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Traffic volume measurement is critical in transportation engineering and vehicular

networks. Existing research on traffic volume measurement mainly focuses on single-point

traffic statistics. In this dissertation, we switch our view from single-point to multi-point, and

study the important problem of privacy-preserving multi-point traffic volume measurement

in intelligent cyber-physical road systems (CPRS), which complements the state of art. We

take advantage of the capabilities provided by CPRS to exploit the potential for a fundamental

shift in the way how traffic data in support of multi-point traffic volume measurement can be

automatically collected. The objective is to allow transportation authorities to automatically

collect and efficiently measure the aggregate multi-point traffic volume data from CPRS

without learning information about individual vehicles.

In this dissertation, we start with the problem of privacy-preserving two-point traffic

volume measurement in CPRS, and propose four novel measurement schemes to solve this

problem, with varying degrees of efficiency, accuracy, and privacy. Our first two schemes

protect vehicles’ identities through keyed signatures based on a family of commutative one-way

hash functions, and they can achieve exact measurement results. The third and fourth

schemes achieve better privacy for vehicles through shared bit array masking, protecting

vehicles’ identities as well as their travelling trajectory. They are also much more efficient,

and can gracefully control the tradeoff between vehicles’ privacy and measurement accuracy.

In particular, our third scheme utilizes fixed-length bit arrays, and it works great under the
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assumption of similar traffic among different locations. Our fourth scheme removes this

assumption of traffic similarity through variable-length bit arrays, and it can fit in more realistic

situations where different locations observe different traffic volume.

After that, we extend our idea of variable-length bit array masking to address the problem

of privacy-preserving three-point traffic measurement, and eventually present a framework

to deal with the general problem of privacy-preserving multi-point traffic measurement. We

demonstrate the feasibility, scalability, and superior performance of our solutions through

mathematical proofs, numerical analysis, as well as extensive simulations. The research results

in this dissertation can be applied to a broad spectrum of applications in vehicular networks

and transportation engineering. Furthermore, they have potential applications beyond vehicular

networks, such as privacy-preserving traffic estimation in a subway system with tagged toll

cards. It is also possible for them to be used for estimating the movement patterns of mobile

users in a corporate wireless network.
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CHAPTER 1
INTRODUCTION

1.1 Research Background

Traffic volume measurement is critical in transportation engineering and vehicular

networks. It provides essential inputs to the most basic functions of road planning and

management [1]. Briefly speaking, traffic volume statistics can be summarized into two

categories, “single-point” statistics and “multi-point” statistics. Single-point statistics state

the number of vehicles traversing a specific point (geographical location) in the road system,

while multi-point statistics describe the number of vehicles traveling through multiple points

(geographical locations), during some measurement period. They are both very important to

a variety of transportation studies. However, prior research on traffic volume measurement

has mainly focused on “single-point” statistics [2–7], while the measurement of “multi-

point” statistics remains an open research problem. The research scope of this dissertation is

“multi-point” traffic measurement, which complements the state of art.

The blossom of intelligent Cyber-Physical Road Systems (CPRS) in recent years [8–19]

exposes the potential for a fundamental shift in the way how traffic data can be collected.

Enabled by latest technologies of wireless communications and on-board computer processing

in CPRS, transportation systems can now automatically collect traffic data from vehicles on

road, which can then be used in traffic volume measurement. However, challenges remain to

be tackled before the beauty of CPRS can be fully appreciated by its large audience. As more

and more people concern about their privacy, any traffic measurement scheme to be widely

accepted and applied in CPRS should put travellers’ privacy at its top priority. This motivates

our work to investigate on privacy-preserving multi-point traffic volume measurement. The

challenge of our work is to enable the automatic collection and efficient measurement of

aggregate multi-point traffic data while preserving the privacy of individual vehicles (henceforth

the privacy of travellers in the vehicles).
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Traffic Volume Measurement: Research in transportation traffic measurement can

be briefly summarized into two categories, measurement of “single-point” traffic statistics

and measurement of “multi-point” traffic statistics. In the past, the research focus is on the

estimation of “single-point” traffic statistics such as annual average daily traffic (AADT),

which state the number of vehicles passing a specific point (geographical location) during some

measurement period (e.g., a day for the case of AADT), and various predication models [2–7]

have been proposed to measure them using data recorded by roadside units (RSU) in CPRS,

such as automatic traffic recorders (ATR) installed at road sections. For example, Mohamad

et al. develop a multiple linear regression model which incorporates demographic variables to

measure AADT for country roads in [2], and Lam et al. adopt artificial neural networks to

estimate AADT by using short period counts for urban areas in [3]. Other research efforts that

belong to this category include the spatial statistical method proposed by Eom et al. in [4], the

support vector regression model presented by Neto et al. in [5], the absolute deviation penalty

procedure designed by Yang et al. in [6], and the regression and Bayesian based model derived

by Tsapakis et al. in [7], etc.

“Multi-point” traffic statistics, on the other hand, describe the number of vehicles

traveling through multiple points (geographical locations) during some measurement period.

In particular, two-point (also commonly referred to as point-to-point) traffic volume measures

how many vehicles have traversed two given locations, and three-point traffic volume measures

how many vehicles have traversed three given locations, during a measurement period. Similar

to single-point traffic statistics, multi-point traffic statistics provide essential input to a variety

of studies, including estimation of traffic link flow distribution as part of investment plan,

calculation of road exposure rates as part of safety analysis, and characterization of turning

movements at intersections for signal timing determination, etc. [1] However, there are only a

handful of efforts in literature that deal with the measurement of multi-point traffic statistics,

let alone the more challenging problem where the privacy of vehicles (henceforth the privacy

of travellers in the vehicles) is of concern. Furthermore, the existing solutions all have their
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limitations, suffering from either high computation overhead or violation of vehicle’s privacy.

For example, Lou and Yin propose to infer two-point traffic statistics from single-point traffic

data in the recent work of [20], but the practicability of their scheme is limited by its high

computation overhead. Google announced to provide real-time traffic data service in Google

maps [21], but their approach cannot assure vehicle’s privacy since it uses GPS and Wi-Fi

in phones to track locations [22]. Given the state of art, it is imperative to have an efficient

scheme to measure multi-point traffic volume while preserving vehicle’s privacy.

Intelligent Cyber-Physical Road Systems: CPRS has emerged as one of the

most promising research areas in road networks. It integrates the latest technologies in

wireless communications, on-board computer processing, sensors, GPS navigation, etc., into

transportation systems to enhance its safety, efficiency, and resiliency, and improve the driving

experience [8] [9]. In particular, IEEE has standardized Dedicated Short Range Communications

(DSRC) under IEEE 802.11p [10], which supports transmitting/receiving messages between

vehicles and RSUs. Also, the IntelliDrive [11] from USDOT [12] envisions a nationwide system

where vehicles communicate with RSUs in real time via DSRC.

Greatly advanced by new technologies in vehicular communications and networking

[13–19], CPRS provides the potential for a fundamental shift in how traffic data are collected:

instead of the traditional methods of household interviews and road surveys, which are both

time consuming and labor intensive, traffic data can now be automatically collected by RSUs

while vehicles are on road. This advantage of CPRS also greatly facilitates traffic volume

measurement. For example, when a vehicle passes by an RSU, it can report its unique ID, such

as its Vehicle Identification Number (VIN), to the RSU. From the IDs collected by all RSUs,

we can easily figure out the multi-point traffic data. However, this straightforward approach to

measure multi-point traffic volume leads to serious privacy breaching as it also tracks the entire

moving history of vehicles, which is clearly not acceptable to the travellers. In order for the

beauty of CPRS to be fully embraced by its large audience, the privacy of individual vehicles

must first be taken good care of.
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Privacy Issues: As more and more people concern about their privacy, any traffic

measurement scheme to be widely accepted and applied in CPRS should put travellers’ privacy

at its top priority. The transportation authorities from different countries have put forward

a number of principles to protect travelers’ privacy. For instance, the “anonymity by design”

principle required by IntelliDrive [11] from USDOT [12] aims at privacy protection in the first

place. Keeping the requirement of privacy preservation in mind, having the vehicles report

their unique IDs such as their VINs is clearly not acceptable. Other permanently or temporarily

fixed numbers also bare the potential of giving away the vehicles’ moving trajectory, so having

vehicles report them is not acceptable either. The challenge of addressing the privacy concerns

of travellers while measuring multi-point traffic volume opens the door to an interesting

research problem: How to design measurement schemes in which vehicles never transmit any

unique ID or fixed number for privacy protection, yet the random and de-identified information

that the vehicles report still supports the measurement of traffic among multiple different

locations? This is where our work originates.

1.2 Dissertation Overview

In this dissertation, we focus on the important research problem of privacy-preserving

multi-point traffic volume measurement in CPRS, which measures the number of vehicles

traveling through multiple geographical locations during some measurement period. We take

advantage of the capabilities provided by CPRS to exploit the potential for a fundamental

shift in the way how traffic data in support of multi-point traffic volume measurement

can be automatically collected. The objective is to allow transportation authorities to

automatically collect and efficiently measure aggregate multi-point traffic data from CPRS

without learning information about individual vehicles. During our course of research, we stress

that transportation traffic volume measurement is a critical subject in CPRS. We also bare in

mind that, in the broad context of vehicular and general computer networks, there are many

other important topics such as wireless communication [23–27], network measurement [28–35],

privacy and security [36–39], cloud computing [40–44], etc. Although we do not address those
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topics in this dissertation, they may interact with traffic volume measurement in CPRS under

certain scenarios where new research problems and applications may sprout.

In the remaining of this dissertation, we focus on the problem of privacy-preserving

multi-point traffic volume measurement in the context of CPRS. We first formally define

the research problem, and then design four novel schemes for privacy-preserving two-point

(point-to-point) traffic measurement. We analyze their performance, and discuss their

advantages and disadvantages. After that, we investigate the possibility to extend our design

to address the more challenging problem of privacy-preserving three-point traffic measurement,

and eventually present a general framework to measure traffic volume among three or more

locations. Below is an overview of the dissertation.

In Chapter 2, we formally define the problem of privacy-preserving multi-point traffic

volume measurement in the context of CPRS. We first introduce the system model, problem

definition, and threat model, then present three important performance metrics to evaluate

a traffic measurement scheme. After that, we discuss some straightforward solutions to

privacy-preserving two-point traffic measurement as well as their limitations.

In Chapter 3, we propose two novel schemes for privacy-preserving two-point traffic

measurement through keyed signatures [45]. The idea is that, since globally unique IDs like

VINs and other permanently or temporarily fixed numbers that are transmitted repeatedly

by a vehicle can be exploited for tracking purpose, IDs or other fixed numbers should be

preprocessed and protected by keys before transmission to the RSUs. In other words, RSUs will

only be able to collect keyed signatures of vehicles’ IDs. To achieve the goals of both traffic

measurement and privacy preservation, we utilize the nice properties of CPRS and also a family

of commutative one-way hash functions (COHF) to come up with two novel measurement

schemes through keyed signatures. In Chapter 3, we first introduce the family of COHFs, and

discuss how to construct the COHFs. Then we describe our first two schemes through keyed

signatures based on the COHFs. Both schemes contain three phases, initialization, online

reporting, and offline measurement. The key process is: a common COHF is deployed to all
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RSUs and vehicles, and vehicles apply the hash function to produce Keyed signatures of their

IDs (referred to as KIDs) using the keys which are either obtained from RSUs that they pass by

or randomly picked by the vehicles themselves. The KIDs, instead of real IDs, are reported to

RSUs for two-point traffic volume measurement. We analyze the performance of both schemes,

and summarize their advantages and disadvantages.

In Chapter 4, we present our third novel scheme for privacy-preserving two-point

transportation traffic measurement [46] [47], which combines the beauty of both shared

bit arrays and a statistical method, maximum likelihood estimate (MLE) [48]. We first discuss

the motivation for us to change the perspective from using keyed signatures to utilizing

shared bit arrays, then introduce our novel scheme based on shared bit array masking. We

analyze its performance through mathematical proofs, numerical and simulation results, which

demonstrate its applicability and scalability for large-scale road networks.

In Chapter 5, we propose our fourth novel design for privacy-preserving two-point traffic

measurement [49], which is an extension of the previous scheme [47], to fit in a broader

spectrum of real-life situations, where different RSUs may face different traffic volume. In

contrast to the solution with fixed-length bit arrays in [47], our extension design utilizes

variable-length bit arrays to encode traffic data reported by vehicles, where the length

of the bit array in an RSU is determined by and reflect the single-point traffic volume at

the corresponding location where the RSU is installed. In order to support traffic volume

measurement based on those variable-length bit arrays, we also propose a novel “unfolding”

technique. Through mathematical and numerical analysis as well as extensive simulations, we

demonstrate that the extension scheme based on variable-length bit arrays has comparable

efficiency with the previous scheme based on fixed-length bit arrays [47] and furthermore, it can

easily fit in the more realistic transportation model and achieve far better privacy and accuracy

than the previous scheme.

In Chapter 6 and 7, we further investigate the possibility to extend our existing designs

of privacy-preserving two-point traffic measurement to solve the more challenging and general
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problem of privacy-preserving multi-point traffic measurement [50], which measures the number

of vehicles passing through an arbitrary set of three or more RSUs (locations) during any

measurement period, while preserving the privacy of individual vehicles. The generalization

process is very natural. In Chapter 5, we have shown that through allocating variable-length

bit arrays to different RSUs based on their single-point traffic volume and having vehicles

report random bits in the bit arrays as they pass by RSUs, we can well preserve the privacy

of vehicles; and through the “unfolding” technique we can put together two variable-length

bit arrays to measure the traffic volume between the two corresponding RSUs. If we can

unfold two variable-length bit arrays to put together the corresponding two-point traffic

volume, we may also be able to unfold three or more variable-length bit arrays to compute

the corresponding multi-point traffic volume. Based on this idea, in Chapter 6, we design a

novel scheme for privacy-preserving three-point traffic volume measurement in CPRS, and

perform extensive simulations to demonstrate its applicability and scalability. In Chapter 7,

we generalize our designs and eventually present a general framework for privacy-preserving

multi-point traffic measurement, which can efficiently measure traffic volume among an

arbitrary set of three or more points (locations) while preserving vehicles’ privacy.

Finally, in Chapter 8, we conclude our work.

19



CHAPTER 2
PRELIMINARIES

In this chapter, we formally define the research problem of privacy-preserving multi-point

transportation traffic volume measurement in the context of CPRS. The objective is to allow

transportation authorities to automatically collect and efficiently measure aggregate multi-point

traffic volume data from CPRS without learning information about individual vehicles. We

first introduce the system model, the problem definition, and the threat model, then present

three important performance metrics to evaluate a traffic measurement scheme. After that,

we briefly discuss some straightforward solutions to privacy-preserving two-point traffic

measurement as well as their limitations.

2.1 System Model

We consider an intelligent CPRS model as illustrated in Figure 2-1, which involves

three groups of entities: vehicles, RSUs, and a central server, with the latter two forming

the infrastructure. Each vehicle has a unique ID, such as its VIN or other number chosen

permanently or temporarily. For example, each vehicle can randomly pick its ID (from a large

space) at the beginning of a day. Each RSU also has its unique ID. Both vehicles and RSUs

are equipped with computing and communication capabilities, such as on-board computer

chips and communication modules. Vehicles can communicate with RSUs in real time via

DSRC [10]. RSUs are connected to the central server through wired or wireless means. They

collect information from vehicles and transfer it to the central server for further processing on a

periodical basis, e.g., at the end of each measurement period (such as a day).

2.2 Problem Statement

Given any d locations where RSUs are installed, we define the set of vehicles that pass

all the d locations during some measurement period T as a d-point traffic flow. The size of

the d-point traffic flow is the number of vehicles in this set, called the d-point traffic volume.

For example, the two-point traffic volume among a set of two RSUs {Rx, Ry} measures the

number of vehicles passing both Rx and Ry, while the three-point traffic volume among a set
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Figure 2-1. Intelligent cyber-physical road system model. It includes three groups of entities:
vehicles, RSUs, and a central server. Each vehicle or RSU has a unique ID, and is
equipped with computing and communication capabilities. Vehicles can
communicate with RSUs in real time via DSRC. RSUs are connected to the central
server through wired or wireless means.

of three RSUs {Rx, Ry, Rz} describes the number of vehicles passing all three RSUs, Rx,

Ry, and Rz. The problem is to measure the d-point traffic volume (d > 1) under the CPRS

modeled above while protecting vehicles’ privacy.

To achieve the privacy protection end, we need a solution in which a vehicle never

transmits any unique identifier or any permanently or temporarily fixed data. Ideally, the

information transmitted by the vehicles to the RSUs looks totally random, out of which neither

the identity nor the trajectory of any vehicle can be pried with high probability. One typical

application scenario is to measure multi-point traffic in a city with a typical measurement

period of a day, where RSUs may be deployed at any interested locations in the city.

2.3 Threat Model

We assume RSUs are semi-trusted. On the one hand, all RSUs are from trustworthy

authorities, which can be enforced by authentication based on the public key infrastructure

(PKI), and RSUs will not be compromised. Each vehicle is pre-installed with the public keys
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of the trusted third-parties. Each RSU must have a public-key certificate from them. It

broadcasts the certificate in each query it sends out. When receiving a query from an RSU, the

vehicle verifies the certificate, and then uses the RSU’s public key to authenticate it. On the

other hand, the authorities may exploit the information collected by RSUs to track individual

vehicles when they need to do so. For instance, if a vehicle transmits any unique identifier

upon each query, that identifier can be used for tracking purpose.

We consider a threat model with passive adversary. The adversary can be the semi-trusted

RSUs, or an outsider of the system, which can eavesdrop on the communications between

the vehicles and RSUs, and record and analyze all captured messages. But it will not perform

any active attack to avoid being detected. Note that there are also other ways to track a

vehicle, for example, tailgating the vehicle, or setting cameras near RSUs to take photos and

using image processing to recognize it. These methods are beyond the scope of the work

in this dissertation – we will focus on preventing automatic tracking caused by the traffic

measurement scheme itself.

We also assume that a special MAC protocol such as SpoofMAC [51] is applied to support

privacy preservation such that the MAC address of a vehicle is not fixed. For instance, when

responding to an RSU, the vehicle may pick an MAC address randomly from a large space for

one-time use. Since the number of vehicles in the vicinity of the RSU is limited, the probability

for two vehicles to choose the same MAC address can be made negligibly small when the

address space is sufficiently large. Through this, vehicles can report information to RSUs for

traffic volume measurement without revealing their true identities.

2.4 Performance Metrics

In this dissertation, we consider three performance metrics to evaluate a traffic volume

measurement scheme: measurement accuracy, computation overhead, and preserved privacy.

They are defined in the following.
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2.4.1 Measurement Accuracy

Let nc be the true size of a d-point traffic flow and n̂c be the corresponding measurement

result. We can evaluate the measurement accuracy of a scheme in two different ways. First,

for individual/single-time measurement result, we can observe the measurement accuracy

through a parameter called error ratio, r = |n̂c−nc|
nc

, which states the relative deviation of the

measurement result from the real traffic flow size. Clearly, smaller r represents more accurate

measurement result, and vice versa.

Second, we can statistically analyze the measurement accuracy of a traffic measurement

scheme. For example, we can specify the measurement accuracy through a parameter β

which satisfies the following requirement: the probability for nc to fall into the interval

[n̂c · (1 − β), n̂c · (1 + β)] must be at least α, where α is a pre-determined parameter in

the range of [0, 1]. For a given probability α, a smaller value of β means more accurate

measurement results. For example, when α = 95%, a solution with β = 0.05 is more accurate

than a solution with β = 0.1 because the former ensures the measured traffic flow size has

a probability of 95% to be within ±5% deviation from the true value, while the latter only

ensures the measured result to be within ±10% deviation from the true value under the same

probability. An alternative way to measure the accuracy of a scheme is evaluating the bias and

standard deviation of n̂c

nc
. Clearly, a good measurement scheme should have close-to-zero bias

and relatively small standard deviation.

2.4.2 Computation Overhead

We consider the computation overhead for vehicles, RSUs, and the central server. For

vehicles, we measure the computation overhead for each vehicle per RSU en route. For RSUs,

we measure the computation overhead for each RSU per passing vehicle. For the central server,

we measure the computation overhead for it to measure the d-point traffic volume among an

arbitrary set of d RSUs. To scale to the large road systems as in nowadays, we require the

computation overhead for each involving group of entities in the measurement scheme to be as

small as possible.
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2.4.3 Preserved Privacy

The essence of privacy preservation in multi-point transportation traffic measurement

is allowing the adversary only a limited chance of identifying partially or fully any trajectory

of any vehicle. Accordingly, we define the preserved privacy of a scheme from two levels: the

first level is to hide the identity of each participating vehicle from unauthorized disclosure, and

furthermore, the second level is to protect the “trace” of any vehicle from being identified,

where a trace of a vehicle is a pair of RSUs it has passed by. The first level is straightforward,

while the second level is more difficult to capture. In this dissertation, we quantify the

second-level privacy of a measurement scheme through a parameter p which satisfies the

following requirement: the probability for any “trace” of any vehicle to not be identified must

be at least p. In other words, under the situations when a vehicle’s identity is revealed at one

location, the probability for the adversary to not be able to back trace any other location that

this vehicle has traversed based on this one-time revealed identity must be at least p. For

example, if a car keeps transmitting its fixed ID to the passing RSUs as it travels, p will be 0.

