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Space-time efficient data structures can benefit many application systems.

Space-efficiency describes a data structure that can fit compactly into the memory.

The term time-efficiency implies that accessing/updating it requires short period of

time. In this work, we cover space-time efficient data structures related to four abstract

problems: set membership checking, multi-set membership checking, distributed set

joining, and set size estimation. The goal is to improve the space-time efficiency of

existing solutions.

We first study an efficient set representation – the Bloom filter. Traditional

Bloom filters offer excellent space efficiency, but each lookup requires multiple hash

computations and multiple memory accesses. We propose a new family of space-time

efficient Bloom filters that provide the same space efficiency, but requires much fewer

memory accesses for each lookup. Due to wide applicability, any improvement to the

performance of Bloom filters can potentially have a broad impact in many areas of

research.

Then we further propose a data structure for representing multi-sets, where a set ID

is associated with each member element. Our proposed data structure can reduce the

space and computational complexity, yet keep the error ratio in a pretty low level.

Next, we design another Bloom filter variant called adaptive Bloom filter for efficient

joining two distributed sets. When two nodes in distributed system exchange their
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elements to find out common ones, the Bloom filter can be used to encode element IDs

with fewer network overhead. Our design can further reduce the amount of data that is

exchanged.

Then, we apply our efficient Bloom filter idea to cyber-physical systems. We

show that the space-time domain in computer/network system can be mapped to the

time-energy domain of an RFID system. Based on the partitioned Bloom filter and

our efficient Bloom filter idea, we design two time-energy efficient protocols for RFID

systems. We show how to tweak the data structures to adapt to application-specific

features.

Last, we propose two light-weighted protocols to estimate the cardinality of vehicles

in a region. Future vehicles may be equipped with wireless devices to form a powerful

vehicular peer to peer network. For a stationary wireless network, this problem has been

extensively studied. However, it becomes much more challenging for mobile vehicular

peer-to-peer networks whose topologies are constantly changing, and the estimation

protocol has to be fast to take a useful snapshot of the dynamic network. Our protocols

are based on circled random walks and tokened random walks. With simulations under

two different mobility models, we show the efficiency of our protocols.
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CHAPTER 1
INTRODUCTION

1.1 Background

Space-time efficient data structures and protocols can benefit many application

systems. Space-efficiency describes a data structure that can fit compactly into the

memory. The term time-efficiency has two dimensions: For a data structure, it implies

that accessing/updating it requires short period of time; For a protocol that contains

continuous time slots, it means the execution time of the protocol is short. Space-time

efficiency implies both space-efficiency and time-efficiency. Space-time efficient data

structures and protocols play an important role when space/time has major influence on

performance. In this work, we will show several space-time efficient data structure and

protocol designs and their applications in such systems.

For example, with modern high-end routers, today’s network system is able to

process millions of packets per second, and forward each packet in a few clock cycles

(40 Gbps for OC-768 and 16.4 Tbps in experimental systems [49]). To keep up with

such high throughput, many network functions that deal with real-time packets also have

to be implemented in hardware, e.g. traffic measurement, packet scheduling, access

control, quality of service, and so on. However, the data associated with the functions

may not be stored in DRAM because the bandwidth and delay of DRAM access cannot

match the packet throughput at the line speed. Consequently, the recent research trend

is to implement network functions in the high-speed on-die cache memory, which is

typically SRAM for network processor chips. SRAM has limited size, which is typically

a few megabytes. Further increasing on-chip memory to more than 10MB is technically

feasible, but it is more expensive and the access time is longer. Off-chip SRAM is larger

[124], but it is slower to access and memory bandwidth is constrained by the number

of I/O pins. Furthermore, with a limited size, on-chip memory may have to be shared

by various integrated functions that are implemented together. For example, traffic
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monitoring and measurement functions provide critical information for service provision,

anomaly detection, capacity planning, accounting and billing in modern computer

networks [43, 45, 74, 90, 163]. If these functions are implemented in off-chip DRAM,

they will not be able to keep up with today’s line speed. As a result, it is highly desired to

use space-time efficient data structures in high-speed network systems.

As another example, a distributed system is a software system in which components

located on networked computers communicate and coordinate their actions by passing

messages [37]. In distributed systems such as the ones mentioned in [75, 82],

communication between distributed components is in large scale and happens

frequently. It is desirable to make the communication extremely efficient. In this work,

we study space-time efficient data structures and protocols in space-time constrained

systems in general. We show how these data structures can be applied in but not

restricted to high-speed network systems, distributed systems, RFID systems, and

vehicular systems.

1.2 Research Scope of This Work

In this work, we first study a general efficient data structure, i.e. the Bloom filter.

Bloom filters are efficient data structures for membership check against large data sets

[7, 12]. They are widely applied in routing-table lookup [40, 142, 143], per-flow traffic

measurement [76], flow label identification [97], firewall design [103], intrusion detection

[147], and so on. Traditional Bloom filters offer excellent space efficiency, but each

lookup requires multiple hash computations and multiple memory accesses [7, 12, 98].

We propose a new family of space-time efficient Bloom filters that provide the same

space efficiency, but requires much fewer memory access for each lookup (Chapter 3).

Due to wide applicability, any improvement to the performance of Bloom filters can

potentially have a broad impact in many areas of research.

The Bloom filter can compactly encode a single set, but using it alone does

not efficiently represent a multi-set, where a set ID is associated with each member

16



element. Inspired by the space-time efficient Bloom filter design, we propose an efficient

data structure to encode multi-Set membership. Our design goal is to reduce the space

and computational complexity, yet keeping the error ratio caused by false positive in a

low level. Chapter 4 shows the detailed design.

Bloom filters have wide application in distributed systems. We design an adaptive

Bloom filter for distributively joining two sets in distributed systems (Chapter 5). When

the Bloom filter and the compressed Bloom filter were first introduced to this problem,

the communication cost was greatly reduced. Our design can further reduce the amount

of message that has to be exchanged.

Next, we shift our view from the space domain to the time domain and show how

an efficient protocol can benefit cyber-physical systems. In a typical computer/network

system, information is stored in memory as 0/1 bits. While in a wireless environment

such as an RFID system, information is sent/received via continuous time slots. The

length of overall time slots defines the execution time of the protocol. As a result, the

space domain in computer/network systems becomes the time domain in RFID systems.

Meanwhile, RFID tags send/receive information to/from one or more time slots. The

amount of data that a tag send/receive determines its energy expenditure. Therefore,

the time domain in computer/network systems (accessing/updating the data structure)

can be mapped to the energy domain of RFID tags (sending/receiving information

to/from time slots). As a result, designing a time-energy efficient RFID protocol shares

the same discipline as implementing a space-time data structure in a computer/network

system. Through a specific problem in an RFID system, i.e. how to collect information

efficiently from a subset of RFID tags, we show that an efficient protocol design can

reduce the battery consumption of RFID tags to a constant level (Chapter 6).

Last, we further discuss applications in vehicular peer to peer networks (Chapter 7).

Collecting information from VP2P networks has important applications. One problem

is to determine the cardinality of a large VP2P network, i.e., the number of vehicles
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in the network. For a stationary wireless network, this problem can be trivially solved

through a flooding-based query. However, it becomes much more challenging for mobile

VP2P networks whose topologies are constantly changing. Meanwhile, the protocol

has to run quick in order to provide a useful snapshot of the network. We propose two

light-weighted protocols based on circled random walks and tokened random walks for

estimating the cardinality. Simulation is performed under two different mobility models:

the street model and the random waypoint model.

At the end, we conclude this work and discuss future works.
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CHAPTER 2
SYSTEM MODEL, METRICS, RELATED WORKS, AND CONTRIBUTIONS

In this chapter, we introduce the system models, performance metrics, related

works and contributions of the this work.

2.1 System Model

In this work, we focus on space-time constrained systems. The applications we

used in this work are diversified: including high-speed network system, distributed

system, RFID system, and vehicular peer-to-peer system. Despite application specific

features, these systems share some similarities: Space and time are precious resources

of the systems that directly or indirectly constrains the system performance. Therefore,

the space or time or both that a data structure/protocol may use is limited. For instance,

a high-speed network system such as that in high-end routers has huge throughput

demands and high speed requirements [49]. We make the following reasonable

assumptions while designing the data structures for such systems:

• Improving per-operation overhead brings large performance gains.

• Available space is limited in size (e.g. online SRAM is normally smaller than
10MB).

• The system fetches a block of memory (e.g. 32 bits, or 64 bits) into the processor
at a time. This is mostly true for modern processors.

More application specific models will be discussed in corresponding chapters.

2.2 Performance Metrics

The performance of the Bloom filter and its many variants is judged based on

three criteria: The first one is the processing overhead, which is includes the number

of memory accesses and the number of hash operations. The overhead limits the

highest throughput that the data structure can support. Because both SRAM and

the hash function circuit may be shared among different network functions, it is

important for them to minimize their processing overhead in order to achieve good

system performance. The second performance criterion is the space requirement. A
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smaller space requirement reduces the usage of SRAM, saving space for richer online

functions. If the data structure is mainly transferred via network, then we can call it as

the bandwidth requirement. The third criterion is the correctness. For example, a Bloom

filter may mistakenly claim a non-member to be a member due to its lossy encoding

method, which is called the false positive ratio. As another example, some variants

of Bloom filters may introduce false negatives, which means a member is mistakenly

claimed as a non-member. There is a tradeoff between the space requirement and the

correctness. We can improve the latter by allocating more memory.

In summary, the performance metrics we consider include:

• Processing Overhead:

– Memory Access: number of memory access for each membership query.

– Hash Complexity: number of hash bits required for each membership query.

• Space Requirement:

– If the data structure is stored in memory, how much memory space it takes.

– If the data structure is passed as a message, what is the message size.

• Correctness:

– False Positive Ratio: probability for a non-member being considered as a
member.

– False Negative Ratio: probability for a member being claimed as a non-member.

– Conflict Classification: probability for a multi-set membership query to return
multiple possible set-IDs to a member.

– Mis-Classification Ratio: probability for a member of a multi-set being
recognized as a non-member.

2.3 Related Works

Since the Bloom filter was first proposed in 1970 [7], many variants have emerged

to meet different requirements, such as supporting set updates, improving the

space-efficiency, memory access efficiency, false positive ratio, and hash complexity of

the Bloom filter. A comprehensive survey on Bloom filter variants and their applications
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can be found in [150]. Other Bloom filter variants were proposed to solve specific

problems, e.g. representing multi-sets or sets with multi-attribute members [59, 158].

In the following, we introduce prior works that are related to this dissertation. We

divide these works into four categories. The first category aims to improve the space,

hash, accuracy, and memory access efficiency of traditional Bloom filters. The second

category includes variants of Bloom filters that allow element update or delete. The third

category involves the Bloom filter use in the distributed join problem. The last category

deals with multi-set membership lookup. Application specific (i.e. RFID, VP2P network)

related works will be further discussed in corresponding chapters.

2.3.1 Better Bloom Filter

2.3.1.1 Improving Space Efficiency

Some Bloom filter variants aim to improve the space-efficiency [111, 121, 128].

It has been proven that the Bloom filter is not space-optimal [12, 93, 121]. Pagh et al.

designed a new RAM data structure whose space usage is within a lower order term

of the optimal value [121]. Porat designed a dictionary data structure that maps keys

to values with optimal space [128]. Mitzenmacher proposed the compressed Bloom

filters [111], which is suitable for message passing, for example, during web cache

sharing. The idea is to use a large, sparse Bloom filter at the sender/receiver, and

compress/decompress the filter before/after transmission. We will cover this work in

more details in Chapter 5.

2.3.1.2 Reducing False Positive Ratio

Reducing the false positive ratio of the Bloom filter is another subject of research.

Lumetta and Mitzenmacher [99] proposed to use two choices (i.e. two sets of hash

functions) for each element encoded in the Bloom filter. The idea is to pick the set of

hash functions that produce the least number of ones, so as to reduce the false positive

ratio. This approach generates fewer false positives than the Bloom filter when the load
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factor is small, but it requires twice the number of hash bits and twice the number of

memory access than the Bloom filter does.

Hao et al. use partitioned hashing to divide members into several groups, each

group with a different set of hash functions [46]. Heuristic algorithms are used to find

the “best” partition. However, this scheme requires the keys of member elements to

compute the final partition. Therefore, it only works well when members are inserted all

at once and membership queries are performed afterwards.

Tabataba and Hashemi proposed the Dual Bloom Filter to improve the false positive

ratio of a single Bloom filter [148]. The idea is to use two equal sized Bloom filters to

encode the set with different sets of hash functions. An element is considered a member

only when both filters produce positives. In order to reduce the space usage for storing

random numbers for different hash functions, the second Bloom lter encodes ones

complemented values of the elements.

Lim et al. use two cross-checking Bloom filters together with traditional Bloom filter

to reduce the false positives [92]. It first divides the set S to be encoded to two disjoint

subsets A and B (S = A ∪ B, A ∩ B = ∅). Then they use three Bloom filters to encode

S ,A,B respectively, denoted as F (S),F (A),F (B). Different hash functions are used to

provide cross checking. All three filters are checked during membership lookup. Only

when F (S) gives positive result, while F (A) and F (B) do not both give negative results,

it claims the element as a member. Their evaluation shows that it improves the false

positive of Bloom filters with the same size by magnitudes.

2.3.1.3 Improving Read/Write Efficiency

Other works try to improve the read/write efficiency of the Bloom filter. This category

is most related to our work in [? ? ]. Zhu et al. proposed the hierarchical Bloom filter,

which builds a small, less accurate Bloom filter over the large, accurate filter to reduce

the number of queries to the large filter [175]. As the small filter has better locality, the

total number of memory accesses is reduced. Their method is suitable for the scenarios

22



where large filter access is costive, and element queries are not uniformly distributed

[175].

The Partitioned Bloom filter [65, 114] can also improve the read/write efficiency. It

divide the memory into k segments. k hash functions are used to map an element to

one bit in each segment. If the segments reside in different memory banks, reads/writes

of the membership bits can proceed in parallel, so that the overall read/write efficiency is

improved.

Kim et al. proposed a parallelised Bloom filter design to reduce the power

consumption and increase the computation throughput of Bloom filters [68]. The idea is

to transform multiple hash functions of Bloom filters into the multiple stages. When the

membership bit from earlier hash function is ‘0’, the query string is not progressed to the

next stage.

Chen et al. proposed a new Bloom filter variant that allocates two membership bits

to each memory block [30]. This reduces the total number of memory accesses by half.

It is equivalent to the Bloom-k/2 filter in our Bloom-g family. Our work can be interpreted

as a generalization of this work. However, this paper did not further analyze the problem

to extremes: k/2 memory blocks are accessed for each membership query, which is not

necessary as our simulation shows. Besides, this work does not thoroughly study the

trade-offs between block sizes, number of hash bits, and false positive ratio.

Canim et al. proposed a two-layer buffered Bloom filter to represent a large set

stored in flash memory (a.k.a. Solid State Storage, SSD) [17]. The design considers

several important characteristics of flash memory: (1) Data can be read/write by pages.

(2) A page write is slower than a page read and data blocks are erased first before they

are updated (in-place update problem). (3) Each cell allows a limited number of erase

operations in flash memory life cycle. Therefore, it is important to reduce the number of

writes to flash memory. In the design of [17], the filter layer in flash consists of several

sub-filters, each with the size of a page; while the buffer layer in RAM buffers the read
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and write operations to each sub-filter, and applies them in bulk when a buffer is full. The

buffered Bloom filter adopts an off-line model, where element insertions and queries are

deferred and handled in batch.

