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With the capability of infecting hundreds of thousands of hosts, worms

represent a major threat to the Internet. While much recent research concentrates

on propagation models, the defense against worms is largely an open problem. This

proposal develops two defense techniques based on the behavior difference between

normal hosts and worm-infected hosts.

In the first part of the dissertation, we propose a distributed anti-worm

architecture (DAW) that automatically slows down or even halts the worm

propagation. The basic idea comes from the observation that a worm-infected host

has a much higher connection-failure rate when it scans the Internet with randomly

selected addresses. This property allows DAW to set the worms apart from the

normal hosts. A temporal rate-limit algorithm and a spatial rate-limit algorithm,

which makes the speed of worm propagation configurable by the parameters of

the defense system, is proposed. DAW is designed for an Internet service provider

to provide the anti-worm service to its customers. The effectiveness of the new

techniques is evaluated analytically and by simulations.
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In the second part of the dissertation, we propose a defense system that is able

to detect new worms that were not seen before and, moreover, capture the attack

packets. It can effectively identify polymorphic worms from the normal background

traffic. The system has two novel contributions. The first contribution is the design

of a novel double-honeypot system, which is able to automatically detect new

worms and isolate the attack traffic. The second contribution is the proposal of a

new type of position-aware distribution signatures (PADS), which fit in the gap

between the traditional signatures and the anomaly-based systems. We propose

two algorithms based on Expectation-Maximization (EM) and Gibbs Sampling for

efficient computation of PADS from polymorphic worm samples. The new signature

is capable of handling certain polymorphic worms. Our experiments show that

the algorithms accurately separate new variants of the MSBlaster worm from the

normal-traffic background.

In the third part of the dissertation, we further investigate the multiple PADS

model and propose the optimization of our iterative approachs. We propose a

new way of extracting multiple PADS blocks at the same time using iterative

methods such as Expectation-Maximization (EM) algorithm. To classify different

polymorphic Internet worm families, we revisit the EM algorithm based on a

Gaussian mixture model for each byte sequence, which is assumed to be in a

feature vector space. The algorithm proposed saves the time complexity of the

iterative approachs in that the extraction step can be done simultaneously.
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CHAPTER 1
INTRODUCTION

1.1 Internet Worms

An Internet worm is a self-propagated program that automatically replicates

itself to vulnerable systems and spreads across the Internet. It represents a huge

threat to the network community [1, 2, 3, 4, 5, 6, 7]. Ever since the Morris worm

showed the Internet community for the first time in 1988 that a worm could bring

the Internet down in hours [8], new worm outbreaks have occurred periodically

even though their mechanism of spreading was long well understood. On July 19,

2001, the code-red worm (version 2) infected more than 250,000 hosts in just 9

hours [9]. Soon after, the Nimbda worm raged on the Internet [10]. As recently

as January 25, 2003, a new worm called SQLSlammer [11] reportedly shut down

networks across Asia, Europe and the Americas.

The most common way for a worm to propagate is to exploit a security

loophole in certain version(s) of a service software to take control of the machine

and copy itself over. For example, the Morris worm exploited a bug in finger and a

trap door in sendmail of BSD 4.2 or 4.3, while the code-red worm took advantage

of a buffer-overflow problem in the index server of IIS 4.0 or IIS 5.0. Typically

a worm-infected host scans the Internet for vulnerable systems. It chooses an IP

address, attempts a connection to a service port (e.g., TCP port 80 in the case of

code red), and if successful, attempts the attack. The above process repeats with

different random addresses. As more and more machines are compromised, more

and more copies of the worm are working together to reproduce themselves. An

explosive epidemic is therefore developed across the Internet.

1
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Although most known worms did not cause severe damage to the compromised

systems, they could have altered data, removed files, stolen information, or used the

infected hosts to launch other attacks if they had chosen to do so.

The worm activity often causes Denial-of-Service (DoS) as a by-product. The

hosts that are vulnerable to a worm typically account for a small portion of the IP

address space. Hence, worms rely on high-volume random scan to find victims. The

scan traffic from tens of thousands of compromised machines can congest networks.

There are few answers to the worm threat. One solution is to patch the

software and eliminate the security defects [9, 10, 11]. That did not work because

(1) software bugs seem always to increase as computer systems become more and

more complicated, and (2) not all people have the habit of keeping an eye on the

patch releases. The patch for the security hole that led to the SQLSlammer worm

was released half a year before the worm appeared, and still tens of thousands of

computers were infected. Intrusion detection systems and anti-virus software may

be upgraded to detect and remove a known worm, and routers and firewalls may be

configured to block the packets whose content contains worm signatures, but those

happen after a worm has spread and been analyzed.

Moore et al. studied the effectiveness of worm containment technologies

(address blacklisting and content filtering) and concluded that such systems must

react in a matter of minutes and interdict nearly all Internet paths in order to be

successful [2]. Williamson proposed to modify the network stack so that the rate

of connection requests to distinct destinations is bounded [12]. The main problem

is that this approach becomes effective only after the majority of all Internet

hosts are upgraded with the new network stack. For an individual organization,

although the local deployment may benefit the Internet community, it does not

provide immediate anti-worm protection to its own hosts, whose security depends
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on the rest of the Internet taking the same action. This gives little incentive for the

upgrade without an Internet-wide coordinated effort.

Most known worms have very aggressive behaviors. They attempt to infect

the Internet in a short period of time. These types of worms are actually easier to

be detected becuase their aggressiveness stands out from the background traffic.

Future worms may be modified to circumvent the rate-based defense systems and

purposely slow down the propagation rate in order to compromise a vast number of

systems over the long run without being detected [2].

Intrusion detection has been intensively studied in the past decade. Anomaly-

based systems [4, 13, 14] profile the statistical features of normal traffic. Any

deviation from the profile will be treated as suspicious. Although these systems can

detect previously unknown attacks, they have high false positives when the normal

activities are diverse and unpredictable. On the other hand, misuse detection

systems look for particular, explicit indications of attacks such as the pattern of

malicious traffic payload. They can detect the known worms but will fail on the

new types.

Most deployed worm-detection systems are signature-based, which belongs to

the misuse-detection category. They look for specific byte sequences (called attack

signatures) that are known to appear in the attack traffic. The signatures are

manually identified by human experts through careful analysis of the byte sequence

from captured attack traffic. A good signature should be one that consistently

shows up in attack traffic but rarely appears in normal traffic.

The signature-based systems [15, 16] have an advantage over the anomaly-based

systems due to their simplicity and the ability of operating online in real time. The

problem is that they can only detect known attacks with identified signatures

that are produced by experts. Automated signature generation for new attacks

is extremely difficult due to three reasons. First, in order to create an attack
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signature, we must identify and isolate attack traffic from legitimate traffic.

Automatic identification of new worms is critical, which is the foundation of

other defense measures. Second, the signature generation must be general enough

to capture all attack traffic of a certain type while at the same time specific

enough to avoid overlapping with the content of normal traffic in order to reduce

false-positives. This problem has so far been handled in an ad-hoc way based on

human judgement. Third, the defense system must be flexible enough to deal with

the polymorphism in the attack traffic. Otherwise, worms may be programmed to

deliberately modify themselves each time they replicate and thus fool the defense

system.

1.2 Related Work

Much recent research on Internet worms concentrates on propagation

modeling. A classic epidemiological model of a computer virus was proposed

by Kephart and White [17]. This model was later used to analyze the propagation

behavior of Code-Red-like worms by Staniford et al. [1] and Moore et al. [18].

Refinements were made to the model by Zou et al. [19] and Weaver et al. [20] in

order to fit with the observed propagation data.

Chen et al. proposed a sophisticated worm propagation model (called AAWP

[21]) based on discrete times. In the same work, the model is applied to monitor,

detect, and defend against the spread of worms under a rather simplified setup,

where a range of unused addresses are monitored and a connection made to those

addresses triggers a worm alert. The distributed early warning system by Zou

et al. [22] also monitors unused addresses for the “trend” of illegitimate scan

traffic on the Internet. There are two problems with these approaches. First,

the attackers can easily overwhelm such a system with false positives by sending

packets to those addresses, or some normal programs may scan the Internet for

research or other purposes and hit the monitored addresses. Second, to achieve
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good response time, the number of “unused addresses” to be monitored has to be

large, but addresses are scarce resource in the IPv4 world, and only a few have the

privilege of establishing such a system. A monitor/detection system based on “used

addresses” will be much more attractive. It allows more institutes or commercial

companies to participate in the quest of defeating Internet worms.

For worms that propagate amongst certain type of servers, a solution is to

block the servers’ outbound connections so that the worms cannot spread among

them. This approach works only when it is implemented for all or a vast majority

of the servers on the Internet. Such an Internet-wide effort has not been and may

never be achieved, considering that there are so many countries in the world and

home users are setting up their servers without knowing this “good practice.” In

addition, the approach does not apply when a machine is used both as a server and

as a client.

Moore et al. studied the effectiveness of worm containment technologies

(address blacklisting and content filtering) and concluded that such systems must

react in a matter of minutes and interdict nearly all Internet paths in order to be

successful [2]. Williamson and Twycross proposed to modify the network stack so

that the rate of connection requests to distinct destinations is bounded [12, 23].

Schechter et al. [24] used the sequential hypothesis test to detect scan sources and

proposed a credit-based algorithm for limiting the scan rate of a host. Weaver et

al. [25] developed containment algorithms suitable for deployment with high-speed,

low-cost network hardware. The main problem of the above approaches is that

their effectiveness against worm propagation requires Internet-wide deployment.

Gu et al. [26] proposed a simple two-phase local worm victim detection algorithm

based on both infection pattern and scanning pattern. Apparently, it cannot issue a

warning before some local hosts are compromised. None of the above approaches is

able to handle the flash worms [27] that perform targeted scanning.
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Honeypots [28] have gained a lot of attention recently. Their goal is to

attract and trap the attack traffic on the Internet. Provos [29] designed a virtual

honeypot framework to exhibit the TCP/IP stack behavior of different operating

systems. Kreibich and Crowcroft [30] proposed the Honeycomb to identify the

worm signatures by using longest common substrings. Dagon et al. developed

HoneyStat [31] to detect worm behaviors in small networks. The above systems

either assume that all incoming connections to the honeypot are from worms, or

rely on experts for the manual worm analysis. These restrictions greatly undermine

the effectiveness of the systems.

Kruegel and Vigna [4] discussed various ways of applying anomaly detection

in web-based attacks. Serveral methods, such as χ2-test and Markov models

were presented. Wang and Stolfo [14] used the byte-frequency distribution of

the traffic payload to identify anomalous behavior and possibly worm attacks.

These methods are ineffective against polymorphic worms. The research in

defending against polymorphic worms is still in its infancy. Christodorescu and

Jha [32] discussed a variety of different polymorphism techniques that could be

used to obfuscate malicious code. It also proposed a static analysis method to

identify malicious patterns in executables. Kolesnikov and Lee [33] described

some advanced polymorphic worms that mutate based on normal traffic. Kim and

Karp [34] proposed a worm signature detection system with limited discussion on

polymorphism.

1.3 Contribution

There are three major contributions in this thesis. First of all, we provide a

worm containment technology that is deployed on an ISP to provide anti-worm

service. Our system is able to substantially slow down the worm propagation rate

even if the system is not deployed to the whole Internet. Second, we propose a

double-honeypot system to automatically identify the worm attcks and generate
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worm signatures. Finally, to further improve the performance, a novel format of

signature is defined and the iterative methods to compute the signature is discussed

in order to deal with the polymorphism of Internet worms. The proposed method is

optimized in the thesis with a Gaussian mixture model, thus eliminates unnecessary

computations and saves the time complexity of our approach.

1.3.1 Distributed Anti-Worm Architecture

We propose a distributed anti-worm architecture (DAW)which is designed

for an Internet service provider (ISP) to provide the anti-worm service to its

customers. (Note that, from one ISP’s point of view, the neighbor ISPs are also

customers.) DAW is deployed at the ISP edge routers, which are under a single

administrative control. It incorporates a number of new techniques that monitor

the scanning activity within the ISP network, identify the potential worm threats,

restrict the speed of worm propagation, and even halt the worms by blocking

out scanning sources. By tightly restricting the connection-failure rates from

worm-infected hosts while allowing the normal hosts to make successful connections

at any rate, DAW is able to significantly slow down the worm’s propagation in an

ISP and minimize the negative impact on the normal users.

The proposed defense system separates the worm-infected hosts from the

normal hosts based on their behavioral differences. Particulary, a worm-infected

host has a much higher connection-failure rate when it scans the Internet with

randomly selected addresses, while a normal user deals mostly with valid addresses

due to the use of DNS (Domain Name System). This and other properties allow

us to design the entire defense architecture based on the inspection of failed

connection requests, which not only reduces the system overhead but minimizes

the disturbance to normal users, who generate fewer failed connections than

worms. With a temporal rate-limit algorithm and a spatial rate-limit algorithm,

DAW is able to tightly restrict the worm’s scanning activity, while allowing the
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normal hosts to make successful connections at any rate. Due to the use of DNS in

resolving IP addresses, the chance of attempting connections to non-existing hosts

by normal users is relatively low, because a connection will never be initiated by

the application if DNS does not find the destination host. This is especially true

considering that a typical user has a number of favorite, frequently-accessed sites

(that are known to exist). A temporal rate-limit algorithm and a spatial rate-limit

algorithm are used to bound the scanning rate of the infected hosts. One important

contribution of DAW is to make the speed of worm propagation configurable, no

longer by the parameters of worms but by the parameters of DAW. While the

actual values of the parameters should be set based on the ISP traffic statistics,

we analyze the impact of those parameters on the performance of DAW and use

simulations to study the suitable value ranges.

1.3.2 Signature-Based Worm Identification and Defense

We design a novel double-honeypot system which is deployed in a local

network for automatic detection of worm attacks from the Internet. The system

is able to isolate the attack traffic from the potentially huge amount of normal

traffic on the background. It not only allows us to trigger warnings but also

record the attack instances of an on-going worm epidemic. We summarize the

polymorphism techniques that a worm may use to evade the detection by the

current defense systems. We then define the position-aware distribution signature

(PADS) capable of detecting polymorphic worms of certain types. The new

signature is a collection of position-aware byte frequency distributions, which is

more flexible than the traditional signatures of fixed strings and more precise

than the position-unaware statistical signatures. We describe how to match a

byte sequence against the “non-conventional” PADS. Two algorithms based on

Expectation-Maximization (EM) [35][36] are proposed for efficient computation

of PADS from polymorphic worm samples. Experiments based on variants of
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the MSBlaster worm are performed. The results show that our signature-based

defense system can accurately separate new variants of the worm from the normal

background traffic by using the PADS signature derived from the past samples. To

deal with multiple malicious segments of the worm, a multi-segment position aware

distribution signature (MPADfor classification of the polymorphic worm families

together with normalized cut algorithm.

1.3.3 Optimization of Iterative Methods

The iterative methods discussed in the last subsection suffer from several

drawbacks. First of all, because the PADS signature can only be obtained one

by one and iterative approachs are time consuming process, it will take a long

time before every PADS signature has been extracted. Secondly, because PADS

signatures are extracted sequentially, the quality of the PADS signature will be

different. Since iterative methods are used, different initialization will result in

totally different PADS signature set, thus affect the clustering of the polymorphic

worm family. To address these problems, a mixture model is used, which assumes

that each segment of the dataset may come from multiple PADS blocks at the

same time. It has the clear advantage over previously proposed approachs in that

multiple PADS blocks can be extracted simultaneously. Thus reduce the time

needed for iterative approachs. Furthermore, we define a new metric to define the

quality of the matching between a set of PADS blocks and a byte sequence. This

chapter can be considered as an optimization to the previous chapter overall.



CHAPTER 2
SLOWING DOWN INTERNET WORMS

2.1 Modeling Worm Propagation

The worm propagation can be roughly characterized by the classical simple

epidemic model [37, 1, 2].

di(t)

d(t)
= βi(t)(1− i(t)) (2–1)

where i(t)is the percentage of vulnerable hosts that are infected with respect to

time t, and βis the rate at which a worm-infected host detects other vulnerable

hosts.