One can see that a larger value of p means better privacy. Intuitively, a scheme with p = 0.9

is better than one with p = 0.5 in terms of privacy, because the latter gives the adversary a

better chance to link traces of a vehicle to obtain its trajectory since it allows the traces to be

identified with a higher probability, i.e., 1− p.

Note that our privacy definition agrees with the privacy requirements as proposed in [52]

and [53]. The work [52] surveys different privacy metrics [53] [54] to characterize the vehicles’

privacy level. In contrast to the anonymity set analytical models [53] which vary as the traffic

conditions change, it is easier to judge the privacy level of a traffic measurement scheme

through a single quantitative metric of probability which fits the global system and applies to

various traffic conditions and scenarios. The work [54] considers the overall probability for an

adversary to follow a vehicle from origin to destination (OD data) with an entropy perspective.

However, we believe a stronger privacy, which considers the probability for the trajectory

of a vehicle (as opposed to the narrower OD data) not to be identified by any adversary, is
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desirable for CPRS. For example, the identity of a vehicle may be revealed at some location

(not necessarily at the origin or destination of its trip), e.g., through a photograph triggered by

the vehicle rushing a red light or by a police car stopping the vehicle. These circumstances are

not covered by the privacy definition of [54], but are captured by ours.

2.5 Straightforward Solutions and Their Limitations

There are some straightforward solutions to measure the two-point traffic flow size

between an arbitrary pair of RSUs in the road system. One approach is making vehicles report

their IDs to all RSUs that they pass by. RSUs collect the IDs from the passing vehicles. At the

end of each measurement period, all RSUs send their collected ID sets to the central server,

which then measures the two-point traffic flow size between each pair of RSUs by simply

comparing the two corresponding ID sets: if a vehicle ID appears in both ID sets, then the

vehicle must have passed both RSUs. Thus, the number of IDs that appear in both ID sets

equals the real two-point traffic flow size between the two corresponding RSUs. However, this

simple approach leads to serious privacy breaching as it reveals vehicles’ identities along the

way.

A natural follow-up thinking is making vehicles report keyed signatures of their IDs

(KIDs) instead of their real IDs to the RSUs en route [45]. The central server will compute the

two-point traffic flow sizes based on the KID sets collected by RSUs. To prevent the adversary

from using fixed KIDs to identify vehicles, each vehicle has many KIDs generated by different

keys. However, the KIDs of a vehicle must satisfy the following property: they will produce the

same result after a certain procedure of computations, allowing the central server to find out

they represent the same vehicle. In this scheme, although vehicles’ true identities are hidden

(i.e., first-level privacy is preserved), traces of each vehicle are still revealed through time and

can be linked to obtain the vehicle’s full trajectory. We will discuss this scheme in more details

in the next chapter.

An alternative approach is having the RSUs broadcast their IDs (RIDs). Each vehicle will

record the RIDs of all RSUs it has passed by, and transmit them to every RSU that it passes
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in the future. RSUs collect those RIDs from passing vehicles, and send them to the central

server at the end of each measurement period. To compute the size of a two-point traffic flow

between two RSUs, Rx and Ry, the central server simply goes through the RID set collected

by Ry (Rx), and count the number of times that Rx (Ry) appears in this set. This is the

directional two-point traffic flow size from Rx (Ry) to Ry (Rx). The undirectional two-point

traffic flow size between Rx and Ry is the sum of both directional traffic flow sizes. Clearly,

this approach also reveals a vehicle’s trajectory in the form of a list of RIDs sent to each

RSU that it passes. The identity of a vehicle may be revealed at some point by a photograph

triggered by the vehicle rushing a red light or by a police car stopping the vehicle. When the

identity is combined with the trajectory transmitted by the vehicle, the entire traveling path of

the driver will be revealed, which is not acceptable either.
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CHAPTER 3
PRIVACY-PRESERVING TWO-POINT TRAFFIC MEASUREMENT THROUGH KEYED

SIGNATURES

In the following three chapters, we will present four novel solutions for privacy-preserving

two-point traffic flow measurement. Recall that our goal is to allow transportation authorities

to automatically collect and efficiently measure the aggregate two-point traffic flow data from

CPRS without learning information about individual vehicles. To achieve this goal, we first

propose two measurement schemes through keyed signatures [45] in this chapter. Our idea is

that, since globally unique IDs like VINs and other permanently or temporarily fixed numbers

that are transmitted repeatedly by a vehicle can be exploited for tracking purpose, IDs or other

fixed numbers should be preprocessed and protected by keys before transmission. In other

words, RSUs will only be able to collect keyed signatures of vehicles’ IDs.

To achieve the goals of both traffic measurement and privacy preservation, we utilize the

nice properties of CPRS and also a family of commutative one-way hash functions (COHF) to

come up with two novel measurement schemes through keyed signatures. Here is an overview

of both schemes: a common COHF is deployed to all RSUs and vehicles, and vehicles apply

the hash function to produce Keyed signatures of their IDs (referred to as KIDs) using the

keys which are either obtained from RSUs that they pass by or randomly picked by the vehicles

themselves. The KIDs, instead of real IDs, are reported to RSUs for traffic flow measurement.

At the end of each measurement period, RSUs will send their collected KID set to the central

server, which will measure the traffic flow between two arbitrary RSUs based on the two

corresponding KID sets.

In the remaining of this chapter, we first introduce the family of COHFs, and discuss how

to construct the COHFs, then present our first two schemes that are based on the COHFs. A

summary of the two measurement schemes through keyed signatures will be given at the end

of this chapter, which further motivates our later idea of two-point traffic flow measurement

based on shared bit array masking to be discussed in the next two chapters.
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3.1 Commutative One-Way Hash Functions

In this section, we first introduce the family of COHFs, and then discuss how to construct

the COHFs.

3.1.1 Definition of COHFs

Consider a hash function h : A × B → C, where the two arguments are a hash input and

a hash key, respectively. A commutative one-way hash function, as its name suggests, satisfies

both one-wayness and commutativity. The definitions of the properties below are collated from

[55] and [56].

Definition 1. A family of one-way hash functions (OHF) is a set of functions hn : Vn ×Kn →

Zn, which satisfy the following three properties:

• Ease of computation: there exists a polynomial P such that for each integer n, hn(v, k)
is computable in time P (n, |v|, |k|) for all v ∈ Vn and all k ∈ Kn.

• Preimage resistance: there is no polynomial P such that, given n, k ∈ Kn, and z ∈ Zn,
there exists a probabilistic polynomial time algorithm which can find v ∈ Vn satisfying
hn(v, k) = z with probability greater than 1/P (n) for sufficiently large n, when k is
chosen uniformly from Kn and z is chosen uniformly from Zn.

• 2nd-preimage resistance: there is no polynomial P such that, given n, (v, k) ∈ Vn ×Kn,
and k′ ∈ Kn, there exists a probabilistic polynomial time algorithm which can find
v′ ∈ Vn satisfying hn(v, k) = hn(v

′, k′) with probability greater than 1/P (n) for
sufficiently large n, when (v, k) is chosen uniformly among all elements of Vn ×Kn and
k′ is chosen uniformly from Kn.

In this case, hn is said to have the one-wayness property.

In Definition 1, the first property requires that OHF is relatively easy to compute (in

polynomial time). The second property requires that it is computationally infeasible to find an

input which can be hashed to an arbitrarily pre-specified output. The third property requires

that it is computationally infeasible to find a second input that can be hashed under an

arbitrarily pre-specified key to the same output as an arbitrarily pre-specified input and key.
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Definition 2. A commutative hash function (CHF) is a hash function hn : Vn × Kn →

Vn, which satisfies the commutativity property: for all v ∈ Vn and for all k, k′ ∈ Kn,

hn(hn(v, k), k
′) = hn(hn(v, k

′), k).

From Definition 2, one can see that commutativity lies in the hash keys: given any input

and two keys, commutativity states that changing the order in which the two keys are applied

to the input won’t change the hash result. Further observed, if the range of hn equals the

domain of its first argument, we can exploit a new family of commutative one-way hash

functions which shall satisfy both one-wayness and commutativity.

Definition 3. Commutative one-way hash functions (COHF) are a family of hash functions

which have both one-wayness property and commutativity property.

In the next two sections, we will see one crucial benefit of utilizing the family of COHFs:

Vehicles can transmit their KIDs generated by hashing their IDs under totally different keys,

and be sure that no one will be able to get their IDs, even knowing the keys used by the

vehicles (one-wayness). Yet the KIDs still allow traffic flow measurement as demanded

(through commutativity).

3.1.2 Construction of COHFs

Now we discuss how to construct COHFs. According to Definition 3, a COHF is a

hash function that satisfies both one-wayness and commutativity. There can be different

constructions of COHFs given different types of hash functions, and here we discuss one

construction based on the exponentiation modulo n function, hn(v, k) = vk mod n. We claim

that hn is a COHF with some restrictions on n.

Definition 4. A prime p is defined to be safe if p = 2p′ + 1 where p′ is an odd prime. A

number n is defined to be a rigid integer if n = pq where p and q are distinct large safe primes.

Theorem 1. The function hn(v, k) = vk mod n is a commutative one-way hash function if n

is a rigid integer.
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Proof: Clearly, hn is commutative. As to the one-wayness, hn satisfies the property of

ease-of-computation since there are efficient methods to perform exponentiation of a base to

an exponent in polynomial time (e.g., [57]). Note that the selection of n and hn follows the

RSA cryptosystem [58]. Therefore, the preimage resistance property of hn also follows the

cryptographic security of RSA [59]. The third property, 2nd-preimage resistance, is rooted

in the characteristics of rigid integers. It is demonstrated in [56] that if n is a rigid integer,

finding collisions with specific constraints such as 2nd-preimage cannot be done in polynomial

time. This completes the proof. 2

Therefore, to construct a COHF based on the exponential function hn(v, k) = vk mod

n, we only need to determine a large rigid integer n. There is a practical method to construct

it, and the basic idea is that for n = pq to be a rigid integer, each of p, q, (p−1)
2

and (q−1)
2

must be primes congruent to 5 modulo 6. Therefore, the process is to first select a “random”

large integer p′ that is congruent to 5 modulo 6 until one is found such that p′ and 2p′ + 1 are

both prime, and then choose a suitable q′ similarly. After that, n can be easily constructed by

n = pq = (2p′ + 1)(2q′ + 1).

3.2 First Scheme Based on COHFs

Taking advantage of the COHFs, we propose our first scheme for privacy-preserving

two-point traffic flow measurement. In this scheme, each measurement period consists of three

phases: initialization, online reporting, and offline measurement. First, during the initialization

phase, vehicles and RSUs are pre-configured with a common COHF hn, and each RSU also

generates a unique key for itself. Then during the online reporting phase, vehicles will generate

keyed-signatures (KIDs) using their IDs and the keys received from passing RSUs, and send

their KIDs (instead of their real IDs) to the RSUs. Finally, the RSUs will send their keys and

collected KID sets to the central server, who will measure the two-point traffic volume between

two arbitrary RSUs based on their keys and collected KID sets. In this section, we first present

the three measurement phases of our first scheme, then analyze its performance. We end

this section with a brief discussion about a potential disadvantage of our first scheme, which
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motivates our design of the second enhanced scheme based on COHFs to be presented in the

next section.

3.2.1 Initialization

The first phase is initialization, when a common COHF hn must be pre-distributed to

all vehicles and RSUs. As we discussed earlier, the COHF hn is determined by a large rigid

integer n. Therefore, all RSUs and vehicles are pre-configured with a suitable value of n. Also,

clocks of RSUs are loosely synchronized as they are all connected to the central server through

wired or wireless means. Every RSU generates a random number as its hash key for the current

measurement period. With the central server’s assistance, all hash keys are unique: Let kx be

the hash key generated by RSU Rx. We require that, for any two RSUs Rx and Ry, their keys

kx and ky be different. If the server finds two hash keys reported from RSUs are the same,

it will inform one of them to regenerate a key. The key uniqueness requirement serves an

important purpose of privacy perservation, which will be explained later.

3.2.2 Online Reporting

The online reporting phase securely collects information for traffic flow measurement. The

RSUs broadcast queries in pre-set intervals (e.g., once a second), ensuring that each passing

vehicle receives at least one query and meanwhile giving enough time for the vehicle to reply.

Collisions can be resolved through well-established CSMA or TDMA protocols, which are not

the focus of our design. Every query that an RSU sends out includes the RSU’s ID, public-key

certificate, as well as its current hash key. When a vehicle, whose ID is v, receives a query from

an RSU Rx, it first verifies the certificate, and then uses the RSU’s public key to authenticate

the RSU. After verifying that Rx is from the trustworthy authority, the vehicle generates a KID

based on its ID v and the RSU’s key kx by computing a hash d = hn(v, kx) = vkx mod n.

After that, it reports the KID d to the RSU, which then stores d in its local storage.

3.2.3 Offline Measurement

At the end of each measurement period, the traffic flow sizes between pairs of RSUs are

computed based on the KIDs collected by RSUs during the online reporting phase. Specifically,
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every RSU will send its key as well as the collected KID set to the central server, which will be

in charge of the offline traffic flow size computation.

Thanks to the commutativity property of hn, given two sets of KIDs, Hx = {hn(·, kx)}

and Hy = {hn(·, ky)}, collected by two RSUs Rx and Ry respectively, and the two

corresponding keys, kx and ky, it is easy for the central server to determine the traffic flow

size between Rx and Ry. In principle, changing the order in which two keys are applied to

the same vehicle ID using COHFs won’t change the final hash result. Therefore, the central

server simply further hashes each RSU’s KID set by the other RSU’s key to obtain two

double-hashed sets Hx,y = {hn(hn(·, kx), ky)} and Hy,x = {hn(hn(·, ky), kx)}, and the traffic

flow size between Rx and Ry simply equals the number of common elements in Hy,x and Hx,y

according to Theorem 2 in the following. Note that if we take the timestamps of the KIDs

into consideration, we can easily determine the size of a directional traffic flow for vehicles that

appear at Rx first and then appear at Ry at a later time.

Theorem 2. Given a commutative one-way hash function hn(v, k) = vk mod n, for arbitrary

vehicle IDs v and v′, and arbitrary keys k and k′, hn(hn(v, k), k
′) = hn(hn(v

′, k′), k) holds if

and only if v = v′ holds.

Proof: The sufficiency is clearly established given the commutativity of hn. The necessity

is granted through two facts. First, hn is commutative. Second, since the number of vehicles in

the vicinity of two RSUs is limited, and the hash space is sufficiently large, the probability for

two distinct vehicle IDs to be hashed under the same key to the same value is negligibly small.

This completes the proof. 2

3.2.4 Scheme Analysis

The proposed scheme preserves vehicles’ privacy. As vehicles only transmit their KIDs to

RSUs, no one can obtain their real IDs thanks to the one-wayness of the COHF hn. Vehicles

are further protected from being tracked since no fixed information of them is transmitted

because of the key uniqueness requirement.
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The proposed scheme is also efficient. Each vehicle only needs to compute one hash for

each passing RSU, so the computation overhead for each vehicle per RSU en route is O(1).

The RSU only need to store the KID that each passing vehicle reports, so the computation

overhead for each RSU per passing vehicle is also O(1). As for the central server, to compute a

traffic flow size between two RSUs Rx and Ry, it needs to perform a hash for each KID value

from the two KID sets, so the total number of hash operations is bounded by O(nx + ny),

where nx and ny are the total number of vehicles passing by Rx and Ry, respectively. Further,

to find the common elements among the two double-hashed sets, it needs to sort the two

double-hashed sets, which takes O(nx log nx + ny log ny) comparison operations.

3.2.5 Identical-Key Attack

The above analysis assumes the transportation authority (who owns RSUs and the central

server) is trustworthy. But this assumption also allows the transportation authority an easy

way of tracking vehicles. It may simply set all or a portion of RSUs with the same key. When a

vehicle passes these RSUs, its KID stays the same and therefore may be exploited for tracking

purpose. To avoid transmitting the same number (KID), a vehicle may keep record of the

RSU keys that it has seen before, and will not respond to an RSU if the key from that RSU is

already in the vehicle’s record.

This solution however causes an under-measurement problem. Suppose during a

measurement period (e.g., a day), a vehicle passes by an RSU for two or more times. This

is not uncommon in reality. For example, people driving to work are likely to follow the same

route back home. While the vehicle contributes twice to traffic volume between home and

workplace, it is counted only once (since the vehicle does not respond to the same key). To

fully address this concern, we need to make a shift in who is responsible for key generation.

We shall move that responsibility from RSUs to the vehicles in order to ensure that the key

uniqueness requirement is met.

33



3.3 Enhanced Scheme Based on COHFs

Instead of using the keys generated by RSUs, we propose an enhanced scheme which lets

vehicles choose their own keys to protect their IDs. Still, vehicles and RSUs are pre-configured

with a common commutative one-way hash function hn. RSUs will collect KIDs from vehicles,

and a central server will compute traffic flow sizes based on the collected KID sets. The

difference is that, RSUs will not just record the KIDs. Instead, it will store a set of ⟨key, KID⟩

pairs obtained from passing vehicles for measurement purpose. The enhanced scheme also has

three phases: initialization, online reporting, and offline measurement.

3.3.1 Initialization

The initialization phase of our enhanced scheme is very simple and similar to the first

scheme. First, a common COHF hn is pre-distributed to all vehicles and RSUs through

pre-determining a suitable value of n. Also, clocks of RSUs are loosely synchronized as they are

all connected to the central server through wired or wireless means.

3.3.2 Online Reporting

During the online reporting phase, ⟨key, KID⟩ pairs are securely collected by RSUs from

the passing vehicles. More specifically, when a vehicle v passes by an RSU Rx, the vehicle will

first verify that the RSU comes from trusted authorities based on the public-key certificate

received from the RSU’s periodic broadcast. Then the vehicle will randomly choose a hash key

k, and compute a hash d = hn(v, k) = vk mod n, which serves as a KID of v. After that, the

vehicle reports the KID d and the key k to the RSU Rx, which stores this ⟨key, KID⟩ pair in its

local storage.

3.3.3 Offline Measurement

At the end of each measurement period, all RSUs will send their collected data to the

central server. Given two sets of ⟨key, KID⟩ pairs collected by two RSUs Rx and Ry, the

central server can compute the size of the corresponding traffic flow based on the hash

function hn’s commutativity. The process is to go through these two sets, and for each

pair ⟨kx, dx⟩ collected by Rx, check if there is a pair ⟨ky, dy⟩ collected by Ry such that
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hn(dy, kx) = hn(dx, ky); we say the two pairs share a common double-hashed value in this

case. If so, a vehicle is found to pass both RSUs. One can easily verify its correctness through

Theorem 2.

3.3.4 Scheme Analysis

The enhanced scheme eliminates the under-measurement problem that is encountered by

the previous scheme. Even if a vehicle may pass an RSU for several times, each time it uses

a different key to produce a new KID, which will be recorded and counted towards the final

measurement result. Therefore, the measured traffic flow sizes should always be equal to the

real ones. Observe that the enhanced scheme improves the measurement accuracy at the cost

of increased computation overhead for the central server. In order to compute the traffic flow

size between two RSUs, Rx and Ry, the central server needs to perform a re-hash for each

pair collected by Rx under every key from Ry, and do the same thing for Ry. Suppose the two

RSUs have collected nx and ny pairs of ⟨key, KID⟩, respectively. The time complexity for the

central server to compute the corresponding traffic flow size will be O(nx · ny).

3.3.5 Sampling

To address the efficiency problem, we propose to use sampling to estimate the traffic

flow sizes. Given two sets of ⟨key, KID⟩ pairs collected by two RSUs Rx and Ry, Dx =

{⟨kix, dix⟩}nx
i=1, Dy = {⟨kiy, diy⟩}ny

i=1, it takes O(nx · ny) time to calculate the traffic flow size.

To reduce computation overhead, we randomly select n′
x elements from Dx and n′

y elements

from Dy, denoting them as D′
x and D′

y, respectively. It only takes O(n′
x · n′

y) time to compute

the traffic flow size n′
xy from such a sample. Based on n′

xy and the sampling probabilities, we

can construct the MLE estimator [48] of nxy as

n̂xy = n′
xy ×

nx

n′
x

× ny

n′
y

, (3–1)

which is derived as follows: The idea is that if two pairs from Dx and Dy share a common

double-hashed value, we treat them as a common element in these two sets. So our problem is

equivalent to the set-intersection estimation problem: Let X and Y be two sets with |X| = a,
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|Y | = b, |X ∩ Y | = c. We randomly choose two subsets of elements, X ′ and Y ′, with

cardinalities a′ and b′, from X and Y . We find the number of common elements in X ′ and Y ′,

denoted by c′. The problem is to construct the MLE of c based on c′, a, b, a′, and b′.

