low,

a Bloom filter must use multiple bits to encode an event. For

example, if we want to keep the false positive ratio as low as

0.001, we need 14.4 bits per event; if we want the false positive

ratio to be 0.0001, we need 19.2 bits per event. In the latter

case, its communication overhead is slightly less than one fifth

the overhead of directly reporting all events. In the example

of identifying common flows, the coordinator will still receive

10×10M×19.2b = 1.92Gb data and transit a similar amount

back to the monitors in each period. This overhead increases

linearly as the sizes of event sets increase.

While using Bloom filters reduces the overhead consider-

ably, this paper shows that we can improve further. By em-

ploying more sophisticated encoding and filtering techniques,

we are able to further reduce the overhead by more than an

order of magnitude over the Bloom filter solution in some

cases. The main contributions of this paper are summarized

below.

First, we give the formal model of the probabilistic multi-

monitor joint detection problem in cooperative monitoring.

While we do not find prior work that addresses the exact same

problem, some possible solutions based on existing techniques

are easy to come by. We analyze the limitation of these

solutions. In particular, the combining of Bloom filters for

common events will require all Bloom filters to have the same

size determined by the largest event set in any monitor, which

causes large overhead for a system where the event sets in the

monitors vary widely.

Second, we propose combinable filters whose sizes are

determined solely by the monitors’ individual event sets, yet

they can be combined to encode the common events. Using

these filters, we design a new solution for multi-monitor

joint detection that outperforms the Bloom filter solution,

particularly when there are vastly different numbers of events

at each monitor.

Third, as an equally important contribution, we propose

a new filtering method called progressive filtering. It re-

moves non-common events from the monitors progressively

in multiple iterations. Each iteration uses a far-smaller filter

whose size progressively decreases over subsequent iterations.

Overall, the new method uses just 2
ln 2 ≈ 2.9 bits per event

on average (when most elements are non-common), which

compares favorably to 19.2 in the Bloom filter approach under

the same false positive ratio.

Fourth, we prove the correctness of the solutions based on

the problem model and evaluate their performance numerically

through simulations. The results show an overhead reduction

in the range of 63% to 91% by our best solution over the

Bloom filter solution under various simulation settings.

The rest of this paper is organized as follows. Section II

discusses the related work. Section III gives the system model

and the problem statement. Section IV describes the novel

solution based on the proposed combinable filters and pro-

gressive filtering techniques in detail. Section V evaluates the

performance of proposed protocol by simulations. Section VI

draws the conclusion.

II. RELATED WORK

The emergence of large-scale cooperative monitoring sys-

tems has brought much research attention in recent years.

Some researches focus on applying specific aggregate func-

tions for the data collected from distributed monitors. Ex-

amples of these aggregate functions are frequency counts

[8], [9], boolean predicates [10], inner products [11], [12],

variance [13], and entropy [14]. For example, as a forerunner,

Keralapura et al. [8] propose methods to detect the aggregate

frequency of an event that is monitored by distributed nodes

and exceeds a pre-defined threshold. They set dynamically-

determined local threshold at each monitor, which initiates

communication if the locally observed frequency count ex-

ceeds that threshold.

Meanwhile, other researches focus on tracking different

distributed triggers for anomaly detection [15], [16] and latent

fault detection [13]. Those studies are applied on a continuous-

querying environment, which implies that the coordinator

needs to continuously maintain or track the answers to queries

as the monitors collect new data. More recently, monitor-

ing distributed data streams have received much attention,

with geometric monitoring approach [17], safe zone approach

[18],[19], and sketching approach [20]. Cormode formalizes

the continuous distributed monitoring model in his survey [21].

To the best of our knowledge, we are the first to describe and

solve the probabilistic multi-monitor joint detection problem

in cooperative monitoring. Directly related are Bloom filters

that are applied to process database joins in distributed setting.

Mackert and Lohman proposed Bloomjoin with a goal of

reducing the communication cost for distributively joining two

sets [22]. The idea is for one node to send a Bloom filter of its

local set to filter out a large portion of unneeded data in another

node before transferring unfiltered data. Mullin suggests to use

partitioned Bloom filter (PBF) to encode the data, and send

one segment at a time [23], where all segments have the same
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size. When the size of the data filtered by one segment is

smaller than the size of the segment itself, it stops sending PBF

segments but sends the unfiltered data instead. The advantage

of this approach over Bloomjoin is that it avoids the problem of

deciding on a false positive ratio as a priori for the Bloom filter

construction, and its filter size is closer to the optimal. As we

will show shortly, the Bloom filter approach can be extended

from two sets to multiple sets (Section IV-B). However, it will

run into serious performance problems, which this paper will

address through new filter designs.

Michael et al. study the intersection of multiple lists [24]

in a distributed setting without a central coordinator, where

a series of two-set joining is performed in a linear sequence

among distributed lists. Our paper studies the joining problem

under a different system model with a central coordinator,

allowing multi-set joining to be performed all together, instead

of linearly by including one additional set at a time (which will

take long time when there are numerous sites).

Ramesh et al. [25] propose four extensions to Bloomjoin

[22], using an increment approach designed for database

systems with small changes between any two consecutive join

executions. This assumption does not hold in the setting of

this paper. Similarly, assuming the difference between two sets

is very small, the difference digest in [26] uses an invertible

Bloom filter to find the set difference (i.e., elements in one

set but not the other), where the number of cells in the filter

is expected to be twice the size of the set difference, and

each cell has a field to encode element, in addition to other

fields. When most of elements in the two sets are different (a

typical setting in this paper), the difference digest generates

more communication overhead than simply sending the raw

data.

