
An Efficient Anonymous Authentication Protocol
for RFID Systems Using Dynamic Tokens

Min Chen Shigang Chen
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611, USA

Abstract—Radio frequency identification (RFID) technologies
are widely used in many applications. The widespread use of tags
in traditional ways of deployment raises a privacy concern: They
make their carriers trackable. This paper studies the problem of
anonymous authentication. Due to resource constraints of low-
cost tags, we develop a new technique to generate dynamic tokens
for anonymous authentication by following an asymmetric design
principle that pushes most complexity to more powerful RFID
readers. Instead of implementing complicated cryptographic hash
functions, our authentication protocol only requires tags to
perform several simple hardware-efficient operations such as
bitwise XOR, one-bit left circular shift and bit flip. Moreover,
our protocol reduces the communication overhead and online
computation overhead to O(1) per authentication for both tags
and readers, which compares favorably with the prior art.

I. INTRODUCTION

To protect the privacy of tag carriers, we need to invent ways

of keeping the usefulness of tags while doing so anonymously.

One important problem is anonymous authentication, which

is to authenticate a tag without requiring the tag to transmit

any identifying information, such as tag ID, key identifier

or any fixed number that may be used for identification

purpose. In this paper, we make a fundamental shift from the

traditional paradigm for anonymous authentication protocol

design. On the one hand, we want to avoid implementing any

complicated functions such as cryptographic hash on RFID

tags due to hardware constraint. On the other hand, given

the significant capability disparity between readers and tags,

we follow an asymmetry design principle when designing

our protocol: We should push most workload to the readers

while leaving the tags as simple as possible. Based on this

principle, we develop a new technique to generate dynamic

tokens for anonymous authentication in RFID systems. Our

protocol only requires the tags to perform a few hardware-

efficient operations such as bitwise XOR, one-bit left circular

shift and bit flip to randomize authentication data, while all

other work is done by the readers. Moreover, our protocol

reduces the communication overhead and online computation

overhead to O(1) per authentication for both readers and tags.

II. DYNAMIC TOKEN BASED AUTHENTICATION PROTOCOL

Our Dynamic Token based Authentication Protocol (DTAP)

consists of three phases as follows.

A. Initialization Phase

The central server stores all tags’ keys in a key table,

denoted by KT . As shown in Table I, each entry in KT

Tag Tag Base Token Token Base Indicator Indicator
Index Array Array

1 t1 [bt11, . . . , btm1] tk1 [bi11, . . . , bin1] ic1
2 t2 [bt12, . . . , btm2] tk2 [bi12, . . . , bin2] ic2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

N tN [bt1N , . . . , btmN] tkN [bi1N , . . . , binN] icN

TABLE I: Key table stored by the central server.

Reader R Tag t
1. Request

2. Token

3. Response

Fig. 1: Three steps of token-based mutual authentication.

is indexed by the tag index, supporting random access in

O(1) time. When t first joins the system, the reader randomly

generates an array of a-bit base tokens [bt1, bt2, . . . , btm],

and an array of b-bit base indicators [bi1, bi2, . . . , bin] for

t. In addition, the a-bit token tk and b-bit indicator ic of t
are also randomly initialized. After that, the reader requires

the central server to insert those keys to KT . In addition, the

central server maintains a hash table, denoted by HT , that

maps the token of each tag to its tag index. At first, every slot

inHT is initialized to zero. After t joins the system, the reader

computes h(tk) (h() is a hash fucntion), and then inserts the

tag index idx of t into the h(tk)th slot of the hash table, i.e.,

HT [h(tk)] = idx. Fig. 2 shows the hash table built from the

five tokens of tags t1, t2, t3, t4 and t5.

B. Authentication Phase

The three-step authentication phase of DTAP is shown in

Fig. 1. The reader R initiates the authentication process by

sending a request, and the tag t responds with its token.

After receiving the token tk, R first calculates h(tk), and

then accesses HT [h(tk)] to retrieve the tag index, which is

idx. If R finds idx = 0, it asserts t is fake and informs t
of authentication failure. Otherwise, R refers to KT [idx] in

tk1

1

tk2 tk3 tk4 tk5

2 4 5 3

Tokens

Hash

Hash Table 0 0 0 0 0

Fig. 2: An illustration of the hash table used by DTAP.

2015 IEEE 35th International Conference on Distributed Computing Systems

1063-6927/15 $31.00 © 2015 IEEE

DOI 10.1109/ICDCS.2015.94

756

1

1

1

1

MSB

LSB

0

0

0

0

bt1

bt2

bt3

bt4

bt5

bt6

yes

yes

yes

no

no

no

tk

1

1

1

1

MSB

LSB

0

0

0

0

bi1

bi2

bi3

bi4

bi5

bi6

yes

yes

yes

no

no

no

ic
update

update
pattern

update

selector

update
pattern

selector

Fig. 3: Left plot: Generation of a new token. Right plot:
Generation of a new indicator.

the key table to retrieve the token, and compares it with the

received token tk. Only if the two tokens are the same, will t
pass the authentication; otherwise, it fails the authentication.