First we formly deduce the value of β. Some notations are defined as follows.

ris the rate at which an infected host scans the address space. N is the size of the

address space. V is the total number of vulnerable hosts.

At time t, the number of infected hosts is i(t) ·V , and the number of vulnerable

but uninfected hosts is (1 − i(t))V . The probability for one scan message to hit an

uninfected vulnerable host is p = (1 − i(t))V/N . For an infinitely small period dt,

i(t) changes by di(t). During that time, there are n = r · i(t) · V · dt scan messages

and the number of newly infected hosts is n × p = r · i(t) · V · dt · (1 − i(t))V/N =

r · i(t) · (1− i(t))V 2

N
dt.1 Therefore,

V · di(t) = r · i(t) · (1− i(t))
V 2

N
dt

di(t)

dt
= r

V

N
i(t)(1− i(t))

(2–2)

1 When dt → 0, the probability of multiple scan messages hitting the same host
becomes negligible.

10
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The above equation agrees perfectly with our simulations. Solving the

equation, we have

i(t) =
er V

N
(t−T )

1 + er V
N

(t−T )

Let the number of initially infected hosts be v. i(0) = v/V , and we have T =

− N
r·V ln v

V−v
. The time (t(α))it takes for a percentage α (≥ v/V ) of all vulnerable

hosts to be infected is

t(α) =
N

r · V (ln
α

1− α
− ln

v

V − v
) (2–3)

Suppose the worm attack starts from one infected host. v = 1. We have

t(α) =
N

r · V ln
α(V − 1)

1− α
(2–4)

The time predicted by Eq. (2–4) can be achieved only under ideal conditions.

In reality, worms propagate slower due to a number of factors. First, once a

large number of hosts are infected, the aggressive scanning activities often

cause wide-spread network congestions and consequently many scan messages

are dropped. Second, when a worm outbreak is announced, many system

administrators shut down vulnerable servers or remove the infected hosts from

the Internet. Third, some types of worms enter dormant state after being active for

a period of time. Due to the above reasons, the code red spread much slower than

the calculation based on Eq. (2–4). A more sophisticated model that considers the

first two factores can be found in [19], which fits better with the observed code-red

data. All existing models cannot describe the theoretical Warhol worm and Flash

worm presented in [1]. We shall address them separately in Section 2.3.11.

Practically it is important to slow down the worm propagation in order to give

the Internet community enough time to react in the face of an unknown worm.

Eq. (2–4) points out two possible approaches: decreasing r causes t(α) to increase

inverse-proportionally; increasing N causes t(α) to increase proportionally. In
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this paper, we use the first approach to slow down the worms, while relying on a

different technique to halt the propagation. The idea is to block out the infected

hosts and make sure that the scanning activity of an infected host does not last

for more than a period of ∆T . Under such a constraint, the propagation model

becomes

di(t)

dt
= r

V

N
(i(t)− i(t−∆T ))(1− i(t)) (2–5)

The above equation can be derived by following the same procedure that derives

Eq. (2–2), except that at time t the number of infected hosts is (i(t)− i(t−∆T )) ·V
instead of i(t) · V .

Theorem 1. If r∆T < (1 − v
αV

)N
V

, the worm will be stopped before a percentage α

of all vulnerable hosts are infected.

Proof: Each infected host sends r∆T scan messages, and causes r∆T V
N

(or

less due to duplicate hits) new infections. For the worm to stop, we need r∆T V
N

<

1. The total infections before the worm stops is no more than
∞
Σ
i=0

v(r∆T V
N

)i =

v
1−r∆T V

N

. If r∆T < (1 − v
αV

)N
V

, we have v
1−r∆T V

N

< αV . Namely, the worm stops

before a percentage α of the vulnerable hosts are infected.

2.2 Failure Rate

This paper studies the worms that spread via TCP, which accounts for the

majority of Internet traffic. We present a new approach that measures the potential

scanning activities by monitoring the failed connection requests, excluding those

due to network congestion.

When a source host makes a connection request, a SYN packet is sent to a

destination address. The connection request fails if the destination host does not

exist or does not listen on the port that the SYN is sent to. In the former case, an

ICMP host-unreachable packet is returned to the source host; in the latter case,

a TCP RESET packet is returned. We call an ICMP host-unreachable or TCP

RESET packet as a connection-failure reply (or simply failure reply). The rate of
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failed connection requests from a host s is called the failure rate, which can be

measured by monitoring the failure replys that are sent to s.

To support DAW, the ISP requires its customer networks to return ICMP

host-unreachable packets if the SYN packets are dropped by their routers or

firewalls. It is a common practice on the Internet.

It should be noted that our defense system does not require every customer

network that blocks ICMP to forward the log messages, although doing so helps

the performance of the system. Our defense system works well as long as a portion

(e.g., 10%) of all customer networks does not block ICMP host-unreachable

packets.

The failure rate measured for a normal host is likely to be low. For most

Internet applications (www, telnet, ftp, etc.), a user normally types domain names

instead of raw IP addresses to identify the servers. Domain names are resolved by

Domain Name System (DNS) for IP addresses. If DNS can not find the address

of a given name, the application will not issue a connection request. Hence,

mistyping or stale web links do not result in failed connection requests. An ICMP

host-unreachable packet is returned only when the server is off-line or the DNS

record is stale, which are both uncommon for popular or regularly-maintained

sites (e.g., Yahoo, Ebay, CNN, universities, governments, enterprises, etc.) that

attract most of Internet traffic. Moreover, a frequent user typically has a list of

favorite sites (servers) to which most connections are made. Since those sites

are known to work most of the time, the failure rate for such a user is likely to

be low. If a connection fails due to network congestion, it does not affect the

measurement of the failure rate because no ICMP host-unreachable or RESET

packet is returned. To illustrate our argument, we measured the failure rates on

three different domains of the University of Florida network. In our experiments,

domain 1 consists of five Class C networks, domain 2 consists of one Class C
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avg. daily failure rate worst daily failure rate daily failure rate
per host per host of the whole network

Domain 1 3.0 43 824
Domain 2 10.1 41 116
Domain 3 3.11 63 106

Table 2–1. Failure rates of normal hosts

network, and domain 2 consists of two Class C network. Table 2–1 clearly shows

that failure rates for normal hosts are typically very low.

On the other hand, the failure rate measured for a worm-infected host is likely

to be high. Unlike normal traffic, most connection requests initiated by a worm

fail because the destination addresses are randomly picked, which are likely either

not in use or not listening on the port that the worm targets at. Consider the

infamous code-red worm. Our experiment shows that 99.96% of all connections

made to random addresses at TCP port 80 fails. That is, the failure rate is 99.96%

of the scanning rate. For worms targeting at software that is less popular than

web servers, this figure will be even higher. The relation between the scanning rate

rsand the failure rate rfof a worm is

rf = (1− V ′

N
)rs

where V ′is the number of hosts that listen on the attacked port(s).2 If V ′ << N ,

we have

rf ≈ rs (2–6)

Hence, measuring the failure rate of a worm gives a good idea about its scanning

rate. Given the aggressive behavior of a worm-infected host, its failure rate is

likely to be high, which sets it apart from the normal hosts. More importantly, an

2 V ≤ V ′ because not every host listens on the attacked port(s) is vulnerable.
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approach that restricts the failure rate will restrict the scanning rate, which slows

down the worm propagation.

A worm may be deliberately designed to have a slow propagation rate in order

to evade the detection, which will be addressed in Section 2.3.9.

2.3 A Distributed Anti-Worm Architecture

2.3.1 Objectives

This section presents a distributed anti-worm architecture (DAW), whose main

objectives are

• Slowing down the worm propagation to allow human reaction time. It took

the code red just hours to achieve wide infection. Our goal is to prolong

that time to tens of days. A worm may even be stopped, especially when the

infected hosts scan at high rates, a property common to most known worms.

• Detecting potential worm activities and identifying likely offending hosts,

which provides the security management team with valuable information in

analyzing and countering the worm threat.

• Minimizing the performance impact on normal hosts and routers. Particularly,

a normal host should be able to make successful connections at any rate; a

server should be able to accept connections at any rate; the processing and

storage requirements on a router should be minimized.

2.3.2 Assumptions

Most businesses, institutions, and homes access the Internet via Internet

service providers (ISPs). An ISP network interconnects its customer networks,

and routes the IP traffic between them. The purpose of DAW is to provide an

ISP-based anti-worm service that prevents Internet worms from spreading among

the customer networks. DAW is practically feasible because its implementation

is within a single administrative domain. It also has strong business merit since
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Figure 2–1. Distributed anti-worm Architecture

a large ISP has sufficient incentive to deploy such a system in order to gain

marketing edge against its competitors.

We assume that a significant portion of failure replys are not blocked within

the ISP. If the ISP address space is densely populated, then it is required that a

significant portion of TCP RESET packets are not blocked, which is normally the

case. If the ISP address space is sparsely populated, then it is required that ICMP

host-unreachable packets from a significant portion of addresses are not blocked,

which can be easily satisfied. Because there are many unused addresses, the ISP

routers will generate ICMP host-unreachable for those addresses. Hence, the ISP

simply has to make sure its own routers do not filter ICMP host-unreachable until

they are counted.

If some customer networks block all incoming SYN packets except for a list of

servers, their filtering routers should either generate ICMP host-unreachable for the

dropped SYN packets or, in case that ICMP replys are desirable, send log messages

to an ISP log station. Upon receipt of a log message, the log station sends an

ICMP host-unreachable towards the sender of the SYN packet. When an ISP edge

router receives an ICPM host-unreachable packet from the log station, it counts a

connection failure and drops the packet.
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2.3.3 DAW Overview

As illustrated in Figure 2–1, DAW consists of two software components:

a DAW agent that is deployed on all edge routers of the ISP and a management

station that collects data from the agents. Each agent monitors the connection-failure

replys sent to the customer network that the edge router connects to. It identifies

the potential offending hosts and measures their failure rates. If the failure rate of

a host exceeds a pre-configured threshold, the agent randomly drops a minimum

number of connection requests from that host in order to keep its failure rate under

the threshold. A temporal rate-limit algorithm and a spatial rate-limit algorithm

are used to constrain any worm activity to a low level over the long term, while

accommodating the temporary aggressive behavior of normal hosts. Each agent

periodically reports the observed scanning activity and the potential offenders

to the management station. A continuous, steady increase in the gross scanning

activity raises the flag of a possible worm attack. The worm propagation is further

slowed or even stopped by blocking the hosts with persistently high failure rates.

Each edge router reads a configuration file from the management station about

what source addresses S and what destination ports P that it should monitor and

regulate. S consists of all or some addresses belonging to the customer network.

It provides a means to exempt certain addresses from DAW for research or other

purposes. P consists of the port numbers to be protected such as 80/8080 for

www, 23 for telnet, and 21 for ftp. It should exclude the applications that are not

suitable for DAW; for example, a hypothetical application runs with an extremely

high failure rate, making normal hosts undistinguishable from worms targeting

at the application. While DAW is not designed for all services, it is particularly

effective in protecting the services whose clients involve human interactions such

as web browsering, which makes greater distinction between normal hosts and

worm-infected hosts.
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Throughout the paper, when we say “a router receives a connection request”,

we refer to a connection request that enters the ISP from a customer network, with

a source address in S and a destination port in P . When we say “a router receives

a failure reply”, we refer to a failure reply that leaves the ISP to a customer

network, with a destination address in S and a source port in P if it is a TCP

RESET packet.

This dissertation does not address the worm activity within a customer

network. A worm-infected host is not restricted in any way to infect other

vulnerable hosts of the same customer network. DAW works only against the

inter-network infections. The scanning rate of an infected host s is defined as the

number of connection requests sent by s per unit of time to addresses outside of the

customer network where s resides.

If a customer network has m(> 1) edge routers with the same ISP, the DAW

agent should be stalled on all m edge routers. If some edge routers are with

different ISPs that do not implement DAW, the network can be infected via those

ISPs but then are restricted in spreading the worm to the customer networks of the

ISPs that do implement DAW. For the purpose of simplicity, we do not consider

multi-homed networks in the analysis.

Based on the data from all agents, the controller monitors the total number

of potential offenders. A steady increase in the number of potential offenders

is considered as possible on-going worm propagation. When this happens,

the controller instructs the edge routers to block out a percentage of potential

offenders (i.e., their IP addresses) that have the highest failure rates. The controller

continues to double the percentage after each period (e.g., one minute) until

the number of potential offenders stops to increase. The reason to block only a

percentage instead of all potential offenders is as follows: the failure rates of some

normal hosts may happen to exceed the threshold amidst a worm attack. With a
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mix of normal hosts and infected hosts, the aggressive behavior of worms makes

the infected hosts more likely to be blocked, while the normal hosts with marginal

exceeding failure rates remain unblocked.

On the other hand, if a normal host happens to run an automatic host-map

tool in the middle of a worm attack, it may be blocked due to high failure rate

of scanning activity. To prevent it from being blocked indefinitely, each blocked

address should be unblocked after certain period of time. An edge router keeps

a log of the blocked addresses and the number of times they are blocked recently

(e.g., during the past month). When an address is repetitively blocked, the

blocking time grows expontentially by T = T0e
k, where T0 is the initial blocking

time and k is the number of prior blocks.

• How to monitor failed connection attempts? The answer to this question

allows DAW to separate the worm activity from most normal traffic and

consequently reduces the amount of information that DAW has to process.

• How to achieve bounded failure rate? The answer to this question effectively

limits the maximum scanning rate (r in Eq. (2–4)) of any infected host.

• How to reduce false positives? The answer to this question helps to reduce

the impact on normal hosts.

• How to automatically generate the worm signatures? The answer to this

question allows DAW to work with intrusion-detection devices and firewalls to

identify and filter out the worm traffic.

2.3.4 Measuring Failure Rate

Each edge router measures the failure rates for the addresses belonging to the

customer network that the router connects to.

A failure-rate record consists of an address field s, a failure rate field f ,

a timestamp field t, and a failure counter field c. The initial values of f and c

are zeros; the initial value of t is the system clock when the record is created.



20

Whenever the router receives a failure reply for s, it calls the following function,

which updates f each time c is increased by 100. β is a parameter between 0 and

1.

Update Failure Rate Record( )

(1) c ← c + 1

(2) if (c is a multiple of 100)

(3) f ′ ← 100/(the current system clock− t)

(4) if (c = 100)

(5) f ← f ′

(6) else

(7) f ← β × f + (1− β)× f ′

(8) t ← the current system clock

It is unnecessary to create individual failure-rate records for those hosts that

occasionally make a few failed connections. Each edge router maintains a hash

table H. Each table entry is a failure-rate record without the address field. When

the router receives a failure reply, it hashes the destination address to a table

entry and calls Update Failure Rate Record() on that entry. Each entry therefore

measures the combined failure rate of roughly A/|H| addresses, where A is the size

of the customer network and |H| is the size of the hash table.

Only when the rate of a hash-table entry exceeds a threshold λ(e.g., one per

second), the router creates failure-rate records for individual addresses of the entry.

A failure-rate record is removed if its counter c registers too few failed connections

in a period of time.

2.3.5 Basic Rate-Limit Algorithm

If the failure rate of an address s is larger than λ, there must be a failure-rate

record created for s because the hash-table entry that s maps to must have a rate

exceeding λ. Let Fλ be the set of addresses whose failure rates are larger than λ.
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For each s ∈ Fλ, the router reduces its failure rate below λ by rate-limiting the

connection requests from s. A token bucket is used. Let size be the bucket size,

tokens be the number of tokens, and time be a timestamp whose initial value is the

system clock when the algorithm starts.

Upon receipt of a failure reply to s

(1) tokens ← tokens− 1

Upon receipt of a connection request from s

(2) ∆t ← the current system clock− time

(3) tokens ← min{tokens + ∆t× λ, size}
(4) time ← the current system clock

(5) if (tokens ≥ 1)

(6) forward the request

(7) else

(8) drop the request

It should be emphasized that the above algorithm is not a traditional

token-bucket algorithm that buffers the oversized bursts and releases them at

a fixed average rate. The purpose of our algorithm is not to shape the flow of

incoming failure replys but to shape the “creation” of the failure replys. It ensures

that the failure rate of any address in S stays below λ. This effectively restricts the

scanning rate of any worm-infected host (Eq. 2–6).