The multi-resolution bitmaps [27] can be used for cardinal-

ity estimation, i.e., counting the number of distinct elements

in a set. However, the multi-resolution bitmaps only encode

the cardinalities, instead of the memberships, of the elements

[28]. In other words, they do not support membership lookup.

Consequently, they cannot be directly applied to solving the

problem of multi-monitor joint detection that requires to check

the membership of each element.

III. SYSTEM MODEL AND PROBLEM DEFINITION

As shown in Figure 1, consider a cooperative monitoring

system deployed in a network. The system consists of a coordi-

nator and n distributed monitors. The monitors independently

capture and record distinct events, which are application-

dependent. They may be events detected by honeypots, IP

addresses of malicious sources identified by IDS devices,

identifiers of flows passing through a router, or keywords

searched on a server, as explained in the introduction. In these

applications, the monitors are honeypots, IDS devices, routers

and servers for web searches, respectively.

The monitors send their observed events to the coordinator

according to pre-specified policy and frequency. The coordi-

nator is responsible for collecting and synthesizing data from
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Fig. 1. Multi-monitor joint detection in Networked Cooperative Monitoring

different monitors to form a global view. It then informs the

monitors about the results and commands for followup actions.

In practice, a specific event may appear at one or multi-

ple monitors. Consider a set of monitors of interest, Π =
{x1, x2, ..., xn}. Suppose each monitor xi, 1 ≤ i ≤ n, captures

a set of distinct events, Ei = {ei1, ei2, ei3, ...}. The multi-

monitor join detection problem is to find the intersection of

these sets, A =
⋂n

i=1 Ei, including all common events that are

observed by the monitors in Π. Depending on applications, A

may be large or just a small subset of Ei. It may even be

empty, in which case there is no common event for the given

subset of monitors.

Finding A exactly can be expensive if the number of events

in each monitor or the number of monitors is large because

the coordinator has to gather a lot of information from the

monitors. It is much more efficient for the coordinator to work

with the monitors and help them find A approximately with

a small error that is probabilistically bounded. Let Âi be the

approximate set of common events that the monitor xi has.

This paper considers the probabilistic joint detection that has

the following two requirements:

• completeness requirement: A ⊆ Âi, and

• accuracy requirement: ∀e ∈ Ei − A, Prob{e ∈ Âi} ≤ ε,

where ε ∈ (0, 1) is a small pre-defined probability value.

Namely, each monitor must find all common events, and the

false positive ratio (i.e., the probability for any non-common

event to be mis-classfied) is bounded by a preset value that can

be made arbitrarily small. The primary performance objective

is to minimize the amount of data that is received and sent

by the coordinator, which is a bottleneck as it may have to

communicate with a large number of monitors. Meanwhile,

we will also try to reduce the communication and computation

overhead of each individual monitor during the joint detection

process.

Our work focuses on how to perform joint detection after

each monitor has obtained its set of distinct events at the end of

a measurement period. The application-dependent problem of

how to obtain the event set from network traffic by a monitor

with storage and processing efficiency is beyond of the scope

of this paper.
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IV. MULTI-MONITOR JOINT DETECTION

In this section, we first give a straightforward solution for

comparison purpose. We then describe more efficient solutions

based on Bloom filters [4][5]. We point out that the direct

application of Bloom filters has two serious performance

problems. Finally, we present our main technical contributions,

combinable filter and progressive filtering, which together

achieve significant performance gain.

A. Raw-data Solution

Suppose the coordinator has configured the set Π of moni-

tors for joint detection of a certain type of events. At the end

of a measurement period, each monitor in the subset sends

its observed events to the coordinator. After receiving data

from all monitors, the coordinator can find the set of common

events. The coordinator can then notify each monitor of these

events. The communication overhead is
∑n

i=1 |Ei|t + n|A|t,
where t is the number of bits needed to represent each event,

the first term is the total amount of data that the coordinator

receives, and the second term is the total amount that it sends.

An alternative approach, referred to as smallest first, is to

find out which monitor has the smallest event set, instruct that

monitor to send its events to all other monitors which filter

out non-common ones, and repeats this step such that each

monitor gets a chance to send its events. The problem of this

approach is that by sending the information of one monitor

at a time, it takes much longer time to complete especially

when the number of monitors is large. Next we will focus

on the approaches that complete in one or two rounds of

communications between the coordinator and the monitors.

But we will also compare our new solution with the smallest

first approach and show that the communication overhead of

the former is considerably smaller than that of the latter in our

simulations.

B. Bloom Filter Solution (BFS)

As a benchmark for comparison, we propose a Bloom filter

solution, which can be considered as an extension to the

existing work that performs join between two sets [22], [23].

Bloom filter is a space efficient data structure for encoding

a set [4], [5]. Each filter is a bit array that is initialized to

zeros, where each event is randomly mapped to k bits in the

array by k hash functions, and those bits are set to ones. For

membership lookup of an event b, we again map the event to

k bits in the bit array and check if all of them are ones. If they

are, we claim that b belongs to the set; otherwise b doesn’t

belong to the set.

A Bloom filter may yield false positive for membership

lookup: a non-member event is mis-classified as a member.