Debnath et al. adopted an online model in their design of the BloomFlash, which

is also a set representative stored in flash memory [38]. The idea is to reduce random

write operations as much as possible. First, bit updates are buffered in RAM so that

updates to the same page are handled at once. Second, the Bloom filter is segmented

to many sub-filters, with each sub-filter occupying one flash page. For each element

insertion/query, an additional hash function is evoked to choose which sub-filter to

access. In their design, the size of each sub-filter is fixed to the size of a flash page,

typically 2KB or 4KB [38]. Comparing to our work, they did not study a more generic

case where the memory block size is 32 bits, 64 bits, or more, or how to remedy the

false positive ratio induced by imbalanced distribution of membership bits.

Lu et al. proposed a Forest-structured Bloom filter for dynamic set in flash storage

[94]. The proposed data structure resides partially in flash and partially in RAM. It

partitions flash space into a collection of flash-page sized sub-filters and organizes them

into a forest structure. As the set size is increasing, new sub-filters are added to the

forest.

2.3.1.4 Reducing Hash Complexity

There are also works that aim to reduce the hash complexity of the Bloom

filter. Kirsch and Mitzenmacher have shown that for the Bloom filter, only two hash

functions are necessary. Additional hash functions can be produced by a simple linear

combination of the output of two hash functions [65]. This gives us an efficient way to

produce many hash bits, but it does not reduce the number of hash bits required by

the Bloom filter or its variants. There are also other works that design efficient yet well

randomized hash functions that are suitable for Bloom filter-like data structures. Since

this topic is less related to this work, we do not enumerate them.
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2.3.2 Bloom Filter for Dynamic Set

The Bloom filter does not support element deletion or update well, and it requires

the number of elements as a prior to optimize the number of hash functions. Almeida et

al. proposed the Scalable Bloom Filters for dynamic sets [3], which creates a new Bloom

filter when current Bloom filters are “full”. Membership query checks all the filters. Each

successive bloom filter has a tighter maximum false positive probability on a geometric

progression, so that the compounded probability over the whole series converges to

some wanted value. However, this approach uses a lot of space and does not support

deletion.

The counting Bloom filter (CBF) [82] addresses the element deletion problem by

replacing the bit array with a counter array. Insertions (deletions) to CBF are done

by incrementing (decrementing) the counters by 1. Membership query checks the

positiveness of the counters. CBF and its variants (e.g. [54, 134]) require multiple times

of the space used by a standard Bloom filter, depending on how many bits each counter

takes.

Rottenstreich et al. proposed the Variable-Increment Counting Bloom Filter

(VI-CBF) [134] to improve the space efficiency of CBF. For each element insertion,

counters are updated by a hashed variable increment instead of a unit increment. Then,

during a query, the exact value of a counter is considered, not just its positiveness. Due

to possible counter overflow, CBF and VI-CBF both introduce false negatives [53].

The Bloom filter with variable-length signatures (VBF) proposed by Lu et al. also

enables element deletion [98]. Instead of setting k membership bits, a VBF sets t(t ≤ k)

bits to one to encode an element. To check the membership of an element, if q(q ≤ t ≤

k) membership bits are ones, it claims that the element is a member. Deletion is done

by setting several membership bits to zero such that remaining ones are less than q.

VBF also has false negatives.
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Rothenberg et al. achieved false-negative-free deletions by deleting element

probabilistically [133]. Their proposed Deletable Bloom filter divides the standard Bloom

filter into r regions. It uses a bit map of size r to indicate if there is any “bit collision”

(i.e. two members setting the same bit to ‘1’) among member elements in each region.

When trying to delete an element, it only resets the bits that are located in collision-free

regions. There is a probability that an element can be successfully deleted: when there

is at least one membership bit located in a collision-free region. As the load factor

increases, the probability of successful deletion decreases. Also, as elements are

inserted and deleted, even if the load factor remains the same, the deletion probability

still drops. This is because bits the bitmap does not reflect the “real” bit collision when

elements previously causing the collision were already deleted. But there is no way to

reset bits in the bit map back to ‘0’s.

In same applications, new data is more meaningful than old data, so some data

structure deletes old data in first-in-first-out manner. For example, Chang et al.

proposed an aging scheme called double buffering where two large buffers are used

alternatively [21]. In this scheme, the memory space is divided into two equal-sized

Bloom filters called active filter and warm-up filter. The warm up filter is a sub-set of the

active filter, which consists only elements that appeared after the active filter is more

than half full. When the active filter is full, it is cleared out, and the two filters exchanges

roles. Each time the active filter is cleared out, a number of old data are deleted, the size

of which is half the capacity of the Bloom filter.

Yoon proposed an active-active scheme to better utilize the memory space of

double buffering [162]. The idea is to insert new elements to one filter (instead of

possibly two in double buffering) and query both filters. When the filter that elements

are currently inserting to becomes full, the other filter is cleared out and the filters switch

roles. It can store more data with the same memory size and tolerable false positive rate

compared to double buffering.
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Deng and Rafiei proposed the Stable Bloom filter to detect duplicates in infinite

input data stream [39]. Similar to the Counting Bloom filter, a Stable Bloom filter is an

array of counters. When an element is inserted, the corresponding counters are set

to the maximum value. The false positive ratio depends on the ratio of zeros, which is

a fixed value for a Stable Bloom filter. It achieves this by decrementing some random

counters by one whenever a new element is inserted.

Bonomi et al. proposed time-based deletion [8] with a flag associated with each bit

in the filter. If a member is accessed, the flags of its corresponding bits are set to ‘1’.

At the end of each period, bits with unset flags are reset to zeros, and then all flags are

unset to ‘0’s to prepare for the next period. Elements that are not accessed during a

period are deleted consequently. However, it has to wait a time period for the deletion to

take effect.

2.3.3 Bloom Filter for Distributed Join

Bloom filters are widely used in distributed systems. One application is to efficiently

process database joins in distributed setting. Mackert and Lohman proposed Bloomjoin,

which sends a Bloom filter to filter out a large portion of unneeded data before

transferring real data [104]. Bloomjoin largely reduces the communication cost for

distributively joining two sets.

Mullin suggests to use partitioned Bloom filter (PBF) to encode the data, and send

one segment at a time [114]. When the data size of filtered out elements is smaller than

the size of a PBF segment, it stops sending PBF segments but sends the remaining

elements instead. The advantage of this approach over Bloomjoin is that it does not

need a false positive ratio as a prior, so that the k that is actually used is more close to

the optimal value.

Michael et al. study the intersection of multiple sets [109]. They optimized the join

sequence and cache the Bloom filters of key indices in block-partitioned Bloom filters so

that rehashing is not necessary.
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Ramesh et al. investigate the join problem of multiple sites and propose four

Bloomjoin extensions: result merging at participating sites, result merging at user

site,caching at a participating site, and caching at coordinator site [131]. They also

analyze each extension and construct a query optimizer for selecting the best extension

for each query.

[79] and [127] study the use of Bloom filters in distributed join with MapReduce.

Phan et al. use Bloom filters and partitioned Bloom filters for both set intersection and

set join in MapReduce to save communication cost [127]. Zhang et al. investigate the

use of Graphics Processing Units (GPU) in generating the intersection of two lists [168].

To the best of our knowledge, the idea using Bloom filters iteratively with decreasing size

and global optimization is under exploit.

2.3.4 Bloom Filter for Multi-Set

A Multi-set is defined as a virtual set that consists of several disjoint sets. To encode

a multi-set, we may use one separate Bloom filter to encode each set [21, 56]. However,

this method has two problems: First, it is hard to allocate proper amount of memory for

each filter if the sizes of sets are unknown. Second, it makes too much memory access

as the number of filters required increases with the number of sets. Coded Bloom filters

[21, 98] are proposed to significantly cut the number of Bloom filters by encoding the set

IDs to binary codes. Each bit of the code is represented by a Bloom filter. However, they

are still sensitive to the size of each set, meaning that some filters may be overloaded

while others are under loaded.

The combinatorial Bloom filter (COMB) proposed by Hao et al. uses hash function

sets instead of separate filters to encode set IDs [57]. It assigns each set Si a code ci

that has a fixed number θ of ones. For instance, if the code length is 20 bits and θ = 5,

there will be
(
20
5

)
= 15, 504 different valid codes, which can represent as many set IDs.

An example of such a code is 00010011000010000001. For each bit in the code, COMB

generates a group of k hash functions. To encode a member in Si , COMB examines ci
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bit by bit. For each bit of value 1, it uses the corresponding group of hash functions to

set k bits in the filter to ones. To look up for an element, COMB uses all groups of hash

functions, each group corresponding to one bit in the code. For each hash group, COMB

performs a classical Bloom filter lookup: Hash the element to k bits in the filter and see

if they are all set. If so, the corresponding bit in the code is 1; otherwise, the bit is 0.

Again, the value of k determines the probability of false positive (mistakenly concluding

a bit as 1 although it should be 0). After knowing all bits in the code, COMB translates

the code back to a set ID.

Another related work is the Bloomier filter [22]. It appends each bit in the Bloom

filter with a multi-bit entry, which can store a value (set ID). To store an set ID Se of an

element e, it hashes e to k entries in the Bloomier filter, and makes sure that the XOR

of these entries is equal to Se . To perform lookup on e, we simply hash e to its k entries,

and their XOR gives its set ID. Once an entry in the filter is used by an element, its value

cannot be changed. When we insert a new element e ′ that belongs to set S ′
e , after we

hash e ′ to k entries, at least one entry must be unused in order to encode e ′. If there is

an unused entry, we can set its value such that the XOR of the k elements is equal to

S ′
e . However, if all k entries are already used, the element cannot be inserted into the

filter. To handle insertion failure, separate data structure or infrastructure such as TCAM

is used.

Goodrich and Mitzenmacher proposed the Invertible Bloom Lookup Table (IBLT) to

encode both keys and values of elements [52]. An IBLT uses a cell (including a counter,

a KeySum, and a ValueSum) to replace each bit of a Bloom filter. An element is mapped

to k cells just like the Bloom filter does. The counter stores how many elements are

mapped to each cell, while KeySum (ValueSum) stores the sum of the keys (values)

mapped to the cell. During the membership lookup of an element e, if any mapped cell

has a counter of ‘0’, or any mapped cell that has a counter of ‘1’ but KeySum ̸= e, e is

not a member. Otherwise if there is at least one mapped cell with counter equal to ‘1’
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and KeySum = e, e is a member. Otherwise, it produces “not found”, meaning that it

is not sure whether e is encoded or not. A great advantage of IBLT is that it supports

element deletion and enumeration of all stored key-value pairs with a bounded failure

ratio. However, it need to store keys of elements in the table, which may take too much

space when the elements to be encoded have long keys.

There are also some works focusing on encoding keys with multiple occurrence.

This problem can also be modeled as a (key, value) pair, where the “value” is a counter

indicating how may time the corresponding key appears in the set. One application

example of this problem is to measure flow sizes on a router. Each flow id is the

“key” and the number of packets in the flow is counted and stored as the “value”. The

Spectral Bloom filter[35], Virtual Bit Maps [84] and Counter Braids [97], for example, are

proposed to solve this problem. However, these data structures can not be directly used

to solve our problem. This is because these approaches normally give an estimated

“value” instead of the real one, which translates to an incorrect set-ID. Also, [84] and [97]

use offline model instead of online checking model.

2.4 Contributions

The contribution of this work can be summarized as follows:

We summarize the metrics of evaluating the Bloom filter and its variants in network

systems scenarios. The trade-off relationship contains space, false positive ratio,

memory access, and hash bit requirement. The latter two metrics are often overlooked

by existing works.

We conducted a detailed study in one memory access Bloom filter designs and their

generalizations. We opened a door for more design choices.

We propose an efficient representation of multi-set.

We design adaptive Bloom filter that is efficient for distributed join operation in

distributed systems.
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We discover the underlying connection between space-time efficient data structure

and time-energy RFID protocol. We apply the efficient Bloom filter ideas to information

collection in RFID systems. Our proposed protocol consumes only O(1) tag energy,

compared to existing best O(m) protocols, where m is the number of RFID tags from

whom information is collected.

We design two efficient cardinality estimation protocols for mobile vehicular

peer-to-peer networks. The protocols show good estimation results with relatively

low network overhead.

31



CHAPTER 3
SPACE-TIME EFFICIENT BLOOM FILTERS FOR SET MEMBERSHIP LOOKUP

3.1 Background

The Bloom filters are compact data structures for high-speed online membership

check against large data sets [7, 12]. They have wide applications in routing-table

lookup [40, 142, 143], online traffic measurement [76, 97], peer-to-peer systems

[77, 132], cooperative caching [82], firewall design [103], intrusion detection [147],

bioinformatics [106], database query processing [114, 155], stream computing

[164], distributed storage system [20], etc [12, 150]. Many network functions require

membership check. A firewall may be configured with a large watch list of addresses

that are collected by an intrusion detection system. If the requirement is to log all

packets from those addresses, the firewall must check each arrival packet to see if

the source address is a member of the list. Another example is routing-table lookup.

The lengths of the prefixes in a routing table range from 8 to 32. A router can extract

25 prefixes of different lengths from the destination address of an incoming packet,

and it needs to determine which prefixes are in the routing tables [40]. Some traffic

measurement functions require the router to collect the flow labels [96, 97], such as

source/destination address pairs or address/port tuples that identify TCP flows. Each

flow label should be collected only once. When a new packet arrives, the router must

check whether the flow label extracted from the packet belongs to the set that has

already been collected before. As a last example for the membership check problem, we

consider the context-based access control (CBAC) function in Cisco routers [47]. When

a router receives a packet, it may want to first determine whether the addresses/ports

in the packet have a matching entry in the CBAC table before performing the CBAC

lookup.

In all of the previous examples, we face the same fundamental problem: For a large

data set, which may be an address list, an address prefix table, a flow label set, a CBAC
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table, or other types of data, we want to check whether a given element belongs to this

set or not. If there is no performance requirement, this problem can be easily solved

using textbook data structures such as binary search [58] (which stores the set in a

sorted array and uses binary search for membership check), or a traditional hash table

[41] (which uses linked lists to resolve hash collision). However, these approaches are

inadequate if there are stringent speed and memory requirements.

Modern high-end routers and firewalls implement their per-packet operations

mostly in hardware. They are able to forward each packet in a couple of clock cycles.

To keep up with such high throughput, many network functions that involve per-packet

processing also have to be implemented in hardware. However, they cannot store the

data structures for membership check in DRAM because the bandwidth and delay of

DRAM access cannot match the packet throughput at the line speed. Consequently,

the recent research trend is to implement membership check in the high-speed on-die

cache memory, which is typically SRAM. The SRAM is however small and must be

shared among many online functions. This prevents us from storing a large data set

directly in the form of a sorted array or a hash table. A Bloom filter [7] is a bit array that

encodes the membership of data elements in a set. Each member in the set is hashed

to k bits in the array at random locations, and these bits are set to ones. To query for the

membership of a given element, we also hash it to k bits in the array and see if these

bits are all ones.