For a randomly selected e ∈ X ′, the probability for e ∈ X ∩ Y is c
a
. Under this condition

e ∈ X ∩ Y , the probability for e ∈ Y ′ is b′

b
. Combining them, we have P (e ∈ Y ′|e ∈ X ′) = cb′

ab
.

There are a′ elements in X ′, so the likelihood function for observing c′ common elements in X ′

and Y ′ is

L =

(
cb′

ab

)c′(
1− cb′

ab

)a′−c′

. (3–2)

We want to find the MLE of c, denoted as ĉ, which maximizes L. To find ĉ, we take logarithm

on both sides of (3–2):

lnL = c′ × ln

(
cb′

ab

)
+ (a′ − c′)× ln

(
1− cb′

ab

)
(3–3)

Take the first order derivative of (3–3) and let it be zero. We have ĉ = c′× a
a′
× b

b′
. By changing

the notations to those for our problem, we have n̂xy = n′
xy × nx

n′
x
× ny

n′
y
, which is the MLE of nxy.

By adopting the sampling method, the computation overhead for the central server to measure

the traffic flow size is reduced from O(nx · ny) to O(n′
x · n′

y).

3.4 Simulation

We evaluate the performance of our two schemes through simulations. The programs are

written in Matlab, and the experimental platform is a PC featured with an Intel Core 2 E8400

CPU and 4GB RAM, running Windows XP. However, we expect the central server in practice

to be much more powerful. The offline measurement may also be outsourced to cloud servers

and benefit from parallel work. The datasets used in the simulations are generated such that

each vehicle ID or key is a 32-bit number, and two RSUs, Rx and Ry, each store 3,000 vehicle

records. There are 500 vehicles that pass both Rx and Ry, i.e., the actual two-point traffic flow

size nxy is 500.
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Table 3-1. Average computation overhead for the two schemes based on keyed signatures. The
unit for the time is thousand of seconds.

First
Second Scheme with Different Sampling Probabilities

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.001 0.017 0.069 0.156 0.276 0.430 0.620 0.846 1.102 1.394 1.720

In the simulations, we consider two performance metrics. One is measurement accuracy,

represented by error ratio r:

r =
|n̂xy − nxy|

nxy

× 100%, (3–4)

where n̂xy is the measured traffic flow size. Clearly, smaller r represents more accurate

measurement result, and vice versa. The other is computation overhead, measured by time

consumed for the central server to obtain n̂xy.

Our first scheme has an error ratio of 0% unless it does not respond to the keys that it

has seen before (for privacy purpose as we have discussed in Section 3.2.5). Hence, we only

measure its time cost. The enhanced scheme addresses the identical-key attack at the cost of

higher computation overhead. It has an error ratio of 0% only when the sampling probability

p is 1. In our simulations, we vary p from 0.1 to 1, with a step size of 0.1. For each sampling

probability p, we randomly draw a fraction p of all records from Rx and do the same for Ry.

The offline measurement is performed over the sampled subsets and the traffic flow size are

estimated by (3–1). The time cost is measured and the error ratio is computed from (3–4).

The process is repeated 10 times to show the statistic effect.

Table 3-1, Figure 3-1 and Figure 3-2 present our simulation results. Table 3-1 shows

the computation overhead of the first scheme and the second scheme under varied sampling

probabilities p. The two figures are drawn from the simulation results of the second enhanced

scheme. Figure 3-1 shows the mean and standard deviation of the error ratio r under varied

p. The length of each error bar is two times the standard deviation of r, whose mean is at

the center of the bar. We see that both the mean and standard deviation of r decrease with

the increment of p. Intuitively, when we increase the sample size, the measurement result is
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Figure 3-1. Mean and standard deviation of error ratios for the second two-point traffic flow
measurement scheme.
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Figure 3-2. Average time overhead for the offline measurement phase of the second two-point
traffic flow measurement scheme.
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likely to be more accurate. When p equals 1, the error ratio is 0% (the rightmost point of the

figure), which agrees with our theoretical prediction. Figure 3-2 shows the average time taken

by the central server to measure the traffic flow size under each sampling probability. It is clear

that the computation overhead increases quadratically with p, which is also consistent to our

analysis in Section 3.3.5. We stress that this is offline computation.

3.5 Summary

In this chapter, we propose two novel two-point traffic measurement schemes through

keyed signatures based on COHFs. The goal is to allow transportation authorities to

automatically collect and efficiently measure the aggregate two-point traffic flow data

from CPRS without learning information about individual vehicles. The idea is that, since

globally unique IDs like VINs and other permanently or temporarily fixed numbers that are

transmitted repeatedly by a vehicle can be exploited for tracking purpose, IDs or other fixed

numbers should be preprocessed and protected by keys before transmission. In other words,

RSUs will only be able to collect keyed signatures of vehicles’ IDs (KIDs). To measure the

two-point traffic flow sizes, we introduce a family of COHFs, and propose two novel traffic flow

measurement schemes, which can protect the identities of vehicles. The first scheme is more

efficient and can achieve exact measurement result, but it is vulnerable to an identical-key

attack. The second scheme prevents this attack at the cost of increased computation

overhead. To make it practical, we adopt statistical methods with sampling to construct

an MLE estimator for the traffic flow size. The sampling can control the tradeoff between the

computation efficiency and the measurement accuracy. We perform simulations, and the results

demonstrate the feasibility of our schemes.

Now we should ask the question: can we do better? As we look at the performance

metrics of a traffic flow measurement scheme, we think that we may improve the two existing

schemes from two directions. First, can we further improve the computation overhead? The

enhanced scheme (which is free from the identical-key attack) achieves a constant computation

overhead for each vehicle per RSU en route as well as for each RSU per passing vehicle,

39



which is efficient enough. However, as for the central server, the computation overhead for

it to compute the two-point traffic flow size between a pair of RSUs is in the quadratic form

regarding to the number of vehicles passing by each RSU, i.e., O(N2) assuming each RSU has

O(N) cars passing by during this measurement period. Can we further improve the efficiency

of the central server? This is one direction that we may consider.

Another improvement direction is, can we further preserve the vehicles’ privacy? The

current two schemes clearly preserve the first-level privacy of vehicles, but what about the

second-level privacy? In these two solutions, since a pair of double-hashed values represents

a same vehicle, which is the foundation for recognizing the common vehicles passing two

arbitrarily specified RSUs and measuring the two-point traffic flow sizes, the “traces” of

vehicles are still revealed to some degree. Although the owners of those “traces” are normally

not trackable, it may happen that the identity of a vehicle is accidentally revealed at some

point. For example, the identity of a vehicle may be revealed by a photograph triggered by

the vehicle rushing a red light or by a police car stopping the vehicle. When the identity is

combined with the KID information transmitted by the vehicle, the central server can also

discover the full traveling path of this vehicle through checking every KID set of every RSU

for common double-hashed values. Despite the fact that the thorough-checking operation to

recover a vehicle’s full path is quite expensive in terms of computation overhead, the linkable

“traces” still leave room for us to consider in more depth.
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CHAPTER 4
PRIVACY-PRESERVING TWO-POINT TRAFFIC MEASUREMENT THROUGH

FIXED-LENGTH BIT ARRAY MASKING

In this chapter, we present our third novel scheme for privacy-preserving two-point traffic

measurement in CPRS [46] [47], which combines the beauty of a compact data structure,

shared bit arrays, and a statistical MLE method [48]. We first discuss the motivation for us

to change the perspective from using keyed signatures to utilizing shared bit arrays, then

introduce this novel scheme based on bit array masking, and then analyze its performance

through mathematical proof, numerical analysis, as well as extensive simulations. Finally, we

conclude this chapter with a summary of this measurement scheme.

4.1 From Keyed Signatures to Bit Array Masking

Recall that the previous two schemes for two-point traffic measurement suffer from two

aspects: First, the computation overhead for the central server, which increases quadratically

with the single-point traffic volume of the involving locations, is not efficient enough to suit

for today’s large-scale road systems; Second, although the first-level privacy of vehicles is well

preserved, the second-level privacy is not. The privacy level of the previous two schemes is

limited by their measurement foundation: the “traces” of a vehicle must present themselves

to enable identification of common vehicles, and those traces are linkable. More specifically, if

a vehicle’s identity is revealed at some location, say by a photograph triggered by the vehicle

rushing a red light or by a police car stopping the vehicle, the central server can check the KID

set from another location and determine for sure whether or not the vehicle has been in that

place. The common-vehicle checking process is deterministic, which originates from the fact

that a common double-hashed value represents a same vehicle. In other words, if a common

double-hashed value presents in both locations, then the vehicle must have been in both

places. On the other hand, if there is no KID present at some location that shares a common

double-hashed value with the one exposed, then the vehicle must have not been in that place.

One can imagine that this single-time exposed information can actually link all traces of the
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vehicle (despite the expensive computation overhead incurred with common-vehicle checking),

leading to a potential threat to the vehicle’s overall privacy.

To achieve a higher-level privacy, we need to think about how to avoid this kind of single

point of failure, and reconsider how to better “cover” a vehicle’s traces and break the “link”

between the traces of each individual vehicle. Intuitively, to better cover their traces, vehicles

should add more “noise” for protection when they report their information; to break the

link among the traces of a vehicle, it should make its traces “undistinguishable” from other

vehicles’ traces. This calls for two requirements. First, each vehicle should deliver a different

(presumably “random” from others’ perspective) message at a different location. This “internal

noise” makes each single trace of a vehicle hard to find. Second, even if the information

transmitted by an individual vehicle at different locations may look the same, all other vehicles

should have the same chance to report the exact same information. This “external noise”

makes the traces of this individual vehicle no different from those of other vehicles. Therefore,

even if the adversary manages to find some pieces of traces (through rare situations as our

previous example), it still won’t be able to link other traces that belong to the same vehicle.

A measurement scheme satisfying the above two requirements will introduce two levels

of protection to the vehicles in terms of their privacy: First, given a same piece of information

present at two different locations, the outside world won’t be able to determine for sure

whether it is the same vehicle that reports the same information OR it is the same information

that is reported by different vehicles; Second, given that a piece of information reported

by a vehicle at some location is not present at another location, the outside world won’t

be able to determine for sure that the vehicle has definitely not been in that location. In

other words, such a measurement scheme should make the common-vehicle checking process

non-deterministic.

Given above thoughts, we are motivated to deal with the challenges from another

perspective: instead of the deterministic measurement using keyed signatures based on

computation-intensive COHFs, we now resolve the problem through a non-deterministic
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statistic method based on some common shared information “pools”, called the shared bit

arrays. This transition combines the beauty of both shared bit arrays and the statistic MLE

method, and brings three-folded benefit: (1) the simplicity of bit array operations provides

a fundamental improvement on the computation efficiency; (2) the shared bit array masking

further preserves both the first-level and second-level privacy of individual vehicles; (3) the

estimator derived from the rigorous MLE method gracefully controls the measurement accuracy

of the aggregate two-point traffic flow data. In this chapter, we will start developing such a

measurement scheme from the new perspective.

4.2 Measurement Scheme Based on Bit Array Masking

We start with an overview of the novel scheme: It utilizes shared bit arrays to encode

“masked” data (random indices in the shared bit arrays) sent from vehicles to RSUs, and

adopts the MLE method to obtain measurement results based on the shared bit arrays. There

are two phases for each measurement period, online coding and offline decoding. Online

coding is an interaction between vehicles and RSUs, where “masked” data for traffic flow

measurement are transmitted by the vehicles and securely collected by the RSUs. Later in

the offline decoding phase, the central server will use the information collected by RSUs to

compute traffic flow sizes. In the following, we first describe the two measurement phases,

and then evaluate this scheme with respect to the three performance metrics described in

Section 2.4.

4.2.1 Online Coding Phase

In this scheme, each RSU Rx maintains a counter nx, which keeps track of the total

number of vehicles passing by during the current measurement period. Rx also maintains a bit

array Bx with a fixed length m (m > 1) to mask vehicle identities. At the beginning of each

measurement period, nx and all the bits in Bx are set to zeros. In addition, each vehicle v has

a logical bit array LBv, which consists of s (1 < s < m) bits randomly selected from Bx. The

indices of these bits in Bx are H(v ⊕Kv ⊕ X[0]),..., H(v ⊕Kv ⊕ X[s − 1]), where ⊕ is the

bitwise XOR, H(...) is a hash function whose range is [0,m), X is an integer array of randomly
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chosen constants whose purpose is to arbitrarily alter the hash result, and Kv is the private key

of v whose purpose is to protect the privacy of its logical bit array.

The online coding phase is quite simple. RSUs broadcast queries in pre-set intervals (e.g.,

once a second), ensuring that each passing vehicle receives at least one query and meanwhile

giving enough time for the vehicle to reply. Collisions can be resolved through well-established

CSMA or TDMA protocols, which are not the focus of our design. Every query that an RSU

sends out includes the RSU’s RID and its public-key certificate. Suppose a vehicle, whose ID is

v, receives a query from an RSU, whose ID is Rx. The vehicle first verifies the certificate, and

then uses the RSU’s public key to authenticate the RSU. After verifying that Rx is from the

trustworthy authority, the vehicle v will randomly select a bit from its logical bit array LBv by

computing an index b = H(v ⊕Kv ⊕X[H(Rx ⊕ t)mod s]), where t is the current time stamp.

The vehicle v then sends the resulting index b to the RSU Rx. Upon receiving the index b, Rx

will first increase its counter nx by 1, and then set the bth bit in Bx to 1:

Bx[H(v ⊕Kv ⊕X[H(Rx ⊕ t)mod s])] = 1. (4–1)

4.2.2 Offline Decoding Phase

At the end of each measurement period, all RSUs will send their counters and bit arrays to

the central server, which then performs the offline measurement. We employs the MLE method

[48] to measure the sizes of traffic flows based on the counters and bit arrays.

Suppose the set of vehicles that pass RSU Rx (Ry) is denoted as Sx (Sy) with cardinality

|Sx| = nx (|Sy| = ny). Clearly, the set of vehicles that pass both RSU Rx and Ry is Sx ∩ Sy.

Denote its cardinality as nc, which is the value that we want to measure. Furthermore, denote

by S the subset of vehicles in Sx ∩ Sy that happen to set the same bit in Bx and By, where

Bx and By are the bit arrays at Rx and Ry, respectively. Let no be the cardinality of S, i.e.,

no = |S|. Clearly, S ⊆ Sx ∩ Sy and 0 ≤ no ≤ nc. For any vehicle, it has the same probability

1
s
to set any bit in its s-bit logical bit array. As a result, the probability for an arbitrary vehicle

v from Sx ∩ Sy to select the same bit in both Bx and By is s × 1
s
× 1

s
= 1

s
. Therefore, the
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number of such vehicles, no, is binomially distributed according to B(nc,
1
s
). Accordingly, the

probability for no = z(0 ≤ z ≤ nc) is

P (no = z) =

(
nc

z

)(
1

s

)z(
1− 1

s

)nc−z

. (4–2)

Given the counters nx and ny, and bit arrays Bx and By, we measure nc as follows: First,

take a bitwise AND of Bx and By, and denote the resulting bit array as Bc. Namely,

Bc[i] = Bx[i] ∧ By[i], ∀i ∈ [0,m− 1]. (4–3)

We can easily find out the number of 0’s in Bc. Suppose it is denoted by Uc. In the

following, we will analyze the probability for an arbitrary bit in Bc to remain ‘0’ after the online

coding phase, and use it to establish the likelihood function for us to observe Uc ‘0’ bits in Bc.

Maximizing that likelihood function with respect to nc will give the MLE estimator of nc.

Clearly, the event for an arbitrary bit b in Bc to remain ‘0’ after online coding is equivalent

to the combination of the following two events: (1) Event 1: None of the vehicles in S has

chosen b at Rx and Ry. If a vehicle v ∈ S chooses b, then bit b in Bx and By are both set

to ‘1’ by v (hence bit b in Bc is also ‘1’). Since each vehicle has probability 1
m

to set bit b to

‘1’, the probability for the vehicle not to choose bit b is 1 − 1
m
. There are no vehicles in S.

Therefore, the probability for the first event to happen is

q1 =

(
1− 1

m

)no

. (4–4)

(2) Event 2: Either none of the vehicles in Sx − S has chosen b at Rx or none of the vehicles

in Sy − S has chosen b at Ry. Otherwise, bit b in both Bx and By will be ‘1’ (hence bit b in

Bc is ‘1’). The probability for bit b not chosen by any vehicle in Sx − S is (1 − 1
m
)nx−no , and

the probability for bit b not chosen by any vehicle in Sy − S is (1 − 1
m
)ny−no . Therefore, the

probability for the second event to happen is
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q2 = 1−
(
1−

(
1− 1

m

)nx−no
)
×

(
1−

(
1− 1

m

)ny−no
)

=

(
1− 1

m

)nx−no

+

(
1− 1

m

)ny−no

−
(
1− 1

m

)nx+ny−2×no

. (4–5)

Combining above analysis, the conditional probability for bit b in Bc to remain ‘0’ given

no = z is q1 × q2, namely,

q(nc|no = z) = q1 × q2

=

(
1− 1

m

)nx

+

(
1− 1

m

)ny

−
(
1− 1

m

)nx+ny−z

. (4–6)

Given q(nc|no = z) and the distribution of no, the overall probability q(nc) for an arbitrary bit

b in bit array Bc to remain ‘0’ is

q(nc) =
nc∑
z=0

q(nc|no = z)× P (no = z)

=
nc∑
z=0

q(nc|no = z)×
(
nc

z

)(
1

s

)z(
1− 1

s

)nc−z

=

(
1− 1

m

)nx

+

(
1− 1

m

)ny

−
(
1− 1

m

)nx+ny
( 1

s
+
(
1− 1

s

)(
1− 1

m

)
1− 1

m

)nc

.(4–7)

Knowing that each bit in Bc has a probability q(nc) to remain ‘0’, we can establish the

likelihood function for us to observe Uc ‘0’ bits in Bc (hence m− Uc ‘1’ bits in Bc):

L = (q(nc))
Uc × (1− q(nc))

m−Uc . (4–8)

The MLE estimator of nc is the optimal value of nc that maximizes the likelihood function in

(4–8), namely,

n̂c = argmax
nc

{L}. (4–9)

To find n̂c, we take logarithm on both sides of (4–8):
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lnL = Uc × ln q(nc) +
(
m− Uc

)
× ln

(
1− q(nc)

)
. (4–10)

Take the first order derivative of (4–10), we have

d lnL
dnc

=

(
Uc

q(nc)
− m− Uc

1− q(nc)

)
× q′(nc), (4–11)

where q′(nc) can be computed from (4–7) as follows,

q′(nc) =
dq(nc)

dnc

= −
(
1− 1

m

)nx+ny
( 1

s
+
(
1− 1

s

)(
1− 1

m

)
1− 1

m

)nc

ln

( 1
s
+
(
1− 1

s

)(
1− 1

m

)
1− 1

m

)
.(4–12)

To compute n̂c, we set the right side of (4–11) to 0:

(
Uc

q(nc)
− m− Uc

1− q(nc)

)
× q′(nc) = 0. (4–13)

Observe from (4–12) that q′(nc) cannot be 0 when m > 1 and s > 1. Therefore, we have

Uc

q(nc)
− m− Uc

1− q(nc)
= 0. (4–14)

Substituting (4–7) to (4–14), we obtain the MLE estimator n̂c of the desired traffic flow size

nc as follows:

n̂c =
ln
((
1− 1

m

)nx
+
(
1− 1

m

)ny − Uc

m

)
−

(
nx + ny

)
ln
(
1− 1

m

)
ln

(
1
s
+
(
1− 1

s

)(
1− 1

m

)
1− 1

m

) . (4–15)

4.2.3 Measurement Accuracy

In the following subsections, we evaluate the performance of this measurement scheme

with respect to the three performance metrics described in Section 2.4. We start with

analyzing the measurement accuracy of the MLE estimator n̂c. The standard theory of
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MLE [60] states when m,nx, and ny are large enough, the MLE estimator n̂c approximately

follows the normal distribution:

n̂c ∼ Norm

(
nc,

1

I(n̂c)

)
, (4–16)

where I(n̂c) is the fisher information of L, defined as:

I(n̂c) = −E
[
d2lnL
dn2

c

]
. (4–17)

We compute the second-order derivative of lnL from (4–11):

d2lnL
dn2

c

=

(
− Uc · q′(nc)

q2(nc)
− (m− Uc) · q′(nc)

(1− q(nc))2

)
· q′(nc)

+

(
Uc

q(nc)
− m− Uc

1− q(nc)

)
· q′(nc) · lnC, (4–18)

where C =
1
s
+
(
1− 1

s

)(
1− 1

m

)
1− 1

m

and q′(nc) is given in (4–12).