Let m be the number of events and l be the length of the

bit array. Below we give some well-known results. The false

positive ratio, i.e., the probability for any non-member to be

mis-classified, under optimal setting is

Pfp =
(1
2

)k
, with l =

km

ln 2
. (1)

Using the filter length l given above, the fraction of bits that

are ones (or zeros) in such a filter is about one half. For an

arbitrary non-member, each of its k bits has a chance of 1
2

to be mapped to a bit of value one. The probability for all k

bits to be ones (thus causing mis-classification) is ( 12 )
k. If we

want to achieve a false positive ratio of at most ε, the values

of k and l are

k ≥ −
ln ε

ln 2
(2)

l ≥ −
ln ε

(ln 2)2
m. (3)

In the Bloom filter solution (BFS) for the joint detection

problem, each monitor xi sends the coordinator a Bloom filter

BFi that encodes its event set. The coordinator combines

the received Bloom filters into a single filter by performing

bitwise AND, and then sends it back to all monitors. The

bitwise AND may create many zeros in the bitmap. Hence,

the combined filter should be compressed before being sent

out. After a monitor xi receives the combined filter, it performs

membership lookup for each event in Ei. An event is declared

as a common event in Âi if its k bits in the filter are all ones.

Let Pfp(BFi) denote the false positive ratio of BFi.

Lemma 1: ∀e ∈ A, ∀1 ≤ i ≤ n, e ∈ Âi after execution of

BFS.

Proof: Event e belongs to all monitors. Its k bits are ones in

all Bloom filters generated by the monitors. Those bits remain

to be ones in the combined filter after bitwise AND. Hence,

when xi will find e in the combined filter and thus include it

in Âi. �

Lemma 2: If ∀1 ≤ j ≤ n, Pfp(BFj) ≤ ε, then ∀1 ≤ i ≤
n, ∀e ∈ Ei −A, Prob{e ∈ Âi} ≤ ε after execution of BFS.

Proof: A non-common event e in Ei is mis-classified if

all its k bits in the combined filter are ones. These bits must

be ones in all BFj , 1 ≤ j ≤ n. Recall that Prob{e ∈ Âi}
denotes the probability for this to happen.

Because e is not a common event, it must not belong to Ej

for some j �= i. Pfp(BFj) is the probability for the k bits of

e in BFj to be ones. Clearly, Prob{e ∈ Âi} ≤ Pfp(BFj).

Because Pfp(BFj) ≤ ε, Prob{e ∈ Âi} ≤ ε. �

In order to deal with the worse case, we shall not relax

the condition of Pfp(BFj) ≤ ε. Suppose ∃j, Pfp(BFj) > ε.

Consider the case where e �∈ Ej but e ∈ Ei for 1 ≤ i ≤ n,

i �= j. The k bits of e are all ones in the combined filter if

and only if they are all ones in BFj ; the probability for that

to happen is Pfp(BFj), which is greater than ε, violating the

probability requirement for mis-classification.

Theorem 1: If ∀1 ≤ j ≤ n, Pfp(BFj) ≤ ε, BFS satisfies

the completeness requirement and the accuracy requirement of

probabilistic joint detection.

Proof: It follows directly from Lemmas (1)-(2) and the

definitions of the two requirements in Section III. �
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In order to perform bitwise AND, all Bloom filters from

the monitors should have the same size l. According to (3),

in order to achieve Pfp(BFj) ≤ ε, ∀1 ≤ j ≤ n, the value of

l should meet the following constraint:

l ≥ −
ln ε

(ln 2)2
|Ej |, ∀1 ≤ j ≤ n. (4)

Let q = max
j∈{1,...,n}

{|Ej |}. The minimum value of l should be

l = −
ln ε

(ln 2)2
q, (5)

with k = − ln ε
ln 2 .

At the end of each measurement period, before generating

the Bloom filters, the monitors need to exchange information

to determine the size of their Bloom filters. Each monitor only

needs to send the number of its events to the coordinator,

which finds the largest number q and calculate the values of

l and k before sending them back to the monitors.

For simplicity, we consider the amount of exchanged data

for determining l and k to be 2n log2 q bits. The Bloom

filters sent from the monitors to the coordinator and the

combined one in the opposite direction have a total length

of −2n ln ε
(ln 2)2 q bits. Hence, the total communication overhead

is −2n ln ε
(ln 2)2 q+2n log2 q, which can be very large if ε is very

small or q is very large. We stress that this is also the amount

of data received/sent by the coordinator.

The compressed Bloom filters [29] may be used to reduce

the communication overhead, but that will significantly in-

crease the size of the filters prior to compression or after

decompression, and thus significantly increase the memory

overhead both at the monitors and at the coordinator.

Below we present our main technical contributions of com-

binable filters and progressive filtering. For each of them, we

first point out a problem of BFS, an idea of addressing that

problem, and the detailed technical description.

C. Combinable Filters

Motivation: In order to support bitwise AND, BFS requires

all monitors to build Bloom filters with the same size l and

the same k hash functions. The value l is set based on

the size q of the largest event set at any monitor. This is

non-optimal if many monitors have event sets much smaller

than q. For example, in the third application example of the

introduction, the heaviest-loaded router in a large network can

see much more flows than lightly-loaded routers; in the fourth

application example, a Google server in the US can see much

more search traffic in the afternoon than a Google server in

Japan where it is early Morning. It will greatly reduce the

communication overhead if we allow each monitor to build its

Bloom filter based on the size of its own event set.