The performance of the Bloom filter and its many variants is judged based on

three criteria: The first one is the processing overhead, which is k memory accesses

and k hash operations for each membership query. The overhead1 limits the highest

throughput that the filter can support. Because both SRAM and the hash function circuit

1 In the rest of this chapter, we interchangeably use “processing overhead” and
“overhead” without further notification.
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may be shared among different network functions, it is important for them to minimize

their processing overhead in order to achieve good system performance. The second

performance criterion is the space requirement. Minimizing the space requirement to

encode each member allows a network function to fit a large set in the limited SRAM

space for membership check. The third criterion is the false positive ratio. A Bloom filter

may mistakenly claim a non-member to be a member due to its lossy encoding method.

There is a tradeoff between the space requirement and the false positive ratio. We can

reduce the latter by allocating more memory.

Given the fact that Bloom filters have been applied so extensively in the network

research, any improvement to their performance can potentially have a broad impact.

We study a data structure, called Bloom-1, which makes just one memory access

to perform membership check. Therefore, it can be configured to outperform the

commonly-used Bloom filter with constant k . We point out that, due to its high overhead,

the traditional Bloom filter is not practical when the optimal value of k is used to achieve

a low false positive ratio. We generalize Bloom-1 to Bloom-g, which allows g memory

accesses. We show that they can achieve the low false positive ratio of the Bloom filter

with optimal k , without incurring the same kind of high overhead. We further generalize

Bloom-1 to Bloom-α, which achieves better performance with very small increase in

overhead. We perform a thorough analysis to reveal the properties of this family of

filters. We discuss how they can be applied for static or dynamic data sets. We also

conduct experiments based on a real traffic trace to study the performance of the new

filters.

3.2 Bloom-1: One Memory Access Bloom Filter

3.2.1 Bloom Filter

A Bloom filter is a space-efficient data structure for membership check. It includes

an array B of m bits, which are initialized to zeros. The array stores the membership

information of a set as follows: Each member e of the set is mapped to k bits that are
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randomly selected from B through k hash functions, Hi(e), 1 ≤ i ≤ k , whose range is

[0,m−1). 2 To encode the membership information of e, the bits, B[H1(e)], ..., B[Hk(e)],

are set to ones. These are called the “membership bits” in B for the element e. Some

frequently-used notations in this chapter can be found in Table 3-1.

To check the membership of an arbitrary element e ′, if the k bits, B[Hi(e ′)], 1 ≤

i ≤ k , are all ones, e ′ is considered to be a member of the set. Otherwise, it is not a

member.

We can treat the k hash functions logically as a single one that produces k log2m

hash bits. For example, suppose m is 220, k = 3, and a hash routine outputs 64 bits. We

can extract three 20-bit segments from the first 60 bits of a single hash output and use

them to locate three bits in B. Hence, from now on, instead of specifying the number

of hash functions required by a filter, we will state “the number of hash bits” that are

needed, which is denoted as h.

A Bloom filter doesn’t have false negatives, meaning that if it answers that an

element is not in the set, it is truly not in the set. The filter however has false positives,

meaning that if it answers that an element is in the set, it may not be really in the set.

According to [7] and [12], the false positive ratio fB , which is the probability of mistakenly

treating a non-member as a member, is 3

fB =
(
1− (1− 1

m
)nk

)k ≈ (1− e− nkm )k , (3–1)

2 The hash functions can be any random functions as long as the k functions are
different, i.e., Hi ̸= Hj , i ̸= j ∈ [1, k]. However, hash function outputs are random and two
hash results may happen to be the same, i.e. ∃i , j , e, i ̸= j ,Hi(e) = Hj(e).

3 Formula 3–1 is an approximation of the false positive ratio. More precise analysis
can be found in [31]. However, when m is large enough (> 1024), the approximation
error can ge neglected [31].
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Table 3-1. Notations in Chapter 3
Symbol Meaning
n number of members in a set
B or B1 bit array
m number of bits in the bit array B or B1
k number of membership bits for each element
h number of hash bits for locating all membership bits
k∗ the optimal value of k that minimizes the false positive ratio of

a Bloom filter
k1∗ the optimal value of k that minimizes the false positive ratio of

a Bloom-1 filter
fB , fB1, fBg false positive ratios of a Bloom filter, a Bloom-1 filter, and a

Bloom-g filter, respectively
l number of words in a bit array
w number of bits in a word, m = l × w
B(k = 3) Bloom filter that uses three bits to encode each member
B1(k = 3) Bloom-1 filter that uses three bits to encode each member
B1(h = 3 log2m) Bloom-1 filter that uses up to 3 log2m hash bits
B(optimal k) Bloom filter that uses the optimal number k∗ of bits to encode

each member to minimize its false positive ratio
B1(optimal k) Bloom-1 filter that uses the optimal number k1∗ of bits to encode

each member to minimize its false positive ratio

where n is the number of members in the set. Obviously, the false positive ratio

decreases as m increases, and increases as n increases. The optimal value of k

(denoted as k∗) that minimizes the false positive ratio can be derived by taking the

first-order derivative on (3–1) with respect to k , then letting the right side be zero, and

solving the equation. The result is

k∗ = ln 2×m/n ≈ 0.7m/n. (3–2)

The optimal k sometimes can be very large. To avoid too many memory accesses,

we may also set k as a small constant in practice.

3.2.2 Bloom-1 Filter

To check the membership of an element, a Bloom filter requires k memory

accesses. We introduce the Bloom-1 filter, which requires one memory access for

membership check. The basic idea is that, instead of mapping an element to k bits
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randomly selected from the entire bit array, we map it to k bits in a word that is randomly

selected from the bit array. A word is defined as a continuous block of bits that can be

fetched from the memory to the processor in one memory access. In today’s computer

architectures, most general-purpose processors fetch words of 32 bits or 64 bits.

Specifically designed hardware may access words of 72 bits or longer.

A Bloom-1 filter is an array B1 of l words, each of which is w bits long. The total

number m of bits is l × w . To encode a member e during the filter setup, we first obtain a

number of hash bits from e, and use log2 l hash bits to map e to a word in B1. It is called

the “membership word” of e in the Bloom-1 filter. We then use k log2 w hash bits to

further map e to k membership bits in the word and set them to ones. The total number

of hash bits that are needed is log2 l + k log2 w . Suppose m = 220, k = 3, w = 26, and

l = 214. Only 32 hash bits are needed, smaller than the 60 hash bits required in the

previous Bloom filter example under similar parameters.

To check if an element e ′ is a member in the set that is encoded in a Bloom-1 filter,

we first perform hash operations on e ′ to obtain log2 l + k log2 w hash bits. We use

log2 l bits to locate its membership word in B1, and then use k log2 w bits to identify the

membership bits in the word. If all membership bits are ones, it is considered to be a

member. Otherwise, it is not.

The change from using k random bits in the array to using k random bits in a word

may appear simple, but it is also fundamental. An important question is how it will

affect the false positive ratio and the processing overhead. A more interesting question

is how it will open up new design space to configure various new filters with different

performance properties. This is what we will investigate in depth.

The false negative ratio of a Bloom-1 filter is also zero. The false positive ratio fB1

of Bloom-1, which is the probability of mistakenly treating a non-member as a member,

is derived as follows: Let F be the false positive event that a non-member e ′ is mistaken

for a member. The element e ′ is hashed to a membership word. Let X be the random
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variable for the number of members that are mapped to the same membership word.

Let x be a constant in the range of [0, n], where n is the number of members in the set.

Assume we use fully random hash functions. When X = x , the conditional probability for

F to occur is

Prob{F |X = x} = (1− (1− 1
w
)xk)k . (3–3)

Obviously, X follows the binomial distribution, Bino(n, 1
l
), because each of the n

elements may be mapped to any of the l words with equal probabilities. Hence,

Prob{X = x} =
(
n

x

)
(
1

l
)x(1− 1

l
)n−x , ∀ 0 ≤ x ≤ n. (3–4)

Therefore, the false positive ratio can be written as

fB1 = Prob{F} =
n∑
x=0

(
Prob{X = x} · Prob{F |X = x}

)
=

n∑
x=0

((
n

x

)
(
1

l
)x(1− 1

l
)n−x

(
1− (1− 1

w
)xk

)k)
. (3–5)

3.2.3 Impact of Word Size

We first investigate the impact of word size w on the performance of a Bloom-1

filter. If n, l and k are known, we can obtain the optimal word size that minimizes (3–5).

However, in reality, we can only decide the amount of memory (i.e., m) to be used for a

filter, but cannot choose the word size once the hardware is installed. In the left plot of

Figure 3-1, we compute the false positive ratios of Bloom-1 under four word sizes: 32,

64, 72, and 256 bits, when the total amount of memory is fixed at m = 220 and k is set to

3. Note that the number of words, l = m
w

, is inversely proportional to the word size.

The horizontal axis in the figure is the load factor, n
m

, which is the number of

members stored by the filter divided by the number of bits in the filter. Since most

applications require relatively small false positive ratios, we zoom in at the load-factor

range of [0, 0.2] for a detailed look in the right plot of Figure 3-1. The computation
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Figure 3-1. False positive ratio with respect to word size w . Left Plot: False positive
ratios for Bloom-1 under different word sizes. Right Plot: Magnified false
positive ratios for Bloom-1 under different word sizes.

results based on (3–5) show that a larger word size helps to reduce the false positive

ratio. In that case, we should simply set w = m for the lowest false positive ratio.

However, in practice, w is given by the hardware, not a configurable parameter. Without

losing generality, we choose w = 64 in our computations and simulations for the rest of

this chapter.

3.2.4 Bloom-1 v.s. Bloom with Small k

Although the optimal k always yields the best false positive ratio of the Bloom filter,

a small value of k is sometimes preferred to bound the processing overhead in terms of

memory accesses and hash operations. We compare the performance of the Bloom-1

filter and the Bloom filter in both scenarios. In this section, we use the Bloom filter with

k = 3 as the benchmark. Using k = 4, 5, ... produces quantitatively different results, but

the qualitative conclusion will stay the same.

We compare the performance of three types of filters: (1) B(k = 3), which

represents a Bloom filter that uses three bits to encode each member; (2) B1(k = 3),

which represents a Bloom-1 filter that uses three bits to encode each member; (3)

B1(h = 3 log2m), which represents a Bloom-1 filter that uses the same number of hash

bits as B(k = 3) does.
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Table 3-2. Query overhead comparison of Bloom-1 filters and Bloom filter with k = 3.

Data Structure Number of Number of Hash Bits
Memory Access m = 216 m = 220 m = 224

B(k = 3) 3 48 60 72
B1(k = 3) 1 28 32 36

B1(h = 3 log2m) 1 16–46 20–56 24–72

Let k1∗ be the optimal value of k that minimizes the false positive ratio of the

Bloom-1 filter in (3–5). For B1(h = 3 log2m), we are allowed to use 3 log2m hash bits,

which can encode 3 or more membership bits in the filter. However, it is not necessary

to use more than the optimal number k1∗ of membership bits. Hence, B1(h = 3 log2m)

actually uses the k that is closest to k1∗ to encode each member.

Table 3-2 presents numerical results of the number of memory accesses and

the number of hash bits needed by the three filters for each membership query. They

together represent the query overhead and control the query throughput. First, we

compare B(k = 3) and B1(k = 3). The Bloom-1 filter saves not only memory accesses

but also hash bits. For example, in these examples, B1(k = 3) requires about half of the

hash bits needed by B(k = 3). When the hash routine is implemented in hardware (such

as CRC [46]), the memory access may become the performance bottleneck, particularly

when the filter’s bit array is located off-chip or, even if it is on-chip, the bandwidth of

the cache memory is shared by other system components. In this case, the query

throughput of B1(k = 3) will be three times of the throughput of B(k = 3).

Next, we consider B1(h = 3 log2m). Even though it still makes one memory access

to fetch a word, the processor may check more than 3 bits in the word for a membership

query. If the operations of hashing, accessing memory, and checking membership bits

are pipelined and the memory access is the performance bottleneck, the throughput of

B1(h = 3 log2m) will also be three times of the throughput of B(k = 3).

Finally, we compare the false positive ratios of the three filters in Figure 3-2.

The figure show that the overall performance of B1(k = 3) is comparable to that

of B(k = 3), but its false positive ratio is worse when the load factor is small. The
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Figure 3-2. Performance comparison in terms of false positive ratio.
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Figure 3-3. Number of membership bits used by the filters.

reason is that concentrating the membership bits in one word reduces the randomness.

B1(h = 3 log2m) is better than B(k = 3) when the load factor is smaller than 0.1. This is

because the Bloom-1 filter requires less number of hash bits on average to locate each

membership bit than the Bloom filter does. Therefore, when available hash bits are the

same, B1(h = 3 log2m) is able to use a larger k than B(k = 3), as shown in Figure 3-3.

3.2.5 Bloom-1 v.s. Bloom with Optimal k

We can reduce the false positive ratio of a Bloom filter or a Bloom-1 filter by

choosing the optimal number of membership bits. From (3–2), we find the optimal value

k∗ that minimizes the false positive ratio of a Bloom filter. From (3–5), we can find the
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Figure 3-4. Optimal number of membership bits with respect to the load factor.

Table 3-3. Query overhead comparison of Bloom-1 filter and Bloom filter with optimal
number of membership bits. Parameters: m = 220 and w = 64.

a. Number of memory accesses per query

Data Structure Load Factor n/m
0.01 0.02 0.04 0.08 0.16

B(optimal k) 69 35 17 9 4
B1(optimal k) 1 1 1 1 1

b. Number of hash bits per query

Data Structure Load Factor n/m
0.01 0.02 0.04 0.08 0.16

B(optimal k) 1380 700 340 180 80
B1(optimal k) 80 74 62 50 38

optimal value k1∗ that minimizes the false positive ratio of a Bloom-1 filter. The values of

k∗ and k1∗ with respect to the load factor are shown in Figure 3-4. When the load factor

is less than 0.1, k1∗ is significantly smaller than k∗.

We use B(optimal k) to denote a Bloom filter that uses the optimal number k∗ of

membership bits, and B1(optimal k) to denote a Bloom-1 filter that uses the optimal

number k1∗ of membership bits.

To make the comparison more concrete, we present the numerical results of

memory access overhead and hashing overhead with respect to the load factor in

Table 3-3. For example, when the load factor is 0.04, the Bloom filter requires 17
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Figure 3-5. False positive ratios of the Bloom filter and the Bloom-1 filter with optimal k .

memory accesses and 340 hash bits to minimize its false positive ratio, whereas the

Bloom-1 filter requires only 1 memory access and 62 hash bits. In practice, the load

factor is determined by the application requirement on the false positive ratio. If an

application requires a very small false positive ratio, it has to choose a small load factor.

Next, we compare the false positive ratios of B(optimal k) and B1(optimal k) with

respect to the load factor in Figure 3-5. The Bloom filter has a much lower false positive

ratio than the Bloom-1 filter. On one hand, we must recognize the fact that, as shown

in Table 3-3, the overhead for the Bloom filter to achieve its low false positive ratio is

simply too high to be practical. On the other hand, it raises a challenge for us to improve

the design of the Bloom-1 filter so that it can match the performance of the Bloom filter

at much lower overhead. In the next section, we generalize the Bloom-1 filter to allow

performance-overhead tradeoff, which provides flexibility for practitioners to achieve a

lower false positive ratio at the expense of modestly higher query overhead.