For an arbitrary bit b in Bc, it has probability q(nc) to remain ‘0’. Uc is the number of ‘0’s

in Bc. Therefore, Uc follows a binomial distribution B(m, q(nc)). Accordingly,

E(Uc) = m · q(nc). (4–19)

Substituting (4–18) and (4–19) to compute (4–17), we have

I(n̂c) =

(
m · q′(nc)

q(nc)
+

m · q′(nc)

1− q(nc)

)
× q′(nc)

=
m(q′(nc))

2

q(nc)(1− q(nc))
. (4–20)

According to (4–16), the variance of n̂c is

V ar(n̂c) =
1

I(n̂c)
=

q(nc)(1− q(nc))

m(q′(nc))2
. (4–21)
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Therefore, the confidence interval of our measurement is

n̂c ± Zα ×

√
q(nc)(1− q(nc))

m(q′(nc))2
, (4–22)

where α is the confidence level and Zα is the α percentile for the standard Gaussian

distribution [61]. For example, when α = 95%, Zα = 1.6.

4.2.4 Preserved Privacy

Next, we evaluate the preserved privacy of this measurement scheme. Note that in this

scheme, the only information that a vehicle v ever transmits to an RSU en route is an index of

a bit b randomly selected from its s-bit logical bit array, LBv. Since the s bits in each vehicle’s

logical bit array are chosen randomly from the RSUs’ physical bit arrays, from the adversary’s

point of view, every vehicle has the same probability to set any arbitrary bit of an RSU’s

bit array. In other words, the adversary cannot get the identity of a vehicle simply given its

reported index. Therefore, the first-level privacy of each individual vehicle is clearly preserved.

We now focus on the second-level privacy that our scheme preserves. Again, since each

vehicle just transmits a random bit index to each passing RSU, from the adversary’s point

of view, it can only identify the trace of a vehicle passing by two RSUs Rx and Ry through

the observation of the bits that are set to ‘1’ in both Bx and By; these bits will be ‘1’ in Bc.

Therefore, the second-level privacy of our scheme is actually a conditional probability which

states to what degree an observed ‘1’ in Bc does not represent a common vehicle passing by

both Rx and Ry. We derive this conditional probability in the following.

Firstly, consider the probability for the adversary to observe an arbitrary bit, b, to be set to

‘1’ in both Bx and By (event A), P (A). Obviously, the probability P (A) equals 1 minus q(nc)

given our analysis in Section 4.2.2:

P (A) = 1−
(
1− 1

m

)nx

−
(
1− 1

m

)ny

+

(
1− 1

m

)nx+ny
( 1

s
+
(
1− 1

s

)(
1− 1

m

)
1− 1

m

)nc

. (4–23)
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Secondly, consider the conditional probability for such a bit, b, to not represent a common

vehicle passing both Rx and Ry (event E), P (E|A). This is the second-level privacy p that

we want to derive. Note that event E happens if and only if bit b in Bx is set only by vehicles

passing only RSU Rx (i.e., in set Sx − Sy), and bit b in By is set only by vehicles passing only

RSU Ry (i.e., in set Sy − Sx). Denote these two events as Ex and Ey, respectively. There are

nx (ny) vehicles passing Rx (Ry), and nc vehicles among them pass both Rx and Ry. Since

each vehicle has a probability 1
m

to set bit b to ‘1’, the probability for Ex (Ey) to happen is:

P (Ex) =

(
1−

(
1− 1

m

)nx−nc
)
×

(
1− 1

m

)nc

, (4–24)

P (Ey) =

(
1−

(
1− 1

m

)ny−nc
)
×
(
1− 1

m

)nc

. (4–25)

Combining the above analysis, we have the formula for the preserved privacy of this

scheme as follows:

p = P (E|A) = P (Ex)× P (Ey)

P (A)

=

((
1− 1

m

)nc −
(
1− 1

m

)nx

)
×

((
1− 1

m

)nc −
(
1− 1

m

)ny

)
P (A)

, (4–26)

where P (A) is given in (4–23).

Observe that there are 2 parameters, s and m, that determine the value of P (E|A).

Among them, s only appears in the denominator P (A), and it influences P (E|A) through

varying the value of P (A). m influences both the denominator and the numerator. In the

following, we first examine the influence of s on P (A) (hence on P (E|A)), and then analyze

how m affects the value of P (E|A).

4.2.4.1 Influence of s on P (A)

To examine how s affects P (A), we take partial derivative of (4–23) with respect to s:
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∂P (A)

∂s
= −

(
1− 1

m

)nx+ny

× nc

(m− 1)s2
Cnc−1. (4–27)

Recall that C =
1
s
+
(
1− 1

s

)(
1− 1

m

)
1− 1

m

. Clearly, ∂P (A)
∂s

< 0. Therefore, with the increment of s,

the value of P (A) decreases, and in turn, the value of P (E|A) increases. In other words, the

preserved privacy will be better with a larger value of s. The numerical results are shown in

Figure 4-1 where nx = ny = n = 50, 000, nc = 5, 000, and s = 2, 5, 10, corresponding to three

curves in each plot. Clearly, as s increases, the probability P (A) decreases.
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Figure 4-1. nx = ny = n = 50, 000, nc = 5, 000; Left Plot: probability P (A) when m varies
from 0.1n to 20n, controlled by different s = 2, 5, 10; Right Plot: a zoom-in of the
left plot when m varies from 5n to 20n.

Another observation from the numerical results is that when s > 5, the difference in

probability P (A) under different s becomes quite small. For instance, with m ∈ [5n, 20n], the

difference in P (A) when s = 5 and s = 10 is smaller than 0.0005 (see the two lower curves

in the right plot of Figure 4-1). When n > 10, that difference becomes negligible. Therefore,

when we analyze the effect of m on P (E|A) in the following subsection, and later when we set

up the parameters for our simulations, we will only consider the cases of s = 2, 5, 10, with an

established understanding that larger values of s will only make negligible difference.
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4.2.4.2 Influence of m on P (E|A)

To examine the effect of m on P (E|A), we take the partial derivative of (4–26) with

respect to m and obtain the following:

∂P (E|A)
∂m

=
∂P (E)
∂m
× P (A)− ∂P (A)

∂m
× P (E)

P (A)2
, (4–28)

where P (E) = P (Ex)×P (Ey). P (Ex) and P (Ey) are given in (4–24) and (4–25), respectively.

Therefore, the partial derivative of P (E) with respect to m is:

∂P (E)

∂m
=

1

m(m− 1)

((
nx + ny

)(
1− 1

m

)nx+ny

+ 2nc

(
1− 1

m

)2nc

−
(
nc + nx

)(
1− 1

m

)nc+nx

−
(
nc + ny

)(
1− 1

m

)nc+ny
)
. (4–29)

In addition, from (4–23), we can compute the derivative of P (A) with respect to m:

∂P (A)

∂m
=

1

m2

(
− nx

(
1− 1

m

)nx−1

− ny

(
1− 1

m

)ny−1

+

(
1− 1

m

)nx+ny−2

× Cnc ×
((

nx + ny

)(
1− 1

m

)
− nc

s× C

))
. (4–30)

We have proved that ∂P (A)
∂m

< 0, which means P (A) will decrease with the increment

of m. In addition, ∂P (E)
∂m

will also be negative when m exceeds a certain value, which means

P (E) will also decrease with the increment of m afterwards. Intuitively, increasing m gives

each vehicle a smaller chance 1
m

to set an arbitrary bit, b. Hence, P (E) and P (A) also drop.

The effect that m has on P (E|A) is twofold: on the one hand, the increment of m decreases

the denominator P (A), which improves the privacy; on the other hand, the increment of m

decreases the numerator P (E), which reduces the privacy. With the combination of these two

effects, the partial derivative of P (E|A) with respect to m can be positive, negative, or 0,
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according to (4–28). Therefore, given a value of s, we can choose an optimal m to achieve the

best degree of privacy. The optimal m is obtained by setting the right side of (4–28) to 0.
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Figure 4-2. nx = ny = n = 50, 000, nc = 5, 000. Left Plot: probability P (E) when m varies
from 0.1n to 20n, under different s = 2, 5 or 10; Right Plot: probability P (E|A)
when m varies from 0.1n to 20n, under s =2, 5 or 10.

Figure 4-2 shows the numerical results for the probability P (E) and the second-level

privacy p = P (E|A) under different m when nx = ny = n = 50, 000, nc = 5, 000, and

s = 2, 5, 10. From the left plot, one can see that the three different values of s yield the same

curve of P (E) (or the three curves of P (E) corresponding to s = 2, 5, 10 overlap completely).

In other words, the value of s is irrelevant to the probability P (E), which is consistent with

our previous analysis. The value of m, on the other hand, has a clear impact on the value of

P (E). Specifically, there exists an optimal point where m∗ (i.e., f ∗ × n) produces a maximum

value of P (E). When m < m∗, the value of P (E) increases dramatically with the increment of

m. When m > m∗, the value of P (E) decreases with a slower and slower pace. In the figure,

m∗ = 0.39n results in an optimal value of P (E) = 0.4856. Recall from Figure 4-1 that the

value of P (A) always decreases with the increment of m. Combining these results, we learn

that as m exceeds a certain value m∗, the probability P (E) and P (A) will both drop if we

further increases m, which is also consistent to our theoretic analysis.

Finally, the right plot of Figure 4-2 gives the combined effect of s and m on P (E|A),

the second-level privacy of this scheme. The smallest value of s = 2 yields the bottom curve
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that represents the least privacy, while the largest value of s = 10 yields the top curve that

represents the best privacy, which agrees with our previous analysis that a larger value of s

brings better privacy. Clearly, in each curve, P (E|A) first increases quickly and then decreases

slowly with respect to m. There is an optimal value of m that gives the optimal privacy. For

instance, m = 3.6n gives the optimal privacy 0.7661 when s = 10. Another observation is,

when s is large (5 or 10), there always exists a smooth interval of m near its optimal point that

can achieve near-optimal privacy. For example, when s = 10, the values of m in the interval

[3.6n, 11.2n] achieve privacy that is within 5% deviation from the optimal privacy 0.7661. In

practice, this smooth interval allows us to adjust the value of m to achieve better measurement

results while preserving near-optimal privacy.

4.2.5 Computation Overhead

We conclude the discussion about the performance of this measurement scheme by a

quick remark on the computation overhead incurred to each group of entities involved in

the system. In this scheme, when a vehicle v passes an RSU Rx, the vehicle v only needs to

compute two hashes to obtain an index of a random bit in its logical bit array LBv, and the

RSU Rx only needs to set one bit in its bit array Bx, as described in Section 4.2.1. Therefore,

the computation overhead for each vehicle per RSU as well as that for each RSU per vehicle

are both O(1). As for the central server, in order to compute the two-point traffic flow size

between a pair of locations, it only needs to perform a bitwise AND operation over two m-bit

arrays, count the number of ‘0’s in the resulting bit array, and use formula (4–15) to compute

the MLE estimator. Therefore, the computation overhead for the central server is O(m).

Recall that m is the size of each RSU’s bit array.

4.3 Simulation

In this section, we evaluate the performance of this measurement scheme based on shared

bit arrays through simulations. The simulation platform is a PC featured with an Intel Core

i7-3770 CPU and 8GB RAM, running Windows 8 Pro, and the programs are written in C++.

The simulations are performed under five system parameters, nx, ny, nc, s, and m. For a
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Table 4-1. Values for m to achieve optimal p under different s.

s 2 5 10
optimal m 1.7n 2.6n 3.6n
optimal p 0.7258 0.7513 0.7661

pair of RSUs, Rx and Ry, nx (ny) is the number of vehicles passing by Rx (Ry). There are

nc vehicles passing both Rx and Ry, which means the real two-point traffic flow size is nc. s

is the number of bits that each vehicle chooses in its logical bit array, and m is the number

of bits in the RSUs’ bit array. Our simulations consist of two parts. For each part, we first

describe the settings of the system parameters, then report the simulation results, and finally

discuss how the simulation results are related to our previous theoretic analysis.

4.3.1 Measurement of Traffic Flow Sizes

We first measure the two-point traffic flow sizes with respect to different settings of

system parameters, and observe how different values of s influence the gap between the

measured traffic flow sizes and the real traffic flow sizes when the optimal second-level privacy

is preserved. We choose the five parameters as follows: nx = ny = n = 50, 000, 100, 000,

or 500, 000, and nc varies from 1%n to 50%n, with a step size of 0.1%n; s = 2, 5, 10, and

m is chosen to achieve the optimal privacy p, as determined in Section 4.2.4. Table 4-1 lists

the values for the bit array size m to achieve the optimal second-level privacy p under different

values of s.

Figure 4-3, 4-4, and 4-5 show our simulation results when n = 50, 000, 100, 000, and

500, 000, respectively. For each figure, there are three plots, corresponding to the results of

three sets of simulations controlled by parameter s, where s = 2, 5, and 10. Each plot shows

the measured two-point traffic flow sizes n̂c (y-axis) with respect to different real two-point

traffic flow sizes nc (x-axis) under a given setting of n, s, and m, where m is chosen as

described in Table 4-1 so that the optimal privacy is achieved. We also draw the equality line

y = x in each plot for reference. Clearly, the closer a point is to the equality line, the smaller

the difference between the measured traffic flow sizes and the real traffic flow sizes, and in

turn, the more accurate the measurement result.
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Figure 4-3. Measurement accuracy with the optimal privacy, nx = ny = n = 50, 000,
nc = [0.01n, 0.5n]. The x-axis shows real two-point traffic flow sizes, and the y-axis
shows the corresponding measured two-point traffic flow sizes. The three plots are
controlled by s. First Plot: s = 2; Second Plot: s = 5; Third Plot: s = 10.

From the three figures, one can see that our measurement scheme is quite accurate

because most of the points in all plots of the three figures lie closely to the equality line. In

particular, given other parameters, our MLE estimator produces almost perfect results when

s = 2 (the first plot in Figure 4-3, 4-4, and 4-5). When s becomes larger, there are slightly

more points deviating from the equality line (the third plot in Figure 4-3, 4-4, and 4-5), which

indicates larger values of s yield less accurate measurement results.

Recall that a larger value of s brings better privacy (Table 4-1). For example, the optimal

privacy is 0.7661 when s = 10, better than the optimal privacy of 0.7258 when s = 2.

This implies a tradeoff between the preserved privacy and the measurement accuracy. From
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Figure 4-4. Measurement accuracy with the optimal privacy, nx = ny = n = 100, 000,
nc = [0.01n, 0.5n]. The x-axis shows real two-point traffic flow sizes, and the y-axis
shows the corresponding measured two-point traffic flow sizes. The three plots are
controlled by s. First Plot: s = 2; Second Plot: s = 5; Third Plot: s = 10.

Section 4.2.4, we know when s is large, there always exists a smooth interval of m near

its extreme point that can achieve comparable privacy as the optimal. For example, when

nx = ny = n = 50, 000, nc = 5, 000, and s = 10, the values of m within the interval

[3.6n, 11.2n] achieve privacy that is within just 5% drop of the optimal privacy 0.7661. In

reality, one can choose a relatively large value for s (e.g., 5 or 10), and adjust the value of m

to achieve better measurement results while still preserving comparable privacy as the optimal.

Finally, the measurement results are more accurate with larger values of n. There are

fewer points deviating from the equality line n̂c = nc in the three plots of Figure 4-5 than those
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Figure 4-5. Measurement accuracy with the optimal privacy, nx = ny = n = 500, 000,
nc = [0.01n, 0.5n]. The x-axis shows real two-point traffic flow sizes, and the y-axis
shows the corresponding measured two-point traffic flow sizes. The three plots are
controlled by s. First Plot: s = 2; Second Plot: s = 5; Third Plot: s = 10.

in the corresponding plots of Figure 4-3. This is also a natural phenomenon given that the

measurement result is obtained through a statistical MLE estimator.

4.3.2 Measurement Bias and Relative Standard Error

Next, we study the measurement accuracy of the MLE estimator n̂c in terms of bias and

relative standard error. Similar to the previous part, there are three sets of simulations, each

corresponding to nx = ny = n = 50, 000, 100, 000, and 500, 000. For each set, there are three

simulations controlled by different values of s, where s = 2, 5, 10. m is still chosen to achieve

the optimal privacy p under each fixed s, as listed in Table 4-1. We conduct 5, 000 independent

runs for each simulation to observe statistical effects. For each run, we randomly choose a
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value for nc from the range of [0, 0.5n], and apply our measurement method to obtain the

corresponding value for n̂c. Now, we try to figure out the measurement bias E(n̂c − nc)

and relative standard error

√
V ar(n̂c)

nc
of our MLE estimator from the result of the 5, 000

independent runs of each simulation.

To better illustrate the simulation results, we divide the range of nc, [0, 0.5n], into 50

measurement scales, each of width 1%n, and group the values of nc and corresponding n̂c

from different runs into these 50 scales, and then numerically evaluate the measurement

bias and relative standard error of the MLE estimator n̂c with respect to each scale of nc.

The simulation results are presented in Figure 4-6 - Figure 4-11, where the first three figures

(Figure 4-6, 4-7, 4-8) show the measurement bias and the remaining three figures (Figure 4-9,

4-10, 4-11) show the relative standard error.

Figure 4-6, 4-7, and 4-8 show the measurement bias of n̂c with respect to each scale of

nc under different values of n, where n = 50, 000, 100, 000, and 500, 000. Each figure consists

of three plots, each corresponding to a fixed value of s, where s = 2, 5, 10. For each plot,

the y-axis represents the measurement bias E(n̂c − nc), and the x-axis represents the mean

value of nc in each scale. The y-coordinate is within 2.5% of n, i.e., ranging from −2.5%n

to 2.5%n. Note that the optimal privacy is always guaranteed for all simulations by setting

m in accordance with s. From the figures, one can see that the measurement bias fluctuate

around the zero-bias line for different scales of nc. In addition, observed from the three plots

of each figure, under a fixed n, the measurement bias tend to fluctuate more often with higher

amplitudes for larger values of s (in particular, compare the first plot of Figure 4-6, 4-7, and

4-8 with the third plot of the same figures), which implies larger values of s will result in more

n̂c deviating from nc, and in turn, yield less accurate measurement results. This observation

agrees with our simulation results from the previous part. Furthermore, if we compare the

plots from different figures (for instance, first plot of each figure), it is clear that under the

same value of s, increasing the value of n will reduce the fluctuation amplitudes of n̂c, which
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means our scheme will produce more stable and accurate measurement results for systems with

relatively larger scales.

Figure 4-9, 4-10, and 4-11 show the relative standard error of n̂c with respect to each

scale of nc under different values of n, where n = 50, 000, 100, 000, and 500, 000. There are

also three plots in each figure, each corresponding to a group of simulation results controlled

by s = 2, s = 5, and s = 10, respectively. For each plot, the y-axis represents the relative

standard error of n̂c,

√
V ar(n̂c)

nc
, and the x-axis represents the mean value of nc in each scale.

Still, optimal privacy is guaranteed through setting appropriate m. The major observation is

that, given n, when s becomes larger, the relative standard error of n̂c with respect to each

scale of nc also becomes larger. For instance, when n = 50, 000, the relative standard error

of n̂c is about 0.017 for the scale of nc ranging from [8500, 9000] when s = 2, while its value

reaches to about 0.13 when s = 10, almost 8 times higher than the former value. Since the

relative standard error for each scale of nc becomes larger, the variance for the MLE estimator

also becomes larger, which means the measured traffic flow sizes will be more spread out from

the real flow sizes. This observation also agrees with our previous simulation results, where

there are relatively more points not close to the equality line for larger values of s under fixed

n. Similarly, the variance becomes smaller when we increase the number n of vehicles in the

system. One can observe that the relative standard error values are closer to 0 in Figure 4-11

than those in Figure 4-9, assuming the same value of s is applied.

4.4 Summary

In this chapter, we propose a third novel scheme for privacy-preserving two-point traffic

flow measurement in CPRS. The proposed scheme utilizes a compact data structure, shared bit

arrays, to automatically collect “masked” data from vehicles on road, and adopts the statistical

MLE method to obtain the measurement result based on the shared bit arrays. The novel

scheme achieves the following advantages:

First, in this novel scheme, the computation overhead for the central server to compute

the two-point traffic flow size between a pair of RSUs is O(m), where m is the size of each
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RSU’s bit array. In practice, the value of m is often related to and determined by the value

of n, where n is the number of vehicles passing by each RSU. Usually, m is several times

of n (recall Table 4-1). In other words, the computation overhead for the central server is

actually O(n). This is a huge improvement compared with the previous two schemes, which

incurs O(n2) computation overhead for the central server to compute the size of the same

two-point traffic flow. At the same time, the computation overhead for both vehicles and RSUs

remains the same. The computation efficiency of our novel scheme is further improved given

the simplicity of the bit array operations, comparing with the computation-intensive COHFs as

deployed in the previous schemes. We have demonstrated through simulations that our novel

scheme is so efficient that it can easily scale to large road systems.