We want to point out that the scalable Bloom filters in [30]

and the incremental Bloom filters in [31] cannot solve our

problem. They are designed for encoding elements from a set

or multiple sets upon arrival in streaming data flows. Without

the knowledge of how many elements there will be, one does

Fig. 2. Replicating BFi to expand it for EBFi

not know how to set the filter size. The solution is to first

use small-sized filters and add larger-sized filters on the fly

when the smaller ones are filled. In this paper, we deal with a

different problem. There is no need for any monitor to encode

events on the fly in a Bloom filter; each monitor stores raw

events. Only at the end of each measurement period, when the

monitors need to send their events to the central coordinator,

they generate Bloom filters to encode those events in order to

cut down communication overhead. By this time, we know the

exact sets to encode and hence there is no need for scalable or

incremental Bloom filters [30], [31]. However, because the set

sizes at different monitors may be different, their optimal filter

sizes may also be different. In this case, how do we combine

variable-sized filters by bitwise AND for joint detection?

Below we design combinable filters to do just that; this will

be denoted by CFS. We show how to combine variable-sized

Bloom filters to retain the common events while filtering out

non-common ones.

Description: Consider an arbitrary monitor xi, 1 ≤ i ≤ n. Let

k and li be the number of hash functions and the number of

bits used by BFi, respectively. From (2) and (3), their values

can be set as

k = −
ln ε

ln 2
(6)

li ≥ −
ln ε

(ln 2)2
|Ei|, (7)

in order to ensure a false positive ratio of at most ε. In order to

make the filters combinable, we keep the value of k a constant

across all monitors, and require the filter length to be a power

of 2. Hence, we increase li from the lower bound, − ln ε
(ln 2)2 |Ei|,

to the nearest power of 2 as follows:

li = 2
�log2(−

ln ε

(ln 2)2
|Ei|)�

. (8)

For each event e in Ei, we set the bits at indices Hj(e) mod li
in the filter to ones, where Hj , 1 ≤ j ≤ k, are k independent

hash functions. Clearly,

Pfp(BFi) ≤ ε, ∀1 ≤ i ≤ n. (9)

Because each monitor will decide its filter size based on its

own event set, there is no need for the coordinator to find the

size of the largest event set, q.

After the coordinator receives the filters BFi, 1 ≤ i ≤
n, from all monitors, it expands the filters to the same size

and then combine them with bitwise AND: The length of the

largest filter is 2
�log2(−

ln ε

(ln 2)2
q)�

, denoted as Q. Because the

lengths of all filters are powers of 2, we can expand any filter
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Fig. 3. Performing bitwise AND on expanded filters

BFi with a smaller size than Q by replicating it multiple times

until its length is increased to Q, as illustrated in Figure 2,

where a filter of length Q
4 is replicated three times to reach the

size of Q. The expanded filter is denoted as EBFi, 1 ≤ i ≤ n.

By the nature of replication, the following lemma is true.

Lemma 3: If the jth bit in BFi is one, then after replication,

the (j + dli)th bit in EBFi is one, ∀0 ≤ d < Q
li

.

Once all filters are expanded to the same size Q, they

are combined by bitwise AND. The resulting combined filter

is denoted as F , which is sent to the monitors. The AND

operation creates many more zeros, as shown by the example

in Figure 3. Hence, the coordinator should compress F before

sending it out. Note that an optimal Bloom filter whose length

is set by (1) has about half of its bits being zeros and half being

ones at random locations, which offers little opportunity for

compression. The lengths of the filters BFi, 1 ≤ i ≤ n, from

the monitors to the coordinator are set larger based on (8), and

thus these filters may also be compressed.

Upon receiving F , each monitor xi performs the standard

membership lookup for its events in Ei: An event e is classified

as a common event if and only if all its k bits at indices Hj(e)
mod Q, 1 ≤ j ≤ k, in F are ones.

Correctness: While the operations of filter expansion and

combination are simple (which is a plus), the implication of

duplicating the bits of smaller filters in bitwise AND is not

obvious at all. We must formally prove that both completeness

requirement and accuracy requirement will be met under such

communication saving operations.

Lemma 4: For an arbitrary common event e, its k bits in

the combined filter at indices Hj(e) mod Q, 1 ≤ j ≤ k, must

be all ones.

Proof: Consider an arbitrary common event e. The indices

of its k bits in the combined filter are Hj(e) mod Q, 1 ≤ j ≤
k. To prove the bit at index Hj(e) mod Q in the combined

filter is one, we need to prove that the bit at the same index

in each EBFi, 1 ≤ i ≤ n, is one. Because Q is a multiple of

li, we can write

∃d ∈ [0,
Q

li
], Hj(e) mod Q = dli +Hj(e) mod li, (10)

where d is the quotient of Hj(e) mod Q divided by li and

Hj(e) mod li is the remainder. Because e ∈ BFi, the bit at

index Hj(e) mod li is one. By Lemma 3, the bit at index

Hj(e) mod Q in EBFi must be one, which completes the

proof. �

Lemma 5: ∀e ∈ A, ∀1 ≤ i ≤ n, e ∈ Âi after execution of

CFS.