3.3 Bloom-g: A Generalization of Bloom-1

3.3.1 Bloom-g Filter

As a generalization of Bloom-1 filter, a Bloom-g filter maps each member e to g

words instead of one, and spreads its k membership bits evenly in the g words. More

specifically, we use g log2 l hash bits derived from e to locate g membership words, and
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then use k log2 w hash bits to locate k membership bits. The first one or multiple words

are each assigned ⌈k
g
⌉ membership bits, and the remaining words are each assigned

⌊k
g
⌋ bits, so that the total number of membership bits is k .

To check the membership of an element e ′, we have to access g words. Hence the

query overhead includes g memory accesses and g log2 l + k log2 w hash bits.

The false negative ratio of a Bloom-g filter is zero and the false positive ratio

fBg of the Bloom-g filter, is derived as follows: Each member encoded in the filter

randomly selects g membership words. There are n members. Together they select gn

membership words (with replacement). These words are called the “encoded words”.

In each encoded word, k
g

bits are randomly selected to be set as ones during the filter

setup. To simplify the analysis, we use k
g

instead of taking the ceiling or floor.

Now consider an arbitrary word D in the array. Let X be the number of times this

word is selected as an encoded word during the filter setup. Assume we use fully

random hash functions. When any member randomly selects a word to encode its

membership, the word D has a probability of 1
l

to be selected. Hence, X is a random

number that follows the binomial distribution Bino(gn, 1
l
). Let x be a constant in the

range [0, gn].

Prob{X = x} =
(
gn

x

)
(
1

l
)x(1− 1

l
)gn−x . (3–6)

Consider an arbitrary non-member e ′. It is hashed to g membership words. A false

positive happens when its membership bits in each of the g words are ones. Consider

an arbitrary membership word of e ′. Let F be the event that the k
g

membership bits of e ′

in this word are all ones. Suppose this word is selected for x times as an encoded word

during the filter setup. We have the following conditional probability:

Prob{F |X = x} =
(
1− (1− 1

w
)x
k
g

) k
g . (3–7)
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The probability for F to happen is

Prob{F} =
gn∑
x=0

(
Prob{X = x} · Prob{F |X = x}

)

=

gn∑
x=0

((
gn

x

)
· (1
l
)x · (1− 1

l
)gn−x ·

(
1− (1− 1

w
)x
k
g

) k
g

)
(3–8)

Element e ′ has g membership words. Hence, the false positive ratio is

fBg = (Prob{F})g =
[ gn∑
x=0

((
gn

x

)
· (1
l
)x · (1− 1

l
)gn−x ·

(
1− (1− 1

w
)x
k
g

) k
g

)]g
. (3–9)

When g = k , exactly one bit is set in each membership word. This special Bloom-k

is identical to a Bloom filter with k membership bits. (Note that Bloom-k may happen

to pick the same membership word more than once. Hence, just like a Bloom filter,

Bloom-k allows more than one membership bit in a word.) To prove this, we first let

g = k , and (3–9) becomes,

fBk =

[ kn∑
x=0

((
kn

x

)
· (1
l
)x · (1− 1

l
)kn−x ·

(
1− (1− 1

w

)x
)

)]k
=

[
1−

kn∑
x=0

((
kn

x

)
·
(1
l
· (1− 1

w
)
)x · (1− 1

l
)kn−x

)]k
=

(
1− (1− 1

lw
)kn

)k
. (3–10)

As m = lw , we have fBk = fB . In other words, a Bloom-k filter is identical to a Bloom

filter.

3.3.2 Bloom-g v.s. Bloom with Small k

We compare the performance and overhead of the Bloom-g filters and the Bloom

filter with k = 3. Because the overhead of Bloom-g increases with g, it is highly desirable

to use a small value for g. Hence, we focus on Bloom-2 and Bloom-3 filters as typical

examples in the Bloom-g family.

We compare the following filters: (1) B(k = 3), the Bloom filter with k = 3; (2)

B2(k = 3), the Bloom-2 filter with k = 3; (3) B2(h = 3 log2m), the Bloom-2 filter that is
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Table 3-4. Query overhead comparison of Bloom-2 filter and Bloom filter with k = 3.

Data Structure Number of Number of Hash Bits
Memory Access m = 216 m = 220 m = 224

B(k = 3) 3 48 60 72
B2(k = 3) 2 38 46 54

B2(h = 3 log2m) 2 32–44 40–58 48–72

allowed to use the same number of hash bits as B(k = 3) does. In this subsection, we

do not consider Bloom-3 because it is equivalent to B(k = 3), as we have discussed in

Section 3.3.1.

From (3–9), when g = 2, we can find the optimal value of k , denoted as k2∗, that

minimizes the false positive ratio. Similar to B1(h = 3 log2m), the filter B2(h = 3 log2m)

uses the k that is closest to k2∗ under the constraint that the number of required hash

bits is less than or equal to 3 log2m.

Table 3-4 compares the query overhead of three filters. The Bloom filter, B(k = 3),

needs 3 memory accesses and 3 log2m hash bits for each membership query. The

Bloom-2 filter, B2(k = 3), requires 2 memory accesses and 2 log2 l + 3 log2 w hash bits.

It is easy to see 2 log2 l + 3 log2 w = 3 log2m − log2 l < 3 log2m. Hence, B2(k = 3)

incurs fewer memory accesses and fewer hash bits than B(k = 3). On the other hand,

B2(h = 3 log2m) uses the same number of hash bits as B(k = 3) does, but makes fewer

memory accesses.

Figure 3-6 presents the false positive ratios of B(k = 3), B2(k = 3) and B2(h =

3 log2m); Figure 3-7 shows the number of membership bits used by the filters. The

figures show that B(k = 3) and B2(k = 3) have comparable false positive ratios in

load factor range of [0.1, 1], whereas B2(h = 3 log2m) performs better in load factor

range of [0.00005, 1]. For example, when the load factor is 0.04, the false positive ratio

of B(k = 3) is 1.5 × 10−3 and that of B2(k = 3) is 1.6 × 10−3, while the false positive

ratio of B2(h = 3 log2m) is 3.1 × 10−4, about one fifth of the other two. Considering that

B2(h = 3 log2m) uses the same number of hash bits as B(k = 3) but only 2 memory
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Figure 3-6. False positive ratios of Bloom filter and Bloom-2 filter.
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Figure 3-7. Number of membership bits used by the filters.

accesses per query, it is a very useful substitute of the Bloom filter to build fast and

accurate data structures for membership check.

3.3.3 Bloom-g v.s. Bloom with Optimal k

We now compare the Bloom-g filters and the Bloom filter when they use the optimal

numbers of membership bits determined from (3–1) and (3–9), respectively. We use

B(optimal k) to denote a Bloom filter that uses the optimal number k∗ of membership

bits to minimize the false positive ratio. We use Bg(optimal k) to denote a Bloom-g filter

that uses the optimal number kg∗ of membership bits, where g = 1, 2 or 3. Figure 3-8
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Figure 3-8. Optimal number of membership bits with respect to the load factor.

Table 3-5. Query overhead comparison of Bloom filter and Bloom-g filter with optimal k .
Parameters: m = 220 and w = 64.

a. Number of memory accesses per query

Data Structure Load Factor n/m
0.01 0.02 0.04 0.08 0.16

B(optimal k) 69 35 17 9 4
B1(optimal k) 1 1 1 1 1
B2(optimal k) 2 2 2 2 2
B3(optimal k) 3 3 3 3 3

b. Number of hash bits per query

Data Structure Load Factor n/m
0.01 0.02 0.04 0.08 0.16

B(optimal k) 1380 700 340 180 80
B1(optimal k) 80 74 62 50 38
B2(optimal k) 142 118 94 70 52
B3(optimal k) 198 162 126 90 66

compares their numbers of membership bits (i.e., k∗, k1∗, k2∗ and k3∗). It shows that the

Bloom filter uses many more membership bits when the load factor is small.

Next we compare the filters in terms of query overhead. For 1 ≤ g ≤ 3,

Bg(optimal k) makes g memory accesses and uses g log2 l + kg∗ log2 w hash bits

per membership query. Numerical comparison is provided in Table 3-5. In order to

achieve a small false positive ratio, one has to keep the load factor small, which means

that B(optimal k) will have to make a large number of memory accesses and use a
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Figure 3-9. False positive ratios of Bloom and Bloom-g with optimal k .

large number of hash bits. For example, when the load factor is 0.08, it makes 9 memory

accesses with 180 hash bits per query, whereas the Bloom-1, Bloom-2 and Bloom-3

filters make 1, 2 and 3 memory accesses with 50, 70 and 90 hash bits, respectively.

When the load factor is 0.02, it makes 35 memory accesses with 700 hash bits, whereas

the Bloom-1, Bloom-2 and Bloom-3 filters make just 1, 2 and 3 memory accesses with

74, 118 and 162 hash bits, respectively.

Figure 3-9 presents the false positive ratios of the Bloom and Bloom-g filters. As

we already showed in Section 3.2.5, B1(optimal k) performs worse than B(optimal k).

However, the false positive ratio of B2(optimal k) is very close to that of B(optimal k).

Furthermore, the curve of B3(optimal k) is almost entirely overlapped with that of

B(optimal k) for the whole load-factor range. The results indicate that with just two

memory accesses per query, B2(optimal k) works almost as good as B(optimal k),

even though the latter makes many more memory accesses.

3.3.4 Discussion

The mathematical and numerical results demonstrate that Bloom-2 and Bloom-3

have smaller false positive ratios than Bloom-1 at the expense of larger query overhead.

Below we give an intuitive explanation: Bloom-1 uses a single hash to map each

member to a word before encoding. It is well known that a single hash cannot achieve
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an evenly distributed load; some words will have to encode much more members than

others, and some words may be empty as no members are mapped to them. This

uneven distribution of members to the words is the reason for larger false positives.

Bloom-2 maps each member to two words and splits the membership bits among the

words. Bloom-3 maps each member to three words. They achieve better load balance

such that most words will each encode about the same number of membership bits.

This helps them improve their false positive ratios.

3.3.5 Using Bloom-g in a Dynamic Environment

In order to compute the optimal number of membership bits, we must know the

values of n, m, w , and l . The value of m, w and l are known once the amount of memory

for the filter is allocated. The value of n is known only when the filter is used to encode

a static set of members. In practice, however, the filter may be used for a dynamic set

of members. For example, a router may use a Bloom filter to store a watch list of IP

addresses, which are identified by the intrusion detection system as potential attackers.

The router inspects the arrival packets and logs those packets whose source addresses

belong to the list. If the watch list is updated once a week or at the midnight of each

day, we can consider it as a static set of addresses during most of the time. However, if

the system is allowed to add new addresses to the list continuously during the day, the

watch list becomes a dynamic set. In this case, we do not have a fixed optimal value of

k∗ for the Bloom filter. One approach is to set the number of membership bits to a small

constant, such as three, which limits the query overhead. In addition, we should also

set the maximum load factor to bound the false positive ratio. If the actual load factor

exceeds the maximum value, we allocate more memory and set up the filter again in a

larger bit array.

The same thing is true for the Bloom-g filter. For a dynamic set of members, we

do not have a fixed optimal number of membership bits, and the Bloom-g filter will also

have to choose a fixed number of membership bits. The good news for the Bloom-g filter
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Figure 3-10. False positive ratios of the Bloom filter with k = 3, the Bloom-1 filter with
k = 6, and the Bloom-2 filter with k = 5.

is that its number of membership bits is unrelated to its number of memory accesses.

The flexible design allows it to use more membership bits while keeping the number of

memory accesses small or even a constant one.

Comparing with the Bloom filter, we may configure a Bloom-g filter with more

membership bits for a smaller false positive ratio, while in the mean time keeping both

the number of memory accesses and the number of hash bits smaller. Imagine a filter

of 220 bits is used for a dynamic set of members. Suppose the maximum load factor is

set to be 0.1 to ensure a small false positive ratio. Figure 3-10 compares the Bloom filter

with k = 3, the Bloom-1 filter with k = 6, and the Bloom-2 filter with k = 5. As new

members are added over time, the load factor increases from zero to 0.1. In this range

of load factors, the Bloom-2 filter has significantly smaller false positive ratios than the

Bloom filter. When the load factor is 0.04, the false positive ratio of Bloom-2 is just one

fourth of the false positive ratio of Bloom. Moreover, it makes fewer memory accesses

per membership query. The Bloom-2 filter uses 58 hash bits per query, and the Bloom

filter uses 60 bits. The false positive ratios of the Bloom-1 filter are close to or slightly

better than those of the Bloom filter. It achieves such performance by making just one

memory access per query and uses 50 hash bits.
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3.3.6 Experiment

We further evaluate the Bloom-g filters through experiments using real network

traces.

3.3.6.1 Experiment Setup

Imagine that an intrusion detection system maintains a watch list consisting of

previously-identified external sources, which exhibit suspicious behaviors that match

the patterns of worm attacks, DDoS attacks, scanning or reconnaissance. The intrusion

detection system wants to further analyze the packets from these hosts in order to

capture the real offenders. It needs to match the source addresses of the incoming

packets against the watch list and log the ones whose addresses are members of the

list. While the whole watch list is stored in a hash table located in DRAM, it is also

encoded in a Bloom or Bloom-g filter whose small size can fit in SRAM in order to keep

up with the line speed. Suppose the watch list is updated once a day. It can be treated

as a static list during operation.

We obtain inbound packet header traces from the main gateway at our campus.

They contain 2,064,081 distinct source IP addresses and 2,192,707 distinct destination

addresses. We first generate 10 watch lists from the trace, each with 25,000 randomly

selected source addresses. We then feed the traffic traces through the filters as well

as the hash table to identify the matching source addresses and compute false positive

ratios based on the number of matches by the filters and the number of matches by the

hash table. Results are averaged among the 10 watch lists.

Each experiment consists of two phases: the initialization phase and the execution

phase. In the initialization phase, we set up the Bloom/Bloom-g filters, as well as the

hash table, by using a watch list of addresses. We always allocate the same amount

of memory to the Bloom and Bloom-g filters for fair comparison. We use six filters.

They are (a) two Bloom filters: B(k = 3) and B(optimal k), and (b) four Bloom-g filters:

52



Table 3-6. Query overhead comparison of Bloom filter with k = 3 and Bloom-g filter with
h = 3 log2m. Parameters: n = 25, 000 and w = 64.

a. Number of memory accesses per query
Data Structure # Memory Access

B(k = 3) 3
B1(h = 3 log2m) 1
B2(h = 3 log2m) 2

b. Number of hash bits per query

Data Structure m
125Kb 250Kb 500Kb

B(k = 3) 51 54 57
B1(h = 3 log2m) 29 42 55
B2(h = 3 log2m) 40 54 56

B1(h = 3 log2m), B2(h = 3 log2m), B1(optimal k), and B2(optimal k). Their definitions

can be found in Section 3.2 and Section 3.3.

In the execution phase, we perform a membership query in each filter for the source

address of each packet. If a filter claims that it is a member but the source is not found

in the hash table, it is a false positive.

We vary the size m of the filters from 125Kb to 500Kb, which translates into 5 to 20

bits per member in the watch list, and load factor from 0.2 to 0.05. Let w = 64. l = m
w

varies from 2,000 to 8,000.