Second, with our careful design of the shared bit array masking, vehicles’ privacy is better

preserved. In the previous two schemes based on keyed signatures, only the first-level privacy

of vehicles is preserved; while our novel scheme based on shared bit arrays not only guarantees

the first-level privacy, but also maintains a good second-level privacy. We have mathematically

derived the formula for the second-level privacy of our novel scheme as a probability p, such

that the probability for any “trace” of any vehicle to not be identified must be at least p.

Through both mathematical and numerical analysis, we show the novel scheme can indeed

maintain a good second-level privacy for vehicles.

Third, the measurement accuracy of this novel scheme can be gracefully controlled

through the rigorous derivation of the MLE estimator. We have mathematically derived the

formula for the measurement accuracy, and extensive simulations have been conducted to show

that this novel scheme can indeed achieve sound measurement results and scale to large road

systems.
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Figure 4-6. Measurement bias with the optimal privacy, nx = ny = n = 50, 000, nc = [0, 0.5n].
The x-axis shows scales of two-point traffic flow sizes nc, and the y-axis shows the
corresponding measurement bias E(n̂c − nc). The y-coordinate is within 2.5% of n,
i.e.,[−2.5%n, 2.5%n]. The three plots are controlled by s. First Plot: s = 2;
Second Plot: s = 5; Third Plot: s = 10.
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Figure 4-7. Measurement bias with the optimal privacy, nx = ny = n = 100, 000,
nc = [0, 0.5n]. The x-axis shows scales of two-point traffic flow sizes nc, and the
y-axis shows the corresponding measurement bias E(n̂c − nc). The y-coordinate is
within 2.5% of n, i.e.,[−2.5%n, 2.5%n]. The three plots are controlled by s. First
Plot: s = 2; Second Plot: s = 5; Third Plot: s = 10.
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Figure 4-8. Measurement bias with the optimal privacy, nx = ny = n = 500, 000,
nc = [0, 0.5n]. The x-axis shows scales of two-point traffic flow sizes nc, and the
y-axis shows the corresponding measurement bias E(n̂c − nc). The y-coordinate is
within 2.5% of n, i.e.,[−2.5%n, 2.5%n]. The three plots are controlled by s. First
Plot: s = 2; Second Plot: s = 5; Third Plot: s = 10.
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Figure 4-9. Measured relative standard error with the optimal privacy, nx = ny = n = 50, 000,
nc = [0, 0.5n]. The x-axis shows scales of two-point traffic flow sizes nc, and the

y-axis shows the corresponding relative standard error

√
V ar(n̂c)

nc
. The three plots

are controlled by s. First Plot: s = 2; Second Plot: s = 5; Third Plot: s = 10.
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Figure 4-10. Measured relative standard error with the optimal privacy,
nx = ny = n = 100, 000, nc = [0, 0.5n]. The x-axis shows scales of two-point
traffic flow sizes nc, and the y-axis shows the corresponding relative standard error√

V ar(n̂c)

nc
. The three plots are controlled by s. First Plot: s = 2; Second Plot:

s = 5; Third Plot: s = 10.
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Figure 4-11. Measured relative standard error with the optimal privacy,
nx = ny = n = 500, 000, nc = [0, 0.5n]. The x-axis shows scales of two-point
traffic flow sizes nc, and the y-axis shows the corresponding relative standard error√

V ar(n̂c)

nc
. The three plots are controlled by s. First Plot: s = 2; Second Plot:

s = 5; Third Plot: s = 10.
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CHAPTER 5
PRIVACY-PRESERVING TWO-POINT TRAFFIC MEASUREMENT THROUGH

VARIABLE-LENGTH BIT ARRAY MASKING

So far, the problem of privacy-preserving two-point traffic flow measurement in CPRS

has been partially solved by [20] and our previous schemes [45] [46] [47]. [20] tries to infer

two-point statistics from point data, but its practicability is limited by high computation

overhead. Our first two schemes [45] use keyed signatures based on COHFs to protect vehicles’

identities. The computation efficiency is improved to O(nxny) for each pair of RSUs, where

nx and ny denote the number of vehicles passing them, respectively. This is better than [20],

but the overhead is still too high for today’s large-scale road networks. Moreover, it cannot

protect vehicles’ traces (second-level privacy). Motivated by [28] and [62], we propose a third

scheme [46] [47] which further improves the computation efficiency to O(nx + ny) and protects

vehicles’ identities as well as their traces, through the design of shared bit arrays. But it makes

an unrealistic assumption about traffic similarity, and uses bit arrays of equal length at different

RSUs to encode the passing vehicles, such that the bit arrays from two RSUs can be bitwise

compared to extract a statistical result for two-point traffic volume. The scheme works great

when all RSUs observe comparable numbers of vehicles. However, in reality, the traffic volume

at different RSUs varies a lot. For example, according to the 2012 yearly traffic volume report

from the New York State Department of Transportation [63], major intersections in New

York have hundreds of thousands of cars passing by every day, while light-traffic intersections

only have a few hundreds of cars passing by during the same period. Considering this more

realistic situation where different RSUs observe varied amount of traffic, the performance of

[47] decreases dramatically in terms of both vehicle privacy and measurement accuracy, which

therefore limits its practicability.

As a continuous effort in improving the efficiency, privacy and accuracy, in this chapter, we

propose our fourth novel scheme [49] for privacy-preserving two-point traffic flow measurement,

which is an extension of our previous scheme [47] to remove the similar traffic assumption.

The extension design utilizes variable-length bit arrays to encode traffic data reported by
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vehicles, and a novel “unfolding” technique to support traffic flow measurement based on those

variable-length bit arrays. Through mathematical and numerical analysis as well as extensive

simulations, we demonstrate that the extension scheme based on variable-length bit arrays [49]

has comparable efficiency with the previous scheme based on fixed-length bit arrays [47] and

furthermore, it can easily fit in the more realistic transportation model where different RSUs

observe varied amount of traffic, and achieve far better privacy and accuracy than the previous

scheme. In the following, we first introduce the extension design, then analyze its performance,

and compare it with the previous best scheme [47]. Finally, a summary of the extension design

is given to conclude this chapter.

5.1 From Fixed-Length Bit Arrays to Variable-Length Bit Arrays

The previous scheme [47] uses fixed-length bit arrays to encode traffic data, and it works

great when the single-point traffic volume of all RSUs are comparable. When it comes to

the more realistic situation where the number of cars passing by different RSUs actually

varies a lot, its performance decreases dramatically. The problem lies in the great difficulty

of determining an appropriate fixed bit array size, m. If a large m is chosen to accommodate

the large traffic volume in major intersections, it will greatly hurt the privacy for the cars

passing by light-traffic RSUs (will explain more later in Section 5.4). If a small m is chosen

to provide relatively good privacy for all cars, the accuracy for measuring the two-point traffic

flow sizes between heavy-traffic RSUs will be dramatically decreased (will explain more later in

Section 5.5).

Can one achieve the goal of both obtaining sound measurement results and maintaining

good privacy for all cars? The solution with fixed-length bit arrays is not applicable, so how

about variable-length bit arrays? Intuitively, to maintain good privacy, light-traffic RSUs

should have smaller bit arrays, and to achieve sound measurement results, heavy-traffic RSUs

should have larger bit arrays. In other words, the sizes of bit arrays should be related to the

single-point traffic volume of the corresponding RSUs. This motivates our extension design

based on variable-length bit arrays.
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5.2 Measurement Scheme Based on Variable-Length Bit Array Masking

In this section, we introduce our extension design of privacy-preserving two-point traffic

flow measurement scheme based on variable-length bit array masking. The key difference

is that, in the extension design, different RSUs will use different-length bit arrays to collect

vehicle’s information. In principle, the size of an RSU’s bit array is related to its single-point

traffic volume, such that heavy-traffic RSUs will have larger bit arrays than light-traffic RSUs.

To enable comparison of variable-length bit arrays, we propose an “unfolding” technique, and

require the size of all bit arrays to be power of 2, i.e., in the form of 2k.

The extension scheme also consists of two phases: online coding phase for storing

de-identified vehicle information in variable-length bit arrays of RSUs, and offline decoding

phase for measuring the two-point traffic flow sizes between pairs of RSUs using the MLE

method based on the reported bit arrays. We will first describe the two phases in the proposed

scheme, and then mathematically derive the MLE estimator used to measure two-point traffic

flow sizes. The computation overhead is analyzed at the end of this section, and the other two

performance metrics, measurement accuracy and preserved privacy, will be discussed in the next

two sections.

5.2.1 Online Coding Phase

In the extension scheme, each RSU Rx maintains a counter nx, which keeps track of the

total number of passing vehicles during the current measurement period. Rx also maintains

a bit array Bx with length mx to mask vehicle identities. We require the lengths of all bit

arrays to be power of 2, i.e., mx must be in the form of 2k, to facilitate the comparisons

of variable-length bit arrays (more explanation later). We set the value of mx to be mx =

2⌈log2(n̄x×f̄)⌉, where n̄x is the expected traffic at Rx during the measurement period based

on historical average traffic at the same location and the same time, and f̄ is a system wide

parameter whose value affects the tradeoff between measurement accuracy and level of privacy.

Clearly, mx is the smallest integer that is power of 2 and no less than n̄x × f̄ . At the beginning

of each measurement period, nx and all bits in Bx are set to zeros.
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Each vehicle v has a logical bit array LBv, which consists of s bits randomly selected

from an imaginary array B∗ whose size m∗ equals that of the largest bit array among all RSUs,

where s≪ m∗. The indices of these bits in B∗ are H(v⊕Kv⊕X[0]), ..., H(v⊕Kv⊕X[s−1]),

where ⊕ is the bitwise XOR, H(...) is a hash function whose range is [0,m∗), X is an integer

array of randomly chosen constants to arbitrarily alter the hash result, and Kv is the private

key of v to protect its privacy.

Given above notations and data structures, the online coding phase works as follows.

RSUs broadcast queries in pre-set intervals (e.g., once a second), ensuring that each passing

vehicle receives at least one query and meanwhile giving enough time for the vehicle to

reply. Collisions can be resolved through well-established CSMA or TDMA protocols, which

are not the focus of this work. Every query that an RSU sends out includes the RSU’s

RID, its public-key certificate, and the size of its bit array. Suppose a vehicle, whose ID is

v, receives a query from an RSU, whose ID is Rx and bit array size is mx. It first verifies

the certificate to authenticate the RSU. After verifying that Rx is from the trustworthy

authority, v will randomly select a bit from its logical bit array LBv by computing an index

b = H(v ⊕ Kv ⊕ X[H(Rx ⊕ t)mod s]), where t is the current time stamp. Then v

generates an index bx in the range of [0,mx) corresponding to b by a modulus operation, where

bx = bmodmx, and sends bx to Rx. Upon receiving the index bx, Rx will first increase its

counter nx by 1, and then set the bxth bit in Bx to 1. Therefore, the overall effect that v

produces on Rx is:

nx = nx + 1, (5–1)

Bx[H(v ⊕Kv ⊕X[H(Rx ⊕ t)mod s])modmx] = 1. (5–2)

Note that the same vehicle may transmit different bit indices at two RSUs. The

probability for this to happen is 1− 1
s
, which is larger when the size of LBv is larger. Different

vehicles may send the same index because their logical bit arrays share bits from Bx. As any

vehicle does not have to transmit any fixed number in support of traffic measurement, we
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improve privacy protection. This is true even when there is a single vehicle passing through two

RSUs.

5.2.2 Offline Decoding Phase

At the end of each measurement period, all RSUs will send their counters and bit arrays

to the central server, which first updates the history average single-point traffic volume for

the RSUs to take into account the traffic data in the current measurement period, and then

measures the two-point traffic volume between two arbitrary RSUs based on the reported

counters and bit arrays.

Suppose the set of vehicles that pass RSU Rx (Ry) is denoted as Sx (Sy) with cardinality

|Sx| = nx (|Sy| = ny). Clearly, the set of vehicles that pass both RSU Rx and Ry is Sx ∩ Sy.

Denote its cardinality as nxy, i.e., |Sx ∩ Sy| = nxy, which is the value that we want to measure.

Denote the size of the bit array Bx (By) stored in RSU Rx (Ry) as mx (my). Without loss of

generality, we assume that mx ≤ my (otherwise, change the role of Rx and Ry). Given the

counters nx and ny, and bit arrays Bx and By, the server measures nxy as follows:

First, our previous work [47] shows that when two bit arrays have the same length, we are

able to combine them through bitwise operation and produce a good estimate for two-point

traffic. Now we have to deal with two bit arrays of different lengths. In order to combine the

information of the two arrays through bitwise operation, the central server expands the smaller

bit array Bx to the same size of By through a process called “unfolding”, which is simply

duplicating Bx multiple times until it reaches the size of By. Because mx and my are both

powers of 2 and mx ≤ my, it will always be true that my is divisible by mx, which means that

we can unfold Bx to the size of By by duplicating Bx for my

mx
times. (When we derive the new

formula for estimating the two-point traffic volume, we will mathematically account for the

impact of duplication.) The “unfolded” bit array of Bx is denoted as Bu
x . Specifically,

Bu
x [i] = Bx[imodmx], ∀i ∈ [0,my). (5–3)
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Figure 5-1. An example of unfolding and bitwise-OR operation.

Second, the server takes a bitwise OR operation on Bu
x and By to obtain a new bit array

Bxy:

Bxy[i] = Bu
x [i] ∨ By[i], ∀i ∈ [0,my). (5–4)

The bitwise OR operation is granted since the two bit arrays, Bu
x and By, are of the same

size. Clearly, through requiring the size of all bit arrays to be power of 2, we facilitate the

comparison of variable-length bit arrays: the overall computation overhead to compare Bx and

By is just O(my), as contrast to O(mx ×my) without the “power of 2” requirement. Fig. 5-1

shows an example of unfolding and bitwise OR operation. In this example, Bx is unfolded to

Bu
x , and a bitwise-OR is performed on Bu

x and By to produce Bxy.

Finally, given Bxy, Bx (Bu
x), and By, the central server uses the following formula

to estimate the two-point traffic flow size between Rx and Ry:

n̂xy =
ln(Vxy)− ln(Vx)− ln(Vy)

ln(1− s−1
s
× 1

my
)− ln(1− 1

my
)

(5–5)

where Vxy, Vx, and Vy are random variables (R.V.) which represent the fraction of bits whose

values are zeros in Bxy, Bx, and By, correspondingly. Their values can be easily found by

counting the number of zeros in Bxy, Bx, and By, denoted by Uxy, Ux, and Uy respectively

(note Uxy, Ux, and Uy are also R.V.s), and dividing them by the corresponding bit array size

my, mx, and my. That is, Vxy = Uxy

my
, Vx = Ux

mx
, and Vy = Uy

my
. Note that the fraction of zero

bits in Bu
x is the same as Bx.
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Figure 5-2. Decision tree for an arbitrary bit b in Bxy to remain ‘0’ after a car v passing by
both RSUs Rx and Ry (i.e., v ∈ Sx ∩ Sy) sets bits in the two bit arrays (Bx and
By). The number inside each node represents the index that v chooses for the
corresponding RSU, and the math formula next to the node represents the
probability for v to choose that index, given the condition that all ancestor nodes
have been chosen.

5.2.3 Derivation of the MLE Estimator n̂xy

Now we follow the standard MLE method [48] to derive n̂xy given by (5–5). Its accuracy

will be analyzed in Section 5.3. We first derive the probability q(nxy) for an arbitrary bit in Bxy

to be ‘0’, and use q(nxy) to establish the likelihood function L to observe Uxy ‘0’ bits in Bxy.

Finally, maximizing L with respect to nxy will lead to the MLE estimator, n̂xy.

Consider an arbitrary bit b in Bxy. Let Ab be the event that the bth bit in Bxy remains ‘0’,

then q(nxy) is the probability for Ab to occur. Since the set of all vehicles passing Rx and/or

Ry (i.e., Sx ∪ Sy) can be partitioned into three sets, Sx ∩ Sy, Sx − Sy, and Sy − Sx, it is clear

that event Ab is equivalent to the combination of the following three events:

(I) Event E1: For vehicles passing both Rx and Ry (i.e., in the set Sx ∩ Sy), none of

them have chosen bit (bmodmx) in Bx or bit b in By. Otherwise, according to (5–3) and

(5–4), bit b in Bxy will be ‘1’. Fig. 5-2 shows the decision tree for a vehicle to not set the

bits. For any vehicle, it has the same probability 1
s
to select any bit in its s-bit logical bit

array. So the probability for an arbitrary vehicle v from Sx ∩ Sy to select the same bit from

its logical bit array in both Rx and Ry is s × 1
s
× 1

s
= 1

s
. In other words, if v chooses

(b′ modmx) ̸= (bmodmx) in Rx, it has a probability of 1
s
to choose the same bit b′ in Ry

(hence will not set bit b in By), and probability of 1 − 1
s
to choose a separate bit b′′ randomly

from By. The probability for b′′ ̸= b is 1− 1
my

, and the probability for v to choose (b′ modmx)
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in Bx is 1− 1
mx

. There are nxy cars in set Sx ∩ Sy, so the probability of E1 is

P1 =

{(
1− 1

mx

)[
1

s
+

(
1− 1

s

)(
1− 1

my

)]}nxy

=

(
1− 1

mx

)nxy
(
1− s− 1

s
× 1

my

)nxy

(5–6)

where the first term denotes the probability of v not choosing bit (bmodmx) in Bx, and the

second term captures the probability of v not choosing bit b in By.

(II) Event E2: For vehicles passing only Rx (i.e., in the set Sx − Sy), none of them have

chosen bit (bmodmx) in Bx. Otherwise, from (5–3), bit b in Bu
x is ‘1’ (so bit b in Bxy is ‘1’).

Since each vehicle in Sx − Sy has probability 1
mx

to set bit (bmodmx), and there are nx − nxy

vehicles in Sx − Sy, the probability of E2 is

P2 =

(
1− 1

mx

)nx−nxy

. (5–7)

(III) Event E3: For vehicles passing only Ry (i.e., in the set Sy − Sx), none of them have

chosen bit b in By. Otherwise, bit b in By will be ‘1’ (hence bit b in Bxy is also ‘1’). Similarly,

we can derive its probability as

P3 =

(
1− 1

my

)ny−nxy

. (5–8)

Combining above analysis, we can obtain the overall probability q(nxy) for bit b in Bxy to

remain ‘0’ as follows:

q(nxy) = P1 × P2 × P3

=

(
1− 1

mx

)nx
(
1− 1

my

)ny
(1− s−1

smy

1− 1
my

)nxy

(5–9)

Since the bits in any logical bit array are selected from the largest physical bit array

uniformly at random, the vehicles in set Sx (Sy) have the same probability of 1
mx

( 1
my

) to

choose any bit in Bx (By). For any bit in Bx (By), the probability for it to be ‘0’ after nx (ny)
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vehicles each choosing a random bit from Bx (By) is

q(nx) =

(
1− 1

mx

)nx

, (5–10)

q(ny) =

(
1− 1

my

)ny

. (5–11)

Therefore, the number of zero bits in Bx follows a binomial distribution Ux ∼ B(mx, q(nx)) =

B(mx, (1 − 1
mx

)nx), while the number of zero bits in By follows another binomial distribution

Uy ∼ B(my, q(ny)) = B(my, (1− 1
my

)ny). From the property of binomial distribution [48], and

Vx = Ux

mx
and Vy =

Uy

my
, the expected values for Vx and Vy are

E(Vx) = E

(
Ux

mx

)
=

mx(1− 1
mx

)nx

mx

= q(nx), (5–12)

E(Vy) = E

(
Uy

my

)
=

my(1− 1
my

)ny

my

= q(ny). (5–13)

Substituting (5–10), (5–11), (5–12) and (5–13) to (5–9), and replacing E(Vx) and E(Vy) by

their instance values, Vx and Vy, we have the following instance value for q(nxy):

q(nxy) = Vx × Vy ×
(1− s−1

s
× 1

my

1− 1
my

)nxy

. (5–14)

Given the probability for each bit in Bxy to be ‘0’ as q(nxy), we can establish the likelihood

function L for us to observe Uxy ‘0’ bits in Bxy (so my − Uxy ‘1’ bits in Bxy):

L = (q(nxy))
Uxy × (1− q(nxy))

my−Uxy . (5–15)

The MLE estimator of nxy is the optimal value of nxy that maximizes the likelihood function in

(5–15). To find n̂xy, we take logarithm on both sides of (5–15), and then take the first order

derivative to obtain:

d lnL
dnxy

=

(
Uxy

q(nxy)
− my − Uxy

1− q(nxy)

)
× q′(nxy), (5–16)
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where q′(nxy) can be computed from (5–9) as follows:

q′(nxy) = q(nxy)× ln

(1− s−1
s
× 1

my

1− 1
my

)
. (5–17)

Since q′(nxy) cannot be 0 when mx > 1, my > 1, and s < my, setting the right side of (5–16)

to 0 gives

q(nxy) =
Uxy

my

= Vxy. (5–18)

Substituting (5–18) to (5–14) and reordering the items, we get(1− s−1
s
× 1

my

1− 1
my

)nxy

=
Vxy

Vx × Vy

. (5–19)

Solving (5–19) gives the MLE estimator n̂xy as described in (5–5).