Proof: It follows directly from Lemma 4. �

Lemma 6: ∀1 ≤ i ≤ n, ∀e ∈ Ei − A, Prob{e ∈ Âi} ≤ ε

after execution of CFS.

Proof: Consider an arbitrary event e ∈ Ei − A. That is,

∃i′ ∈ [1, n], i′ �= i, e �∈ Ei′ . Event e is not encoded in BFi′ .

However, we may still find e in BFi′ due to false positive

when the k bits of e in BFi′ are all ones by chance. Let p be

the probability of an arbitrarily chosen bit to be one in BFi′ .

For the k bits of e in BFi′ , each of them has a probability of p

to be one. The probability for all k bits to be ones is thus pk,

which is the false positive ratio. We know that Pfp(BFi′) ≤ ε.

Hence, pk ≤ ε.

Consider the k bits of e in the combined filter F . Let b be

an arbitrary one of them at index Hj(e) mod Q, ∀j ∈ [1..k],
where Q is the length of F (also the largest length among the

filters received by the coordinator from all monitors). The bit

b will be one if and only if the bits at the same index in all

expanded filters are ones. Hence, a necessary condition for b

to be one is that the bit at the same index in EBFi′ is one,

i.e., the bit at index Hj(e) mod li′ in BFi′ is one, according

to the nature of the filter expansion as defined earlier in this

section. That bit is one of the k bits of e in BFi′ , and the

probability for it to be one is p (see the previous paragraph).

Because the probability of satisfying a necessary condition

is p, the probability for b to be one must not exceed p. Since

b can be any one of k bits, the probability for all k bits to be

ones (causing false positive) must not exceed pk. Hence, the

false-positive ratio of F , denoted by Prob{e ∈ Âi}, must not

exceed pk, which is bounded by ε. �

Theorem 2: If ∀1 ≤ j ≤ n, CFS satisfies the completeness

requirement and the accuracy requirement of probabilistic joint

detection.

Proof: It follows directly from Lemmas (5)-(6). �

The total communication overhead from the monitors to

the coordinator is
∑n

i=1 2
�log2(−

ln ε

(ln 2)2
|Ei|)�

. The total com-

munication overhead from the coordinator to the monitor is

n×mini∈{1,...,n}{2
�log2(−

ln ε

(ln 2)2
{|Ei|)�}. The delay of CFS is

smaller than BFS. It takes only one round trip of communica-

tion between the monitors and the coordinator, whereas BFS

takes two round trips with the first determining the value of q

and the second exchanging the filters.

D. Progressive Filtering

Motivation: The accuracy requirement ε can be very small

in practice, particularly when A only has a small number

of common events. Suppose Ei is in millions but A is in
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hundreds. The number of non-common events that are mis-

classified into Âi is |Ei −A|ε ≈ |Ei|ε , which can dwarf the

number of common events unless we choose a small value for

ε. As an example, if ε = 10−5, li = 28.6|Ei| from (7), which

means 28.6 bits per event!

To address this inefficiency, we propose a new approach

called progressive filtering to remove non-common events with

less communication overhead: Instead of using a single filter

per monitor with k = − ln ε
ln 2 and false positive ratio ε, we use

multiple filters per monitor, each with a larger false positive

ratio. For example, we may use − ln ε
ln 2 filters per monitor, each

with k = 1 and false positive ratio 1
2 , such that the combined

false positive ratio is ( 12 )
− ln ε

ln 2 = ε. The reason for doing so

is that as we apply one filter after another, we are able to

progressively reduce the sizes of subsequent filters such that

their combined size is much smaller than the size in the single

filter approach.

Description: Progressive filtering is performed in iterations.

Each iteration is essentially an execution of CFS where each

monitor contributes a filter with k = 1. More specifically, from

(1), the optimal filter setting is, ∀1 ≤ i ≤ n,

li =
|Ei|
ln 2 (11)

Pfp(BFi) =
1
2 . (12)

In order for the filter to be combinable, it is required that li
to be a power of 2. Hence, we have to set

li = 2�log2
|Ei|

ln 2 � (13)

Pfp(BFi) ≤
1
2 . (14)

Applying this CFS, the completeness requirement will be met

due to Lemma 5. Substituting ε by 1
2 in Lemma 6, we know

that the accuracy requirement is met not for Prob{e ∈ Âi} ≤
ε, but for Prob{e ∈ Âi} ≤ 1

2 , ∀1 ≤ i ≤ n, ∀e ∈ Ei − A.

Each non-common event will be identified with a probability

of at least 1
2 . It also means that at least half of all non-common

events are expected to be identified and removed from |Ei|. If

the number of common elements is small, then the value of

|Ei| is about halved.

We repeat the above CFS with k = 1 for − ln ε
ln 2 times in

total, using a progressively smaller filter size li each time due

to a shrinking value of |Ei|. Note that a different hash function

should be used each time. This solution is referred to as CFSP

for Combinable Filter Solution with Progressive filtering.

Correctness: Because the completeness requirement is met

after each execution of CFS with k = 1 (Lemma 5), all

common events will be found. Because the probability for

a non-common event to be identified is at least 1
2 for each

execution of CFS with k = 1, the total probability of being

identified over − ln ε
ln 2 independent CFS executions is at least

( 12 )
ln ε

ln 2 = ε. Hence, the accuracy requirement is also met.