This and other rate-limit algorithms are performed on individual addresses.

They are not performed on the failure-rate records in the hash table; that is

because otherwise many addresses would have been blocked due to one scan source

mapped to the same hash-table entry.

One fundamental idea of DAW is to make the speed of worm propagation

no longer determined by the worm parameters set by the attackers, but by the
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DAW parameters set by the ISP administrators. In the following, we propose more

advanced rate-limit algorithms to give the defenders greater control.

2.3.6 Temporal Rate-Limit Algorithm

A normal user behaves differently from a worm that scans the Internet

tirelessly, day and night. A user may generate a failure rate close to λ for a

short period of time, but that can not last for every minute in 24 hours of a

day. While we set λ large enough to accommodate temporary aggressiveness in

normal behavior, the rate over a long period can be tightened. Let Ωbe the system

parameter that controls the maximum number of failed connection requests allowed

for an address per day. Let D be the time of a day. Ω can be set much smaller

than λD.

At the start of each day, the counters (c) of all failure-rate records and

hash-table entries are reset to zeros. The value of c always equals the number of

failed requests that have happened during the day. A hash-table entry creates

failure-rate records for individual addresses when either f > λ or c > Ω.

A temporal rate-limit algorithm is designed to bound the maximum number of

failed requests per day. Let FΩ be the set of addresses with individual failure-rate

records and ∀s ∈ FΩ, either the failure rate of s is larger than λ or the counter of s

reaches Ω/2. It is obvious that Fλ ⊆ FΩ.

Upon receipt of a failure reply to s

(1) tokens ← tokens− 1

Upon receipt of a connection request from s

(2) ∆t ← the current system clock− time

(3) if (c ≤ Ω/2)

(4) tokens ← min{tokens + ∆t× λ, size}
(5) else
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(6) λ′ ← Ω − c − tokens
the end of the day − time

(7) tokens ← min{tokens + ∆t× λ′, size}
(8) time ← the current system clock

(9) if (tokens ≥ 1)

(10) forward the request

(11) else

(12) drop the request

The temporal rate-limit algorithm constrains both the maximum failure rate

and the maximum number of failed requests. When it is used, the basic rate-limit

algorithm is not necessary. Before c reaches Ω/2, the failure rate can be as high as

λ. After that, the algorithm spreads the remaining “quota” (Ω− c− tokens) on the

rest of the day, which ensures that connections will be forwarded throughout the

day. Particularly, a host can make successful connections at any rate at any time of

the day (e.g., browsing the favorite web sites that are up) because the constraint is

on failure replys only.

Theorem 2. When the temporal rate-limit algorithm is used, the number of failure

replys for any address does not exceed 2Ω + rT in a day, where r is the rate at

which the host makes connection requests and T is the round trip delay in the ISP.

Proof: We first prove that tokens + c ≤ Ω holds for an arbitrary s at any time

of the day. It holds initially when the algorithm is activated on s with tokens = 0

and c ≤ Ω/2. The value of c or tokens changes only after the router receives either

a failure reply or a connection request. In the former case, tokens is decreased by

one due to the execution of the temporal rate-limit algorithm, and c is increased

by one due to the execution of Update Failure Rate Record(). Hence, (tokens + c)

stays the same. Now consider the router receives a connection request. The values

of tokens before and after receiving the packet are denoted as tokens before and

tokens after, respectively. Suppose tokens before + c ≤ Ω. Based on Lines 6-7, we
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have

tokens after

= min{tokens before + ∆t× λ′, size}

≤ tokens before + ∆t× Ω − c − tokens before

the end of the day − time

≤ tokens before + (Ω− c− tokens before)

≤ Ω− c
Therefore, tokens after + c ≤ Ω.

Next we prove that tokens ≥ −rT at the end of the day. Consider the

case that tokens < 1 at the end of the day. Without losing generality, suppose

tokens ≥ 1 before time t0, 0 ≤ tokens < 1 after t0 due to the execution of Line 1,

and then tokens stays less than one for the rest of the day. After t0, all connection

requests from s are blocked (Line 12). For all requests sent before t0−T , the failure

replys must have already arrived before t0. There are at most rT requests sent

between t0 − T and t0. Therefore, there are at most rT failure replys arriving after

t0. We know that tokens ≥ 0 at t0. Hence, tokens ≥ −rT at the end of the day.

Because tokens + c ≤ Ω holds at any time, c ≤ Ω + rT at the end of the day.

The counter c equals the number of failure replys received during the day after

the failure-rate record for s is created. Before that, there are at most Ω failure

replys counted by the hash-table entry that s maps to. In the worst case all those

replys are for s. Therefore, the total number of failure replys for s is no more than

2Ω + rT .

rT is normally small because the typical round trip delay across the Internet

is in tens or hundreds of milliseconds. Hence, if Ω = 300, the average scanning

rate of a worm is effectively limited to about 2Ω/D = 0.42/min. In comparison,

Williamson’s experiment showed that the scanning rate of the code red was at least

200 / second [12], which is more than 28,000 times faster. Yet, it took the code red
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hours to spread, suggesting the promising potential of using the temporal rate-limit

algorithm to slow down worms.

Additional system parameters that specify the maximum numbers of failed

requests in longer time scales (week or month) can further increase the worm

propagation time.

2.3.7 Recently Failed Address List

If a major web server such as Yahoo or CNN is down, an edge router may

observe a significant surge in failure replys even though there is no worm activity.

To solve this problem, each edge router maintains a recently failed address list

(RFAL), which is emptied at the beginning of each day. When the router receives

a failure reply from address d, it matches d against the addresses in RFAL. If d

is in the list, the router skips all DAW-related processing. Otherwise, it inserts d

into RFAL before processing the failure reply. If RFAL is full, d replaces the oldest

entry in the list.

When a popular server is down, if it is frequently accessed by the hosts in

the customer network, the server’s address is likely to be in RFAL and the failure

replys from the server will not be repetitively counted. Hence, the number of

failed requests allowed for a normal host per day can be much larger than Ω. It

effectively places no restriction on keeping trying a number of favorite sites that are

temporarily down. On the other hand, given the limited size of RFAL (e.g., 1000)

and the much larger space of IPv4 (232), the random addresses picked by worms

have a negligibly small chance to fall in the list.

2.3.8 Spatial Rate-Limit Algorithm

While each infected host is regulated by the temporal rate-limit algorithm,

there may be many of them, whose aggregated scanning rate can be very high.

DAW uses a spatial rate-limit algorithm to constrain the combined scanning rate

of infected hosts in a customer network. Let Φbe the system parameter that
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controls the total number of failed requests allowed for a customer network per

day. It may vary for different customer networks based on their sizes. Once the

number of addresses inserted to RFAL exceeds Φ, the system starts to create

failure-rate records for all addresses that receive failure replys, and activates

the spatial algorithm. If there are too many records, it retains those with the

largest counters. Let FΦ (∈ S) be the set of addresses whose counters exceed a

small threshold τ (e.g., 50), which excludes the obvious normal hosts. The spatial

rate-limit algorithm is the same as the temporal algorithm except that s, Ω, and

c are replaced respectively by FΦ, Φ, and the total number of failure replys to FΦ

received after the spatial algoirthm is activiated.

For any address s in FΩ ∩ FΦ, the temporal rate-limit algorithm is first

executed and then the spatial rate-limit algorithm is executed. The reason to

apply the temporal algorithm is to prevent a few aggressive infected hosts from

keeping reducing tokens to zero. On the other hand, if there are a large number

of infected hosts, causing the spatial algorithm to drop most requests, the router

should temporarily block the addresses whose failure-rate records have the largest

counters.

The edge routers may be configured independently with some running both

the temporal and spatial algorithms but some running the temporal algorithm only.

For example, the edge routers for the neighbor ISPs should have large Φ values or

not run the spatial algorithm.

Theorem 3. When the spatial rate-limit algorithm is used, the total number of

failure replys per day for all infected hosts in a customer network is bounded by

2Φ + mr′T , where m is the number of addresses in FΦ, r′ is the scanning rate of an

infected host after the temporal rate-limit algorithm is applied, and T is the round

trip delay of the ISP.
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Due to space limitation, the proof is omitted, which is very similar to the proof

for Theorem 2. mr′T is likely to be small because both r′ and T are small.

The following analysis is based on a simplified model. A more general model

will be used in the simulations. Suppose there are k customer networks, each with

V/k vulnerable hosts. Once a vulnerable host is infected, we assume all other

vulnerable hosts in the same customer networks are infected immediately because

DAW does not restrict the scanning activity within the customer network. Based

on Theorem 3, the combined scanning rate of all vulnerable hosts in a customer

network is (2Φ + mrT )/D ≈ 2Φ/D. Let j(t) be the percentage of customer

networks that are infected by the worm.

At time t, the number of infected customer networks is j(t) · k, and the number

of uninfected networks is (1 − j(t))k. The probability for one scan message to hit

an uninfected vulnerable host and thus infect the network where the host resides

is (1 − j(t))V/N . For an infinitely small period dt, j(t) changes by dj(t). During

that time, there are 2Φ
D
· j(t) · k · dt scan messages and the number of newly infected

networks is 2Φ
D
· j(t) · k · dt · (1− j(t))V/N = 2Φ

D
· j(t) · (1− j(t))V k

N
dt. 3 Therefore,

k · dj(t) =
2Φ

D
· j(t) · (1− j(t))

V k

N
dt

dj(t)

dt
=

2V Φ

ND
j(t)(1− j(t))

j(t) =
e

2V Φ
ND

(t−T )

1 + e
2V Φ
ND

(t−T )

Assume there is one infection at time 0. We have T = − ND
2V Φ

ln 1
k−1

. The time it

takes to infect α percent of all networks is

t(α) =
ND

2 · V Φ
ln

α(k − 1)

1− α

3 The probability of multiple external infections of the same network is negligible
when dt → 0.
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Suppose an ISP wants to ensure that the time for α percent of networks to be

infected is at least γ days. The value of Φ should satisfy the following condition.

Φ ≤ N

2 · V γ
ln

α(k − 1)

1− α

which is not related to how the worm behaves.

2.3.9 Blocking Persistent Scanning Sources

The edge routers are configured to block out the addresses whose counters

(c) reach Ω for n consecutive days, where n is a system parameter. If the

worm-infected hosts perform high-speed scanning, they will each be blocked

out after n days of activity. Hence the worm propagation may be stopped before an

epidemic materializes, according to Eq. (2–5).

The worm propagates slowly under the temporal rate-limit algorithm and the

spatial rate-limit algorithm. It gives the administrators sufficient time to study the

traffic of the hosts to be blocked, perform analysis to determine whether a worm

infection has occurred, and decide whether to approve or disapprove the blocking.

Once the threat of a worm is confirmed, the edge routers may be instructed to

reduce n, which increases the chance of fully stopping the worm.

Suppose a worm scans more than Ω addresses per day. The worm propagation

can be completely stopped if each infected customer network makes less than one

new infection on average before its infected hosts are blocked. The number of

addresses scanned by the infected hosts from a single network during n days is

about 2nΦ by Theorem 3. Each message has a maximum probability of V/N to

infect a new host. Hence, the condition to stop a worm is

2nΦ
V

N
< 1
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The expected total number of infected networks is bounded by

∞
Σ
i=0

(2nΦ
V

N
)i =

1

1− 2nΦ V
N

On the other hand, when 2nΦ V
N
≥ 1, the worm may not be stopped by the above

approach alone. However the significance of blocking infected hosts should not be

under-estimated as it makes the worm-propagation time longer and gives human or

other automatic tools (e.g., the one described below) more reaction time.

If the scanning rate of a worm is below Ω per day, the infected hosts will not

be blocked. DAW relys on a different approach to address this problem. During

each day, an edge router e measures the total number of connection requests,

denoted as nc(e), and the total number of failure replys, denoted as nf (e). Note

that only the requests and replys that match S and P (Section 2.3.3) are measured.

The router sends these numbers to the management station at the end of the day.

The management station measures the following ratio

Σ
e∈E

nf (e)

Σ
e∈E

nc(e)

where E is the set of edge routers. If the ratio increases significantly for a number

of days, it signals a potential worm threat. That is because the increase in failed

requests steadily outpaces the increase in issued requests, which is possibly the

result of more and more hosts being infected by worms.

The management station then instructs the edge routers to identify potential

offenders whose counters (c) have the highest values. Additional potential offenders

are found as follows. After a vulnerable server is infected via a port that it listens

to, the server normally scans the Internet on the same port to infect other servers.

Based on this observation, when an edge router receives a RESET packet with a

source address d, a source port p ∈ P to a destination address s ∈ S, it sends a

SYN packet to check if s is also listening on port p. If it is, the router marks s as a
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potential offender and creates a failure-rate record, which measures the number of

failed connections from s. At the end of each day, the management station collects

the potential offenders from all edge routers. Those with the largest counters are

presented to the administrators for traffic analysis. The management station may

instruct the edge routers to block them if the worm threat is confirmed.

Although a blocked server can not issue connection requests before it is

unblocked, it can accept connection requests at any rate. Its role of a server is

unchanged. An alternative to complete blocking is to apply a different, small Ω

value (e.g., 50) on those addresses, which leaves room for false positives since the

hosts can still make as many successful connections as they want, with occasional

failures.

2.3.10 FailLog

For a customer that blocks all ICMP traffic,4 its routers/firewalls should be

configured to send a log message to the local management station when a packet is

dropped, which is today’s common practice. If the dropped packet is a SYN packet,

the management station forwards a copy of the log message to the nearest ISP edge

router, which in turn encapsulates the log in a control message (called FailLog) and

sends the message to the source address s of the SYN. The FailLog is then routed

across the ISP network to the edge router of s. An edge router is reponsible of

measuring the failure rates for the addresses in the customer network it connects

to. Upon receipt of the FailLog, the edge router updates the failure rate of s and

discard the message.

The failure rate of a source address is the combined rate of RESET, ICMP

host-unreachable, and FailLog messages that are sent to the address. The

4 It is common for an organization to block all inbound ICMP requests but not
common to block all inbound/outbound ICMP traffic.
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requirement for customer networks that block ICMP to generate FailLog will

be relaxed in Section 2.3.10.

It has been assumed so far that every customer network that blocks ICMP

will generate FailLog messages. We now relax this requirement. Consider a worm

that targets at one or multiple ports (e.g, web service). Let A be the IP address

space that are not occupied by the hosts listening on those ports. Let p1 be the

percentage of A that is used by existing hosts. Let p2 be the percentage of A that

is not used but reponds connection requests with ICMP host-unreachable packets

(generated by routers). This includes the ISP’s reserved addresses for future

expansion. Let p3 be the percentage of A that is not used and does not repond

with ICMP host-unreachable packets. Among p3, Let p′3 be the percentage that

generates FailLog. p1 + p2 + p3 = 1 and 0 ≤ p′3 ≤ p3.

Eq. (2–6) was derived under the condition that p′3 = p3. If none or only some

customer networks generate FailLog, the equation becomes

rs ≈ 1

p1 + p2 + p′3
rf

For example, if p1 = 10%, p2 = 60% and p′3 = 0%, 5 then the scanning rate of any

worm-infected host will be roughly 1.4 times of the failure rate controlled by λ and

Ω. Our simulation shows that DAW works well even when p1 + p2 + p′3 = 10%.

The actual value of p1 + p2 + p′3 can be measured by the management

station by generating connection requests to random addresses and monitoring the

connection-failure replys. Since rs is known and rf can be measured, p1 + p2 + p′3 =

rf/rs. Note that the scanning rate of the management station is not constrained by

DAW because it is inside the ISP network.

5 This is a conservation assumption because firewalls are often configured to
block ICMP requests but not ICMP host-unreachable replys.
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2.3.11 Warhol Worm and Flash Worm

The Warhol worm and the Flash worm are hypothetical worms studied in [1],

which embodied a number of highly effective techniques that the future worms

might use to infect the Internet in a very short period of time, leaving no room for

human actions.