3.3.6.2 Performance Comparison of Bloom and Bloom-g

First, we compare the performance of B(k = 3), B1(h = 3 log2m) and B2(h =

3 log2m). Table 3-6 presents the query overhead of the Bloom filter and the Bloom-g

filters. Note that Table 3-6b is computed based on the number of membership bits

(i.e. k) for each filter. In our experiment, B1(h = 3 log2m) uses 7 membership bits,

and B2(h = 3 log2m) uses 5. B(k = 3), B1(h = 3 log2m) and B2(h = 3 log2m)

requires 3, 1 and 2 memory accesses respectively for each query. B1(h = 3 log2m)

and B2(h = 3 log2m) also require less hash bits than B(k = 3). For example, when

m = 125Kb, B(k = 3) requires 51 hash bits per query, while B1(h = 3 log2m) and

B2(h = 3 log2m) only need 29 and 40 hash bits respectively for each query.

53



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  0.04  0.08  0.12  0.16  0.2

fa
ls

e 
po

si
tiv

e 
ra

tio

load factor n/m

B(k=3)
B1(h=3log m)
B2(h=3log m)

Figure 3-11. False positive ratios of Bloom with k = 3 and Bloom-g with h = 3 log2m in
real trace experiment. Parameters: n = 25, 000 and w = 64.
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Figure 3-12. False positive ratios of Bloom and Bloom-g with optimal k in real trace
experiment. Parameters: n = 25, 000 and w = 64.

Figure 3-11 presents the false positive ratios of the filters with respect to the amount

of memory m. As our theoretical analysis has predicted, the false positive ratio of

B2(h = 3 log2m) is smaller than that of B(k = 3). B1(h = 3 log2m) also has a slightly

smaller false positive ratio than B(k = 3) when m is larger than 250Kb. When m is

smaller than 250Kb, it yields a slightly larger false positive ratio than B(k = 3). Given

that the throughput of B1(h = 3 log2m) can potentially be up to three times that of

B(k = 3), it is an attractive option in practice despite of its slightly higher false positive

ratio.
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Table 3-7. Query overhead comparison of Bloom filter and Bloom-g filter with optimal k .
Parameters: n = 25, 000 and w = 64.

a. Number of memory accesses per query

Data Structure m
125Kb 250Kb 500Kb

B(optimal k) 3 7 14
B1(optimal k) 1 1 1
B2(optimal k) 2 2 2

b. Number of hash bits per query

Data Structure m
125Kb 250Kb 500Kb

B(optimal k) 51 126 266
B1(optimal k) 29 42 55
B2(optimal k) 40 60 86

Next, we compare B(optimal k), B1(optimal k) and B2(optimal k). We use the

optimal k as shown in Figure 3-8 for each filter. Table 3-7 presents the query overhead

of the Bloom filter and Bloom-g filters. When m varies from 125Kb to 500Kb, the query

overhead of B(optimal k) increases dramatically. When m = 500Kb, for example,

B(optimal k) requires 14 memory accesses and 266 hash bits for each query, making

it impractical. In comparison, B1(optimal k) requires only one memory access and 55

hash bits, while B2(optimal k) requires just two memory accesses and 86 hash bits.

They remain practical solutions under this setting.

Figure 3-12 presents the false positive ratios of the filters with respect to m.

These results match the theoretical analysis we give in Section 3.3.3. The false

positive ratio of B2(optimal k) is comparable to that of B(optimal k) even though

its query overhead is much smaller. It is an excellent candidate for applications that

require a very low false positive ratio. The false positive ratio of B1(optimal k) is

larger than that of B2(optimal k), but has even smaller overhead, which represents

a performance-overhead tradeoff.
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3.4 Bloom-α: Another Generalization of Bloom-1

3.4.1 Motivation

From Figure 3-6, we see that Bloom-2 is comparable to the Bloom filter in terms of

false positive ratio when k = 3. However, it performs much better if it uses the same

number of hash bits as Bloom does. From Figure 3-9, when the optimal number of

membership bits is used, Bloom-2 is almost as good as Bloom and better than Bloom-1.

The downside is that Bloom-2 needs two memory accesses per query, whereas Bloom-1

needs just one. Our goal is to make a performance tradeoff between Bloom-1 and

Bloom-2 such that false positive ratio is close to what Bloom-2 has, whereas overhead is

close to what Bloom-1 has.

We have briefly touched upon the reason why Bloom-2 outperforms Bloom-1 in

Section 3.3.4. Now we give a closer look. Recall that a Bloom-1 filter uses an array of

words. Let’s define the “load” of a word to be the number of members that are encoded

in the word. False positive ratios incurred in different words may vary. Naturally, the

false positive ratio of a heavily-loaded word will be higher than that of a lightly-loaded

word. This is confirmed by our simulation that keeps track of which word each false

positive occurs in. We classify the words into groups based on their load values, and find

the average false positive ratio for each group by simulation. The results are shown in

Figure 3-13. For words whose loads are 6 or smaller, false positive ratios are very small.

However, false positive ratio grows superlinearly. When the loads are 10 or greater, false

positive ratios are very high. Clearly, reducing the number of heavily-loaded words helps

reduce the overall false positive ratios. The approach adopted by Bloom-2 maps each

member to two membership words. Each word only carries half of the membership bits.

In other words, each word only encodes half of the member. Consider a heavily loaded

word that serves as the membership word for 14 members. In Bloom-2, since the word

encodes half of each member, its load is reduced from 14 to 7. Figure 3-14 shows the
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Figure 3-13. False positive ratio of Bloom-1 with respect to load of words. Parameters:
m = 220, w = 64, load factor n/m = 0.1.
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Figure 3-14. Frequency distribution of words with respect to load values. Parameters:
m = 220, w = 64, load factor n/m = 0.1 for both filters.

frequency distribution of words with respect to load values. Fewer words have heavy

loads of 10 or higher in Bloom-2 than Bloom-1. That is why Bloom-2 performs better.

However, two membership words require two memory accesses for each query.

What about only some members have two membership words while others have one?

In this case, some queries need two memory accesses, but others needs just one. The

average number of memory access per query will be between 1 and 2. Intuitively, for a

lightly loaded word, we want its encoded members to have just one membership word.

However, for a heavily loaded word, we want all or some of its encoded members to
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have additional membership words so that some of their membership bits will be moved

elsewhere.

3.4.2 Bloom-α Filter

A Bloom-α filter (denoted as Bα) is also an array of l words, each of which is w bits

long. The first w −1 bits in each word are used to encode members of a set, and the last

bit is a flag to indicate whether members mapped to this word have second membership

words. Initially, all bits (including flag bits) are zeros. The setup procedure of a Bloom-α

filter consists of two phases. In the first phase, we map elements in the set to the words

in the same way as we do for Bloom-1. Each element is mapped to and encoded in

exactly one word. We keep track of the elements that are encoded in each word. In the

second phase, we pick a wordW1 that has the largest number of encoded members.

We then “split” these members: for each member, we use log2 l of its hash bits to locate

a second wordW2 and move its last ⌊k/2⌋ membership bits fromW1 toW2. Finally

the flag bit inW1 is set to one; we callW1 a “split word”. We keep splitting the heaviest

loaded word until a certain pre-defined fraction α of members are split, i.e., the number

of members having two membership words reaches αn. As split words can not be split

again, this process will terminate as soon as enough members are split.

The construction of Bloom-α ensures that, if the flag of a word is one, the members

mapped to the word must have two membership words; if the flag is zero, the members

have one membership word. Bloom-1 is a special case of Bloom-α with α = 0.

To perform membership check on an element e ′, we first hash the element to locate

its membership wordW1. If the flag of the word is zero, we check k membership bits

in this word. If all these bits are ones, e ′ is a member of the set; Otherwise, it is not. If

the flag of the word is one, we check the first ⌈k/2⌉ membership bits inW1. If any of

these bits is zero, we are sure that e ′ is not a member and there is no need to check the

second word. However, if all these bits are ones, we find the second membership word
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Table 3-8. Query overhead comparison of Bloom-1, Bloom-2 and Bloom-α filter.
Data Structure # Memory Access # Hash Bits

B1(k = 3), B1(optimal k) 1 log2 l + k log2 w
B2(k = 3), B2(optimal k) 2 2 log2 l + k log2 w
Bα(k = 3), Bα(optimal k) ≤ 1 + α 2 log2 l + k log2 w

by using additional hash bits and check the remaining ⌊k/2⌋ membership bits in that

word. We claim that e ′ is a member of the set only if all those bits are also ones.

We analyze the query overhead in Table 3-8. Consider an arbitrary element e ′. If

e ′ is mapped to a word whose flag is zero, it takes one memory access. If e ′ is mapped

to a split word whose flag is one, it takes one or two memory accesses, depending on

whether any of the first ⌈k/2⌉ membership bits is zero. The chance for e ′ to be mapped

to any word is equal. Hence, the probability for e ′ to be mapped to a split word is equal

to the fraction (or percentage) of words that are split. Considering that split words are

most heavily loaded, the average load of these words is larger than (or equal to, only if

members are evenly distributed) that of the whole word array. In order to split α fraction

of members, splitting no more than α fraction of words is enough. Stringent proof is easy

to make and is omit. Therefore, the average number of memory accesses per query is

bounded by 1 × (1 − α) + 2 × α = 1 + α. Our experiment results in the next subsection

show that, for α = 0.5, the average number of memory accesses is actually very close to

one.

Figure 3-15 compares false positive ratios of Bloom-1, Bloom-2, and Bloom-α with

k = 3 by simulations. The false positive ratio of Bloom-α is between those of Bloom-1

and Bloom-2. When the value of α is increased from 25% to 50%, the false positive

ratio of Bloom-α is decreased, suggesting a performance-overhead tradeoff since the

average number of memory accesses will increase. When α = 50%, the false positive

ratio of Bloom-α is close to that of Bloom-2.
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Figure 3-15. False positive ratios of Bloom-1, Bloom-2 and Bloom-α Filter with k = 3.

3.4.3 Experiment

We further evaluate the Bloom-α filter through experiments using network traces.

The experimental settings are identical to those we used in Section 3.3.6.1. We

compare eight filters. They are (a) two Bloom-1 filters: B1(k = 3) and B1(optimal k);

(b) two Bloom-2 filters: B2(k = 3) and B2(optimal k), and (c) four Bloom-α filters:

Bα(k = 3,α = 25%), Bα(k = 3,α = 50%), Bα(optimal k ,α = 25%), and

Bα(optimal k ,α = 50%). It is difficult to determine the theoretical optimal k for Bloom-α,

so we use the value of k that produces the lowest false positive ratio in simulations.

First, we compare the performance of B1(k = 3), B2(k = 3), Bα(k = 3,α = 25%),

and Bα(k = 3,α = 50%). Figure 3-16 shows memory access overhead. We see that

both Bα(k = 3,α = 25%) and Bα(k = 3,α = 50%) need much fewer memory accesses

than the upper bound (1 + α) in Table 3-8. In fact, the numbers are close to one. There

are two reasons for this: First, the fraction of split words is smaller than α. In fact, in our

experiments, around 17.6% of the words are split when α = 25%, and 39.2% are split

when α = 50%. As a result, the probability that an arbitrary element is mapped to a split

word is smaller than α. Second, even if an element is mapped to a split word, it is not

necessary that additional memory access is made, as we have discussed in Section

3.4.2. Figure 3-17 compares false positive ratios of the filters. We see that false positive
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Figure 3-16. Average number of memory access for Bloom-1, Bloom-2 and Bloom-α
Filter with k = 3 in real trace experiment. Parameters: n = 25, 000 and
w = 64.
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Figure 3-17. False positive ratios of Bloom-1, Bloom-2 and Bloom-α Filter with k = 3 in
real trace experiment. Parameters: n = 25, 000 and w = 64.

ratios of Bα are smaller than Bloom-1 but slightly worse than Bloom-2, particularly when

α = 50%.

Next, Figures 3-18 and 3-19 present performance comparison of B1(optimal k),

B2(optimal k), Bα(optimal k ,α = 25%), and Bα(optimal k ,α = 50%). When the optimal

k is used, the gap between B1(optimal k) and B2(optimal k) in terms of false positive

ratio becomes larger. Bα(optimal k ,α = 25%) and Bα(optimal k ,α = 50%) fill the gap

with smaller false positive ratios than B1(optimal k) and fewer memory accesses than
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Figure 3-19. False positive ratios of Bloom-1, Bloom-2 and Bloom-α Filter with optimal k
in real trace experiment. Parameters: n = 25, 000 and w = 64.

B2(optimal k). Figure 3-20 presents the optimal number of membership bits for Bloom-α

filters. Comparing to Figure 3-8, the optimal k for the Bloom-α is smaller than that of the

Bloom-1 and Bloom-2 filters.

3.5 Summary

In this chapter, we introduce one memory access Bloom filters and their generalization.

This family of data structures enriches the design space of the Bloom filters and their

application scope by reducing the query overhead to allow high throughput. Using a
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Figure 3-20. Optimal number of membership bits for the Bloom-α Filter in real trace
experiment. Parameters: n = 25, 000 and w = 64.

number of random bits in a word instead of from the entire bit array, we analyze the

impact of this design change in terms of overhead and performance. This change also

opens the door for constructing other variants for performance tradeoff. In this enlarged

design space, we can configure filters that not only make fewer memory accesses but

also have comparable or superior false positive ratios in scenarios where the standard

Bloom filter with the optimal value of k incurs too much overhead to be practical.
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CHAPTER 4
SPACE-TIME EFFICIENT MULTI-SET MEMBERSHIP LOOKUP

4.1 Background

Many important network functions require online membership lookup against

a large set of addresses, flow labels, signatures, etc. For example, a router may be

configured with counters [13] to collect per-client information for a given set of client

addresses. For each arrival packet, the router needs to perform membership lookup

to see if the source address of the packet belongs to the client set. A router may also

be instructed to identify the set of current flows. This requires the router to collect flow

labels [96, 97], such as client addresses or address/port tuples that identify TCP flows.

Since each flow label should be collected only once. When a new packet arrives, the

router must check whether the flow label extracted from the packet belongs to the set

that has already been collected before. For routing-table lookup, we need to determine

whether a given destination address prefix is in the routing table [143]. These online

membership lookup problems have been extensively studied. Many influential solutions

[40, 76, 97, 103, 142, 143, 147] are designed using Bloom filters [7, 12], which are

compact data structures suitable for hardware implementation in on-die SRAM memory.

This chapter studies a more difficult, yet less investigated problem, called “multi-set

membership lookup” (MSM), which involves multiple (sometimes in hundreds) sets,

and classifies an incoming stream of elements, e.g., addresses, ports, a combination

of them and other fields in packet headers, or even packet content 1 . The classification

determines not only whether an element is a member of the sets but also which set it

belongs to. It has many important applications. For example, with MSM, the routers of

an ISP can classify packets for differentiated services based on their sources which are

1 In the literature, there is another type of “multi-set”, which describes that an element
may appear multiple times in a set.
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placed into different sets according to different types of service contracts. A firewall may

be supplied with an action list for addresses that are collected by an intrusion detection

system. Depending on the suspicious levels of source addresses, some packets may

be logged, some may be content inspected, while others may be dropped. The firewall

must check each arrival packet to see if the source address is a member of the different

sets, and if it is, what further action it should take, depending on which set the packet

belongs to. In another example, as the VMs are placed onto the servers of a data

center, each server has a set of VMs. The gateway can be tasked to determine which

incoming packets should be forwarded to which server (where the corresponding VMs

are hosted).