Intuition for Communication Reduction: We know that each

iteration of CFS with k = 1 helps all monitors xi identify and

remove half of their non-common events, and |Ei| is expected

to be halved when most events are non-common. To ease our

augment, let’s approximately use li =
|Ei|
ln 2 instead of (13) to

make the point. As we repeat CFS iteratively for − ln ε
ln 2 times,

with the value of |Ei|, 1 ≤ i ≤ n, halved each time, the

value of li is also halved each time because it is linear in

|Ei|. Hence, the (− ln ε
ln 2 ) filters from each monitor xi has a

total length bounded by

− ln ε

ln 2∑

j=1

|Ei|

ln 2
× (

1

2
)j−1 <

∞∑

j=1

|Ei|

ln 2
× (

1

2
)j−1 =

2

ln 2
|Ei|,

where |Ei| refers to the size of the original event set at xi

before any filtering. Note that this bound is independent of

the value ε. Under progressive filtering, the overhead of 2
ln 2

bits per event is much smaller than 28.6 bits per event without

progressive filtering when ε = 0.0001.

Two Rounds of Communications Between Monitors and

Coordinator: One problem of CFSP is that it takes (− ln ε
ln 2 )

rounds of communications between the monitors and the

coordinator, which means that much longer delay than CFS.

To reduce the number of rounds, we can set a higher value

of k in each execution of CFS. In general, we can set the

value of k arbitrarily as long as the sum of the k values over

all executions is (− ln ε
ln 2 ). For example, to reduce the number

of rounds to two (the same as what BFS needs), we may first

apply CFS with k = 1 and then apply CFS with k = − ln ε
ln 2−1.

We will use this version of CFSP in our simulations in order

to compare it with BFS on a fair ground in terms of delay.

V. PERFORMANCE EVALUATION

A. Simulation Setting

We compare the proposed CFS and CFSP with two bench-

mark solutions, the raw-data solution and BFS. All of them

take one (CFS and raw data) or two (CFSP and BFS) rounds

of communication between the monitors and the coordinator.

Later we will also compare with Smallest First (Section IV-A),

which takes many more rounds of communication.

The performance metrics include the communication over-

head received/sent by the coordinator (which is also the overall

communication overhead) and the total computation overhead

measured by the number of hash operations done by all

monitors. Hashing is the main overhead of encoding event

sets in filters, where each event takes k hashes for a Bloom

filter and one or multiple hashes for a combinable filter, while

setting the bits to ones are relatively cheap. The bitwise AND

at the coordinator is also trivial. We use CRC-64 as our master

hash function, which can be performed very efficiently, and k

hash functions can be derived by appending k different seed

numbers to the input.

Although the application scenario can be any of the ex-

amples given in the introduction, we use the keyword-search

application to be concrete. Each of the servers keeps a set of

keywords, phrases or sentences that are searched by users in

a measurement period. A query is made to find the common

keywords/phrases/sentences searched on n servers. Under this

setting, each server is a monitor and each event is a key-

word/phrase/sentence (being searched). To be consistent with

the rest of the paper, we will still use the terms of monitor
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and event. Suppose we hash each event to 64 bits long in the

raw-date solution to avoid excessive overhead.

We define the intersection ratio as

RINTS =
|A|

mini∈{1,...,n}{|Ei|}
, (15)

which is the ratio between the number of common events and

the minimum size among the event sets in all monitors. If not

otherwise specified, the default parameters are RINTS = 0.5,

ε = 0.001, and n = 10. We will vary each one of them

in the simulations. The number of events in each monitor is

randomly chosen between 100,000 and 1,000,000 by default,

which means the total amount of data needed to be collected

varies from 0.8GB to 8GB using the raw-data solution, but we

will also change this range during evaluation. For each set of

parameters, we will repeat the simulation with a random seed

for 1,000 times to obtain the average result as one data point.

The standard deviation of all data points is within 3%.

B. Communication Comparison w.r.t. RINTS and ε

Our first set of simulations compare the four solutions in

terms of communication overhead with respect to RINTS and

ε. The results are shown in Figures 4-6, where the horizontal

axis is the value of RINTS from 0 to 1 and the vertical axis

is the communication overhead in unit of Mb. From Figure 4

with ε = 0.01, the overhead of the Bloom filter solution is

about half the overhead of the raw-data solution. The overhead

of CFS is again about half that of the Bloom filter solution.

The overhead of CFSP is far less than half that of CFS. For

example, when RINTS = 0.5, the overheads of the raw-

data solution, the Bloom filter solution, CFS and CFSP are

410.4Mb, 176.5Mb, 103.5Mb and 45.5Mb, respectively. That

means 89% and 74.2% overhead saving by CFSP over the

raw-data solution and the Bloom filter solution, respectively.

In the figure, the overheads of the Bloom filter solution do not

change with RINTS because the amount of data transferred is

not sensitive to the number of common events. On the contrary,

CFSP progressively filters out non-common events. Hence, its

filters have larger sizes when there are more common and thus

fewer non-common events, which in turn means fewer events

are filtered at each iteration. Nevertheless, even when RINTS

reaches the highest value of 1, the overhead saving by CFSP

is still significant.

Figures 5-6 present results under different values of ε.

The performance gain by CFS and CFSP over the Bloom

filter solution remains large. Interestingly, the gain by the

Bloom filter solution over the raw-data solution diminishes

as ε becomes very small. The reason is that the amount of

data transferred by the raw-data solution does not depend on

the value of ε, whereas the size of a Bloom filter is linear in

ln ε. In fact, if ε is sufficiently small, the size of a Bloom filter

will surpass the raw data that it encodes.