In order to improve the chance of infection during the initial phase, the Warhol

worm first scans a pre-made list of (e.g., 10000 to 50000) potentially vulnerable

hosts, which is called a hit-list. After that, the worm performs permutation

scanning, which divides the address space to be scanned among the infected hosts.

One way to generate a hit-list is to perform a scan of the Internet before the worm

is released [1]. With DAW, it will take about N/2Ω days. Suppose Ω = 300 and

N = 232. That would be 19611 years. Even if the hit-list can be generated by

a different means, the permutation scanning is less effective under DAW. For

instance, even after 10000 vulnerable hosts are infected, they can only probe about

10000 × 2Ω = 6 × 106 addresses a day. Considering the size of the address space is

232 ≈ 4.3 × 109, duplicate hits are not a serious problem, which means the gain by

permutation scanning is small. Without DAW, it will be a different matter. If the

scanning rate is 200/second, it takes less than 36 minutes for 10000 infected hosts

to make 232 probes, and duplicate hits are very frequent.

The Flash worm assumes a hit-list L including most servers that listen on

the targeted port. Hence, random scanning is completely avoided; the worm scans

only the addresses in L. As more and more hosts are infected, L is recursively split

among the newly infected hosts, which scan only the assigned addresses from L.

The Flash worm requires a prescan of the entire Internet before it is released. Such

a prescan takes too long under DAW. In addition, each infected host can only scan

about 2Ω addresses per day, which limits the propagation speed of the worm if L is

large.
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Figure 2–2. Worm-propagation comparison

2.3.12 Forged Failure Replys

To prevent forged failure replys from being counted, one approach is to keep a

table of recent connection requests from any source address in S to any destination

port in P during the past 45 seconds (roughly the MRTT of TCP). S and P are

defined in Section 2.3.3. Each table entry contains a source address, a source port,

a destination address, and a destination port, identifying a connection request.

Only those failure replys that match the table entries are counted. An alternative

approach is to extend the failure-rate record by adding two fields: one (x) counting

the number of connection requests from s and the other (y) counting the number

of successful connections, i.e., TCP SYN/ACK packets sent to s, where s is the

address field of the record. An invariant is maintained such that the number of

failed connections plus the number of successful connections does not exceed the

number of connection requests, i.e., c + y ≤ x. A failure reply is counted (c ← c + 1)

only when the invariant is not violated.

2.4 Simulation

We use simulations to evaluate the performance of DAW. Figure 2–2 shows

how the rate-limit algorithms slow down the worm propagation. The simulation

parameters are given as follows. λ = 1/sec. Ω = 300. Φ = 3000. n = 7

days. The number of customer networks are k = 10000. The average number of
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vulnerable hosts per customer network is z = 10. The numbers of vulnerable hosts

in different customer networks follow an exponential distribution, suggesting a

scenario where most customer networks have ten or less public servers, but some

have large numbers of servers. Suppose the worm uses a Nimda-like algorithm that

aggressively searches the local-address space. We assume that once a vulnerable

host of a customer network is infected, all vulnerable hosts of the same network are

infected shortly.

Figure 2–2 compares the percentage i(t) of vulnerable hosts that are infected

over time t in five different cases: 1) no algorithm is used, 2) the basic rate-limit

algorithm is implemented on the edge routers, 3) the temporal rate-limit algorithm

is implemented, 4) both the temporal and spatial rate-limit algorithms are

implemented, or 5) DAW (i.e., Temporal, Spatial, and blocking persistent scanning

sources) is implemented. Note that all algorithms limit the failure rates, not

the request rates, and the spatial rate-limit algorithm is applied only on the

hosts whose failure counters exceed a threshold τ = 50. Two graphs show the

simulation results in different time scales. The upper graph is from 0 to 18 hours,

and the lower is from 0 to 100 days. The shape of the curve “No Algorithm”

depends on the worm’s scanning rate, which is 10/sec in our simulation. The other

four curves are independent of the worm’s scanning rate; they depend only on

DAW’s parameters, i.e., λ, Ω, Φ, and n. The figure shows that the basic rate-limit

algorithm slows down the worm propagation from minutes to hours, while the

temporal rate-limit algorithm slows down the propagation to tens of days. The

spatial rate-limit algorithm makes further improvement on top of that — it takes

the worm 80 days to infect 5% of the vulnerable hosts, leaving sufficient time for

human intervention. Moreover, with persistent scanning sources being blocked after

7 days, DAW is able to stop the worm propagation at i(t) = 0.000034.
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k z Ω = 1000 = 3000 = 5000 = 7000
5000 10 350.3 116.8 69.6 50.2
5000 20 237.2 79.1 47.2 33.9
10000 10 190.1 63.5 38.1 27.1
10000 20 127.9 42.5 25.5 18.3
15000 10 133.6 44.4 26.3 19.3
15000 20 89.3 29.7 17.8 12.7
20000 10 103.3 34.2 20.6 14.6
20000 20 68.9 22.9 13.8 10.0

Table 2–2. 5% propagtion time (days) for “Temporal + Spatial”

Table 2–2 shows the time it takes the worm to infect 5% of vulnerable hosts

(called 5% propagation time) under various conditions with Temporal + Spatial

implemented. Depending on the size (k and z) of the ISP, the propagation time

ranges from 10.0 days to 350.3 days. To ensure a large propagation time, a very

large ISP may partition its customers into multiple defense zones of modest sizes.

DAW can be implemented on the boundary of each zone, consisting of the edge

routers to the customer networks of the zone and the internal routers connecting to

other zones.

Figure 2–3 shows the performance of the temporal rate-limit algorithm with

respect to the parameter Ω. As expected, the propagation time decreases when Ω

increases. The algorithm performs very well for modest-size ISPs (or zones). When

k = 10000, z = 10 and Ω = 3000, the 5% propagation time is 63.6 days. Figure

2–4 shows the performance of the spatial rate-limit algorithm (alone) with respect

to the parameter Φ. The algorithm works well for modest-size ISPs (or zones) even

for large Φ values. When k = 10000, z = 10 and Φ = 7000, the 5% propagation

time is 27.2 days. The performance of the two algorithms is comparable when

Φ = z×Ω, where the total temporal rate limit of the local infected hosts is equal to

the spatial rate limit. As shown in the figures, if Φ > z ×Ω, the temporal algorithm

works better; if Φ < z × Ω, the spatial algorithm works better. Therefore, the two

algorithms are complementary to each other and they are both adopted by DAW.
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Because DAW blocks persistent scanning sources, it may stop the worm

propagation, depending on the value of n. Figure 2–5 shows the final infection

percentage among the vulnerable hosts before all infected hosts are blocked. Even

when a large n is selected and the final infection percentage is large, the blocking is

still very useful because it considerably slows down the worm propagation as shown

in Figure 2–6, where only the propagation times for larger-than-5% final infections

are shown. For instance, when k = 20000, z = 20 and n = 10, the final infection

percentage is close to 100%. However, it will take the worm 71.7 days to achieve

that.



CHAPTER 3
A SIGNATURE-BASED APPROACH

3.1 Double-Honeypot System

3.1.1 Motivation

The spread of a malicious worm is often an Internet-wide event. The

fundamental difficulty in detecting a previously unknown worm is due to two

reasons. First, the Internet consists of a large number of autonomous systems

that are managed independently, which means a coordinated defense system

covering the whole Internet is extremely difficult to realize. Second, it is hard to

distinguish the worm activities from the normal activities, especially during the

initial spreading phase. Although the worm activities become apparent after a

significant number of hosts are infected, it will be too late at that time due to the

exponential growth rate of a typical worm [19, 22, 21, 18, 17]. In contrast to some

existing defense systems that require large-scale coordinated efforts, we describe a

double-honeypot system that allows an individual autonomous system to detect the

ongoing worm threat without external assistance. Most importantly, the system is

able to detect new worms that are not seen before.

Before presenting the architecture of our double-honeypot system, we give a

brief introduction of honeypot. Developed in recent years, honeypot is a monitored

system on the Internet serving the purpose of attracting and trapping attackers

who attempt to penetrate the protected servers on a network [28]. Honeypots

fall into two categories [29] A high-interaction honeypot operates a real operating

system and one or multiple applications. A low-interaction honeypot simulates one

or multiple real systems. In general, any network activities observed at honeypots

are considered as suspicious and it is possible to capture the latest intrusions based

37
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on the analysis of these activities. However, the information provided by honeypots

is often mixed with normal activities as legitimate users may access the honeypots

by mistake. Hours or even days are necessary for experts to manually scrutinize

the data logged by honeypots, which is insufficient against worm attacks because a

worm may infect the whole Internet in such a period of time.

We propose a double-honeypot system to detect new worms automatically.

A key novelty of this system is the ability to distinguish worm activities from

normal activities without the involvement of experts. Furthermore, it is a purely

local system. Its effectiveness does not require a wide deployment, which is a great

advantage over many existing defense systems [2, 12].

The basic idea is motivated from the worm’s self-replication characteristics. By

its nature, an worm infected host will try to find and infect other victims, which

is how a worm spreads itself. Therefore, outbound connections initiated from the

compromised hosts are a common characteristic shared by all worms. Suppose we

deliberately configure a honeypot to never initiate any outbound connections. Now

if the honeypot suddenly starts to make outbound connections, it only means that

the honeypot must be under foreign control. If the honeypot can be compromised,

it might try to compromise the same systems on the Internet in the way it was

compromised. Therefore, the situation is either a real worm attack or can be

turned into a worm attack if the attacker behind the scene chooses to do so. We

shall treat the two equally as a worm threat.

3.1.2 System Architecture

Figure 3–1 illustrates the double-honeypot system. It is composed of two

independent honeypot arrays, the inbound array and the outbound array, together

with two address translators, the gate translator and the internal translator. A

honeypot array consists of one or multiple honeypots, which may run on separate

physical machines or on virtual machines simulated by the same computer [29].
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Figure 3–1. Using double-honeypot detecting Internet worms

Each honeypot in the array runs a server identical to a local server to be protected.

A honeypot in the inbound (outbound) array is called an inbound (outbound)

honeypot. Our goal is to attract a worm to compromise an inbound honeypot

before it compromises a local server. When the compromised inbound honeypot

attempts to attack other machines by making outbound connections, its traffic is

redirected to an outbound honeypot, which captures the attack traffic.

An inbound honeypot should be implemented as a high-interaction honeypot

that accepts connections from outside world in order to be compromised by

worms that may pose a threat to a local server. An outbound honeypot should be

implemented as a low-interaction honeypot so that it can remain uninfected when

it records the worm traffic. In addition to performing the functionalities of the local

system, it checks and records all network traffic in a connection initiated from an

inbound honeypot. The network traffic, which is directly related to worm activities

from the outside, will be analyzed to identify the signatures of the worms.

The gate translator is implemented at the edge router between the local

network and the Internet. It samples the unwanted inbound connections, and

redirects the sampled connections to inbound honeypots that run the server
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software the connections attempt to access (e.g., connections to ports 80/8080

are redirected to a honeypot running a web server). There are several ways

to determine which connections are “unwanted”. The gate translator may be

configured with a list of unused addresses. Connections to those addresses are

deemed to be unwanted. It is very common nowadays for an organization to expose

only the addresses of its public servers. If that is the case, the gate translator can

be configured with those publicly-accessible addresses. When a connection for a

specific service (e.g., to port 80 for web access) is not made to one of the servers,

it is unwanted and redirected to an inbound honeypot. Suppose the size of the

local address space is Nand there are hpublicly-accessible servers on a particular

destination port. Typically, N >> h. For a worm which randomly scans that port,

the chance for it to hit an inbound honeypot first is N−h
N

, and the chance for it to

hit a protected server first is h
N

. With a ratio of N−h
h

, it is almost certain that the

worm will compromise the inbound honeypot before it does any damage to a real

server within the network.

Once an inbound honeypot is compromised, it will attempt to make outbound

connections. The internal translator is implemented at a router that separates the

inbound array from the rest of the network. It intercepts all outbound connections

from an inbound honeypot and redirects them to an outbound honeypot of the

same type, which will record and analyze the traffic.

We give the following example to illustrate how the system works. Suppose

that the IP address space of our network is 128.10.10.0/128, with one public web

server Y to be protected. The server’s IP address is 128.10.10.1. Suppose an

attacker outside the network initiates a worm attack against systems of type Y .

The worm scans the IP address space for victims. It is highly probable that an

unused IP address, e.g. 128.10.10.20, will be attempted before 128.10.10.1. The

gate controller redirects the packets to an inbound honeypot of type Y , which is
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subsequently infected. As the compromised honeypot participates in spreading the

worm, it will reveal itself by making outbound connections and provide the attack

traffic that will be redirected to an outbound honeypot of the system.

After an outbound honeypot captured a worm, the payload of the worm can

be directly considered as a signature. Using traffic filtering with the signature

at the edge of the network will protect the hosts from being attacked by the

same worm. In our system, the payload of the worm will also be forwarded to a

signature center. If a worm with polymorphism has been used during the attack,

the signature center will generate one single signature for all the variants of one

olymorphic worm by the algorithms discussed later. The special will not only be

able to match those variants whose payloads have been captured before, it can also

match those variants not seen before.

We should emphasis that, the proposed double-honeypot system is greatly

different from a conventional honeypot. A conventional system receives traffic from

all kinds of sources, including traffic from the normal users. It is a difficult and

tedious task to separate attack traffic from normal traffic, especially for attacks

that are not seen before. It is more than often that, only after the damage of the

new attacks is surfaced, the experts rush to search the recorded data for the trace

of attack traffic. In our system, when an outbound honeypot receives packets from

an inbound honeypot, it knows for sure that the packets are from a malicious

source. The outbound honeypot does not have to face the potentially huge amount

of normal background traffic that a conventional honeypot may receive.

3.2 Polymorphism of Internet Worms

The double-honeypot system provides a means to capture the byte sequences

of previous unknown Internet worms without manual analysis from the experts.

The captured byte sequences can be used to generate worm signatures, and future

connections carrying them will be automatically blocked. This is a great advantage
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      mov     edi, 00403045h  ; Set EDI to Start

      add     edi, ebp        ; Adjust according to base

      mov     ecx, 0A6Bh      ; length of encrypted virus body

      mov     al, [key]       ; pick the key

Decrypt:

      xor     [edi], al       ; decrypt body

      inc     edi             ; increment counter position

      loop    Decrypt         ; until all bytes are decrypted

      jmp     Start           ; Jump to Start (jump over some data)

DB    key     86              ; variable one byte key

Start:                        ; encrypted/decrypted virus body

Figure 3–2. A decryptor example of a worm.

over the current systems because the defense can be carried out automatically

before new worms deal a significant damage to the network.

The attackers will try every possible way to extend the life time of Internet

worms. In order to evade the signature-based system, a polymorphic worm appears

differently each time it replicates itself. This section discusses the polymorphism of

Internet worms, while the next section provides a solution against some common

polymorphism techniques.

There are many ways to make polymorphic worms. One technique relies on self

encryption with a variable key. It encrypts the body of a worm, which erases both

signatures and statistical characteristics of the worm byte string. A copy of the

worm, the decryption routine, and the key are sent to a victim machine, where the

encrypted text is turned into a regular worm program by the decryption routine,

for example, the code presented in Figure 3–2 [38]. The program is then executed

to infect other victims and possibly damage the local system. Figure 3–3 illustrates

a simple polymorphic worm using the same decryptor. The worm body attached

after the decryptor part appears differently based on different keys.
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Decryptor Encrypted worm body

Key

Entry point

Figure 3–3. Different variants of a polymorphic worm using the same decryptor

While different copies of a worm look different if different keys are used, the

encrypted text tends to follow a uniform byte frequency distribution [39], which

itself is a statistical feature that can be captured by anomaly detection based on its

deviation from normal-traffic distributions [4, 14]. Moreover, if the same decryption

routine is always used, the byte sequence in the decryption routine can serve as the

worm signature, if we are able to identify the decryption routine region which is

invariant over different instances of the same Internet worms.