Traditional exact-match data structures such as binary search tree [58], trie

[48], or hash table [41] have to store both keys and values (set IDs), and some need

additional space for pointers. Therefore, they require much more space than Bloom

filter variations. Tries can organize the keys in a compact way, but still extra pointers

are required for sparse key space [44]. This chapter studies probabilistic-match

data structures to reduce the memory requirement, which is useful when multi-set

membership lookup needs to be implemented on small but fast on-die memory

to keep up with high line speed. Our solution combines the Bloom-g filter with a

multi-hashing table employing a novel load-to-left, candidate-to-right policy for element

placement. These techniques together allow the proposed multi-set membership lookup

function to work in very compact memory, take only a few memory accesses and hash

operations for each lookup, and have much lower error probabilities when comparing

with alternative data structures.

4.2 Problem Definition

4.2.1 Multi-Set Membership Lookup (MSM)

Consider a number s of sets whose IDs are 1, 2, ..., s, respectively. Each set has

a certain number of elements. Given an arbitrary element e, the multi-set membership
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lookup function is to find the set ID that e belongs to. We consider the sets to be disjoint

for applications that classify an incoming stream of elements into different sets. So the

returned value for the MSM function is either a valid set ID Se (1 ≤ Se ≤ s) if e ∈ Se , or 0

if e does not belong to any set, where we use Se for both ID and the set for convenience.

4.2.2 Performance Metrics

The performance criteria considered in our design of the MSM function are given

below:

• Space: For space efficiency, we should reduce the number of bits it takes to
encode each member and its set ID. This is extremely important if the data
structures are placed in on-die SRAM.

• Memory Access: We should reduce the number of memory accesses to SRAM for
each membership lookup. This is particularly important if operations are performed
very frequently, e.g. on a per-packet basis in a router.

• Hash Computation: We also want to reduce the number of hash bits that are
needed for each membership lookup. This helps reduce the computational
overhead.

To further elaborate on correctness, we define a few concepts:

• False Positive: For an element that does not belong to any set, false positive
happens if the MSM function mistakenly believes the element belongs to a set.

• Conflict Classification: For an element that belongs to a set, conflict classification
occurs if the MSM function cannot definitively determine the right set ID but knows
it must be among several candidate sets.

• Mis-Classification: For a member of an existing set, mis-classification occurs if
any of the following two conditions happens: (1) the MSM function claims that the
element belongs to a different set, or (2) the MSM function claims that the element
does not belong to any set.

False positive and conflict classification are direct consequence of bit sharing in

Bloom-like data structures, where the set of bits to which a non-member is mapped

happen to be all ones. While misclassification can be avoided [57], false positive and

conflict classification cannot be eliminated because, for a virtually unlimited number

of non-members, the probability for a non-member to share the same set of bits with
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members cannot be reduced to zero in hash-based designs adopted by Bloom filters

and their alike.

In this chapter, we focus on data structures that may have false positives or conflict

classifications, but do not have mis-classifications. In other words, no member in an

existing set is treated as non-member or member of a different set.

4.3 Design of MSM Function

4.3.1 Motivation

If coded Bloom filters [21, 57, 98] are used, each entry in the membership lookup

table (i.e., each member in Se , 1 ≤ Se ≤ s) has to be encoded multiple times. To reduce

the number of bits needed per entry, we should encode each entry just once, as the

straightforward solution [21] does. One possibility is to encode each entry, including both

the member identifier and the set ID, i.e. (e,Se) , as a member in a Bloom filter [7, 12].

The problem is that when performing lookup for an element, we only have the element

identifier and will have to try all set IDs to see if any of them, when combined with the

element identifier, is encoded in the filter. This is equivalent to what the straightforward

solution does. The number of different set IDs is in thousands, causing huge lookup

overhead. The Bloomier filter [22] does not perform well either as our later evaluation will

show.

Our idea is to create indirection in the lookup process by separating membership

encoding and set ID storage in two data structures, called “index encoder” and “set-id

table” (abbreviated as SID-table), respectively. In the index encoder, we encode the

membership of a member as well as a small index that points out where to find the right

set ID in the SID-table. This index may take a few different values (e.g., from 1 to 10).

The lookup process consists of two steps: Given a member identifier, the first step tests

whether the member is a member and checks the few index values (instead of set IDs in

thousands) to see which one is encoded in the index encoder. Using the right index, the

second step finds out where to fetch the set ID from the SID-table.
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Because the first step checks all possible index values, if their encoding locations

scatter all over the index encoder, we will have to make many memory accesses.

To reduce the number of memory accesses, we cluster the encoding locations of all

indices in one or a few contiguous blocks in the index encoder, where each block can

be retrieved in one memory access. In this way, we only need to make one or a few

memory accesses before checking all indices in parallel within a multi-core processor.

4.3.2 MSM Function

4.3.2.1 Set-ID Table

The SID-table stores the set IDs of the members. Each entry in the SID-table

consists of two fields: a checksum and a set ID. The checksum is used for resolving

lookup conflict. If the set ID field is zero, it means the entry is unused (Valid set IDs start

from 1 and go up).

4.3.2.2 Index Encoder

The index encoder shares similarity with a Bloom filter. It is an array of bits that are

organized in a two-level structure. At the first level, the array is divided into consecutive

blocks, each of which may be 64 bits long and can be retrieved in one memory access.

At the second level, each block consists of consecutive bits, which encode the key of

member elements together with the location in SID-table where their set-IDs are stored.

4.3.2.3 Insertion

To insert a new member e of set Se , we hash e to k entries in the SID-table, where

k is a system parameter. These entries are called the “candidate entries” for member e.

We will select one of them to store set ID Se ; that entry is called the “primary entry” for e.
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More specifically, the SID-table is divided into q equal-sized segments,2 where

q ≤ k . For convenience, we refer to the order from the first segment to the qth segment

as “from left to right”, following [8, 69]. We hash e to at least one candidate entry in each

segment. When k > q, some segments will have more than one candidate entry. The

candidate entries are indexed from 1 to k by the order of their segments and, for those in

the same segment, by the order of hashing.

If any candidate entry is unused, we will be able to successfully insert the member.

Let a be the index of the primary entry for e; it is also called the “primary index”. We

insert a checksum computed from e, and set the set ID field to be Se . However, if all

candidate entries for e are used, we fail in finding an entry to store Se in the SID-table.

In this case, we insert the pair, e and Se , in a small ternary content-addressable memory

(TCAM) [122].

In order to support efficient lookup, we encode the primary index a in the index

encoder by two steps: In the first step, we hash the member identifier e to a number g

of blocks in the index encoder, where g may be one or a small integer. We then fetch

these blocks to the processor. They can be logically thought of as a small Bloom-like

filter, denoted as Ce , now residing in the processor for encoding a. In the second step,

we hash a (together with e) to k ′ bits in Ce and set them to ‘1’. These operations are

performed within the processor. After that, the blocks are written back to SRAM. The

way that the index encoder works is very similar to the Bloom-g filter we mentioned in

Chapter 3. In this chapter, when we say “we hash the primary index a” (or hash another

index), we always mean to hash it together with the member identifier e.

2 Technically speaking, we may allow variable-sized segments [11, 66]. However,
equal-sized segments are easier to handle in practice for multi-banked memory and
dynamic memory allocation. See Section 4.4.
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Figure 4-1. An example of inserting a member to the MSM function.

Figure 4-2. An illustration of using “load-to-left, candidate-to-right” policy to insert a
member to a SID-table. An entry marked with ‘x’(‘0’) means is used
(unused).

Figure 4-1 illustrates how insertion to the MSM function is done through a simple

example. (1) We perform hash operations on the member’s id e and obtain a sequence

of hash bits. (2) Using the hash bits, we find k candidate entries from the SID-table,

and store the set ID Se of e with a checksum computed from e to one of the entries; the

index of the entry is a. (3) Using obtained hash bits, g blocks are fetched from the index

encoder, which form a virtual Bloom-like filter Ce . (4) We encode (e, a) to Ce .

4.3.2.4 Load-to-left, Candidate-to-right

For insertion, there are two remaining problems: How to choose the primary

entry? How many candidate entries should each segment have? Our objective is to

increase the probability of finding an unused entry for each new member. To achieve this

objective, we adopt a “load-to-left and candidate-to-right” policy to address those two

problems, where load-to-left has appeared in previous hashing schemes [8, 11, 69] and

candidate-to-right is original.
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The “load-to-left” policy deals with the choice of the primary entry: If e is hashed

to more than one unused entry, we always choose the one from the segment most to

the left. This creates a skew in the segment load, which is measured as the fraction

of entries in a segment that are used. A segment to the left tends to have a higher

load than a segment to the right, as shown in Figure 4-2. A skew in the load improves

the probability for a new member to be successfully inserted. For example, suppose

k = q = 2 and the segment loads are 0.9 and 0.1, respectively. The successful-insertion

probability is 1 − 0.9 × 0.1 = 0.91. In comparison, if the segment loads are uniform, i.e.,

0.5 and 0.5, the successful-insertion probability will be only 1− 0.5× 0.5 = 0.75.

Let αi be the load of the i th segment. Its value can be recursively computed. Let

n be the number of members and l be the number of entries in the SID-table. Each

segment has l/q entries. Suppose k = q. The probability Pi for an arbitrary entry in the

i th segment to be unused is

P1 = (1−
1

l/q
)n ≈ e−qn/l

Pi = (1−
i−1∏
j=1

(1− Pj)×
1

l/q
)n

≈ e−
∏i−1
j=1 (1−Pj )×qn/l , ∀i ∈ [2, q]. (4–1)

Clearly, the value of Pi increases with respect to i . The expected value of αi is simply

1 − Pi , which decreases with respect to i . In fact, the segment loads decrease quickly

from α1 to αq. Similar analysis can be done for the case of k > q, i.e., a segment may

have more than one candidate entry.

The “candidate-to-right” policy determines the number of candidate entries in each

segment. Taking advantage of the load skew, it further improves the probability for a new

member to be successfully inserted into the SID-table. If k = q, the successful-insertion

probability is 1 −
∏q
i=1 αi . If k > q, the successful-insertion probability is 1 −

∏q
i=1(αi)

di ,

where di is the number of candidate entries in the i th segment. Since αq has the

71



Figure 4-3. An example of looking up a member in the MSM function.

smallest value, we naturally want to push the candidate entries to the rightmost. As

shown in Figure 4-2, di = 1, ∀i ∈ [1, q − 1], and dq = k − q + 1. The successful-insertion

probability becomes 1−
∏q−1
i=1 αi × (αq)k−q+1.

The effect of the above candidate-to-right policy may be amplified if we reduce the

value of αq. This can be achieved by allowing more than one candidate entry in the

second rightmost segment. If we use two candidate entries in the (q − 1)th segment, a

new member will have a better chance to find an unused entry in the (q − 1)th segment,

without having to resort to the qth segment, thereby reducing its load αq. In this case,

the successful-insertion probability is 1−
∏q−2
i=1 αi × (αq−1)2 × (αq)k−q. It performs better

if the reduction in αq more than compensates for the reduction in its exponent.

In general, if the values of n, l , q and k are fixed, we can mathematically compute

the optimal values of di , i ∈ [1, q], that maximize the successful-insertion probability.

4.3.2.5 Lookup

Consider an arbitrary element e, we use MSM to determine its set ID. The steps

are shown in Figure 4-3. First, we generate a sequence of hash bits using element e.

Using the hash bits, we locate and fetch g blocks in the index encoder, i.e., Ce , to the

processor, where the remaining operations are performed. The processor has k units

that tests in parallel whether any candidate index i is encoded in Ce , for 1 ≤ i ≤ k . Each
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unit hashes i to k ′ bits in Ce and checks whether all bits are ones. If so, i is encoded in

Ce .

If e is a live member and it has been previously inserted in the MSM function, its

primary index a must have been encoded in Ce . Ideally, all other indices should be

tested as not encoded in Ce . However, false positive may happen such that the k ′ bits of

another index are all ones because they are set during the insertion of other members

(which are also hashed to these bits by chance). In this case, we need to figure out

which one is the primary index that we can use to find the right entry in the SID-table

for member e. The checksum field in the SID-table will serve for this purpose. We

emphasize that the probability of false positive should be made very small such that

in most cases only one index (namely, a) will be found in Ce . If no index is found in Ce ,

member e is not a member and the packet will be dropped.

For each index i that is encoded in Ce , we hash e for its i th candidate entry in the

SID-table. We then fetch the entry and compare its checksum field with what’s computed

from e. If the checksum does not match, i must not be the primary index. Otherwise,

we output the set-ID field of that entry. Figure 4-3 shows an example of looking up a

member in the MSM function.

Clearly, the primary index a will pass the above checksum test. However, the

checksum field cannot totally resolve false positive because the probability for another

index i to pass the checksum test by chance is small but not zero. When this indeed

happens, we have conflict classification.

Because some members may be stored in TCAM, the lookup happens simultaneously

in both TCAM and index encoder/SID-table. If there is a match in TCAM, the lookup in

the index encoder/SID-table will be aborted and its result will be discarded.

4.3.2.6 Hash Functions

The MSM function requires many hash operations. For example, it needs to hash

a member identifier e to b blocks in the index encoder, and then hash each index in
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[1, k] to k ′ bits in Ce during lookup. For insertion, it needs to hash e to k entries in the

SID-table. That will add up to g + q × k ′ + k hash operations. If g = 2, q = k = 4 and

k ′ = 5, the number of hash operations will be 26. But the actual implementation does not

require so many if we take a hash-bit’s point of view, instead of a hash-operation’s point

of view.

Let l be the number of entries in the SID-table, l ′ be the number of blocks in the

index encoder, and each block be 64 bits long. For the index encoder, the lookup

operation needs the most hash bits: g log2 l ′ hash bits to locate Ce , and k ′ log2 64g hash

bits to locate bits for each index in [1, k ]. If l ′ = 1M, g = 2, q = k = 4 and k ′ = 5, it

needs just 180 hash bits, which can be produced by three hashing operations if each

generates 64-bit output. Suppose 192 hash bits are produced by hardware. We take the

first g log2 l ′ = 40 bits to locate Ce . Then we take the next k ′ log2 64g = 35 bits to locate

the k ′ bits in Ce for index 0, take the yet next 35 bits to locate the bits for index 1, and so

on.3

For the SID-table, the insertion operation needs the most hash bits. It needs

k log2(l/q) hash bits to locate k entries. If l = 0.25M,4 we need 80 hash bits, which can

be produced by two hashing operations if each generates 64-bit output.

4.3.3 Conflict Classification

Conflict classification happens under the following condition: (1) false positive

occurs in the index encoder such that more than one index is found in Ce , and (2) the

3 It may be counter-intuitive to implement hashing of an index (together with the
member identifier) in this non-conventional way. A normal hash function would take the
index and the member identifier as two inputs. In the above implementation, it uses the
first input to produce a sequence of hash bits and then uses the second input to choose
some bits from the sequence.

4 Our analysis and experiments will show that the number of entries in the SID-table
can be much fewer than the number of bits in the index encoder.
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checksum field in the SID-table fails in resolving the false positive. Below we derive the

probability of conflict classification.

For each member inserted in the MSM function, the k ′ bits for its primary index are

set to ones. Consider an arbitrary bit z in Ce . It remains zero if it was not chosen by the

primary index of any member. Let w be the number of bits in each block. The probability

that z is not chosen by the primary index of member e is (1 − 1
wg
)k

′, where wg is the

number of bits in Ce . The probability that z is not chosen by any other member e ′ is

1 − [1 − (1 − 1
l ′
)g] × [1 − (1 − 1

wg
)k

′
], where the first term in the product is the probability

for Ce′ to contain z ’s block and the second term in the product is the probability for z to

be chosen by the primary index of e ′. Hence, the probability for z to be zero is

P0 = (1−
1

wg
)k

′ ×
(
1− [1− (1− 1

l ′
)g] · [1− (1− 1

wg
)k

′
]
)n−1
, (4–2)

where n is the number of members.