In case that t is successfully authenticated, R will transmit a

newly generated token to authenticate itself. The same new

token will also be generated by t. The generation of dynamic

tokens requires the reader (more exactly, the central server)

and the tag to update their shared keys synchronously.

C. Updating Phase

We develop a new technique to update keys and generate

random tokens from the base tokens dynamically. Tag t relies

on its indicator ic to update its keys. A b-bit indicator consists

of two parts: The low-order (b − 2) bits form a selector,

indicating which base tokens/base indicators should be used to

derive the next token/indicator, while the high-order two bits

encode the update pattern. When the updating phase begins,

t calculates a new token from the base tokens based on the

selector. Each of the low-order m bits (m ≤ b − 2) in the

selector encodes a choice of the corresponding base token: ‘0’

means not selected, while ‘1’ means selected. For all selected

base tokens, they are XORed to yield a new token. The left

plot in Fig. 3 gives an example of token update, where bt1,

bt3 and bt5 among the six base tokens happen to be selected

to derive the new token. Similarly, t derives a new indicator

from the base indicators, as shown in the right plot of Fig. 3.

At the reader’s side, the same new token and new indicator

can be generated because it shares the same keys with the tag.

In addition, the reader (central server) also needs to update the

hash table. First, the reader sets HT [h(tk)] (the old token) to

0, and after generating the new token, it sets HT [h(tk)] to

idx.

After the token and the indicator have been updated, the

reader and the tag need to further update the selected base

tokens and base indicators. The update process for any selected

base token/indicator includes two steps: A one-bit left circular

shift is performed first, followed by bit flip based on the

particular 2-bit update pattern specified by the indicator: (1)

Pattern (00)2: no flip is performed; (2) Pattern (01)2: flip

the jth bit if j ≡ 0 (mod 3); (3) pattern (10)2: flip the

jth bit if j ≡ 1 (mod 3); (4) Pattern (11)2: flip the jth bit

if j ≡ 2 (mod 3). This scheme ensures that any two bits

have a chance to not be flipped together if the size of the

base tokens/indicators is set properly [1], thereby reducing the

mutual dependence of the two bits.

0

1

2

3

0 20000 40000 60000

F
re

q
u
en

cy
 (

×
1
0

-5
)

Token Value

m=n=6

Fig. 4: Frequency test for randomness, where a = b = 16, and

m = n = 6.

D. Discussion

1) Communication overhead: For each authentication, the

tag only needs to transmit one token. The reader needs to send

an authentication request and one token. The communication

overheads for both the tag and the reader are O(1).
2) Online computation overhead: For each authentication,

the tag needs to update its keys twice to generate two tokens,

and preform one comparison to authenticate the reader. All

operations performed by the tag, including bit-wise XOR, bit

flip and one-bit circular shift, are very simple. Besides these

computations, the reader needs to calculate two hash values:

one for the token received from the tag, and the other for the

token prepared for next authentication.

E. Randomness

The EPC C1G2 standard [2] requires that for a 16-bit

pseudorandom generator the probability of any 16-bit number

RN16 with value v being drawn from the generator shall

be bounded by 0.8
216 < P (RN16 = v) < 1.25

216 . To evaluate

the randomness of tokens generated by DTAP, we produce

2a × 100 tokens and calculate the frequency of each distinct

token. Limited by the computing power of our computers, we

just consider a simple case of a = 16 (Note that a longer

token can be obtained by concatenating several short tokens).

The size b of base indicators is also set to 16 bits, and

m = n = 6. From Fig. 4, we can see that the tokens generated

by DTAP meet the randomness requirement, where the dotted

lines represent the required frequency upper and lower bounds.

III. CONCLUSION

In this paper, we propose an efficient anonymous

authentication protocol for RFID systems. To meet the

hardware constraint of low-cost tags, we follow the asymmetry

principle in our design. Using random sampling and

updating techniques, our protocol generates random tokens

for anonymous authentication. Moreover, our protocol reduces

the communication overhead and online computation overhead

to O(1) per authentication for both the tags and the readers,

which compares favorably with the prior art.

REFERENCES

[1] M. Chen, S. Chen, and Q. Xiao, “Pandaka: A Lightweight Cipher for
RFID Systems,” Proc. of IEEE INFOCOM, April-May 2014.

[2] EPC Radio-Frequency Identity Protocols Class-1 Gen-2 UHF RFID
Protocol for Communications at 860MHz-960MHz, EPCglobal,
Available at http://www.gs1.org/sites/default/files/docs/epc/uhfc1g2 1
2 0-standard-20080511.pdf, Version 1.2.0.

757