A more sophisticated method of polymorphism is to change the decryption

routine each time a copy of the worm is sent to another victim host. This can be

achieved by keeping several decryption routines in a worm. When the worm tries

to make a copy, one routine is randomly selected and other routines are encrypted

together with the worm body. Figure 3–4 is an example of this case. To further

complicate the problem, the attacker can change the entry point of the program

such that decryption routine will appear at different locations of the traffic payload,

as is shown in Figure 3–5.

The number of different decryption routines is limited by the total length

of the worm. For example, consider a buffer-overflow attack that attempts to

copy malicious data to an unprotected buffer. Over-sized malicious data may

cause severe memory corruption outside of the buffer, leading to system crash
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Decryptor Encrypted worm body

Key

Entry point

Figure 3–4. Different variants of a polymorphic worm using different decryptors

Decryptor Encrypted worm body

Key

Entry point

Entry point Entry point

Figure 3–5. Different variants of a polymorphic worm with different decryptors and
different entry point
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Original code

55          push     ebp

8BEC        mov      ebp, esp

8B7608      mov      esi, dwoed ptr [ebp + 08]

85F6        test     esi, esi

743B        je       401045

8B7E0C      mov      edi, dword ptr [ebp + 0C]

09FF        or       edi, edi

7434        je       401045

31D2        xor      edx, edx

With garbage code

55          push     ebp

8BEC        mov      ebp, esp

8B7608      mov      esi, dword ptr [ebp + 08]

85F6        test     esi, esi

90          nop

90          nop

90          nop

743B        je       401045

8B7E0C      mov      edi, dword ptr [ebp + 0C]

09FF        or       edi, edi

7434        je       401045

31D2        xor      edx, edx

Figure 3–6. Different variants of a polymorphic worm with garbage-code insertation

and spoiling the compromise. Given a limited number of decryption routines, it

is possible to identify all of them as attack signatures after enough samples of the

worm have been obtained.

Another polymorphism technique is called garbage-code insertion. It inserts

garbage instructions into the copies of a worm. For example, a number of nop (i.e.,

no operation) instructions can be inserted into different places of the worm body,

thus making it more difficult to compare the byte sequences of two instances of the

same worm. Figure 3–6 [38] is an example of this scenario.
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The level of polymorphism in this type of worms is decided by the ratio of

the length of the garbage instruction region to the total length of the worm. For

those worms with moderate ratio, it is quite conceivable that there will be a good

chance that regions sharing the same byte sequence exist in different instances

of the worms, which in turn can be served as the signature of the worm. With a

increased length, the overlapped regions will be shortened and it is problematic to

identify them.

However, from the statistics point of view, the frequencies of the garbage

instructions in a worm can differ greatly from those in normal traffic. If that

is the case, anomaly-detection systems [4, 14] can be used to detect the worm.

Furthermore, some garbage instructions such as nop can be easily identified and

removed. For better obfuscated garbage, techniques of executable analysis [32] can

be used to identify and remove those instructions that will never be executed.

The instruction-substitution technique replaces one instruction sequence with

a different but equivalent sequence. Unless the substitution is done over the entire

code without compromising the code integrity (which is a great challenge by itself),

it is likely that shorter signatures can be identified from the stationary portion of

the worm. The code-transposition technique changes the order of the instructions

with the help of jumps. The excess jump instructions provide a statistical clue,

and executable-analysis techniques can help to remove the unnecessary jump

instructions. Finally, the register-reassignment technique swaps the usage of the

registers, which causes extensive “minor” changes in the code sequence. These

techniques can be best illustrated in Figure 3–7 [38].

The space of polymorphism techniques is huge and still growing. With the

combinations of different techniques, a cure-all solution is unlikely. The pragmatic

strategy is to enrich the pool of defense tools, with each being effective against

certain attacks. The current defense techniques fall in two main categories,
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Original code

55          push     ebp

8BEC        mov      ebp, esp

8B7608      mov      esi, dwoed ptr [ebp + 08]

85F6        test     esi, esi

743B        je       401045

8B7E0C      mov      edi, dword ptr [ebp + 0C]

09FF        or       edi, edi

7434        je       401045

31D2        xor      edx, edx

Obfuscated code

55          push     ebp

54          push     esp

5D          pop      ebp

8B7608      mov      esi, dword ptr [ebp + 08]

09F6        or       esi, esi

743B        je       401045

8B7E0C      mov      edi, dword ptr [ebp + 0C]

85FF        test     edi, edi

7434        je       401045

28D2        sub      edx, edx

558BEC8B760885F6743B8B7E0C09FF743431D2

55545D8B760809F6743B8B7E0C85FF743428D2

Figure 3–7. Different variants of a polymorphic worm with several different
polymorphic techniques
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misuse/signature matching and anomaly detection. The former matches against

known patterns in the attack traffic. The latter matches against the statistical

distributions of the normal traffic. We propose a hybrid approach based on a

new type of signatures, consisting of position-aware byte frequency distributions.

Such signatures can tolerate extensive, “local” changes as long as the “global”

characteristics of the signature remain. Good examples are polymorphism caused

by register reassignment and modest instruction substitution. We do not claim

that such signatures are suitable for all attacks. On the other hand, it may work

with executable-analysis techniques to characterize certain statistical patterns that

appear after garbage instructions and excess jumps are removed.

In this paper, we focus on solving the problem of moderate polymorphism.

While we admit that there might exist no unique solution to solve all these

problems, it is quite possible that polymorphism can be at least partially solved

if no extreme case is involved. More importantly, our system is still very useful in

dealing with even the most extreme cases. First of all, our double-honeypot system

is able to automatically capture the different instances of the worm. Although a

unified signature matching all instances of the worm seems unlikely in extreme

cases, it will still help analyzing the behavior of the attack and providing an early

warning of it by capturing the samples of the worm. Second, although it might be

true in some case that human analysis can find out signatures that do not conform

with our model, in most cases it is laborious, empirical, and time-consuming. Our

algorithm, on the other hand, can detect the most subtle signatures based on the

model and is more reliable than human analysis. Finally, our system can cooperate

with other defense systems, e.g., anomaly-based systems, in order to be more

effective.

We use the invariant region of the worm to serve as the signature because we

are dealing with the Internet worms. Other malicious code such as virus can be
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detected after the machine has been infected by scanning the programs because

virus will rely on the execution of the infected programs. The Internet worms,

however, will need to be identified before the infection has been done as the

goal of the worm is to spread to the Internet as quickly as possible. While some

techniques, e.g. Christodorescu, can successfully identify the polymorphic malicious

code by looking for the semantical equivalence, they are inappropriate in worm

detection as they are unable to be done in real time. In the next section, we use

the iterative algorithms to identify the invariant region from byte sequences of

polymorphic worms.

The basic premise of our model about the signature is that the byte frequency

distributions in the significant region, which in our case is the region that match

the signature approximately, should be greatly different from the rest part of the

worm body and normal, legitimate traffic payloads. The reason is that they carry

different functionalities. For example, in a polymorphic worm, the significant

region is responsible for the true malicious operations while the rest part of the

sequence only serves as a camouflage to elude the defense system. As a result, the

rest part of the sequence will most likely have the same or similar byte frequency

distribution as the legitimate connections. Even if an attacker tries to hide the true

worm body by attaching legitimate payloads, it is always difficult to design a pure

malicious sequence part indistinguishable from the normal connection. Therefore,

the byte frequency distributions related to this part should be under-represented

in the rest of the worm body. If we are able to extract a similar region from each

of the sampled instances of the worm, where the frequency distribution is greatly

different from the rest of the sequence, then this region should be potentially the

significant region and its probabilistic multinomial byte frequency distribution will

be the signature we are looking for.
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The attackers may not act as what we have expected as above. For example,

they may only insert several nop operations into each instances of the worm

randomly without attaching the camouflage part. Our argument still hold in this

case. Since nop does not appear frequently in normal sessions, the sequence of the

malicious connection will have a high frequency on nop operations. The probability

of nop in each positions will greatly larger than the normal incoming connection

sequence. That is enough to constitute a signature with a width of the same length

as the instances of the worm.

3.3 Position-Aware Distribution Signature (PADS)

3.3.1 Background and Motivation

Most deployed defense systems against Internet worms are signature-based.

They rely on the exact matching of the packet payload with a database of fixed

signatures. Though effective in dealing with the known attacks, they fail to

detect new or variants of the old worms, especially the polymorphic worms whose

instances can be carefully crafted to circumvent the signatures [32]. Moreover,

manually identifying the signatures may take days if not longer.

To address these problems, several anomaly-based systems [4, 14] use the

byte frequency distribution (BFD) to identify the existence of a worm. Their basic

approach is to derive a byte frequency distribution from the normal network

traffic. When a new incoming connection is established, the payload of the packets

is examined. The byte frequency distribution of the connection is computed

and compared with the byte frequency distribution derived from the normal

traffic. A large deviation will be deemed as suspicious. The problem is that an

intelligent attacker could easily cheat the system by attach the worm body to

a lengthy normal, legitimate session. Since the majority of the payload is from

legitimate operations, its byte frequency distribution will not vary much from the
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normal traffic. As the worm byte sequence is diluted in normal traffic, its statistic

characteristics are smoothed out.

Both signature-based and anomaly-based systems have their pros and cons.

Compared to the anomaly-based systems, signature-based systems have their own

advantages. Since signature-based systems match the signature of the worm with

only the corresponding segment of the whole worm body, it will not help much

to reduce the chance of being detected if normal payloads are attached to the

end of the worm body. However, if only the exact matching is used to compare

the signature with the payloads, a slightly change of the malicious part in the

whole worm body means a mismatch to the signature. In other words, current

signature-based system lacks the flexibility in contrast to the anomaly-based

systems. In addition drawbacks Abe, the signature-based system is not robust

enough to different techniques employed by the intelligent attackers as well. For

example, an attacker might increase the number of garbage instructions inserted to

the worm so that each signature by definition is tailored into only several bytes, as

is shown in figure.X. An automatic signature-extraction system will dramatically

increase the false positives as it is so common that any incoming connections might

contain such a short signature.

Our system inherits the positive aspects of both signature-based and

anomaly-based systems. It is based on a new defense technique that is complementary

to the existing ones. We define a relaxed, inexact form of signatures that have the

flexibility against certain polymorphism. The new signature is called the position-

aware distribution signature (PADS for short). It includes a byte frequency

distribution (instead of a fixed value) for each position in the signature “string”.

The idea is to focus on the generic pattern of the signature while allowing some

local variation.
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Consider a polymorphic worm with register reassignment (Section 3.2).

Because registers are used extensively in executables, swapping registers is

effective against traditional signatures. However, when a signature is expressed

in position-aware distributions, not only are the static elements in the executable

captured, but the set of likely values for the variable elements are also captured.

Hence, PADS allows a more precise measurement of “matching”. A similar

example is instruction substitution, where the mutually replaceable instructions (or

sequences) can be represented by the position-aware distributions.

To better explain the concept, we give an example here. Suppose a worm

carries a word “worm” in its byte sequence. In order to avoid the detection, the

variants of the worm may change to “w0rm”, “norm”. Counting the number of

byte appearance at each position will give us the following table. Based on this

model, when a new incoming connection is established, it is possible to check the

byte sequence in the connection session and decide the similarity between the

sequence and the previously captured “worm”, “w0rm”, “dorm”, etc.

The goal of our system is to use double honeypots to capture the worm

attack traffic, based on which PADS is derived and used to detect inbound worm

variants. It provides a quick and automatic response that complements the existing

approaches involving human experts. Based on PADS, the defense system will be

able to identify the new variant of a worm at its first occurrence, even if such a

variant has not been captured by the system previously. That means our system

is able to alert the attacks that successfully elude the current existing system,

hence a significant decrease of the false negative. Besides the advantages over the

traditional signature-based system which needs the assistance of the human expert,

our proposed system is especially useful in special cases when an anomaly-based

system may fail.
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b 0 1 2 ... 9 10
0x00 0.001 0.001 0.001 ... 0.500 0.100
0x01 0.001 0.001 0.001 ... 0.200 0.500
0x02 0.005 0.001 0.001 ... 0.001 0.100
... ... ... ... ... ... ...

0xfe 0.100 0.001 0.001 ... 0.001 0.001
0xff 0.001 0.700 0.700 ... 0.001 0.001

Table 3–1. An example of a PADS signature with width W = 10

3.3.2 Position-Aware Distribution Signature (PADS)

We first describe what is a PADS signature, then explain how to match a byte

sequence against a signature, and finally motivate how to compute such a signature

based on captured worm sequences.

At each byte position p of a PADS signature, the byte-frequency distribution

is a function fp(b), which is the probability for b to appear at position p, where

b ∈ [0..255], the set of possible values for a byte.
∑

b∈[0..255] fp(b) = 1. We use

(f1, f2, ...fW ) to characterize the byte-frequency distribution of the worm, where

W is the width of the signature in terms of the number of bytes. Let f0(b)be the

byte frequency distribution of the legitimate traffic. The PADS signature is defined

as Θ = (f0, f1, f2, ...fW ),which consists of a normal signature f0 and an anomalous

signature (f1, f2, ...fW ). Table 3–1 gives an example of a PADS signature with

width W = 10.

When a new connection is established, we need to decide if the payload of the

connection is a variant of the worm or not. It is necessary to define a similarity

scale between a probabilistic byte frequency distribution and a byte sequence.

Consider a set of byte sequences S = {S1, S2, ..., Sn}, where Si, 1 ≤ i ≤ n,

is the byte sequence of an incoming connection. We want to decide whether Si is

a variant of the worm by matching it against a signature Θ. Let li be the length

of Si. Let Si,1, Si,2, ..., Si,li be the bytes of Si at position 1, 2, ..., li, respectively.

Let seg(Si, ai)be the W -byte segment of Si starting from position ai. The matching
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score of seg(Si, ai) with the anomalous signature is defined as

M(Θ, Si, ai) =
W∏

p=1

fp(Si,ai+p−1)

which is the probability for seg(Si, ai) to occur, given the distribution (f1, f2, ...fW )

of the worm. Similarly, the matching score of seg(Si, ai) with the normal signature

is defined as

M(Θ, Si, ai) =
W∏

p=1

f0(Si,ai+p−1)

We want to find a position ai that maximizes M(Θ, Si, ai) and minimizes

M(Θ, Si, ai). To quantify this goal, we combine the above two scores in order to

capture both the “similarity” between seg(Si, a) and the anomalous signature, and

the “dissimilarity” between seg(Si, ai) and the normal signature. For this purpose,

we define Λ(Θ, Si, ai)as the matching score of seg(Si, ai) with the PADS signature.

Λ(Θ, Si, ai) =
M(Θ, Si, ai)

M(Θ, Si, ai)
=

W∏
p=1

fp(Si,ai+p−1)

f0(Si,ai+p−1)
(3–1)

The matching score of the byte sequence Si with the signature is defined as the

maximum Λ(Θ, Si, ai) among all possible positions ai, that is,

lx−W+1
max
ai=1

Λ(Θ, Si, ai)

Alternatively, we can use the logarithm of Λ as the score, which makes it easier

to plot our experiment results. Our final matching score of Si with the PADS

signature Θ is defined as:

Ω(Θ, Si) =
lx−W+1
max
ai=1

1

W
log(Λ(Θ, Si, ai))

=
lx−W+1
max
ai=1

W∑
p=1

1

W
log

fp(Si, ai + p− 1)

f0(Si, ai + p− 1)

(3–2)
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The W -byte segment that maximizes Ω(Θ, Si) is called the significant region

of Si, which is denoted as Ri.The matching score of the significant region is the

matching score of the whole byte sequence by definition.

For any incoming byte sequence Si, if Ω(Θ, Si) is greater than a threshold

value, a warning about a (possibly variant) worm attack is issued. Additional

defense actions may be carried out, e.g., rejecting the connection that carries Si.

The threshold is typically set at 0. From the definition of Ω, above zero means that

Si is closer to the anomalous signature (f1, f2, ...fW ); below zero means that Si is

closer to the normal signature f0.