Consider an arbitrary non-primary index of member e. It chooses k ′ bits in Ce . False

positive occurs if all of them are ones. Hence, the false-positive probability is

Pfp = (1− P0)k
′
. (4–3)

This is not strictly correct as it assumes independence for the probabilities of each

bit being set. However, it is a very close approximation.

The probability that the checksum in the SID-table cannot resolve this false positive

is 1
2c

, where c is the number of bits in the checksum. Hence, the probability for one

non-primary index to cause conflict classification is 1
2c

× Pfp. Because there are k − 1

non-primary indices, the conflict-classification probability is

Pconflict = 1− (1−
Pfp
2c
)k−1. (4–4)

75



4.3.4 False Positive

Let e be the identifier of an element that does not belong to any set. The MSM

function first hashes e to find Ce , and then checks if any candidate index i is encoded

in Ce . A candidate index is not in Ce if one of its k ′ bits is zero. If no candidate indices

are found in Ce , the MSM function knows that e is not a member. Due to false positive,

however, one or more candidate indices may be found in Ce . In this case, the MSM

function moves to the SID-table. Each candidate index in Ce points to a candidate entry

in the SID-table. If the checksum of that entry does not match what’s computed from

e, we know that it is a false-positive caused by the index encoder; if this happens to all

indices found in Ce , the MSM function will recognize e as a non-member. However, if the

checksum of one entry matches e, the set ID in that entry will be outputted, resulting in

false positive.

We derive the probability of false positive. Following a similar analysis that leads to

(4–2), we give the probability for an arbitrary bit in Ce to be zero as follows:

P ′
0 =

(
1− [1− (1− 1

l ′
)g] · [1− (1− 1

wg
)k

′
]
)n
. (4–5)

It is slightly different from (4–2), without the term (1− 1
wg
)k

′, because no primary index of

e is encoded.

Consider an arbitrary index of member e. It has k ′ bits in Ce . False positive occurs if

all of them are ones. Hence, the false-positive probability is

P ′
fp = (1− P ′

0)
k ′. (4–6)

The probability that the checksum in the SID-table cannot resolve this false positive is 1
2c

.

Hence, the probability for one index to cause false positive is 1
2c
×P ′

fp. Because there are

k indices, the false positive probability is

Pfalse = 1− (1−
P ′
fp

2c
)k . (4–7)

76



4.3.5 Mis-Classification

Next, we consider a member element e that belongs to set Se . By definition,

mis-classification occurs if any of the following two conditions holds: (1) the MSM

function claims that e belongs to a different set S ′
e , or (2) the MSM function claims that e

does not belong to any set.

Since the member has been inserted in the MSM function, the lookup will certainly

find the primary index a in the index encoder, and that leads to the primary entry in

SID-table for the set ID Se . So condition (2) will not happen for MSM function. Condition

(1) only happens when the MSM function outputs S ′
e as the sole answer, which is

impossible given that Se is guaranteed to be included in output. In other words, the

membership lookup result for element e can either be Se or a conflict classification.

4.4 Discussions

4.4.1 Deletion

As Bloom filters does not support deletion inherently due to randomized sharing

of bits. In order to support deletion in the MSM function, we may use one of the two

techniques: counter based deletion and time-based deletion.

4.4.1.1 Counting-based Deletion

We replace the bit array Ce with a counter array as counting Bloom filter does

[54, 82, 134]. When we insert the primary index a of a member e, we hash e to find Ce .

We then hash a to k ′ counters (instead of bits) and increase all those counters by one.

When we delete a member e ′ of set Se′, after finding Ce′, we check all indices i ∈ [1, k ] to

see which one is encoded in Ce′. If there is only one index in Ce′, it must be the primary

index a. We hash e ′ for its ath candidate entry in the SID-table and set the set ID field to

zero, which releases the entry for future use.

The advantage with counting based deletion is that the logic is simple and it’s

easy to implement. However, what if we find more than one index in Ce′ (due to

false positive)? They give us more than one candidate entry in the SID-table. If the
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checksums of two or more candidate entries match e, we will have no idea which entry

to remove. Although the probability for this to happen is small, it can happen and we will

not be able to release a used entry. Over time, such wasted entries may accumulate.

4.4.1.2 Time-Based Deletion

If each member only remains in a set for a period of time, we can perform deletion

periodically by removing unvisited elements in previous period. More specifically, we

replace each bit in the index encoder with a two-bit code, and add one flag bit to each

entry of SID-table. The purpose of these is to track whether an element is visited (being

looked up).

Initially, all flag bits of SID-table entries are ‘0’, if an entry in SID-table is visited and

the checksum matches, we set the flag bit of that entry to ‘1’. After each period, the

MSM function recycles all entries in the SID-table whose flags are ‘0’. To change their

status to unused, we simply assign zero to the set ID field. We also reset the flags of all

entries to ‘0’, preparing for deletion after the next period.

The MSM function also clears the codes that are not accessed in the previous

period. All codes are initially “00”. When a member is inserted or visited, the codes it

maps to are set to “10”. Code “11” is used to resolve conflict classification as we will

show later. Membership lookup checks the positiveness of codes. During periodical

deletion,

• Codes that are “01” (not being accessed during the previous period) are set to
“00”.

• Codes that are “10” or “11” (having been accessed during the previous period) are
set to “01”, initializing them for the next period.

Figure 4-4 shows the detailed transition of code states.

Deletion needs to access the entire index encoder and SID-table. If the SRAM

space allocated to the MSM function is 10MB and each memory access retrieves a

block of 64 bits into a hardware unit for deletion, there are 1.25M blocks and it takes

2.5M memory accesses (for reading the blocks and writing them back) to process all
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Figure 4-4. State transition diagram for codes in index encoder with time-based deletion.
“00” is the starting state.

blocks. This overhead is manageable if we amortize it over the numerous packets that

the MSM function receives over each deletion period. For example, suppose MSM is

used to classify inbound packets of a router, and deletion is performed after every 10

seconds. If the inbound line speed is 100 Gbps and the average packet size is 1000

bytes, the number of packets received over a period is around 125M.5 If we interleave

memory accesses for deletion with packet processing, we may process one block for

deletion after forwarding an inbound packet. In this way, for the first 1.25M packets out of

125M, two memory accesses for deletion will be made after each packet. That translates

into a sub-period of about 0.1 second (out of 10 seconds). After that, the deletion is

completed. Alternatively, we may process one block for deletion after forwarding multiple

packets, which reduces the impact of deletion even at the micro time level.

Code Value “11”: Suppose conflict classification happens to a member with

identifier e. To prevent subsequent lookups of member e from encountering conflict

classification, the MSM function may issue an exact lookup to confirm the real set ID of

e. For example, some application may store the exact membership in larger but slower

5 For simplicity in discussion, we ignore the physical layer overhead during
transmission which cuts down the packet rate.
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DRAM. Then, it performs a lookup on e and finds the primary entry in the SID-table

whose set ID field stores x . Once it finds such an entry, it knows that the corresponding

index must be the primary index. It then goes back to the index encoder, finds the codes

for the primary index, and sets them to “11”.

For a subsequent lookups of member e, when the MSM function performs lookup

and finds multiple indices in Ce , it will use the index whose codes are all “11”.

Although the above approach helps resolving conflict classification, it cannot totally

eliminate conflict classification because in theory false positive may still occur such

that the codes of a non-primary index are all “11”, no matter how small the likelihood

is. Nevertheless, with the help of code value “11”, we can reduce the chance for

conflict classification to happen. False positive may even occur such that the codes

of a non-primary index are all “11”, while the codes of the primary index are not yet set

to all “11”. However, the probability for this to happen is extremely small.

4.4.2 Multiple Memory Banks

So far we have not considered multi-banked on-chip memory, which implements

separate SRAM arrays such that each can be accessed independently. Normally,

each bank interleaves its address blocks with other banks. It may also be designed to

occupy a contiguous section of addresses. Multi-banked memory allows us to make

multiple memory accesses in parallel. It helps increase the memory bandwidth if on-chip

memory becomes a performance bottleneck. For example, the combinatorial Bloom

filter (COMB) [57] may need to make over a hundred memory accesses per packet,

depending on its parameter setting. If numerous memory banks are used to support

parallel accesses, the actual per-packet delay due to memory access will be greatly

reduced.

Multiple banks can equally benefit the MSM function. First of all, if the g blocks in

Ce are taken from g memory banks respectively, they can be fetched in parallel. If the

SID-table resides on a different memory bank, the operations on the index encoder
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and the SID-table can be pipelined: For example, when the lookup of a packet moves

to the SID-table, the lookup of the next packet can begin to fetch blocks from the index

encoder.

For each membership query, the MSM function makes g memory accesses to

fetch Ce from the index encoder. If there is no conflict classification, it makes one

memory access to fetch an entry from the SID-table. Hence, when g = 2, three

memory accesses are needed in total. If the number of memory banks available is more

than that, we can still make full use of the parallelism by looking up multiple elements

simultaneously. We divide memory banks into groups and assign members to different

groups. Each group has its own index encoder and SID-table, as well as a dedicated

set of hardware units for insertion, deletion and lookup. When inserting a member e, we

hash it to a memory-bank group and then stores its set ID in the SID-table and index

encoder of that group in exactly the same way as we have described previously.

4.4.3 System Overload

When the number of members is too many to be stored in the SID-table, insertion

failure will happen more frequently, which may overflow the TCAM, resulting in system

overload. The MSM function can be designed to dynamically increase the SID-table

to accommodate more members. To do so, we add a number r of more segments by

preempting less important functions that are also implemented on the EN-interface.6

Recall that the SID-table consists of q segments from which k candidate entries are

accesses for each new member during insertion. Besides adding segments, we also

need to increase the number of candidate entries from k to k + r , assuming that each

6 For example, a traffic measurement function may have lower priority than cloud
membership lookup. It can be stopped to give up its memory until the overload condition
eases.
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new segment has one candidate entry and that there are extra hardware units to test

whether the additional indices are encoded in Ce during lookup.

When the overload condition eases and existing members can be held in k

segments, we will release the added segments from the SID-table when their entries

become unused.

4.5 Evaluation

We compare our data structure (MSM) with other two Bloom filter based data

structures: the Bloomier Filter (Bloomier) [22] and the combinatorial Bloom filter (COMB)

[57] using synthetic data. The details of COMB and Bloomier can be found in Section

2.3.4.

4.5.1 Simulation Setup

In our simulation, we allocate the amount of memory (m = 16 Mbits) for each data

structure and insert n random generated members with random set IDs. The number

of sets s is 4000, and the set IDs are 1, 2, ..., 4000. We vary n so that the average

memory per member changes from 20 bits to 50 bits ( m
50

≤ n ≤ m
20

). Given that we need

⌈log2 g⌉ = 12 to represent a set ID, there are actually 8 bits to 42 bits per member left to

encode the membership.

We use the optimal configurations of the data structures as follows:

Bloomier: We assign k = ln 2 l
n

elements to encode each member, where l = m
log2 g+1

is the number of entries. This will minimize both false positives and insertion failures

[12].

COMB: We choose COMB(15, 6) which can encode up to
(
15
6

)
= 5005 sets. We use

k = ln 2 m
6n

hash function for each code bit to obtain fewest false positives [57].

MSM: We choose g = 2 to bound the number of memory access per lookup; We

divide the SID-table to q = 8 segments and set the number of candidate entries k

to 10 to obtain reasonable hash overhead and insertion failure rate. We choose the

optimal k ′ that minimizes the false positive ratio of the index encoder (P ′
fp) based on
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Figure 4-5. Insertion failure ratio of the Bloomier filter and the MSM filter.

Equation (4–3). Then, the only left open variables are c and l ′. As c and l ′ are bounded

integers, with the help of linear programming, we can compute the optimal values which

minimizes the false positive ratio in Equation (4–7).

4.5.2 Simulation Results

4.5.2.1 Insertion Failure

First we keep inserting members to the data structures until the number of members

encoded reaches n. For the Bloomier filter, insertion failure happens when there is

no available element for a new member; For MSM, insertion failure occurs when all k

candidate entries for the new member are used. Both Bloomier and MSM handle this

by inserting the new member into TCAM. Figure 4-5 shows the ratio of members that

encounter insertion failure. When there are 20 bits per member, the Bloomier filter fails

to insert 26% of the elements, while MSM only fails 1%. When there are 50 bits per

member, the Bloomier filter has 5% insertion failure, while MSM does not encounter any

insertion failure since bits per member reaches 25. The consequence of insertion failure

is consumption of expensive TCAM or using larger SRAM memory instead. It is a tough

decision to make as both TCAM and SRAM are expensive for a network device.
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4.5.2.2 Membership Lookup Overhead

Next we examine the hash overhead and memory access overhead for each

membership lookup. Figure 4-6 shows the average number of memory accesses for

each membership lookup. While the number of bits per member increases, the number

of memory accesses for COMB and Bloomier also increases. This is because they use

larger k to reduce false positive ratio. MSM has less memory accesses when given

more bits to encode each member. This is because smaller false positive ratio in the

index encoder results in fewer memory accesses to SID-table. The Bloomier filter has

1–3 memory access per query. MSM has 7.8–4.5 memory accesses for members, and

7.3–3.6 memory accesses for non-members. The minor difference is due to the nature

of the index encoder: if no index is found from index encoder, there is no need to access

the SID-table. COMB requires 30 to 90 memory accesses for each membership lookup,

which is 10 times that of MSM, and 30 times that of the Bloomier filter.

Figure 4-7 presents the number of hash bits required by the data structures for each

membership lookup. Among them, the Bloomier filter works the best with 21–63 hash

bits per query. MSM requires 278 hash bits, and COMB requires 720–2160 hash bits.

4.5.2.3 Correctness

Finally, we examine the correctness of the data structure by initiating membership

queries for both members and non-members. Two types of errors may happen: false

positive which happens when a valid set-ID is outputted for a non-member; and conflict

classification which means more than one valid set-ID is outputted for a member. Figure

4-8 and 4-9 presents the false positive ratios and conflict classification ratios of the three

data structures respectively. The Bloomier filter outputs one and only one valid set-ID

for member elements. Therefore, it does not have conflict classifications. COMB has

the smallest false positive ratio, but it has large conflict classification ratio. However,

the Bloomier filter has magnitude larger false positive ratio than the other two filters. In

practice, one can determine which data structure to use if he/she has the knowledge

84



 0

 20

 40

 60

 80

 100

 20  30  40  50

m
em

or
y 

ac
ce

ss
 p

er
 lo

ok
up

bits per member

COMB
MSM(non-member)

MSM(member)
Bloomier

Figure 4-6. Average number of memory access per membership lookup by the Bloomier
filter, COMB, and the MSM filter.

 0

 500

 1000

 1500

 2000

 2500

 20  30  40  50

ha
sh

 b
its

 p
er

 lo
ok

up

bits per member

COMB
MSM

Bloomier

Figure 4-7. Number of hash bits required by the Bloomier filter, COMB, and the MSM
filter for each membership lookup.

about the query set: If the query are mostly for members, MSM or the Bloomier filter is

a good option. Otherwise if the query is mostly for non-members, COMB makes a good

candidate as well.