5.2.4 Computation Overhead

We conclude this section by a discussion about the computation overhead of our extension

scheme. We compare it with the previous best state of art [47]. The other two performance

metrics will be analyzed in the following two sections.

Clearly, the computation overhead for the vehicles and RSUs of our extension scheme are

comparable to [47]. In our extension scheme, when a vehicle v passes an RSU Rx, the vehicle

v only needs to compute two hashes to obtain an index of a random bit, and the RSU Rx

only needs to set 1 bit in its bit array Bx, as described in Section 5.2.1. So the computation

overhead for each vehicle per RSU as well as for each RSU per vehicle are both O(1).

As for the central server, the task it performs is a little bit more complicated than [47],

but the computation overhead is comparable. First, the server expands the smaller bit array

Bx to Bu
x , which has the same size as By, by duplicating its content. This operation costs

O(my) time. Second, it performs a bitwise OR over two my-bit bit arrays, B
u
x and By, to

create a new bit array Bxy of size my, which also costs O(my) time. Last, the server counts

the number of zeros in Bx, By, and Bxy, which takes O(my) time as well. Therefore, the

overall computation overhead for the server to measure the traffic volume between a pair of
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RSUs, Rx and Ry, is O(my), where my is the size of the larger bit array of the two RSUs.

Since our previous scheme with fixed-length bit arrays [47] assumes that mx = my = m and

its computation overhead for the server is O(m), one can see that our extension scheme indeed

achieves comparable computation overhead as [47].

5.3 Analysis on Measurement Accuracy

In this section, we analyze the measurement accuracy of the MLE estimator n̂xy

mathematically. We measure the accuracy by evaluating the bias and standard deviation of

n̂xy

nxy
. Clearly, a good measurement scheme should have close-to-zero bias and relatively small

standard deviation.

According to (5–5), n̂xy involves three random variables Vxy, Vx, and Vy. Therefore, we

first study the mean and variance of Vxy, Vx, and Vy, based on which we derive the formula for

the bias and standard deviation of n̂xy

nxy
.

5.3.1 Mean and Variance of Vxy, Vx, and Vy

The mean values of Vx and Vy are given in (5–12) and (5–13). Their variance can

be computed from the variance of Ux and Uy. Since Ux and Uy each follows a binomial

distribution as mentioned in Section 4.2.2, we have

V ar(Vx) =
V ar(Ux)

mx
2

=
q(nx)× (1− q(nx))

mx

, (5–20)

V ar(Vy) =
V ar(Uy)

my
2

=
q(ny)× (1− q(ny))

my

, (5–21)

where q(nx) and q(ny) are given by (5–10) and (5–11).

Since the probability for any bit in Bxy to be ‘0’ is q(nxy), the number of zeros in Bxy

also follows a binomial distribution Uxy ∼ B(my, q(nxy)). Therefore, the mean of Uxy is

my × q(nxy) and the variance of Uxy is my × q(nxy)× (1− q(nxy)). Since Vxy =
Uxy

my
, the mean

and variance of Vxy can be derived accordingly:

E(Vxy) = E

(
Uxy

my

)
=

my × q(nxy)

my

= q(nxy), (5–22)
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V ar(Vxy) =
V ar(Uxy)

my
2

=
q(nxy)× (1− q(nxy))

my

, (5–23)

where q(nxy) is given by (5–9).

5.3.2 Mean and Variance of ln(Vxy), ln(Vx), and ln(Vy)

Now we derive the mean and variance of ln(Vxy), ln(Vx), and ln(Vy). First, we define a

function f(V ) = lnV , and expand the function by its Taylor series about the mean value of V ,

denoted as w = E(V ), to obtain

f(V ) = f(w) + (V − w)f ′(w) +
1

2
(V − w)2f ′′(w)...

= ln(w) +
V − w

w
− (V − w)2

2w2
... (5–24)

To get the expected value of ln(V ), we truncate (5–24) after the third term since expected

value of the second term is 0, and the third term is the first nonzero bias:

E(ln(V )) = ln(w)− E((V − w)2)

2w2
= ln(w)− V ar(V )

2w2
. (5–25)

According to (5–25), we can compute the mean of ln(Vxy), ln(Vx), and ln(Vy) based on the

mean and variance values of Vxy, Vx, and Vy. Below are the results:

E(ln(Vx)) = ln(q(nx))−
1

2mx

× 1− q(nx)

q(nx)
, (5–26)

E(ln(Vy)) = ln(q(ny))−
1

2my

× 1− q(ny)

q(ny)
, (5–27)

E(ln(Vxy)) = ln(q(nxy))−
1

2my

× 1− q(nxy)

q(nxy)
. (5–28)

To get the variance, we truncate (5–24) after two terms:

V ar(ln(V )) = V ar

(
ln(w) +

V − w

w

)
=

V ar(V )

w2
. (5–29)
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Again, according to (5–29), we can compute the variance of ln(Vxy), ln(Vx), and ln(Vy) based

on the mean and variance values of Vxy, Vx, and Vy. Below are the results:

V ar(ln(Vx)) =
V ar(Vx)

(E(Vx))2
=

1

mx

× 1− q(nx)

q(nx)
, (5–30)

V ar(ln(Vy)) =
V ar(Vy)

(E(Vy))2
=

1

my

× 1− q(ny)

q(ny)
, (5–31)

V ar(ln(Vxy)) =
V ar(Vxy)

(E(Vxy))2
=

1

my

× 1− q(nxy)

q(nxy)
. (5–32)

5.3.3 Mean and Variance of n̂xy

Based on the mean of ln(Vxy), ln(Vx), and ln(Vy) derived previously, we obtain the mean

of n̂xy:

E(n̂xy) =
E(ln(Vxy))− E(ln(Vx))− E(ln(Vy))

ln(1− s−1
s
× 1

my
)− ln(1− 1

my
)

, (5–33)

where E(ln(Vxy)), E(ln(Vx)), and E(ln(Vy)) are given in (5–26), (5–27), and (5–28). The

estimation bias is

Bias

(
n̂xy

nxy

)
= E

(
n̂xy

nxy

)
− 1 =

E(n̂xy)

nxy

− 1. (5–34)

We can also derive the variance of n̂xy as

V ar(n̂xy) =
F +G[

ln

(
1− s−1

s
× 1

my

)
− ln

(
1− 1

my

)]2 (5–35)

where F = V ar(ln(Vxy)) + V ar(ln(Vx)) + V ar(ln(Vy)), and G = −G1 − G2 + G3 with

G1 = Cov(ln(Vxy), ln(Vx)), G2 = Cov(ln(Vxy), ln(Vy)), and G3 = Cov(ln(Vx), ln(Vy)).

The first part F is easy to compute since we already derived the variances V ar(ln(Vxy)),

V ar(ln(Vx)), and V ar(ln(Vy)) in (5–32), (5–30), and (5–31). The three covariance terms can

be derived by expanding the Taylor series of ln(Vxy), ln(Vx), and ln(Vy) about the mean values
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of Vxy, Vx, and Vy. For example, G1 is derived as

G1 = −E(ln(Vxy))E(ln(Vx)) + E(ln(Vxy) ln(Vx))

= −E(ln(Vxy))E(ln(Vx))− ln(E(Vxy)) ln(E(Vx))

+ ln(E(Vxy))E(ln(Vx)) + ln(E(Vx))E(ln(Vxy)) (5–36)

Substituting the formula of E(Vxy), E(Vx), E(ln(Vxy)), and E(ln(Vx)), which we

have already computed, we can obtain Cov(ln(Vxy), ln(Vx)). Cov(ln(Vxy), ln(Vy)) and

Cov(ln(Vx), ln(Vy)) can be derived similarly. After obtaining the covariances, we can compute

the variance of n̂xy based on (5–35). Finally, given V ar(n̂xy), the standard deviation of n̂xy

nxy
is

computed as follows:

StdDev

(
n̂xy

nxy

)
=

√
V ar(n̂xy)

nxy

. (5–37)

5.4 Analysis on Preserved Privacy

Now we analyze the preserved privacy of our extension scheme. Recall from Section 5.2,

similar to the previous scheme based on fixed-length bit arrays, the only information that a

vehicle v ever transmits to an RSU en route is an index of a bit b randomly selected from

its s-bit logical bit array, LBv. Since the s bits in each vehicle’s logical bit array are chosen

randomly from the RSUs’ physical bit arrays, from the adversary’s point of view, every vehicle

has the same probability to set any arbitrary bit of an RSU’s bit array. In other words, the

adversary cannot determine the identity of a vehicle simply given its reported index. Therefore,

the first-level privacy of each individual vehicle is clearly preserved.

In the following, we focus on the second-level privacy. Again, since each vehicle just

transmits a random bit index to each passing RSU, from the adversary’s point of view, it can

only attempt to identify the trace of a vehicle passing by two RSUs Rx and Ry through the

observation of the bits that are set to ‘1’ in both Bx and By. Therefore, the second-level

privacy of our extension scheme is also the conditional probability which states to what degree
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observing a same bit to be set in both bit arrays of two RSUs does not represent a common

vehicle passing by both RSUs. Below, we mathematically derive this conditional probability.

5.4.1 Derivation of the Preserved Privacy

First, consider the probability for an arbitrary bit, b, to be ‘1’ in both Bu
x and By (event

A), P (A). Denote its complementary event as Ā. Clearly, P (A) = 1 − P (Ā). Denote by S

the subset of vehicles in Sx ∩ Sy that happen to choose the same bit in its logical bit array

at both Rx and Ry. Let ns be the cardinality of S, i.e., ns = |S|. Clearly, S ⊆ Sx ∩ Sy and

0 ≤ ns ≤ nxy. As we mentioned earlier, the probability for v ∈ Sx ∩ Sy to select the same bit

at both Rx and By is 1
s
. Therefore, the number of such vehicles, ns, is binomially distributed

according to B(nxy,
1
s
). The probability for ns = z (0 ≤ z ≤ nxy) is

P (ns = z) =

(
nxy

z

)(
1

s

)z(
1− 1

s

)nxy−z

. (5–38)

Clearly, event Ā is equivalent to the combination of the following two events: (1) Event E4:

None of the vehicles in S has chosen b at Rx and Ry. Otherwise, bit (bmodmx) in Bx (hence

bit b in Bu
x) and bit b in By are both set to ‘1’. Clearly, the probability of E4 is

q4 =

(
1− 1

my

)ns

. (5–39)

(2) Event E5: Either none of the vehicles in Sx − S has chosen (bmodmx) at Rx or none of

the vehicles in Sy − S has chosen b at Ry. Otherwise, the two corresponding bits are both set

to ‘1’. Clearly, the probability of E5 is

q5 = 1−
[
1−

(
1− 1

mx

)nx−ns
][

1−
(
1− 1

my

)ny−ns
]

(5–40)

82



Combining above analysis, the probability of event Ā is

P (Ā) =

nxy∑
z=0

q4(ns|ns = z)q5(ns|ns = z)P (ns = z)

=

(
1− 1

mx

)nx

× C
nxy

1 +

(
1− 1

my

)ny

−
(
1− 1

mx

)nx
(
1− 1

my

)ny

× C
nxy

2 , (5–41)

where C1 and C2 are both constants with values

C1 =
1

s
×

1− 1
my

1− 1
mx

+

(
1− 1

s

)
, (5–42)

C2 =
1

s
× 1

1− 1
mx

+

(
1− 1

s

)
. (5–43)

Secondly, consider the conditional probability for such a bit, b, to not represent a common

vehicle passing both Rx and Ry (event E), P (E|A). Note that event E happens if and only if

bit (bmodmx) in Bx (hence bit b in Bu
x) is set only by vehicles passing only RSU Rx (i.e., in

Sx− Sy), and bit b in By is set only by vehicles passing only RSU Ry (i.e., in Sy − Sx). Denote

these two events as Ex and Ey, respectively. We can easily derive their probability as:

P (Ex) =

(
1−

(
1− 1

mx

)nx−nxy
)
×

(
1− 1

mx

)nxy

, (5–44)

P (Ey) =

(
1−

(
1− 1

my

)ny−nxy
)
×
(
1− 1

my

)nxy

. (5–45)

Therefore, the preserved privacy of our novel scheme is:

p = P (E|A) = P (Ex)× P (Ey)

P (A)

=
1

1− P (Ā)
×

[(
1− 1

mx

)nxy

−
(
1− 1

mx

)nx
]

×
[(

1− 1

my

)nxy

−
(
1− 1

my

)ny
]
, (5–46)
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where P (Ā) is given in (5–41). Note that if we set mx = my = m in (5–46), we get the same

formula as [47], which means that [47] is just a special case of our extension scheme.

5.4.2 Privacy Comparison with the Best State of Art

Note that the previous scheme [47] based on fixed-length bit arrays works great only if

all RSUs face comparable traffic. We have mentioned that, for that scheme, if a large m is

chosen to accommodate heavy-traffic RSUs, the privacy of cars passing light-traffic RSUs will

be greatly hurt. Here we give more explanations through numerical analysis.

The first plot of Figure 5-3 shows the second-level privacy p of [47] when m varies from

0.1n to 50n, controlled by s = 2, 5, 10, where nx = ny = n. From the plot, one can see

that the privacy of [47] is actually determined by the ratio f (called load factor) of m over

n, and the optimal privacy is achieved at the optimal load factor f ∗ (approximately from 2

to 4). An important observation is that, when m is fixed, the privacy will vary a lot given

different n (hence different f). If we choose a large m to accommodate RSUs with large n, say

n = n′ = 500, 000, and m = f1n
′ = 2n′, then the privacy of cars passing RSUs with smaller

n, say n = n′′ = n′

25
= 20, 000, will be greatly hurt since the load factor for those RSUs will be

f2 = 25f1 = 50 (see the rightmost point of the three curves). Specifically, the privacy suffers

most for small values of s. For example, when s = 2, the privacy is only about 0.2. One can

expect more drop in privacy for cars passing RSUs with less traffic. To guarantee a minimum

privacy of cars regardless of RSUs, the value of m should be determined by the least traffic

volume among all RSUs, nmin. For example, m should be no larger than 15nmin to guarantee a

minimum privacy of 0.5 when s = 2. However, this brings another problem: the measurement

accuracy for heavy-traffic RSUs will dramatically decrease (more on Section 5.5).

The problem of plummeted privacy in [47] originates from the fact that different RSUs

have different traffic volume, and using same-length bit arrays will cause “unbalanced load

factors”. Below, we show that by using variable-length bit arrays so that their load factors are

comparable, our novel scheme not only solves the plummeted privacy problem in [47], but also

improves the optimal privacy when the traffic volume differs.
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Figure 5-3. Preserved privacy of the two-point traffic flow measurement schemes with bit array
masking. First Plot: the privacy of both schemes with equal m; Second Plot: the
privacy of our extension scheme when ny = 10nx; Third Plot: the privacy of our
extension scheme with ny = 50nx.

Figure 5-3 shows the second-level privacy p of our novel extension scheme when the load

factor varies from 0.1 to 50. Note that we use the same load factor f̄ for all RSUs (so the

lengths of bit arrays will vary given different traffic volume n at different RSUs). When the

single-point traffic volume of Rx and Ry are comparable, their bit arrays will have the same

length, i.e., mx = my = m, so the privacy formula for both schemes will be the same, resulting

in the same graph as shown in the first plot of Figure 5-3. We stress that for our extension

scheme, since all RSUs use the same load factor f̄ , the privacy of all cars, regardless of the

traffic volume of RSUs that they pass, will always be comparable as the optimal privacy if

f̄ = f ∗. For example, when s = 5, the privacy p of the cars passing comparable-traffic RSUs
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will be more than 0.75. For RSUs with different traffic volume, the extension scheme has

another advantage, which is improving the privacy of the cars passing those RSUs. The second

and the third plot of Figure 5-3 show the privacy that our extension scheme preserves for cars

passing RSUs with different traffic volume where ny = 10nx and ny = 50nx, respectively.

One can see that given f̄ = f ∗, both plots show better optimal privacy than the case with

comparable-traffic RSUs. For instance, given f̄ = 3 when s = 5, the optimal privacy is 0.89

for ny = 10nx , and 0.91 for ny = 50nx, both greater than the optimal privacy of 0.75 for

nx = ny. The improved privacy originates from the variable-length bit arrays. During the

“unfolding” process, the content of Bx is duplicated to generate Bu
x . This effectively creates

more common ‘1’ bits in Bu
x and By that are not caused by common cars, thus adding one

more level of “mask” for the traces of common vehicles.

5.5 Simulation

In this section, we compare the performance of our extension scheme with the previous

best state of art [47] through simulations. There are two sets of simulations: the first set of

simulations considers a real Sioux Falls road network with known vehicle trip tables, while the

second set considers a larger network with randomly generated traffic.

5.5.1 Simulation Results of the Sioux Falls Network

We first consider a real road network of Sioux Falls with known vehicle trip tables.

First published by Lebranc etc. in [64], the Sioux Falls network has made its appearance in

thousands of conference papers, journals and books (e.g., [65], [66], [67]). As illustrated by

Figure 5-4, the Sioux Falls network contains 24 nodes (RSUs) with 76 arcs (road segments).

In our simulations, we generate traffic according to the known vehicle trip table in [64] under

the Sioux Falls network, and compute the daily two-point traffic volume between each pair of

nodes using both the scheme in [47] and our extension scheme. The parameters for the two

schemes are determined as follows. For both schemes, the number of bits in the logical bit

array of each vehicle, s, is set to 2, 5, 10 as [47]. f̄ and m are chosen to guarantee a minimum
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Figure 5-4. Sioux Falls Road Network.

privacy of at least 0.5. Recall that f̄ is the fixed load factor for all bit arrays in our extension

scheme, and m is the fixed bit array length in [47].

Table 5-1 shows the simulation results of eight typical node pairs in the Sioux Falls

network of our extension scheme and the previous scheme in [47] under s = 2. Note that the

unit for the traffic volume is thousands of vehicles/day. Also, since node 10 has the largest

traffic volume among all 24 nodes, it is chosen to be RSU Ry with ny = 451. The other RSU

Rx in each pair is randomly selected from the remaining nodes, and they are sorted according

to their traffic difference ratio against Ry (i.e., d = ny

nx
). The two-point traffic volume between

each pair of Rx and Ry is measured by both our extension scheme and the scheme in [47], and

the error ratio against the real traffic volume nxy, i.e., r = |n̂xy−nxy|
nxy

× 100%, is also calculated

to better show the results. Clearly, the smaller the error ratio, the better the measurement

result.
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Table 5-1. Simulation results for the Sioux Falls network of our two schemes based on bit array
masking. The unit for the traffic volume is thousands of vehicles/day. Ry = 10,
ny = 451. RSUs are sorted according to the traffic difference ratio against Ry, i.e.,

d = ny

nx
. The error ratio for both scheme is defined as r = |n̂xy−nxy |

nxy
× 100%.

Rx 15 12 7 24 6 18 2 3
nx 213 140 121 78 76 47 40 28
d 2.117 3.221 3.727 5.782 5.934 9.596 11.275 16.107
nxy 40 20 19 8 8 7 6 3

n̂xy ([47]) 40.048 19.881 19.195 7.215 7.517 6.106 6.637 2.638
n̂xy 39.950 19.972 18.982 7.976 7.988 6.979 5.999 3.005

r ([47]) 0.12% 0.60% 1.03% 9.81% 6.04% 12.77% 10.62% 12.07%
r 0.13% 0.14% 0.09% 0.30% 0.15% 0.30% 0.02% 0.17%

From Table 5-1, one can see that when the traffic difference ratio d is small (i.e., the

traffic volume of Rx and Ry are comparable), e.g., ny ≈ 2nx in the second column of

Table 5-1, both measurement schemes can achieve very accurate results (both around 0.1%).

However, when the gap of traffic volume between two RSUs enlarges, the scheme in [47] starts

to produce less and less accurate results. One can see that the error ratio r of [47] increases by

an order of magnitude when the traffic difference ratio d ≈ 4 (the fourth column of Table 5-1),

and over 2 orders of magnitude when d ≈ 16 (the last column of Table 5-1). On the other

hand, our extension scheme remains accurate for all RSU pairs, with error ratio r constantly

below 0.3%, which reflects its superior performance over [47].