Next we discuss how to calculate Θ based on the previously collected instances

of a worm. Suppose we have successfully obtained a number n of variants of a

worm from the double-honeypot system. Each variant is a byte sequence with

a variable length. It contains one copy of the worm, possibly embedded in the

background of a normal byte sequence. Now let S = {S1, S2, ..., Sn} be the set of

collected worm variants. Our goal is to find a signature with which the matching

scores of the worm variants are maximized. We attempt to model it as the classical

“missing data problem” in statistics and then apply the expectation-maximization

algorithm (EM) to solve it.

To begin with, we know neither the signature, which is the underlying

unknown parameter, nor the significant regions of the variants, which are the

missing data. Knowing one would allow us to compute the other. We have just

showed how to compute the significant region of a byte sequence if the signature Θ

is know. Next we describe how to compute the signature if the significant regions of

the variants are known.

First we compute the byte frequency distribution for each byte position of the

significant regions. At position p ∈ [1...W ], the maximum likelihood estimation of

the frequency fp(x), x ∈ [0...255], is the number c(p, x) of times that x appears at
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position p of the significant regions, divided by n.

fp(x) =
cp,x

n

One problem is that fp(x) will be zero for those byte values x that never

appear at position p of any significant region. However, considering that our

calculation is based on a limited collection of the variants and fp(x) is only the

maximum likelihood estimation of the frequency, we are not absolutely confident

that the actual frequencies are zero unless we obtain all variants of the worm. For

better flexibility, we apply a “pseudo-count” to the observed byte count cp,x, and

the byte frequency fp(x) is estimated as

fp(x) =
cp,x + d

n + 256 · d (3–3)

where d is a small predefined pseudo-count number.

We mentioned in the previous section that anomaly-based systems utilize

the byte frequency distribution to detect the existence of worms. Our method

in this paper is a totally distinct concept. In anomaly-based systems, the

byte frequency distribution of the whole incoming traffic is compared with the

expected distribution of the normal traffic and a great deviation between these

two distributions is considered as malicious. In our method, however, the byte

frequency distribution is used to describe the signature from collected variants of

the same worm only. The purpose is to have a “relaxed” format of the signature

so that the malicious connection can be identified if the payload of the connection

matches to the signature approximately. Variants of the worm need to be obtained

before hand in our systems while anomaly-based systems only need to care about

the patterns of the legitimate traffic.

We have established that the PADS signature and the significant regions

can lead to each other. We do not know either of them, but we know that the
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significant regions are those segments that can maximize the matching score

with the signature. This “missing data problem” can be solved by an iterative

algorithm, which first makes a guess on the starting positions of the significant

regions, computing the signature, using the signature to compute the new starting

positions of the significant regions, and repeating the process until convergence.

3.4 Algorithms for Signature Detection

In this section, we show how to use the Expectation-Maximization algorithm

and the optimized Gibbs sampling algorithm to compute the PADS signature from

a collection of worm variants captured by our double-honeypot system. We want

to stress that, though comparing the signature with the payload of the incoming

connections is online, the PADS signature itself is computed off-line. There is

no real-time requirement. The purpose of the algorithms is to obtain a PADS

signature that is able to detect the variants of the polymorphic worm even if they

are unknown. If fast response of the worm defense is required, the payloads of

the captured worm variants should be used directly before they go through the

signature center specified. The generated PADS signature can be applied later on

for unobserved variants of the worm.

significant regionbackground

S2

S1

S6

S5

S4

S3

a1

a6

a5

a4

a3

a2

W

Figure 3–8. Signature detection
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3.4.1 Expectation-Maximization Algorithm

Expectation-Maximization (EM) [35] is an iterative procedure that obtains

the maximum-likelihood parameter estimations. Given a set S of byte sequences,

we lack the starting positions a1, a2, ..., an of the significant regions, which are

the missing data in our problem. The underlying parameter Θ of our data set is

also unknown. The EM algorithm iterates between the expectation step and the

maximization step after the initialization.

The description of EM algorithm is given below.

Initialization. The starting positions a1, a2, ..., an of the significant regions

for worm variants S1, S2, ..., Sn are assigned randomly. They define the initial

guess of the significant regions R1, R2, ..., Rn. The maximum likelihood estimate of

the signature Θ is calculated based on the initial significant regions.

Expectation. The new guess on the locations of the significant regions is

calculated based on the estimated signature Θ. In our algorithm, the new starting

position ai of the significant region is the position that the significant region has

the best match score with the signature Θ. In other words, we seek

ai = arg max
ai

Λ(Θ, Si, ai) ∀i ∈ [1..n]

Maximization By formula (3–3), the new maximum likelihood estimate of

the signature Θ is calculated based on the current guess on the locations of the

significant regions.

The algorithms terminates if the average matching score Ω is within (1 + ε) of

the previous iteration, where ε is a small predefined percentage.

Starting with a large signature width W , we run the above algorithm to decide

the signature as well as the significant regions. If the minimum matching score

of all significant regions deviates greatly from the average score, we repeat the
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algorithm with a smaller W . This process continues until we reach a signature that

matches well with the significant regions of all collected worm variants.

3.4.2 Gibbs Sampling Algorithm

One main drawback of the EM algorithm is that it may get struck in a local

maxima. There is no guarantee that the global maxima can be reached. In order

to solve the problem, many strategies have been proposed. One approach is to

start with multiple random parameter configurations and look for the best among

different results obtained. Another is to pre-process the data with some other

methods and choose “good” initial configuration. In recent years, the simulated

annealing [40] approach attracted great attention. Simply speaking, the approach

allows certain random selection of the parameter (with a small probability moving

towards a worse direction), which provides a chance to jump out of a local maxima.

One example of the simulated annealing is the Gibbs Sampling Algorithm [36],

which we will use to compute the PADS signature below.

The algorithm is initialized by assigning random starting positions for the

significant regions of the worm variants. Then one variant is selected randomly.

This selected variant is temporarily excluded from S. The signature is calculated

based on the remaining variants. After that, the starting position for the significant

region of the selected variant is updated, according to a probability distribution

based on the matching scores at different positions. The algorithm continues with

many iterations until a convergence criterion is met.

The description of the Gibbs sampling algorithm is given below.

Initialization. The starting positions a1, a2, ..., an of the significant regions

for worm variants S1, S2, ..., Sn are assigned randomly.

Predictive Update. One of the n worm variants, Sx, is randomly chosen.

The signature Θ is calculated based on the other variants, S − Sx.



60

The algorithm terminates if the average matching score is within (1 + ε) of the

previous iteration, where ε is a small predefined percentage.

Sampling. Every possible position ax ∈ [1..lx − W + 1] is considered as

a candidate for the next starting position for the significant region of Sx. The

matching score for each candidate position is Λ(Θ, Sx, ax) as defined in (3–1). The

next starting position for the significant region of Sx is randomly selected. The

probability that a position ax is chosen is proportional to Λ(Θ, Sx, ax). That is,

Pr(ax) =
Λ(Θ, Sx, ax)∑lx−W+1

ax=1 Λ(Θ, Sx, ax)

Go back to the predictive update step.

Some similarities and difference between EM method and Gibbs sampling

algorithm should be noted here. Both EM method and Gibbs sampler share

the same statistical model built on top of the vocabulary frequencies at each

positions of the predicted common signature region. EM can be thought of as a

deterministic version of Gibbs sampling and Gibbs sampling can also be thought of

as a stochastic analog of the EM algorithm. EM operates on the means of unknown

variables using expected sufficient statistics instead of sampling unknown variables

as does Gibbs sampling. Both EM and Gibbs sampling are used for approximation

with missing data.

3.4.3 Complexities

Since our algorithms are iterative, it makes no sense to discuss the total time

complexity. In stead, we discuss the time and space complexity in each iteration

here. The space complexity in both EM and Gibbs sampling algorithm are fixed

here. During the process, we only need to maintain a relative byte frequency table

of the signature Θ and the start locations of the significant region in each byte

sequence. Therefore, the space complexity is O(256W + n). The time complexity

is quite different. In Gibbs sampling algorithm, each time only one start location
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is updated. The time complexity in one iteration is O(li −W + 1) since there are

li −W + 1 possibilities. In EM algorithm, we update all start locations at once, the

time complexity is O(
∑

i(li −W + 1)) for one iteration. That does not mean Gibbs

sampling is better than EM in time complexity, however. They are generally the

same if updating all start locations is counted as one iteration.

3.4.4 Signature with Multiple Separated Strings

Thus far the PADS signature is assumed to be a continuous string (where

each position in the string is associated not with a byte value but with a byte

frequency distribution). The definition can be easily extended for a signature to

contain k(≥ 1) separated strings, which may have different lengths. The significant

region of a byte sequence also consists of multiple separated segments, each having

a starting position and corresponding to a specific string in the signature. The

matching score Λ(Θ, Si, ai1, ai2, ...) should now be a function of a set of starting

positions, and the significant region is defined by the set of starting positions that

maximizes the matching score. Because it remains that the signature and the

significant regions can be computed from each other, the EM algorithm and the

Gibbs Sampling algorithm can be easily modified to compute a signature with k

strings.

Incorporating models of signature with gaps is necessary and advantageous in

our our system. When polymorphism is used in the worm, an attacker may attach

different variants of the worm to the same legitimate payload. If gaps in signature

are not allowed, the legitimate payload which appears the same in each sampled

byte sequence, instead of worm body that have variations, will be identified by EM

or Gibbs sampling algorithms. With multiple locations and lengths maintained

for one significant region in byte sequence Si, the problem can be solved. By

expanding the total length of the signature with gaps, both the legitimate payload

and the worm body will be covered. In addition, the legitimate payload attached
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in the signature can be dropped if we compare it with the byte sequences collected

from the legitimate collection session. Therefore, the time and space complexity

can be significantly reduced when we used the simplified signature to check the

incoming traffic.

3.4.5 Complexities

Since our algorithms are iterative, it makes no sense to discuss the total time

complexity. In stead, we discuss the time and space complexity in each iteration

here. The space complexity in both EM and Gibbs sampling algorithm are fixed

here. During the process, we only need to maintain a relative byte frequency table

of the signature Θ and the start locations of the significant region in each byte

sequence. Therefore, the space complexity is O(256W + n). The time complexity

is quite different. In Gibbs sampling algorithm, each time only one start location

is updated. The time complexity in one iteration is O(li −W + 1) since there are

li −W + 1 possibilities. In EM algorithm, we update all start locations at once, the

time complexity is O(
∑

i(li −W + 1)) for one iteration. That does not mean Gibbs

sampling is better than EM in time complexity, however. They are generally the

same if updating all start locations is counted as one iteration.

3.5 MPADS with Multiple Signatures

Thus far the PADS signature is defined as a continuous “string” of byte

frequency distributions. It identifies a single significant region in an incoming byte

sequence. This strategy has a couple of limitations. First, a worm may include

a common segment that appears often in normal traffic. This common segment

defeats any attempt by the worm to be polymorphic because the worm is easily

identifiable by the segment. However, it can lure our system to choose the common

segment as the PADS signature and consequently produce false positives on the

normal traffic that happens to carry that segment. Second, a polymorphic worm

may have multiple characteristic segments that all carry useful information. PADS
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captures the most significant one but discards the rest, which renders it less

powerful against highly sophisticated polymorphic worms.

To address the above limitations, we propose a natural generalization, called

multi-segment position aware distribution signature (MPAD for short), which is

a set of PADS signatures that are combined to identify a worm. It is denoted as

M = (Θ1, ..., Θk), where Θi, 1 ≤ i ≤ k, is a PADS signature. Each PADS signature

may have a different width.

To calculate M, we first use the algorithms in Section 3.4 to compute a PADS

signature, Θ1, and the significant regions for Θ1. We then remove these significant

regions from the worm samples and compute the next PADS signature, Θ2, and the

significant regions for Θ2. We further remove these significant regions and compute

Θ3 ... until there is no more signature that can produce good matching scores for

all worm samples. When an incoming byte sequence is matched against M, it is

classified as a potential worm variant only when its matching scores with all PADS

signatures are above zero. To reduce the matching overhead, the PADS signature

with the most diverse distribution can be used first, which attempts to separate

worm variants (with some false positives) from the background traffic. The rest of

PADS signatures are then applied one after another to progressively filter out the

false positives.

3.6 Mixture of Polymorphic Worms and Clustering Algorithm

Until now we have only discussed how to calculate a PADS/MPAD signature

from a collection of worm variants that belong to the same polymorphic worm.

In reality, multiple different polymorphic worms may rage on the Internet at

the same time, and a double-honeypot system may capture a mixed set of worm

samples that belong to different worms. We have to first partition this mixed set

into clusters, each sharing similar traffic patterns and thus likely to come from

the same worm. This is called cluster partitioning problem. After partitioning, a
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PADS/MPAD signature is calculated for each cluster. The signatures can then be

used to identify new variants of the worms. We describe two algorithms for the

cluster partitioning problem.

3.6.1 Normalized Cuts

We define a similarity metric between any two variants. A naive definition

is to first compute the byte-frequency distributions of the two variants and

then measure the difference (e.g., KL-divergence) between them. Another naive

definition is to count the length of the longest common substring or the combined

length of the k longest common substrings. A better definition is to compute

a PADS/MPAD signature from the two variants and then take the combined

matching score between the variants and the signature. Our experiments will use

this definition of similarity. Consider two worm variants, Si and Sj. Suppose PADS

is used. Based on (3–2), the similarity between Si and Sj can be expressed as

Ωij = Ω(Θ, Si) + Ω(Θ, Sj)

=
li−W+1
max
ai=1

W−1∑
p=0

1

W
log

fp(Si, ai + p)

f0(Si, ai + p)

+
lj−W+1
max
aj=1

W−1∑
p=0

1

W
log

fp(Sj, aj + p)

f0(Sj, aj + p)

(3–4)

Where Θ is the PADS signature calculated from Si and Sj and W is the length of

the signature.

The cluster partitioning problem can be formulated in a graph-theoretic

way. We construct a complete graph with n nodes, representing the variants

S = {S1, ..., Sn}. The edge between Si and Sj is associated with a similarity value

of Ωij as defined in (3–4). Ωii = 0. Given the n × n similarity matrix Π = (Ωij),

i, j ∈ [1..n], we want to find such clusters (e.g., cliques in the graph) that have large

similarity values for intra-cluster edges but small similarity values for inter-cluster

edges. Figure 3–9 illustrates a simple example, where a shorter edge means a larger
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Figure 3–9. Clusters

similarity value. This is a well-studied problem and a spectral clustering algorithm

called normalized cuts can be used to extract the clusters [41, 42]. For the purpose

of completeness, we briefly describe the algorithm in our context.

The normalized cuts algorithm first decomposes the graph G into two clusters,

A and B, that minimize the following criterion:

cut(A,B)

assoc(A,G)
+

cut(A,B)

assoc(B, G)

where cut(A,B) is the sum of the similarity values of all edges that have one end

in A and the other end in B, assoc(A,G) is the sum of the similarity values of all

edges that have one end in A and the other end unrestricted, and assoc(B, G) is

similarly defined.

A vector yis used to define the two clusters. If the ith value of y is 1, then Si

belongs to the first cluster. If it is −1, then Si belongs to the second cluster. In

addition to the similarity matrix Π,we define a degree matrix Das follows

Dii =
∑

j

Ωij

for the diagonal elements and zero for all off-diagonal elements.
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The criterion can then be rewritten as

yT (D − Π)y

yT Dy

Minimizing the above criterion is an integer programming problem if y only take

discrete elements. An approximation is to treat y as a real vector [41] with positive

elements for the first cluster and negative elements for the second cluster. It can be

shown that any y satisfying the following equation for some λ value will minimize

the criterion.

(D − Π)y = λDy

Following certain transformations that we omit here, the generalized eigenvector y

correponding to the second smallest eigenvalue is used [41]. Readers are referred to

[41] for details.

After the algorithm partitions the graph into two clusters, we can recursively

apply the algorithm to further partition each cluster until there is no significant

difference between average intra-cluster similarity and average inter-cluster

similarity.