C. Communication Comparison w.r.t. Number of Monitors

Our second set of simulations compare the four solutions

in terms of communication overhead with respect to n, the
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Fig. 4. Performance comparison of four solutions in terms of communication
overhead with respect to RINTS when ε = 0.01
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Fig. 5. Performance comparison of four solutions in terms of communication
overhead with respect to RINTS when ε = 0.001
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Fig. 6. Performance comparison of four solutions in terms of communication
overhead with respect to RINTS when ε = 0.0001

number of monitors. The results are shown in Figure 7, where

the horizontal axis is the number of monitors from 2 to 50.

We can see that the overhead of all four solutions increases

linearly with the number of monitors. The relative gaps remain

largely constants. In absolute values, the performance gains by

the proposed solutions increase when there are more monitors.

For example, when n = 20, the overheads of the raw-

data solution, the Bloom filter solution, CFS and CFSP are

702.6Mb, 547.8Mb, 279.5Mb and 55.7Mb; respectively. When

130



 0

 500

 1000

 1500

 2000

 0  10  20  30  40  50

co
m

m
u
n
ic

at
io

n
 o

v
er

h
ea

d
 (

M
 b

it
s)

number of monitors

Raw-data

Bloom Filter

CFS

CFSP

Fig. 7. Performance comparison in terms of communication overhead with
respect to the number of monitors from 2 to 50 under ε = 0.001 and
RINTS = 0.5

 0

 100

 200

 300

 400

 500

 200  300  400  500  600  700  800  900  1000

co
m

m
u

n
ic

at
io

n
 o

v
er

h
ea

d
 (

M
 b

it
s)

maximum number of events per monitor (K)

Raw-data

Bloom Filter

CFS

CFSP

Fig. 8. Performance comparison in terms of communication overhead under
ε = 0.001, RINTS = 0.5, and n = 10. The horizontal axis is the maximum
number of events per monitor. The unit on the horizontal axis is K (one
thousand). The minimum number is the default value of 1. The actual number
of events for each monitor is randomly picked from the range between the
minimum and the maximum.

n = 40, the overheads of the raw-data solution, the Bloom

filter solution, CFS and CFSP are 1410.4Mb, 1125.1Mb,

542.5Mb and 99.7Mb, respectively.

D. Communication Comparison w.r.t. Range of Event Sets

Our third set of simulations compare the four solutions in

terms of communication overhead with respect to the range

of event-set size. The results are shown in Figure 8, where

the horizontal axis shows the maximum number of events per

monitor and the unit is K (one thousand). The actual number

of events in each monitor is randomly chosen from a range

from 100,000 to the maximum number. The overheads of all

solutions increase linearly with this range because each filter

has to encode proportionally more events. The performance

gains by the proposed solutions increase when the maximum

number of events increases. For example, the performance

gains are 71%, 86%, 89% when the maximum number of

events are 200, 500, 1000, respectively. The reason is that

when the differences between each monitor are larger, the

wasted overhead of the Bloom filter solution is larger as all

Bloom filters sent by the monitors have the same size.

TABLE I
COMPUTATION OVERHEAD OF THREE SOLUTIONS WITH RESPECT TO

RINTS WHEN ε = 0.01. THE UNIT IS M (ONE MILLION). FOR EXAMPLE,
38.2 IN THE TABLE MEANS 38.2 MILLIONS.

RINTS

average number of hash operations per monitor
0.00 0.20 0.40 0.60 0.80 1.00

Bloom Filter 38.2 38.2 38.4 38.4 38.4 38.5

CFS 38.2 38.2 38.4 38.4 38.4 38.5

CFSP 7.6 9.3 11.2 12.9 14.4 16.3

TABLE II
COMPUTATION OVERHEAD OF THREE SOLUTIONS WITH RESPECT TO

RINTS WHEN ε = 0.001. THE UNIT IS M (ONE MILLION).

RINTS

average number of hash operations per monitor
0.00 0.20 0.40 0.60 0.80 1.00

Bloom Filter 54.7 54.7 54.8 54.8 54.9 55.0

CFS 54.7 54.7 54.8 54.8 54.9 55.0

CFSP 8.7 11.3 13.9 16.4 19.0 21.5

E. Computation Comparison

Our fourth set of simulations evaluate the computation

overhead under the same parameter settings as the first set

of simulations. The results are shown in Tables I-III. As the

raw-data solution does not have hash operations, it is not

included in the tables. The computation overheads of the

Bloom filter solution and CFS are the same because they

encode the same number of events in each filter with the

same number of hashes. Their computation overheads are not

sensitive to the number of common events. The computation

overhead of CFSP is much smaller because of progressive

filtering. The overhead decreases as the number of common

events decreases. For example, when ε = 0.01, the saving

computation overhead by CFSP over the Bloom filter solution

increases from 57% to 80.1% when we vary RINTS from

1 to 0. The reason is that when there are more non-common

events, more are filtered in each iteration and less are encoded,

resulting in smaller computation overhead.

We use a desktop computer with a 2.0 GHz x86 64 CPU

and 8G RAM to run the code of the coordinator and compare

the computation times of the four solutions. We set ε = 0.001,

RINTS = 0.5, and n = 50. The number of events observed by

each monitor is randomly picked from the range between 0 and

a given maximum number varying from 200,000 to 1,000,000.