5.5.2 Simulation Results of Randomly Generated Traffic

Next, we consider a larger network where the traffic is randomly generated. The

simulations are controlled by six parameters, nx, ny, nxy, s, f̄ , and m. Their values are

chosen as follows: nx = 10, 000, ny = nx (10, 000), 10nx (100, 000), or 50nx (500, 000), nxy

varies from 0.01nx to 0.5nx, with step size of 0.001nx. s is set to 2, 5, 10, and f̄ and m are

chosen to guarantee a minimum privacy of at least 0.5.

Figure 5-5 shows the simulation results for [47], and Figure 5-6 shows the results for

our extension scheme, both under s = 2. Since the simulations for s = 5 and s = 10

show similar results, here we omit them to save space. For each figure, there are three plots,

corresponding to the results of three groups of simulations controlled by ny and nx, where
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Figure 5-5. Measurement accuracy of the two-point traffic flow measurement scheme based on
fixed-length bit array masking. The x-axis shows the real two-point traffic flow size,
and the y-axis shows measured two-point traffic flow size. s = 2, nx = 10, 000,
nxy = [0.01nx, 0.5nx]. First Plot: ny = nx; Second Plot: ny = 10nx; Third Plot:
ny = 50nx.

ny = nx, ny = 10nx, and ny = 50nx, respectively. Each plot shows the measured traffic

volume n̂xy (y-axis) with respect to the real traffic volume nxy (x-axis). The equality line y = x

is also drawn for reference. Clearly, the closer a point is to the equality line, the better the

measurement result it represents.

From the first plot of Figure 5-5 and 5-6, one can observe that both schemes achieve

perfect performance when ny = nx. The reason for their comparable performance here is

that our extension scheme is almost the same as [47] when ny = nx = n (hence my =

mx = m = f̄ × n). However, when RSUs with different traffic volume are involved, the
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Figure 5-6. Measurement accuracy of the two-point traffic flow measurement scheme based on
variable-length bit array masking. The x-axis shows the real two-point traffic flow
size, and the y-axis shows measured two-point traffic flow size. s = 2,
nx = 10, 000, nxy = [0.01nx, 0.5nx]. First Plot: ny = nx; Second Plot: ny = 10nx;
Third Plot: ny = 50nx.

measurement accuracy of [47] decreases dramatically. In particular, when ny = 50nx, the

results of [47] are quite inaccurate (the measured results almost scatter everywhere in the third

plot of Figure 5-5). On the contrary, the performance of our extension scheme stays accurate

(the measured traffic volume closely follow their real values in Figure 5-6). This superior

performance originates from our novel design of variable-length bit arrays and the “unfolding”

technique, which eliminates the “unbalanced load factor” problem that [47] suffers.
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5.6 Summary

In this chapter, we propose our fourth novel scheme for privacy-preserving two-point

traffic flow measurement in CPRS, which targets at removing the similar traffic assumption

made by the previous scheme [47] to fit in more realistic situations where different RSUs

observe varied amount of traffic. This novel scheme tackles the efficiency, privacy, and accuracy

problems encountered by all previous solutions. It utilizes variable-length bit arrays to encode

traffic data reported by vehicles, and a novel “unfolding” technique to support two-point

traffic flow measurement based on those variable-length bit arrays. The novel scheme achieves

better privacy for vehicles, more accurate measurement results, and comparable computation

overhead, compared with the previous best scheme [47], which is based on fixed-length bit

arrays. We demonstrate its applicability through both mathematical and numerical analysis.

The simulation results also show the superior performance of the extension scheme.
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CHAPTER 6
PRIVACY-PRESERVING THREE-POINT TRAFFIC MEASUREMENT

6.1 From Two-Point Traffic Measurement to Multi-Point Traffic Measurement

In the previous three chapters, we have proposed four novel schemes for privacy-preserving

two-point traffic measurement in CPRS, which can be used to automatically collect and

efficiently measure the two-point traffic flows passing two arbitrary RSUs while preserving

the privacy of vehicles. In particular, the fourth scheme [49] proposed in the previous

chapter tackles the efficiency, privacy, and accuracy problems encountered by all previous

solutions. It utilizes variable-length bit arrays to encode traffic data reported by vehicles,

and a novel “unfolding” technique to support two-point traffic measurement based on those

variable-length bit arrays. The novel scheme achieves better privacy for vehicles, more accurate

measurement results, and comparable computation overhead, compared with the previous

best scheme [47], which is based on fixed-length bit arrays. We demonstrate its applicability

through both mathematical and numerical analysis as well as extensive simulation results.

To serve for a broader spectrum of applications in vehicular networks and transportation

engineering, we are motivated to generalize our design to address the more challenging problem

of privacy-preserving multi-point traffic measurement.

In this chapter, we will show how to extend our idea of variable-length bit array masking

to address the important problem of privacy-preserving three-point traffic measurement, which

observes the potential of further generalization to deal with the problem of privacy-preserving

multi-point traffic measurement. Intuitively, if we can “unfold” two variable-length bit arrays

to obtain statistical results related to the two-point traffic volume, we should also be able

to “unfold” three or more variable-length bit arrays to get a statistical estimator for the

multi-point traffic volume. The measurement process should be similar: Vehicles report random

indices from their logical bit arrays to mark RSUs’ variable-length bit arrays, and the central

server performs “unfolding” and bitwise OR operations on three or more bit arrays to obtain

statistical results related to the multi-point traffic volume. If an MLE estimator can also be
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mathematically derived from those statistical results, it should be easy for the central server to

compute the multi-point traffic volume.

In the remaining of this chapter, we will follow the above thinking to develop a novel

privacy-preserving three-point traffic measurement scheme. We first explain the two

measurement phases of the proposed scheme, and validate the MLE estimator used to measure

three-point traffic volume, then analyze its performance. In the next chapter, we will discuss

how to further extend our design to address the more general problem of privacy-preserving

multi-point traffic measurement.

6.2 Privacy-Preserving Three-Point Traffic Measurement Scheme

In this section, we present our novel scheme for privacy-preserving three-point traffic

measurement, which is an extension of our previous two-point traffic measurement scheme.

The basic idea is similar: different RSUs will use different-sized bit arrays to collect “masked”

information (random bit indices in RSUs’ bit arrays) from the passing vehicles, and the central

server will measure the three-point traffic flow sizes based on the collected bit arrays, utilizing

an “unfolding” technique and the statistical MLE method. There are two measurement phases,

online coding and offline decoding, which are explained in the following.

6.2.1 Online Coding Phase

The online coding phase of our three-point scheme works exactly the same as our

two-point scheme in [49]. Each RSU Rx maintains a counter nx to record the total number

of passing vehicles, and a bit array Bx with length mx = 2⌈log2(n̄x×f̄)⌉ to collect vehicles’

“masked” data, where n̄x is the expected single-point traffic volume in Rx, and f̄ is a system

wide load factor, whose value is the same for all RSUs. At the beginning of each measurement

period, nx and all bits in Bx are set to zeros. For privacy protection, each vehicle v also has a

logical bit array LBv, which consists of s bits randomly selected from the largest bit array B∗

among all RSUs. The bit indices in B∗ are H(v⊕Kv⊕X[0]), ..., H(v⊕Kv⊕X[s− 1]). Some

frequently-used notations can be found in Table 6-1.
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Table 6-1. Frequently-used Notations.

Notation Meaning
R,Rx, Ry, Rz RSUs

nx, ny, nz single-point traffic volume of RSU Rx, Ry, Rz

nxy, nxz, nyz two-point traffic volume between two RSUs
nxyz three-point traffic volume among three RSUs

n̂xy, n̂xz, n̂yz MLE estimator of the two-point traffic volume nxy, nxz, nyz

n̂xyz MLE estimator of the three-point traffic volume nxyz

Bx, By, Bz bit arrays of RSUs Rx, Ry, Rz

Bxy, Bxz, Byz “unfolding” and “bitwise OR” result of two bit arrays
Bxyz “unfolding” and “bitwise OR” result of three bit arrays

mx,my,mz sizes of bit arrays Bx, By, Bz

mxy,mxz,myz sizes of bit arrays Bxy, Bxz, Byz

mxyz size of the bit array Bxyz

Ux, Uy, Uz number of zeros in bit arrays Bx, By, Bz

Uxy, Uxz, Uyz number of zeros in bit arrays Bxy, Bxz, Byz

Uxyz number of zeros in the bit array Bxyz

Vx, Vy, Vz ratio of zeros in bit arrays Bx, By, Bz

Vxy, Vxz, Vyz ratio of zeros in bit arrays Bxy, Bxz, Byz

Vxyz ratio of zeros in the bit array Bxyz

LBv the logical bit array of vehicle v
s size of the logical bit array of every vehicle

f, fx, fy, fz load factor, ratio of an RSU’s bit array size over its traffic volume, fx = mx

nx

f̄ fixed load factor for all RSUs in the extension scheme [49]
m fixed bit array size for all RSUs in the previous scheme[47], mi = m,∀Ri

In the online coding phase, vehicles and RSUs cooperate to automatically collect

“masked” traffic data. When a vehicle v receives a query from an RSU Rx, whose bit

array is Bx with size mx, it first verifies if Rx is from the trustworthy authority via its

certificate. Once Rx is authenticated, v randomly selects a bit from LBv by computing an

index b = H(v⊕Kv ⊕X[H(Rx⊕ t)mod s]), where t is the current time stamp, then generates

an index bx = bmodmx in the range of [0,mx), and sends bx to Rx. Upon receiving the index

bx, Rx will increase its counter nx by 1, and set the bxth bit in Bx to 1.

6.2.2 Offline Decoding Phase

At the end of each measurement period, similar to our two-point scheme, all RSUs

will send their counters and bit arrays to the central server, which first updates the history

single-point traffic data for the RSUs to take into account the current measurement period.
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After that, the server will measure the three-point traffic volume among three arbitrary RSUs

based on the reported counters and bit arrays, which does incur a little bit more work than the

two-point measurement (due to the third involving RSU). However, the measurement process is

still similar, and the computation overhead is also comparable to the two-point case.

Before describing the measurement process, we first define some notations (also

summarized in Table 6-1). We denote the set of vehicles that pass RSU Rx, Ry, Rz as Sx,

Sy, Sz with cardinality |Sx| = nx, |Sy| = ny, |Sz| = nz, respectively. Clearly, the set of vehicles

that pass through the set of three RSUs {Rx, Ry, Rz} is Sx∩Sy ∩Sz. Denote its cardinality as

nxyz, i.e., nxyz = |Sx ∩ Sy ∩ Sz|, which is the value that we want to measure. Also, the set of

vehicles passing both Rx and Ry is Sx ∩ Sy, whose size is denoted as nxy, i.e., nxy = |Sx ∩ Sy|.

Similarly, we have nxz = |Sx ∩ Sz|, and nyz = |Sy ∩ Sz|. In addition, we denote the size of the

bit array Bx, By, Bz stored in RSU Rx, Ry, Rz as mx, my, mz, respectively. Without loss of

generality, we assume that mx ≤ my ≤ mz.

Given above notations, the central server measures nxyz by first performing the following

four steps of “unfolding” and bitwise OR operations, and then computing the MLE estimator in

(6–5).

Step 1: The server unfolds Bx to the same size of By, and takes a bitwise OR operation

on the unfolded bit array and By to obtain a new bit array Bxy of size my. More specifically,

Bxy[i] = Bx[imodmx] ∨ By[i], ∀i ∈ [0,my). (6–1)

Step 2: The server unfolds Bx to the same size of Bz, and takes a bitwise OR operation

on the unfolded bit array and Bz to obtain a new bit array Bxz of size mz. More specifically,

Bxz[i] = Bx[imodmx] ∨ Bz[i], ∀i ∈ [0,mz). (6–2)

Step 3: The server unfolds By to the same size of Bz, and takes a bitwise OR operation

on the unfolded bit array and Bz to obtain a new bit array Byz of size mz. More specifically,

Byz[i] = By[imodmy] ∨ Bz[i], ∀i ∈ [0,mz). (6–3)
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Step 4: The server unfolds Bx and By to the same size of Bz, and takes a bitwise OR

operation on the two unfolded bit arrays and Bz to obtain a new bit array Bxyz of size mz.

More specifically,

Bxyz[i] = Bx[imodmx] ∨ By[imodmy] ∨ Bz[i], ∀i ∈ [0,mz). (6–4)

Given Bx, By, Bz, Bxy, Bxz, Byz, and Bxyz, the MLE formula that the central

server uses to estimate the three-point traffic volume of RSUs Rx, Ry, and Rz is:

n̂xyz =
W

ln
(
1− 1

mz

)
+ ln(C3)− ln(C4)− 2 ln(C5)

, (6–5)

where W is a function of zero ratios in the bit arrays

W = lnVxyz + lnVx + lnVy + lnVz − lnVxy − lnVxz − lnVyz, (6–6)

and C3, C4, C5 are constants whose values are:

C3 =
1

s
×

(
1− s− 1

s
× 1

mz

)
+

(
1− 1

s

)(
1− 1

my

)(
1− s− 2

s
× 1

mz

)
, (6–7)

C4 = 1− s− 1

s
× 1

my

, (6–8)

C5 = 1− s− 1

s
× 1

mz

. (6–9)

In (6–6), Vxyz, Vx, Vy, Vz, Vxy, Vxz, Vyz are random variables (R.V.) which represent

the fraction of bits whose values are zeros in the bit arrays Bxyz, Bx, By, Bz, Bxy, Bxz, Byz,

correspondingly. Their values can be easily found by counting the number of zeros in the bit

arrays, denoted by Uxyz, Ux, Uy, Uz, Uxy, Uxz, Uyz (note that they are also R.V.s) respectively,

and dividing them by the corresponding bit array size. For example, Vxyz =
Uxyz

mz
, Vx = Ux

mx
, and

Vxy =
Uxy

my
, etc.
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Figure 6-1. Venn diagram for the set of vehicles, Sx ∪ Sy ∪ Sz.

6.2.3 Derivation of the MLE Estimator n̂xyz

Now we follow the MLE method to derive n̂xyz given by (6–5). The derivation process

is similar to the two-point case: We first derive the probability q(nxyz) for an arbitrary bit in

Bxyz to be ‘0’, and use q(nxyz) to establish the likelihood function L to observe Uxyz ‘0’ bits in

Bxyz. Finally, maximizing L with respect to nxyz will give the MLE estimator, n̂xyz.

Consider an arbitrary bit b in Bxyz. Let Ab be the event that the bth bit in Bxyz remains

‘0’, then q(nxyz) is the probability for Ab to occur. Observed from Figure 6-1, the set of all

vehicles passing Rx and/or Ry and/or Rz (i.e., Sx∪Sy ∪Sz) can be partitioned into seven sets:

Sx ∩ Sy ∩ Sz, Sx ∩ Sy − Sz, Sx ∩ Sz − Sy, Sy ∩ Sz − Sx, Sx − Sy − Sz, Sy − Sx − Sz, and

Sz − Sx − Sy. Consider the vehicles in each partition. It is clear that event Ab is equivalent to

the combination of the following seven events:

(I) Event H1: For vehicles passing Rx, Ry, and Rz (i.e., in the set Sx ∩ Sy ∩ Sz), none of

them have chosen bit (bmodmx) in Bx or bit (bmodmy) in By or bit b in Bz. Otherwise, bit

b in Bxyz will be ‘1’ according to (6–4). There are nxyz vehicles in the set Sx ∩ Sy ∩ Sz, and

Figure 6-2 shows the decision tree for each individual car v ∈ Sx∩Sy ∩Sz to not set those bits.

For Rx, v should choose b1modmx ̸= bmodmx, and the probability is clearly 1 − 1
mx

(root

node in Figure 6-2).
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Figure 6-2. Decision tree for an arbitrary bit b in Bxyz to remain ‘0’ after a car v passing by all
three RSUs Rx, Ry and Rz (i.e., v ∈ Sx ∩ Sy ∩ Sz) sets bits in the three bit arrays
(Bx, By, and Bz). The number inside each node represents the index that v
chooses for the corresponding RSU, and the math formula next to the node
represents the probability for v to choose that index, given the condition that all
ancestor nodes have been chosen.

Given its selection of b1 in RSU Rx, v has two choices in Ry: First, as shown in the left

node of the second level in Figure 6-2, with a probability of 1
s
, v selects the same bit b1 in Ry

(hence will not set bit bmodmy in By); Second, as shown in the right node of the same level,

with a probability of 1− 1
s
, v chooses a separate bit b2 randomly from its logical bit array LBv,

and the conditional probability for b2modmy ̸= bmodmy is 1− 1
my

.

Now we examine the choices for v to not set bit b in Bz of RSU Rz given its previous

selections at Rx and Ry (the five nodes in the bottom level of Figure 6-2). Under its

first choice at Ry, in order to not set bit b in Bz, v can either choose the same bit b1 with

probability of 1
s
(node #1), or select a separate bit b3 randomly from LBv with a probability

1− 1
s
, and the conditional probability for b3 ̸= b is 1− 1

mz
(node #2). Under its second choice

at Ry, v can have three choices to not set bit b in Bz: (1) With a probability of 1
s
, v chooses

b1 in Rz (node #3); (2) With a probability of 1
s
, v chooses b2 in Rz (node #4); (3) With

a probability of 1 − 2
s
, v chooses a separate bit b4 randomly from LBv, and the conditional

probability for b4 ̸= b is 1− 1
mz

(node #5).
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Note that the probabilities in above analysis are all conditional probabilities given that the

ancestor nodes have been chosen. To sum up, the probability of H1 is

Q1 =

{(
1− 1

mx

)[
1

s
×
(
1− s− 1

s
× 1

mz

)
+

(
1− 1

s

)(
1− 1

my

)(
1− s− 2

s
× 1

mz

)]}nxyz

=

(
1− 1

mx

)nxyz

C
nxyz

3 . (6–10)

(II) Event H2: For vehicles passing only Rx and Ry (i.e., in the set Sx ∩ Sy − Sz), none

of them have chosen bit (bmodmx) in Bx or bit (bmodmy) in By. We analyze the probability

of each individual vehicle to not set those two bits at Rx and Ry, which is exactly the same as

that for Event E1 of our previous two-point analysis in Section 5.2.3. Since there are nxy−nxyz

cars in the set Sx ∩ Sy − Sz, the probability of H2 is

Q2 =

{(
1− 1

mx

)[
1

s
+

(
1− 1

s

)(
1− 1

my

)]}nxy−nxyz

=

(
1− 1

mx

)nxy−nxyz

C
nxy−nxyz

4 . (6–11)

(III) Event H3: For vehicles passing only Rx and Rz (i.e., in the set Sx ∩ Sz − Sy), none

of them have chosen bit (bmodmx) in Bx or bit b in Bz. There are nxz − nxyz cars in the

set Sx ∩ Sz − Sy. Similar to the analysis of Event H2 and E1 in Section 5.2.3, we obtain the

probability of H3:

Q3 =

{(
1− 1

mx

)[
1

s
+

(
1− 1

s

)(
1− 1

mz

)]}nxz−nxyz

=

(
1− 1

mx

)nxz−nxyz

C
nxz−nxyz

5 . (6–12)

(IV) Event H4: For vehicles passing only Ry and Rz (i.e., in the set Sy ∩ Sz − Sx), none

of them have chosen bit (bmodmy) in By or bit b in Bz. There are nyz − nxyz cars in the

set Sy ∩ Sz − Sx. Similar to the analysis of Event H2 and E1 in Section 5.2.3, we obtain the
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probability of H4:

Q4 =

{(
1− 1

my

)[
1

s
+

(
1− 1

s

)(
1− 1

mz

)]}nyz−nxyz

=

(
1− 1

my

)nyz−nxyz

C
nyz−nxyz

5 . (6–13)

(V) Event H5: For vehicles passing only Rx (i.e., in the set Sx − Sy − Sz), none of them

have chosen bit (bmodmx) in Bx. There are nx−nxy−nxz+nxyz cars in the set Sx−Sy−Sz,

and each of them has a probability of 1 − 1
mx

to not set bit (bmodmx) in Bx. Therefore, the

probability of H5 is

Q5 =

(
1− 1

mx

)nx−nxy−nxz+nxyz

. (6–14)

(VI) Event H6: For vehicles passing only Ry (i.e., in the set Sy − Sx − Sz), none of

them have chosen bit (bmodmy) in By. There are ny − nxy − nyz + nxyz cars in the set

Sy − Sx − Sz, and each of them has a probability of 1 − 1
my

to not set bit (bmodmy) in By.