3.7 Experiments

We perform experiments to demonstrate the effectiveness of the proposed

signatures in identifying polymorphic worms. The malicious payloads of MS

Blaster worm, W32/Sasser worm, Sapphire worm, and a Peer-to-peer UDP

Distributed Denial of Service (PUD) worm are used in the experiments. The MS

Blaster worm exploits a vulnerability in Microsoft’s DCOM RPC interface. Upon

successful execution, MS Blaster worm retrieves a copy of the file msblast.exe from

a previously infected host [43]. The W32/Sasser worm exploits a buffer overflow

vulnerability in the Windows Local Security Authority Service Server (LSASS) on

TCP port 445. The vulnerability allows a remote attacker to execute arbitrary code

with system privileges [44]. For Sapphire (also called Slammer) worm, it caused
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Figure 3–10. Variants of a polymorphic worm

considerable harm simply by overloading networks and taking database servers out

of operation. Many individual sites lost connectivity as their access bandwidth was

saturated by local copies of the worm [45]. The PUD worm tries to exploit the SSL

vulnerability on i386 Linux machines [46].

In the experiments, we artificially generate the variants of these worms based

on some polymorphism techniques discussed in Section 3.2. For normal traffic

samples, we use traces taken from the UF CISE network.

Figure 3–10 illustrates the polymorphic worm design with five variants, S1,

S2, ..., and S5. Each variant consists of three different types of regions. The

black regions are segments of the malicious payload in the worm. Substitution

is performed on 10% of the malicious payload. Garbage payloads, which are

represented as the white regions with solid lines, are inserted at different random

locations in the malicious payload. The default ratio of the malicious payload

to the garbage payload is 9:1.1 In addition to garbage payload, each variant is

embedded in the legitimate traffic of a normal session, represented by the white

regions with dotted lines. The length of the normal traffic carried by a worm

1 This ratio is not shown proportionally in Figure 3–10 for better illustration.
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Figure 3–11. Influence of initial configurations

variant is between 2KB to 20KB. In the illustration, the significant regions of these

variants start at a1, a2, ..., and a5, respectively.

3.7.1 Convergence of Signature Generation Algorithms

In the first experiment, 100 variants of MS Blaster worm are generated and

they are used as worm samples for signature generation. The EM algorithm

and the Gibbs Sampling algorithm each run three times with different initial

configurations. Specifically, the initial starting points of significant regions

are randomly selected each time. Figure 3–11 shows the quality of the PADS

signature obtained by EM or Gibbs after a certain number of iterative cycles.

According to Section 3.4, the execution of either algorithm consists of iteration

cycles (Expectation/Maximization steps for EM and Update/Sampling steps for

Gibbs). During each iterative cycle, EM recalculates the significant regions of all

variants, while Gibbs only modifies the significant region of one randomly selected

variant. To make a fair comparison, we let the x axis be the average number of

recalculations performed on the significant region for each variant. The y axis is

the average matching score of the 100 variants with the signature obtained so far.

The matching score Ω is defined in (3–2). From the figure, the best matching score
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is around 7.5, which is likely to be the global maxima. EM tends to settle down at

a local maxima, depending on the initial configuration. Gibbs is likely to find the

global maxima but it does not stabilize even when it reaches the global maxima

due to the randomness nature in its selection of starting points of significant

regions.2

3.7.2 Effectiveness of Normalized Cuts Algorithm

The purpose of the second experiment is to evaluate the effectiveness of the

normalized cuts algorithm in solving the cluster partitioning problem. In this

experiment, 50 variants of MS Blaster worm with ids [1..50] and 50 variants of

W32/Sasser worm with ids [51..100] are generated. The normalized cuts algorithm

is used to separate the mixed 100 variants into clusters. The similarity matrix, as

defined in Section 3.6.1 and particularly (3–4), is calculated by using the Gibbs

sampling algorithm. The result is shown in the left-hand plot of Figure 3–12, where

the horizontal axes are variant ids, representing the rows i and the columns j of the

2 The termination condition was not used in this experiment to show the
dynamics during the Gibbs iterations.
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Figure 3–13. Matching score influence of different signature widths and sample
variants lengths

matrix, and the vertical axis is the similarity value between variants i and j. The

surface of the plot can be roughly partitioned into three regions. The first region

(i, j ∈ [1..50]) shows the similarity values amongst the set of MS Blaster worm

variants. The second region (i, j ∈ [51..100]) shows the similarity values amongst

the set of W32/Sasser worm variants. The rest region shows the similarity values

between MS Blaster variants and W32/Sasser variants. By using the normalized

cuts algorithm, the 100 worm variants are separated into two clusters, one for MS

Blaster and one for W32/Sasser. The resulting y vector is shown in the right-hand

plot of Figure 3–12, where each point represents one element in y. The variants

whose values in y are below zero belong to one cluster. The variants whose values

in y are above zero belong to the other cluster.

3.7.3 Impact of Signature Width and Worm Length

In the next set of experiments, we generate 2000 variants of MS Blaster worm,

Sasser worm, Sapphire worm, and PUD worm each. We use 100 samples from

each of the worms for signature generation. The rest 2000 variants are mixed with
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Figure 3–14. Influence of different lengths of the sample variants
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Figure 3–16. Influence of different lengths of the sample variants
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Figure 3–17. Influence of different lengths of the sample variants
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normal-traffic byte sequences to test the quality of the signature for each of the

four worms.

Figure 3–13 shows the average matching score with respect to the signature

width and the average length of the worm variants. Because the worm code has a

fixed length, we change the length of a variant by letting it carry a variable amount

of normal traffic. The two figures show the average matching scores of sample

variants after EM and Gibbs sampling algorithms converge to a final signature.

Figure 3–13 also indicates that increasing the signature width will decrease

the average matching score of worm variants. The reason is that a longer signature

means a larger significant region, which increases the chance for the significant

region to include garbage payload, which in turn decreases the matching score.

Figure 3–13 shows that increasing the length of the normal traffic carried by a

worm variant, which has been widely used by some polymorphic worms to elude

the anomaly-based systems, provides no help to avoid detection by our system. The

reason is that our system identifies a significant region and only uses the significant

region for signature generation. The carried normal traffic, no matter how much it

is, will not be used for signature generation.

Figure 3–14– 3–17 show the average matching scores of the testing worm/normal

traffic sequences. The scores for worm traffic are always above zero and the scores

for normal traffic are always below zero. Therefore, with a threshold of 0, worm

variants are distinctively separated from normal traffic. In our experiments, the

generated PADS signature was always able to identify new variants of the worm

without false positive rates. The false positive rate and false negative rate of our

algorithm will be discussed in the next subsection.

3.7.4 False Positives and False Negatives

Figure 3–18 show the false positive rate and false negative rate of our

algorithm for each of the four worms. We only show the influence of signature
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Figure 3–19. The performance of signature-based system using the longest common
substrings method.

width because the sample length has little influence on the matching scores. For

all four worm examples, neither false positive nor false negative rate exceed 0.5%.

As we can see from the figure, Gibbs sampling algorithm is always better than

EM algorithm for all four worms. With the increase of signature width, the false

positive rate decreases gradually while false negative rate increases gradually.

3.7.5 Comparing PADS with Existing Methods

For the purpose of comparison, we also perform experiments with some

existing methods. Figure 3–19 shows the experimental results based on the

longest common substring method [30], which first identifies the longest common

substring among the sample worm variants and then uses the substring as a

signature to match against the test variants. Based on the left-hand plot, as the

number of sample variants increase, the length of the longest common substring

decreases. A shorter signature increases the chance for it to appear in normal

traffic. Consequently, the false negative ratio decreases, but the false positive

ratio increases dramatically (the right-hand plot). On the contrary, without the

requirement of exact matching, a PADS signature is able to retain much more

(particularly statistical) characteristics of a polymorphic worm.
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Figure 3–20. Byte frequency distributions of normal traffic (left-hand plot) and
worm traffic (right-hand plot)
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Figure 3–21. Byte frequency distributions of worm variants. Left-hand plot:
malicious and normal payloads carried by a worm variant have equal
length. Right-hand plot: normal payload carried by a worm variant is
9 times of malicious payload.
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Now consider the position-unaware byte frequency distributions that are

used in some current systems. The left-hand plot of Figure 3–20 shows the

position-unaware byte frequency distribution of 100 normal traffic sequences (from

100 normal sessions) and the right-hand plot shows the byte frequency distribution

of MS blaster payload. These two distributions are very different, which seems

provide a way to detect the worm. However, if we create a worm variant by

embedding the worm payload in normal traffic, the combined byte frequency

distribution can be made very similar to that of normal traffic. Figure 3–21

shows the byte frequency distributions of two worm variants whose normal traffic

payloads are 1 and 9 times of malicious payload, respectively. The right-hand plot

is very similar to the left-hand plot of Figure 3–20. Therefore, using byte frequency

distributions alone cannot handle worm variants. The proposed position-aware

distribution signature works better against polymorphic worms.



CHAPTER 4
MULTIPLE PADS MODEL AND CLASSIFICATION OF POLYMORPHIC

WORM FAMILIES: AN OPTIMIZATION

4.1 Introduction

As is described in the previous chapters, the iterative methods is a time

consuming process. Because the PADS signature can only be obtained one by one

in the previous method, it will take a long time before every PADS signature has

been extracted. Secondly, because PADS signatures are extracted sequentially, the

quality of the PADS signature will be different. Since iterative methods are used,

different initialization will result in totally different PADS signature set, thus affect

the clustering of the polymorphic worm family. To address these problems, a new

method has to be used to further optimize the previous described approach.

This chapter described a new strategy intended to help identify and detect

the existance of polymorphic Internet worms. The approach tries to improve the

discovery of significant regions for more complicated polymorphism. Compared

with the previous methods, the advantages for the proposed approach are

manyfold. First of all, the significant regions in this approach contain multiple

blocks with no strict sequence. The flexibility allows the detection of more subtle

polymorphism such as code transposition. Secondly, those significant regions that

also appear in normal traffic backgrounds can be effectively removed. Even if the

attacker inserts common normal regions into the polymorphic worms purposely,

the significant region that actually performs the malicious operations can still be

detected. Finally, different types of polymorphic worms are classified simutanously

in order to detect the significant regions more accurately and decrease the false

rate.
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The generation of the PADS block is a “missing data” problem because neither

the malicious regions in each variants of the worm, nor the signature itself is

known. If the malicious regions are known, the PADS block can be calculated by

counting the number of each byte value appearing at different positions. On the

other hand, if the PADS block is known, the malicious region in each variants of

the worm can be obtained by scanning through the whole variants and finding the

regions that best matches the PADS block. The “missing data” problem can be

solved using iterative methods such as Expectation-Maximization (EM) or Gibbs

sampling algorithms which have been mentioned in [47].

The model of the single PADS block in [47] suffers from several limitations.

First of all, a single PADS block can not deal with over-seperated malicious regions

because one PADS block is unlikely to be able to cover all malicious regions.

Secondly, the single PADS block model is unable to exclude the influence of the

background noise. The approach makes an assumption that normal traffic does not

contain the same PADS block, which is not necessary true and can be exploited by

an brilliant attacker. Finally, the model of a single PADS block assumes that each

collected sample of the worm belongs to the same polymorphic worm family. There

is no mechanism to clssify different polymorphic worm families and exclude the

influence of those “outliners”, which will greatly decrease the performance of the

algorithm. In addition to the limitations, the method of extracting PADS blocks

assumes that each sample variant contains exactly one PADS block of the same

type. The sample variants not containing the PADS block will over-contribute

to the characterization of the PADS block and the sample variants containing

repeating PADS blocks will under-contribute.

This paper tries to solve the problem by proposing a multiple PADS blocks

model. In this model, a set of PADS blocks is identified for each polymorphic worm

family, which is identified by a classification method similiar to the extracting
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of PADS blocks. The signature combines those PADS blocks together and every

PADS blocks within the set are taken into consideration for worm detection. In

order to eliminate the influence of background noise, the common regions within

the normal traffic payload will be first identified and excluded from the sample

worm variant set. Furthermore, the method of extracting PADS blocks in this

paper is able to identify multiple PADS blocks from a mixture of sample variants

that belongs to different polymorphic families, even if some PADS blocks do not

appear in all of the sample variants and some sample variants contains repeating

PADS blocks. To accomplish our goal, we further define a new metric to describe

the quality of the matching between a set of PADS blocks and a byte sequence. It

can be considered as an optimization to the previous described approach.

In the following sections, the details of extracting PADS blocks, the model of

multiple PADS blocks, the signature definition of the multiple PADS model, and

the classification of polymorphic worm families, will be presented, step by step.

4.2 Extraction of Multiple PADS Blocks from the Mixture of
Polymorphic Worms

4.2.1 PADS Blocks and The Dataset from Byte Sequences

In this subsection, we briefly introduce Position-Aware Distribution Signature

(PADS) [47] blocks, which are worm signatures defined in a special format to

identify the malicious regions that appear in all or most of the variants for the

same polymorphic worm.

A PADS block is greatly different from a traditional string signature in that

multinomial byte-frequency distributions replace byte values at each positions of

the PADS block. For a PADS block of width W in terms of the number of bytes,

(f1, ..., fW) is used to characterize the byte-frequency distributions inside the region

of a malicious block, with fk = [fk0, ..., fkb, ...]
T for k = 1...W specifying the position
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k and b = [0...255] for the set of all possible byte values. fkb satisfies:

255∑

b=0

fkb = 1

Table 4–1 is an example of a PADS block with width W .

b f1 f2 ... f9 f10

0x00 0.001 0.001 ... 0.500 0.100
0x01 0.001 0.001 ... 0.200 0.500
0x02 0.001 0.001 ... 0.001 0.100
... ... ... ... ... ...

0xfe 0.001 0.001 ... 0.001 0.001
0xff 0.700 0.700 ... 0.001 0.001

Table 4–1. An example of a PADS block with width W = 10

Similiar to the definition of PADS blocks, the multinomial byte-frequency

distribution outside the malicious regions in a byte sequence can be defined as

f0 = [f00, ..., f0b, ...]
T with respect to all possible byte value b = [0...255]. We use F

to represent (f1, ..., fW) and f0 respectively in these two cases.

Our purpose is to find the PADS blocks within a mixture of polymorphic

worms. In this paper, each byte sequence Sj is broken up into overlappingly

segments of length W . If aj is used to represent the starting position of a W -byte

segment within a sequence Sj, then aj can be any value between 1 and lj −W + 1,

where lj is the total length of the sequence Sj. By extracting all possible W -byte

segments from the byte sequence set S = {S1, S2, ...}, a new dataset that contains

all possible W -byte segments is obtained. Suppose N is the total number of

sequences in the dataset, nj is the total number of W -byte segments within a

sequence Sj, and the total number within a sequence set is n. Apparently, we have

n =
N∑

j=1

nj =
N∑

j=1

(lj −W + 1)

In this paper, the total set of the W -byte segments forms the observed dataset.

To be consistant with the PADS blocks and faciliate the expression, the data of
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the W -byte segment is represented as byte-frequency distributions as well. Let

G = (g1, ...,gW) be the data of W -byte segment, with gk = [gk1, ..., gkb, ...]
T

being the multinomial byte frequency distribution at position k. If the byte value

b appears at the position k of the segment, then gkb = 1 and the rest probabilities

{gk1, ..., gk(b−1), gk(b+1), ...} are all 0. Table 4–2 is an example of the data for a

W -byte segment.

b g1 g2 ... g9 g10

0x00 0.000 0.000 ... 1.000 0.000
0x01 0.000 0.000 ... 1.000 1.000
0x02 0.000 0.000 ... 0.000 0.000
... ... ... ... ... ...

0xfe 0.000 0.000 ... 0.000 0.000
0xff 1.000 1.000 ... 0.000 0.000

Table 4–2. An example of a segment with width W = 10

4.2.2 Expectation-Maximization (EM) Algorithm

We first review the Expectation-Maximization (EM) algorithm before it is

applied in our problem. Let Y = {y(1), ...,y(n)} be the observed total dataset.