We repeat the simulation 1,000 times under each setting and

calculate the average computation time of the coordinator. The

results are shown in Figure 9. We can see that the computation

time of all solutions increases linearly with the increase of the

maximum number of events since the coordinator needs to

TABLE III
COMPUTATION OVERHEAD OF THREE SOLUTIONS WITH RESPECT TO

RINTS WHEN ε = 0.0001. THE UNIT IS M (ONE MILLION).

RINTS

average number of hash operations per monitor
0.00 0.20 0.40 0.60 0.80 1.00

Bloom Filter 76.8 76.8 77.2 77.3 77.5 77.0

CFS 76.8 76.8 77.2 77.3 77.5 77.0

CFSP 10.2 14.2 17.8 21.4 25.4 29.0
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Fig. 9. Performance comparison in terms of computation time under ε =

0.001, RINTS = 0.5, and n = 50. The horizontal axis is the maximum
number of events per monitor. The unit on the horizontal axis is K (one
thousand). The minimum number of events is the default value of 0. The
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process more data. Among the four solutions, BF takes the

least computation time since the coordinator only needs to

combine all Bloom filters via a simple bitwise AND operation.

The computation time of CFS and that of CFSP are very close

(their lines in Fig. 9 are overlapped), and they spend a little

more time on expanding the combinable filters than the BF.

The computation time of the three filter-based solutions is

approximately 3ms, 7ms, 14ms, 22ms and 30ms when the

maximum number of events are 200, 400, 600, 800, and

1000, respectively. In contrast, the raw-data solution requires

much more computation time because it has to calculate

the intersection of all sets of events. More specifically, its

computation time is 11ms, 22ms, 33ms, 42ms and 50ms when

the maximum number of events is set to 200, 400, 600, 800,

and 1000, respectively. The experimental results demonstrate

that the computation time of the coordinator is very small for

all solutions.

F. Comparison with Smallest First

Our fifth set of simulations compare CFS, CFSP, BFS and

the raw-data solution with the smallest first solution when the

number of monitors is 50. For the smallest first solution, when

a monitor wants to send its events to others, it does so through

the coordinator, so that the monitors do not have to know

each other, which is the case for other solutions. The time

comparison is given as follows. CFS and the raw-data solution

takes one round of communication between the monitors and

the coordinator. CFSP and BFS take two rounds. The smallest

first solution takes 100 rounds.

The communication overhead comparison is given in Fig-

ure 10, where the horizontal axis shows the minimum number

of events per monitor in unit of 1000. The actual number

of events in each monitor is randomly chosen from a range

between the minimum and 1,000,000. The overheads of all

solutions increase linearly as the average number of events

per monitor increases because either the monitors have to send

more events or their filters have to encode more events. When
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the average number of events per monitor is very low, the

overhead of the smallest first solution is also very low, though

still higher than CFSP. As the number of events increase, the

slope of overhead increase in smallest first is much larger than

that in CFSP. Consequently, the gap between them widens

quickly. We want to point out that the overhead comparison

with small event numbers is less important and the comparison

with larger event numbers is critical because that is when the

coordinator may be under communication stress.

G. Special Cases

One special case is that the common set is empty, i.e., the

intersection ratio RINTS = 0. From Figure 4 with ε = 0.01,

when RINTS = 0, the overhead of CFSP is about one fourth,

one sixth and one fourteen as the overhead of CFS, BFS

and the raw-data solution, respectively. The performance gain

becomes larger with ε becomes smaller as shown in Figure 5

and Figure 6. Actually, the performance gain is largest when

RINTS = 0. The reason is the size of the combined filter

in the first round will be very small when the intersection

of all subsets is empty. Then the subsequent communication

overhead will be small. Hence, CFSP is also the best solution

when the common set is empty.

Another special case is one or more subsets are exactly the

same as the common set, i.e., the intersection ratio RINTS =
1. From Figure 4 with ε = 0.01, when RINTS = 1, the

overhead of CFSP is about 75%, 40% and 15% as the overhead

of CFS, BFS and the raw-data solution, respectively. CFSP is

also the best solution as shown in Figure 5 and Figure 6.

VI. CONCLUSION AND FUTURE WORK

This paper defines a formal problem model for probabilistic

joint detection in cooperative monitoring, which is to find

the events that appear in every monitor with a user-specified

accuracy. We propose two new techniques to solve the joint

detection problem with much reduced overhead. The first

technique is called combinable filters. Although these filters
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have variable lengths based on their individual event sets en-

coded, they can be combined for common events. The second

technique is called progressive filtering, which removes non-

common events with small, progressively diminishing filters.

Our simulations show that the new solutions consistently out-

perform Bloom filters and are able to reduce communication

overhead by an order of magnitude sometimes.

Our future work is to investigate the joint detection problem

in a purely distributed setting without the central coordinator.

The communication will be performed amongst the monitors

in P2P [32] or other means. The overall communication over-

head is likely to be higher in a fully distributed environment.

Although the two new techniques proposed in this paper may

still be applicable, new challenges arise on how to coordinate

the information flows among the monitors in order to minimize

the amount of data to be exchanged. Another research direction

is to integrate techniques of widespread event detection into

other systems (such as contention distribution [33] and security

design [34]) to make the latter’s performance adaptable to

dynamic conditions.
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