So the probability of H6 is

Q6 =

(
1− 1

my

)ny−nxy−nyz+nxyz

. (6–15)

(VII) Event H7: For vehicles passing only Rz (i.e., in the set Sz − Sx − Sy), none of them

have chosen bit b in Bz. There are nz−nxz−nyz +nxyz cars in the set Sz−Sx−Sy, and each

of them has a probability of 1− 1
mz

to not set bit b in Bz. Therefore, the probability of H7 is

Q7 =

(
1− 1

mz

)nz−nxz−nyz+nxyz

. (6–16)
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Combining above analysis, we get the probability q(nxyz) for bit b in Bxyz to remain ‘0’

q(nxyz) = Q1 ×Q2 ×Q3 ×Q4 ×Q5 ×Q6 ×Q7

= C
nxyz

3 × C
nxy−nxyz

4 × C
nxz+nyz−2nxyz

5

×
(
1− 1

mx

)nx

×
(
1− 1

my

)ny−nxy

×
(
1− 1

mz

)nz−nxz−nyz+nxyz

(6–17)

Similar to the two-point analysis, we know that for any bit in Bz, the probability for it to

remain ‘0’ after nz vehicles each choosing a random bit from Bz is

q(nz) =

(
1− 1

mz

)nz

, (6–18)

and the expected values for Vz and Vxyz are

E(Vz) = E

(
Uz

mz

)
=

mz × q(nz)

mz

= q(nz), (6–19)

E(Vxyz) = E

(
Uxyz

mz

)
=

mz × q(nxyz)

mz

= q(nxyz). (6–20)

In addition, similar to (5–19), we can obtain(
1− s−1

s
× 1

mz

1− 1
mz

)nxz

=
Vxz

Vx × Vz

, (6–21)

(
1− s−1

s
× 1

mz

1− 1
mz

)nyz

=
Vyz

Vy × Vz

. (6–22)

Substituting (5–10), (5–11), (5–12), (5–13), (6–18), (6–19), (5–19), (6–21), (6–22), and

(6–20) to (6–17), and replacing E(Vx), E(Vy), E(Vz), and E(Vxyz), with their instance values

Vx, Vy, Vz, and Vxyz, respectively, we have

Vxyz =
Vxy × Vxz × Vyz

Vx × Vy × Vz

×
[(

1− 1
mz

)
× C3

C4 × C2
5

]nxyz

. (6–23)
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Finally, solving (6–23) gives the MLE estimator n̂xyz as described in (6–5).

6.2.4 Computation Overhead

We now analyze the computation overhead for each group of entity. Note that the online

coding phase works exactly the same as our two-point scheme, so the computation overhead

for the vehicles and RSUs of our three-point scheme is exactly the same as the two-point

scheme. For both schemes, when a vehicle v passes an RSU Rx, v only needs to compute two

hashes to obtain an index of a random bit, and Rx only needs to set 1 bit in its bit array Bx.

So the computation overhead for each vehicle per RSU as well as for each RSU per passing

vehicle are both O(1).

Our three-point scheme and two-point scheme diverge from the offline decoding phase,

where the central server performs a little bit more task for three-point traffic measurement: it

takes four “unfolding” and bitwise OR operations (Section 6.2.2) instead of one such operation

(Section 5.2.2). Similar to our two-point analysis in Section 5.2.4, in our three-point scheme,

the “unfolding” and bitwise OR operation in step 1 costs O(my) time, and step 2, 3, and 4

each costs O(mz) time, leading to an overall computation overhead of O(mz), where mz is the

size of the largest bit array among the three RSUs. One can see that our three-point traffic

measurement scheme is also very efficient.

6.2.5 Preserved Privacy

Since the way RSUs collect information from passing vehicles in our three-point scheme

is no different from our two-point scheme, the preserved privacy is also the same. Clearly,

the first-level privacy is preserved. In addition, for both schemes, the second-level privacy

p, satisfying the requirement that the probability for any “trace” of any vehicle not to be

identified must be at least p, is actually the conditional probability that states to what degree

observing a same bit to be set in both bit arrays of two RSUs does not represent a common

vehicle passing by both RSUs (i.e., a piece of a vehicle’s trace). The reason is that the only

information a vehicle v ever reports to an RSU is a bit index drawn from the same common

pool uniformly at random, and the adversary can only attempt to identify the trace of a vehicle
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through the observation of the bits that are chosen by the vehicles to be set as ‘1’ in both

RSUs. Therefore, the second-level privacy of our three-point scheme is also given by (5–46),

with same outstanding conclusions as given in Section 5.4 of the two-point scheme.

6.3 Simulation

We conduct two sets of simulations to evaluate the measurement accuracy of our

three-point scheme. Note if we set mx = my = mz = m in (6–5), we can get the MLE formula

for n̂xyz under the setting of fixed bit array size m for all RSUs. Since we have compared our

two-point schemes with two different settings, fixed bit array size m as in [47] v.s. fixed load

factor f as in [49], we also evaluate our three-point scheme under the two different settings,

fixed m v.s. fixed f .

The first set of simulations is to observe the accuracy of our three-point scheme when the

single-point traffic volume of three RSUs are comparable, which means the two settings, fixed

m and fixed f , are now equivalent. The simulations are controlled by the following parameters:

nx, ny, nz, nxyz, s, and m (f). Their values are chosen as follows: nx = ny = nz = n, where

n = 50, 000, 100, 000, or 500, 000, and nxyz varies from 0.01n to 0.5n, with a step size of

0.001n; s = 2, 5, 10, and mx = my = mz = m (fx = fy = fz = f) is chosen to achieve the

optimal privacy p according to (5–46).

Fig. 6-3, Fig. 6-4, and Fig. 6-5 show our simulation results when n = 50, 000, 100, 000,

and 500, 000, respectively. One can see that our three-point scheme is quite accurate under

s = 2 (the measured three-point traffic volume n̂xyz closely follows its real value nxyz in

the first plot of the three figures). With the increment of s, the measurement results slightly

diverge from their real values (refer to the last plot of the three figures), which means larger

values of s will bring in less accurate measurement results. This conclusion is similar to what

we get from the two-point traffic measurement scheme in [47]. Intuitively, if a vehicle v has

a larger logical bit array, the chance for it to report the same bit index to different RSUs

decreases, which means the common information collected by different RSUs is reduced.

Therefore, the accuracy will also be affected for both the two-point and the three-point
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Figure 6-3. Measurement accuracy with optimal privacy, nx = ny = nz = n = 50, 000,
nxyz = [0.01n, 0.5n]. The x-axis shows real three-point traffic volume, and the
y-axis shows the measured three-point traffic volume. The three plots are
controlled by s. First Plot: s = 2; Second Plot: s = 5; Third Plot: s = 10.

measurement. One can also observe that the measurement accuracy of our three-point scheme

improves along with the increment of n (compare each plot of Fig. 6-3 with Fig. 6-5), which is

a natural phenomenon since our estimator is derived from the statistical MLE method.

The second set of simulations is to observe the measurement accuracy of our three-point

scheme when the single-point traffic volume of three RSUs may differ. Under the circumstances

where RSUs’ traffic volume are not the same, will the two settings, fixed m and fixed f , begin

to show differences as we expected? If so, how will the gap between RSUs’ single-point traffic

volume influence the performance of our scheme under the two different settings? These are

the questions to investigate.
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Figure 6-4. Measurement accuracy with optimal privacy, nx = ny = nz = n = 100, 000,
nxyz = [0.01n, 0.5n]. The x-axis shows real three-point traffic volume, and the
y-axis shows the measured three-point traffic volume. The three plots are
controlled by s. First Plot: s = 2; Second Plot: s = 5; Third Plot: s = 10.

Bearing these questions in mind, the second set of simulations are controlled by the

following parameters: nx, ny, nz, nxyz, s, f , and m. Their values are chosen as follows:

nx = 10, 000, nz = ny = nx or nz = 4ny = 16nx or nz = 8ny = 64nx, nxyz varies from

0.01nx to 0.5nx, with step size of 0.001nx. s is set to 2, 5, 10. m is the fixed bit array size for

all RSUs under the first setting, and f is the fixed load factor for all RSUs under the second

setting. The values of m and f are chosen to guarantee a minimum privacy of at least 0.5

under the two settings, respectively.

Fig. 6-6 shows the simulation results for our three-point scheme with fixed bit array size

m, and Fig. 6-7 shows the results for our three-point scheme with fixed load factor f , both
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Figure 6-5. Measurement accuracy with optimal privacy, nx = ny = nz = n = 500, 000,
nxyz = [0.01n, 0.5n]. The x-axis shows real three-point traffic volume, and the
y-axis shows the measured three-point traffic volume. The three plots are
controlled by s. First Plot: s = 2; Second Plot: s = 5; Third Plot: s = 10.

under s = 2. Since the comparison results for s = 5 and s = 10 are quite similar, here we

omit them. From the two figures, one can observe two key trends: (1) When the single-point

traffic volume for the three RSUs are comparable, i.e., nz = ny = nx, our three-point scheme

under the two settings, fixed m and fixed f , indeed achieves equivalent accuracy (first plot of

Fig. 6-6 and Fig. 6-7); (2) When the single-point traffic volume vary for different RSUs, our

three-point scheme achieves far better accuracy under the fixed f setting than the fixed m

setting, and the performance difference enlarges with the widening of the gap among the three

RSUs’ single-point traffic volume (the second and third plot of Fig. 6-6 v.s. Fig. 6-7). The two
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Figure 6-6. Measurement accuracy of our three-point scheme with fixed bit array size m. The
x-axis shows real three-point traffic volume, and the y-axis shows measured
three-point traffic volume. s = 2, nx = 10, 000, nxyz = [0.01nx, 0.5nx]. The three
plots are controlled by the ratio of ny and nz over nx. First Plot: nz = ny = nx;
Second Plot: nz = 4ny = 16nx; Third Plot: nz = 8ny = 64nx.

trends observed from the measurement results of our three-point scheme also coincide with

those shown in our two-point scheme.

6.4 Summary

In this chapter, we focus on addressing the problem of privacy-preserving three-point

traffic measurement in CPRS, whose goal is to automatically collect and efficiently measure the

traffic passing three arbitrary RSUs while preserving the privacy of vehicles. As far as we know,

this is the first study of the privacy-preserving multi-point traffic measurement problem which

measures traffic passing through more than two locations while preserving vehicles’ privacy
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Figure 6-7. Measurement accuracy of our three-point scheme with fixed load factor f . The
x-axis shows real three-point traffic volume, and the y-axis shows measured
three-point traffic volume. s = 2, nx = 10, 000, nxyz = [0.01nx, 0.5nx]. The three
plots are controlled by the ratio of ny and nz over nx. First Plot: nz = ny = nx;
Second Plot: nz = 4ny = 16nx; Third Plot: nz = 8ny = 64nx.

in a road system. In this work [50], we extend and generalize over our previous best scheme

on privacy-preserving two-point traffic measurement [47], and propose a novel scheme for

privacy-preserving three-point traffic measurement, which also utilizes variable-length bit array

masking to fit in the real-life situations where different RSUs observe varied amount of traffic.

In this chapter, we present our novel three-point traffic measurement scheme, and demonstrate

its applicability, efficiency, and scalability through mathematical and numerical analysis as well

as extensive simulations. During our course of research, we also observe the potential for our

design of variable-length bit array masking to be further extended to solve the more general
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problem of privacy-preserving multi-point traffic measurement. In the next chapter, we will

investigate that possibility.
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CHAPTER 7
PRIVACY-PRESERVING MULTI-POINT TRAFFIC MEASUREMENT

In the previous two chapters, we have proposed two schemes for privacy-preserving

two-point and three-point traffic measurement based on variable-length bit array masking,

which can efficiently measure the traffic volume among an arbitrary set of two or three

RSUs, and well preserve vehicles’ privacy. During the course of our research, we observe

the potential for our design of variable-length bit array masking to be further generalized to

measure traffic covering d > 2 locations. In this chapter, we will investigate the feasibility

of this generalization, and propose a general framework for the problem of privacy-preserving

multi-point traffic measurement, which can efficiently measure the traffic volume among an

arbitrary of d locations and preserve vehicles’ privacy. We will also discuss the performance of

the general framework as d increases.

7.1 General Framework

Similar to our two-point and three-point scheme based on variable-length bit array

masking as presented in the previous two chapters, our general framework to measure d-point

traffic volume also includes two phases: online coding phase for RSUs to collect de-identified

vehicle information through variable-length bit arrays, and offline decoding phase for the central

server to compute the d-point traffic volume among an arbitrary set of d RSUs based on the

variable-length bit arrays. The online coding phase works exactly the same as our two-point

(Section 5.2.1) and three-point (Section 6.2.1) scheme, which we omit to avoid duplicate

description.

The offline decoding phase is also similar. At the end of each measurement period, all

RSUs will send their counters and bit arrays to the central server. To compute the d-point

traffic volume among an arbitrary set of d RSUs, denoted as {R1, ..., Rd}, the central server

will perform a series of “unfolding” and bitwise OR operations in between the bit arrays of

the d RSUs to generate a series of statistical results (more specifically, the zero ratios of the

resulting bit arrays) that are related to the d-point traffic volume. Again, if an MLE estimator
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can be derived based on these statistical results, the central server can easily compute the

d-point traffic volume. Therefore, the key is to establish the relationship between the zero

ratios of the bitwise ORed bit arrays and the d-point traffic volume.

Before deriving this relationship, we first define some notations. We denote the set of

d RSUs as Sd, i.e., Sd = {R1, ..., Rd}. Without loss of generality, we assume m1 ≤ m2 ≤

... ≤ md, where mi is the size of the bit array Bi in Ri, 1 ≤ i ≤ d. For an arbitrary set

S ⊂ Sd of RSUs, we unfold their bit arrays to the same size of the largest bit array among

S, and perform a bitwise OR operation over the unfolded bit arrays to obtain a new bit array

BS , whose zero ratio is VS . Denote the set of vehicles that pass by all RSUs in S as VS with

cardinality NS = |VS |. Clearly, we want to measure NSd
.

Given an arbitrary bit b in BS , the probability for b to be ‘0’ after an arbitrary vehicle

v ∈ VS marks bits for all RSUs in S is denoted as PS . Similar to our two-point and three-point

scheme, we can derive the overall probability q(NSd
) for an arbitrary bit b in BSd

to be ‘0’ after

online coding as

q(NSd
) = P

NSd
Sd
×

∏
1≤i≤d

P
NSd−{Ri}−NSd

Sd−{Ri} ×

∏
1≤i<j≤d

P
NSd−{Ri,Rj}−NSd−{Ri}−NSd−{Rj}+NSd

Sd−{Ri,Rj} × · · ·×

∏
1≤i≤d

P
N{Ri}−

∑j ̸=i
1≤j≤d N{Ri,Rj}+ ···+(−1)d−1NSd

{Ri} ,

(7–1)

where each term above captures the probability for bit b in BSd
to be ‘0’ after the set of

vehicles passing only l (d ≥ l ≥ 1) RSUs in Sd mark bits in the bit arrays, and the superscript

in each term denotes the corresponding vehicle set cardinality derived from inclusion-exclusion

principle.

Given above analysis, we present Algorithm 7.1 to iteratively derive the MLE estimator

N̂Sd
, whose correctness can be easily proved through mathematical induction, which we omit.

In Algorithm 7.1, the inputs P1, P2, and P3 are probability formulas given in (5–6), (5–7),

and (5–8) in our two-point MLE derivation, with the notations nx, ny, and nxy changed to

111



N{R1}, N{R2}, and N{R1,R2}, respectively. We first initialize the probability set IP2 and the

vehicle cardinality set IN2 from the two-point derivation, which serves as the base case of our

iterative algorithm. Then the for-loop works iteratively, where the iteration j derives IPj+1
and

INj+1
based on IPj

and INj
obtained from the previous iteration. Note that INj+1

includes the

MLE estimator N̂Sj+1
as a function Fj+1({V ∗

Sj+1
}) of the zero ratios, where the set {V ∗

Sj+1
}

contains the zero ratio VS of BS for all S ⊂ Sj+1, S ̸= ∅. Therefore, when the for-loop

completes, we will obtain the MLE estimator N̂Sd
as a function Fd({V ∗

Sd
}) of the zero ratios in

the corresponding bitwise ORed bit arrays.

Algorithm 7.1. Iterative Algorithm to Derive the MLE estimator N̂Sd

1: Inputs: d, P1, P2, P3, {mi}1≤i≤d, {N{Ri}}1≤i≤d, N̂S2

2: Initialize: PS2 ← P1, P{R1} ← P2, P{R2} ← P3, IP2 ← {PS2 , P{R1}, P{R2}}

NS2 ← N̂S2 , IN2 ← {NS2 ,N{R1},N{R2}}
3: for j ← 2 to d− 1 do

4: Step 1: Use decision tree as Figure 5-2 and Figure 6-2 to obtain PSj+1

5: Step 2: Use PSj+1
and IPj

= {PSj
}
∪
{PSj−{Ri}}1≤i≤j

∪
· · ·

∪
{P{Ri}}1≤i≤j

to update IPj+1
= {PSj+1

}
∪
{PSj+1−{Ri}}1≤i≤j+1

∪
· · ·

∪
{P{Ri}}1≤i≤j+1

6: Step 3: Use INj
= {NSj

}
∪
{NSj−{Ri}}1≤i≤j

∪
· · ·

∪
{N{Ri}}1≤i≤j

to update INj+1
− {NSj+1

} = {NSj+1−{Ri}}1≤i≤j+1

∪
· · ·

∪
{N{Ri}}1≤i≤j+1

7: Step 4: Use IPj+1
, INj+1

− {NSj+1
}, and (7–1), and replace q(NSj+1

) = E(VSj+1
)

by its instance value VSj+1
, to get the MLE estimator N̂Sj+1

= Fj+1({V ∗
Sj+1
})

8: Step 5: NSj+1
← N̂Sj+1

, INj+1
← INj+1

− {NSj+1
}
∪
{NSj+1

}

9: end for

7.2 Discussion

We conclude with a quick discussion about the performance of our general d-point (d > 1)

traffic measurement scheme. Clearly, since RSUs collect de-identified information from passing

vehicles in the same way as our two-point and three-point scheme, the preserved privacy is

also the same. Also, the computation overhead for vehicles and RSUs remains O(1). However,

as d increases, the computation overhead for the central server to measure d-point traffic
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volume grows exponentially. Given d bit arrays of d RSUs, the central server needs to perform

unfolding and bitwise OR on every l (2 ≤ l ≤ d) bit arrays to generate 2d − d − 1 new bit

arrays, and compute the zero ratios in them and d original bit arrays, which costs an overall of

O(2d ×md) time.

In addition, as d increases, the measurement accuracy of our general scheme is expected

to decrease. The reason is that, for each iteration j of the MLE derivation, an instance value

of zero ratio VSj+1
replaces its expected value q(NSj+1

) = E(VSj+1
) to get the MLE estimator

N̂Sj+1
, which introduces a certain level of inaccuracy. This inaccuracy will accumulate as d

increases. When d exceeds some value, say 10, our d-point scheme may not work well as our

current two-point and three-point scheme. However, in reality, the d-point traffic of interest

usually has small values of d, such as 2, 3, or 4. Therefore, our general scheme is still sufficient

to serve for most applications.
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CHAPTER 8
CONCLUSION

In this dissertation, we focus on the important problem of privacy-preserving multi-point

traffic volume measurement in intelligent cyber-physical road systems (CPRS), which

complements the state of art mainly focused on single-point traffic volume measurement.

We propose several novel schemes to allow transportation authorities to automatically collect

and efficiently measure the aggregate multi-point traffic volume data from CPRS without

learning information about individual vehicles.

In the dissertation, we first propose four novel schemes to address the problem of

privacy-preserving two-point traffic measurement, with varying degrees of efficiency, accuracy,

and privacy. Our first two schemes protect vehicles’ identities through keyed signatures based

on a family of commutative one-way hash functions, and they can achieve exact measurement

results. To further improve the measurement efficiency and achieve better privacy for vehicles,

we utilize a novel compact data structure, shared bit arrays, to propose a third measurement

scheme. It is much more efficient, and protects not only vehicles’ identities but also their

travelling trajectory. The scheme can gracefully control the tradeoff between vehicles’ privacy

and measurement accuracy under the assumption that different locations observe similar

amount of traffic. To remove this similar traffic assumption to fit in more realistic situations,

we propose our fourth measurement scheme, which is based on variable-length bit array

masking, a novel “unfolding” technique, and the rigorous statistical MLE method. Our

fourth scheme achieves better privacy for vehicles, more accurate measurement results, and

comparable computation overhead, compared with the previous best scheme.

To suit for a broader spectrum of applications in vehicular networks and transportation

engineering, we naturally extend our idea of variable-length bit array masking to solve the

problem of privacy-preserving three-point traffic measurement, and eventually present a

framework to solve the general problem of privacy-preserving multi-point traffic measurement.

We demonstrate the feasibility, scalability, and superior performance of our solutions through
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mathematical proofs, numerical analysis, as well as extensive simulations. The research

results in this dissertation have potential applications beyond vehicular networks, such as

privacy-preserving traffic estimation in a subway system with tagged toll cards. It is also

possible for them to be used for estimating the movement patterns of mobile users in a

corporate wireless network.
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