Suppose each data has a mixture density from M groups, with each group decided

by an unknown paramter, then

p(y|θ) =
M∑

m=1

πmp(y|θm) (4–1)

where π ≡ {π1, ..., πM} are mixing probabilities that correspond to the

unknown parameters θ ≡ {θ1, ..., θM} and satisfy

M∑
m=1

πm = 1, πm ≤ 0

It is known that the MLE of the parameter value

θ̂ML = arg max
θ

(log p(Y|θ, π)) (4–2)
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can not be found analytically. The EM algorithm makes use of the concept

of “missing data”. In our model, the missing data is a set of n labels Z =

{z(1), ..., z(n)} associated with the n observed datas in the dataset, indicating

which group each observed data belongs to. Each label is a binary vector

z(i) = [z
(i)
0 , ..., z

(i)
M ]T . If an observed data y belongs to the m-th group, then

z
(i)
m = 1 and the data y(i) has the probability p(y(i)|θm). On the other hand, if the

observed data does not belongs to the m-th group, then z
(i)
m = 0.

Based on the definition of Z, it is straight forward that the prior probability

for z
(i)
m = 1 is πm,

p(z(i)
m = 1|θ, π) = πm (4–3)

The conditional densities of the data y(i) and the missing data z(i) can be written

as

p(y(i)|z(i), θ, π) =
M∏

m=1

p(y(i)|θm)z
(i)
m (4–4)

p(z(i)|θ, π) =
M∏

m=1

πm
z
(i)
m (4–5)

The joint density of the observed data y(i) and the missing data z(i) can be

obtained from Eq. 4–4 and 4–5:

p(y(i), z(i)|θ, π) = p(z(i)|θ, π)p(y(i)|z(i), θ, π)

=
M∏

m=1

[πmp(y(i)|θm)]z
(i)
m

(4–6)

Assuming each data is independent, then from Eq. 4–6 we have:

p(Y ,Z|θ, π) =
n∏

i=1

M∏
m=1

[πmp(y(i)|θm)]z
(i)
m (4–7)

The complete log-likelihood is

log p(Y ,Z|θ, π) =
n∑

i=1

M∑
m=1

z(i)
m log[πmp(y(i)|θm)] (4–8)
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For EM algorithm, we iteratively maximizes the expected it log likelihood over

the conditional distribution of the missing data Z based on the observed data Y
and the current estimate of parameters θ = {θ1, ..., θM, π1, ..., πM}.

Initialization: In this step, the initial unknown parameters θ̂(0), π̂(0) are

assigned randomly.

Expectation: In this step, the expected value of z
(i)
m (t) can be calculated

using Bayes’ rule and Eq. 4–3 and 4–4, where t represents the t-th iteration:

z(i)
m (t)

= E[z(i)
m |Y , θ̂(t), π̂(t)]

=P (z(i)
m = 1|y(i), θ̂(t), π̂(t)) · 1+

P (z(i)
m = 0|y(i), θ̂(t), π̂(t)) · 0

=
p(y(i)|z(i)

m = 1, θ̂(t), π̂(t))P (z
(i)
m = 1|θ̂(t), π̂(t))

p(y(i)|θ̂(t), π̂(t))

=
π̂(t)p(y|θ̂(t))

M∑
m=1

π̂(t)p(y|θ̂(t))

(4–9)

Maximization: The unknown parameter estimates can be updated in this

step. Since we have

E
Z
[log p(Y ,Z|θ, π)|Y , θ̂(t), π̂(t)]

= E
Z
[

n∑
i=1

M∑
m=1

z(i)
m log πmp(y(i)|θm)|Y , θ̂(t), π̂(t)]

=
n∑

i=1

M∑
m=1

E[z(i)
m |Y , θ̂(t), π̂(t))] log πmp(y(i)|θm)

=
n∑

i=1

M∑
m=1

ˆ
z

(i)
m (t) log πmp(y(i)|θm)

=
n∑

i=1

M∑
m=1

ˆ
z

(i)
m (t) log p(y(i)|θm) +

n∑
i=1

M∑
m=1

ˆ
z

(i)
m (t) log πm

(4–10)
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To obtain θ̂m(t + 1), we have

θ̂m(t + 1) = arg max
θm

E
Z
[log p(Y ,Z|θ, π)|Y , θ̂(t), π̂(t)]

= arg max
θm

n∑
i=1

ˆ
z

(i)
m (t) log p(y(i)|θm)

(4–11)

To obtain π̂m(t + 1), we have:

π̂m(t + 1) = arg max
πm

E
Z
[log p(Y ,Z|θ, π)|Y , θ̂(t), π̂(t)]

= arg max
πm

n∑
i=1

M∑
m=1

ˆ
z

(i)
m (t) log πm

(4–12)

4.2.3 Extraction of Multiple PADS blocks

We apply the EM algorithm to extract the multiple PADS blocks from the

mixture of polymorphic worms. In our case, the observed data y is the W -width

byte-frequency distributions G = (g1, ...,gW). The unknown parameter θm is the

W -width byte-frequency distributions F = (f1, ..., fW) for 1 ≤ m ≤ M − 1 and

background byte-frequency distribution F = f0 for m = M . Therefore, in the

previous subsection, p(y|θm) can be calculated by:

p(y|θm) =





W∏
k=1

255∏
b=0

(fkb)
gkb ,

if m < M, θm = (f1, ..., fW)m

W∏
k=1

255∏
b=0

(f0b)
gkb ,

if m = M, θm = f0.

(4–13)

Apply the above to Eq. 4–11 and 4–12, we have:

ˆfkb(t + 1) =
ˆ

z
(i)
m (t)gkb/

255∑

b=0

ˆ
z

(i)
m (t)gkb (4–14)

and
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π̂m(t + 1) =
n∑

i=1

ˆ
z

(i)
m (t)/n (4–15)

One problem with Eq 4–14 is that ˆfkb(t + 1) will be zero for those byte

values b that never appear at position k of any PADS blocks. The value will never

change during the iterations due to the update of the EM algorithm. However,

ˆfkb(t + 1), which is the estimate of the parameters of a multinomial random variable

by maximum likelihood, is actually subject to boundary problems. For better

flexibility, we apply a “pseudo-count” to the observed byte count, and the byte

frequency estimate becomes:

ˆfkb(t + 1) =

ˆ
z

(i)
m (t)gkb + βb

255∑
b=0

ˆ
z

(i)
m (t)gkb +

255∑
b=0

βb

(4–16)

The equation above is to assume that the prior distribution of fkb is Dirichlet

distribution with parameter β1, β2, ...[48]. In this paper, a constant d is used to

replace β1, β2, ... for simplicity reasons. Therefore, we actually have:

ˆfkb(t + 1) =

ˆ
z

(i)
m (t)gkb + d

255∑
b=0

ˆ
z

(i)
m (t)gkb + 255 · d

(4–17)

4.3 Classification of Polymorphic Worms and Signature Generation

4.3.1 Multiple PADS Blocks Model

In this subsection, the multiple PADS blocks model is presented, together

with the cretia whether or not a sequence is considered as malicious. In order to

take into consideration every PADS blocks within the set of a polymorphic worm

family, we treat the byte sequence as a feature vector space with each feature

as the similarity againt each PADS block. In our model, we use the conditional

log likelihood of a sequence for each PADS blocks to represent each feature. The
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sequence under the feature space is defined as:

h =




h(1)

h(2)

.

.

h(d)




=




log p(Y |F(1),Π(1))

log p(Y |F(2),Π(2))

.

.

log p(Y |F(d),Π(d))




where F(1),F(2), ...,F(d) are the PADS block signature ( corresponding to θ in the

extraction step ), Π(1),Π(2), ...,Π(d) are the mixturing probabilities ( corresponding

to π in the extraction step ) with respect to F(1),F(2), ...,F(d), and Y is the dataset

{y(1),y(2), ...,y(lj−W+1)} within a sequence Sj
1 .

To fit the multiple PADS model, the signature H for multiple PADS blocks

{F(1),F(2), ...,F(d)} is defined as a d-dimensional vector as well:

H =




H(1)

H(2)

.

.

H(d)




where H(1), H(2), ..., H(d) specifies the expected value of the conditional log

likelihood for each PADS blocks.

Once the set of PADS blocks and the signature H for the polymorphic worm

family are specified, each sample variant is scored based on how close it is with

respect to the signature H. In our model, Mahalanobis distance is used to measure

the similarity between the feature vector h of any sample variant and the signature

1 Y is different from previously defined Y in that Y is the observed dataset from
all byte sequences.
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H. Mahalanobis distance is a standard distance metric to compare two vectors. It

is a weighted Euclidian distance defined as:

d2(h,H) = (h−H)TΣ−1(h−H) (4–18)

The matrix Σ−1 is the inverse covariance matrix. The matrix can be pre-calculated

in our EM algorithm later on.

In other words, the signature is treated as a feature vector space with each

feature the matching score against certain PADS block. Therefore, every PADS

blocks within the set of a polymorphic worm family are taken into consideration for

worm detection.

H =




H(1)

H(2)

.

.

H(d)




In other words, the signature is treated as a feature vector space with each

feature the matching score against certain PADS block. Therefore, every PADS

blocks within the set of a polymorphic worm family are taken into consideration for

worm detection.

Once the set of PADS blocks and the signature H for the polymorphic worm

family are specified, each sample variant is scored based on how close it is with

respect to the signature H. In our model, Mahalanobis distance is used to measure

the similarity between the feature vector matching score h of any sample variant

and the signature H. Mahalanobis distance is a standard distance metric to

compare two vectors. It is a weighted Euclidian distance defined as:

d2(h,H) = (h−H)TΣ−1(h−H) (4–19)



89

The matrix Σ−1 is the inverse covariance matrix. The matrix can be pre-calculated

in our EM algorithm later on.

The advantage of Mahalanobis distance is that it takes into account the

different weights for each element of the vector by its variance and the covariance

of the variables measured. The computed value gives a measure of how well the

matching score of the new sample varriant is consistent with the training data set.

Based on the Mahalanobis distance, we define a score D of of any sample

variant against a polymorphic worm family. The meaning of the score D is totally

different from the matching score of a sample variant against a PADS block as

a match against a PADS block only does not necessarily mean that the sample

variant will be identified as a polymorphic worm. The calculation of the score D is

as follows:

1. Calculate the matching scores of the sample variant againt each PADS block

within the set, arrange the matching scores into a feature vector h.

2. Find the Mahalanobis distance between h and H: d2 = (h−H)TΣ−1(h−H).

3. The score D is defined as the similarity measured by D = e−
d2

2 . This score is

1 for a exact match and decreases otherwise.

4.3.2 Classification

A problem for the signature detection of polymorphic worms is the classification

of the sample variant set so that the sample variants can be grouped into different

polymorphic families. The classification serves two purposes. First, it helps

increasing the accuracy of the generated polymorphic signatures. Applying one

signature to each polymorphic worm family instead of treat all polymorphic

worms as one family can greatly improve the performance of the signature

generation. Second, the classification helps discovering the intrinsic mechanism

of the polymorphic worm as the malicious regions of can be better identified from

the background noise.
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Our method of classification is based on the EM algorithm, which is similiar to

the algorithm we described before. To save the space of the paper, the classification

algorithm is wrapped into a general EM algorithm discussed before. In our

classification algorithm, the observed data y is the d-dimensional h of each byte

sequence. The unknown parameter is the covariance matrix Σ and the signature

H. Different from the model we use in the PADS extraction, we assume h have a

Gaussian mixture density with M families for a d-dimensional random variable h.

Therefore, in the previous section, p(y|θm) is given by:

p(y|θm) =
1

(2π)d/2detΣm
1/2

e−
1
2
(h−Hm)T Σ−1

m (h−Hm)

=
1

(2π)d/2detΣm
1/2

e−
1
2
Dm

(4–20)

Similiar steps can be applied to the general steps of the EM algorithm.

4.4 Conclusion

In this chapter, we further investigate the multiple PADS model and propose

the optimization of our iterative approachs. The iterative methods discussed in

the last subsection suffer from several drawbacks. To address these problems, a

mixture model is used, which assumes that each segment of the dataset may come

from multiple PADS blocks at the same time. It has the clear advantage over

previously proposed approachs in that multiple PADS blocks can be extracted

simultaneously. Furthermore, we define a new metric to define the quality of the

matching between a set of PADS blocks and a byte sequence. To classify different

polymorphic Internet worm families, we also revisit the EM algorithm based on

a Gaussian mixture model for each byte sequence, which is assumed to be in a

feature vector space. The classification or clustering is also done based on an

iterative method (EM). Since both the extraction and the classification only need

one run of iterative methods, the total system can be done within two runs of the

iterative methods. Compared with the previous approach which requires multiple
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runs of the iterative methods, the newly proposed algorithm further reduces the

time needed for the system.



CHAPTER 5
SUMMARY AND CONCLUSION

5.1 Summary

This thesis discusses several novel techniques that detect, slow down, and even

stop the worm propagation over the Internet. Our primary goal is to automate the

anti-worm defense, which is largely a manual process today.

In the first part of the thesis, we proposes a distributed anti-worm architecture

(DAW), which integrates a number of new techniques. DAW detects possible

worm attacks by the edge routers monitoring the local scanning activity and

the management station monitoring the global scanning activity. The scanning

rate is measured based on the rate of failed connection requests, which sets the

worm-infected hosts apart from the normal hosts. DAW ensures sufficient time for

human reaction by the use of a temporal rate-limiting algorithm that constrains the

maximum scanning speed of any infected host and a spatial rate-limit algorithm

that constrains the combined scanning rate of all infected hosts in a network. We

evaluate the performance of DAW both analytically and by simulations, which

demonstrates that DAW is highly effective in damping the propagation of Internet

worms.

In the second part of the thesis, we provide a new defense system to detect the

attacks of malicious Internet worms. The key idea is to capture the samples of the

Internet worm using proposed double-honeypot system before the protected server

has been compromised. Those IP addresses that are unreachable from the outside

are used to attract and trap the attackers. The system is especially useful in large

networks where large number of unreachable IP addresses exist. Our system is

able to defend against polymorphic worms. After collecting a number of variants

92
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of polymorphic worm, the system uses iterative algorithms to find the PADS

signature of the worm, which is used to detect future worm attacks even if new

variants have not been captured before. In our experiment, a 100% accuracy has

been achieved to detect the variants of MSBlaster worm which means all malicious

traffic can be detected and all legitimate traffic can pass through the system with

no false positives. The system is completely automatic. It requires no involvement

of human experts, which is typically the drawback of the regular signature-based

system. The system also tolerates some modifications of the worm where both

signature- and anomaly-based systems may fail.

In the third part of the thesis, we further investigate the multiple PADS

model and propose the optimization of our iterative approachs. The motivation

for optimization is that the iterative methods discussed in suffer from several

drawbacks. Because the PADS signature can only be obtained one by one and

iterative approachs are time consuming process, it will take a long time before

every PADS signature has been extracted. Because PADS signatures are extracted

sequentially, the quality of the PADS signature will be different. Since iterative

methods are used, different initialization will result in totally different PADS

signature set, thus affect the clustering of the polymorphic worm family. We

propose a new way of extracting multiple PADS blocks at the same time using

iterative methods such as Expectation-Maximization (EM) algorithm. To classify

different polymorphic Internet worm families, we revisit the EM algorithm based

on a Gaussian mixture model for each byte sequence, which is assumed to be in

a feature vector space. The algorithm proposed save the time complexity of the

iterative approachs in that the extraction step can be done simultaneously.

5.2 Conclusion

The contribution of the research that is related to this thesis is threefold.

First of all, a distributed anti-worm architecture (DAW) that automatically slows
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down or even halts the worm propagation has been developed. DAW is designed

for an Internet service provider to provide the anti-worm service to its customers.

Analytical simulation results have demonstrated the effectiveness of the proposed

techniques. Secondly, a new system called “double-honeypot” system is proposed,

which is able to automatically capture the worm samples over the Internet. Finally,

a new definition of worm signature, which utilizes the statistical properties of the

polymorphic worms, are proposed, together with the new method of automatic

polymorphic worm signature generation. It can effectively identify polymorphic

worms from the normal background traffic. Moreover, it has the capability of

identify future worm attacks even if the worm was not seen before. The paper also

discuss several optimization techniques to reduce the time complexity of iterative

approachs.
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