Figure 4-10 shows the ratio of elements that is either false positive or conflict

classification7 , defined as the “error ratio”. Among them, COMB has larger error ratio

7 The actual error ratio can vary depending on different query set.
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Figure 4-9. Conflict classification ratio comparison between COMB and MSM.

than the Bloomier filter. MSM has the lowest error ratio, and this is achieved by only 7.8

– 3.6 memory accesses and 278 hash bits.

4.6 Summary

In this chapter, we propose a novel data structure for multi-set membership lookup

based on an index encoder and a SID-table that are highly space-efficient, yet need

a small number of memory accesses for each query. We propose a load-to-left,

candidate-to-right policy to improve insertion performance. Simulation show that our

design significantly outperforms known alternatives.
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CHAPTER 5
ADAPTIVE BLOOM FILTERS FOR DISTRIBUTED JOIN

5.1 Background

Bloom filters are widely used in distributed systems, which can be used in anomaly

detection, attack detection, network traffic measurement, account management, and so

on. For example, distributed intrusion detection systems (IDSes) detect address/port

scanning [145], in which an external host attempts to establish connections to a unusual

number of internal hosts. Multiple IDSes guarding geographically dispersed sub-nets

report to a central coordinator about their measurements on the number of distinct

destinations that each source has contacted, and the central coordinator combines the

measurements to detect scanners. As another security application, a honeynet detects

attack by placing several fake servers called “honey-pots” in the network, which log

all attempting accesses to it [144]. As honey-pots do not provide any real service, the

one who contacts them is probably the source of a scanner attack or a worm [107].

The center can collect the log information from all honey-pots to locate attacker. As

an example in traffic engineering, some ISPs measure their network and analyze the

measurement results for improved QoS [26, 27, 86]. Some measure flows that travel in

a particular path. In order to do this, each routers in the path will record all bypassing

flows. Later, by joining the flows that passed two routers, we know the set of flows

that were traveling between them. Lastly, in a peer-to-peer network such as a DHT,

information is stored on millions of sites in the network. Each keyword is mapped to a

node in the network, where an inverted list containing document IDs corresponding to

the keyword is stored [23]. If multiple keywords are searched, the inverted lists from

corresponding nodes are joined together to form the final search results.

In all above examples, there is a fundamental problem to be solved: finding the

common elements of sets, which could be lists of source IP addresses captured by

honeypots, sets of flows labels collected by routers, or inverted lists of document IDs.
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We define this problem as the “distributed join problem”, which is to find the common

elements of two sets that are distributed in different locations in the network.

The straight forward solution is to let one node to send the keys of elements to

the other node. However, when the sets are large, it is not efficient to send the whole

set. Suppose in a distributed monitor system, there is a million flows in a measurement

period of 1 minutes, and each flow identifier consists of 100 bits 1 . Now in order to

find the common flows collected by two monitors, one monitor needs to send 1M ×

100 = 100Mb flow IDs per minute, which translates to 1.6Mbps upstream/downstream

traffic. As one monitor may share monitoring results with many others, the bandwidth

requirement is too large.

Another solution is to use Bloom filter to filter unneeded flow IDs before transferring

the real IDs [104]. One monitor transfers a Bloom filter that encodes its set of element to

the other monitor. The other monitor then performs a membership lookup using its own

set of flow identifiers. Now it only needs to send the flow identifiers that remain positive

in the Bloom filter. Suppose the Bloom filter takes 20M (20 bit per element) and the false

positive ratio is 0.1%. If there are 1,000 common flows, the real traffic for transferring

flow identifiers is (1M ∗ 0.1% + 1, 000) ∗ 100 and the overall traffic for both Bloom filter

and flow identifiers are 20.2Mb. It brings down the traffic by around 80%.

The compressed Bloom filter [111] can be used in previous solution so further

reduce communication cost. The compressed Bloom filter uses arithmetic coding to

encode a sparse Bloom filter. It reduces the transmission size of the Bloom filter with the

cost of compression/decompression at sender/receiver.

In this chapter, we will introduce another approach called adaptive Bloom filter, that

is designed for efficiently distributed joining two sets. Our idea is to iteratively eliminate

1 Suppose we use 5 tuples <source IP, source port, destination IP, destination port,
protocol> to identify each flow.
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elements that is not in the common set. We found that when the join is highly selective

(the size of common elements is ignorable comparing to sizes of each set), the adaptive

Bloom filter out performs both the Bloom filter and the compressed Bloom filter.

5.2 System Model

5.2.1 Problem Definition

Assume there are two sets of elements residing in different locations in the network.

Without loss of generality, we call one of them the “local host”, and the other the “remote

host”. We denote the two sets as Sl and Sr respectively. Our goal is for the local host to

find out the set T of common elements between the two sets, i.e. T = Sl ∩ Sr .

Exactly finding T can be expensive if the sets are very large. A large message

containing element information has to be sent over the network. If the operation is

performed frequently, it could have great impact to the network traffic. Alternatively, we

may allow a few elements that do not belong to T to be included in the final result. In

other words, we want to identify a set T ∗ such that T ⊆ T ∗, and |T∗−T |
|T | is small. This will

enable us to compactly encode the sets using efficient data structures such as Bloom

filters. If the goal is to exactly identify T , we can send over the elements in T ∗ (instead

of the whole set) for exact checking. Tremendous saving is still possible.

5.2.2 Performance Metrics

The first performance metrics evaluates the accuracy of T ∗. We define the false

positive ratio as the probability for an element in Sl − T to be included in T ∗, i.e.,

fp =

∣∣T ∗ ∩ Sl − T
∣∣∣∣Sl − T ∣∣ . (5–1)
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The second performance metrics describes the traffic overhead brought to the

network. We define the message size as the amount of bits sent and received by the

local host, denoted as M 2 .

The goal is to reduce the message size M and the false positive ratio fp as much

as possible. In fact, there is a tradeoff relationship between the message size and the

false positive ratio, regardless what data structure is used to encode the message.

Therefore, following the convention of [131], we bound the false positive ratio with a

pre-defined parameter α, and compare the message sizes of different approaches. With

the performance constraints, we define the optimization problem as follows: minimize

message size M, under the constraint fp ≤ α.

5.3 Bloom filter Approaches

5.3.1 Bloom filter (BF)

If Bloom filters are used, we can ask the remote host to send a Bloom filter

encoding all its elements Sr , denoted as Br . On receiving the Bloom filter, the local

host checks its own elements one by one. If an element is tested to be a member in Br ,

we insert it to the result set T ∗. In the following, we prove that T ⊆ T ∗.

From our description, T ∗ = Br ∩Sl , where Br stands for the set of elements encoded

by the Bloom filter. As Bloom filters have false positives, Br is slightly larger than Sr , and

Sr ⊆ Br . As a result, T = Sr ∩ Sl ⊆ Br ∩ Sl = T ∗. We have T ⊆ T ∗.

For an element in Sl − T , the probability for it to be in T ∗ is the probability for an

arbitrary element to be in Br , which is exactly the false positive ratio of Br . Recall that

the false positive ratio of a Bloom filter is,

fB =
(
1− (1− 1

m
)nk

)k ≈ (1− e− nkm )k , (5–2)

2 To simplify the analysis, we do not consider various headers added for physically
transferring the message.
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where m is the size of the Bloom filter Br , n = nr is the number of elements in Sr . and

k is the number of hash functions used. Please refer to Chapter 3 Section 3.2.1 for

detailed derivation. When k = m
n
ln 2 is used, the false positive ratio is minimized with

respect to m and n. The optimal false positive ratio is

fB =
(
1− e−m/n ln 2n/m

)m/n ln 2
= e−

m
n
(ln 2)2. (5–3)

Adopting the performance constraint fB ≤ α to (5–3), we have,

fB = e
−m
n
(ln 2)2 ≤ α. (5–4)

Therefore,

m ≥ − n lnα
(ln 2)2

. (5–5)

From (5–5), we know that in order to satisfy the false positive requirement, the minimum

size for the Bloom filter is M = − nr lnα
(ln 2)2

.

5.3.2 Compressed Bloom filter (CBF)

The compressed Bloom filter is proposed by Mitzenmacher in [111] to reduce

the size of Bloom filters when they are transmitted as a message. The idea is to use

lossless compression algorithms to compress the Bloom filter before transmission, and

decompress it at the receiver. The real size of the Bloom filter can be very large, yet

it can be compressed for efficient transmission. If CBF is used for the problem of this

chapter, the process is similar to that with the Bloom filter: a CBF CBr is generated

in remote host, compressed, and sent to the local host. The local host receives it and

decompresses it back to CBr . Then it checks its elements one by one to get the final

result set T ∗.

Let m be the size of the Bloom filter before compression, M be the size of

transmitted message after compression. If optimal compressor exists, the message

size can be M = mH(p), where p is the probability for a bit to be ‘0’, and H(p) =
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−p log2 p − (1 − p) log2(1 − p) is the entropy function. The authors of CBF suggests to

use arithmetic coding [113, 156] to achieve near-optimal compression.

It has been proven that the number of hash functions that minimizes the false

positive rate without compression in fact maximizes the false positive rate with

compression. The number k of hash functions that minimizes the false positive ratio

with compression is either 0 or infinity [111]. As we need at least one hash function, and

it is impractical to have infinite number of hash functions, we use k = 1 as the optimal

value.

When k = 1, the probability p for a bit to be ‘0’ is,

p = e−knr/m = e−nr/m, (5–6)

and the false positive ratio of CBF is,

fCB = (1− p)k = 1− p. (5–7)

Adopting (5–6) and (5–7) to fCB ≤ α, we have,

m ≥ − nr
ln(1− α)

. (5–8)

From M = mH(p), we have,

M = mH(p) = m[−p log2 p − (1− p) log2(1− p)]

=
ne−n/m

ln 2
−m(1− e−n/m) log2(1− e−n/m). (5–9)

From (5–9), we can numerically compute the minimum message size M, or we can take

the following approximation form where m is minimized:

M = mH(p)|m=−nr/ ln(1−α) =
nr
ln 2

[
1− α+

α lnα

ln(1− α)

]
. (5–10)
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Figure 5-1. The partitioned Bloom filter with k = 4 segments.

5.4 Adaptive Bloom filter (ABF)

5.4.1 Motivation

From (5–3), we can see that the optimal false positive ratio of a Bloom filter depends

only on m and n 3 . The Compressed Bloom filter (CBF) increases the actual size m of

the Bloom filter to achieve lower false positive. This inspired us: Can we decrease the

number n of elements instead? If we can, how can we achieve it?

First let’s see what n really means. In the context of this chapter, the elements we

are interested in are those in both sets. In other words, elements not belonging to the

intersection all contribute to false positives. Let us name the elements in the intersection

T as candidate elements, and those in Sl ∪ Sr − T as non-candidate elements. In both

the Bloom filter approach and CBF approach, a portion of non-candidates are encoded

in Br or CBr . As (5–3) suggests, the false positive ratio of a BF or CBF is bigger when

the number of elements encoded increases. In a perfect scenario, we should let Br

or CBr only encode elements in T , whose false positive ratio will be theoretically the

lowest. But how can we achieve it in practice?

In order to reduce n, we first need to separate the membership bits of the elements.

Our approach is inspired by the partitioned Bloom filter. In a partitioned Bloom filter, the

bit array is divided into k equal-sized sub-arrays. Each element maps to k bits, one in

each segment, as illustrated in Figure 5-1. In a partitioned Bloom filter, segments are

3 In practice, the hash functions used can also affect the false positive ratio. Imperfect
hash functions incurs higher false positive ratio than theoretical expectations [92].
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independent: each segment independently provide some filtering power to eliminate

non-members. If an element is eliminated with the first i segments, we don’t need to

check the i + 1th segment. Thinking this reversely, if know that an element is not in T in

the i th segment, we don’t need to encode it to the segments followed. This leads to our

solution.

5.4.2 Description

We first introduce a simplified version of our approach, then we generalize it to

optimize the communication cost for arbitrary set sizes. Our solution works in iterations.

Each iteration the local host constructs a segment of partitioned Bloom filter, i.e. a bit

map, with its remaining elements. We denote it as bli , where i is the iteration number.

Let nl be the number of elements in the local host. We use nl
ln 2

bits in the bit map so that

each bit in bli is ‘1’ with a probability of 1
2
. The local host send bli to the remote host. The

remote host use bli to filter its elements: if an element is mapped to ‘1’ in bli , it stays;

otherwise it is eliminated from the intersection. The probability for a non-candidate to

be eliminated is the same as the probability for a bit in bli to be ‘0’, which is 1
2
. After the

elimination, the number of elements left in the remote host is roughly nc + nr−nc
2

, where

nc = |T | is the number of common elements. The remote host encodes remaining

elements into another bit map (using different hash seed) bri using (nc + nr−nc
2
)/ ln 2 bits

so that bri has roughly the same number of ‘0’s and ‘1’s. Then the remote host sends bri

back to the local host. On receiving bri , the local host then perform the same elimination

on its remaining elements. After − log2 α iterations, it will meet the required false positive

ratio. Figure 5-2 shows an illustration of this approach.

However, when one set is much larger than the other set, the above solution is

not optimal. We need bigger filtering power than 1
2

to quickly rule out non-candidate

elements from the large set.

Therefore, we propose a generalization of above iterative bit map approach, called

the “adaptive Bloom filter (ABF)”. Instead of exchanging bitmaps in each iteration, we
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Figure 5-2. A simplified adaptive Bloom filter.

exchange Bloom filters. Note that we may also send multiple bit maps, but a Bloom filter

with k hash functions is more powerful than k bitmaps with the same overall space.

5.4.3 Analysis

In an iterative bit map, all bit maps transmitted have the same property: a bit is ‘1’

with a probability of 1
2
. After each iteration, the local host receives a bit map from the

remote host. The filtering power of the bit map is 1
2
. The probability for a non-candidate

element in Sl to remain un-eliminated after the k th iteration is (1
2
)k . Consider the false

positive constraint, we have, (1
2
)k ≤ α, So,

k ≥ log 1
2
α = − log2 α, (5–11)

where k is the number of iterations.

In each iteration, about half of the non-candidate members can be eliminated. Let

nli be the number of non-candidate elements left in the local host after the i th iteration.

Then nli+1 = 1
2
nli . The number of bits that the local host sends in the i th iteration is nc+nli

ln 2
;

As a result, the total number of bits that the local host sends in k iterations is,

Msent =

k∑
i=1

1

ln 2

(
nc +

nl − nc
2i−1

)
=
knc
ln 2
+
2k − 1
2k−1 ln 2

(nl − nc). (5–12)
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Similarly, let nr be the number of elements in Sr . We can find the number of bits received

by the local host, which is,

Mreceived =

k∑
i=1

1

ln 2

(
nc +

nr − nc
2i

)
=
knc
ln 2
+
2k − 1
2k ln 2

(nr − nc). (5–13)

Therefore, the total message size is,

M = Msent +Mreceived

=
2knc
ln 2

+
2k − 1
2k ln 2

(2nl + nr − 3nc)

≈ 1

ln 2

[
2nl + nr + (2k − 3)nc

]
=
1

ln 2

[
2nl + nr + (−2 log2 α− 3)nc

]
. (5–14)

From the asymmetry in (5–14), we can see that the local hosts contribute more to

the final message size. This is because the local host sends a filter out first, while the

remote host is able to filter out half of its non-candidate before its first transmission. In

practice, if nl > nr , we may ask the remote server to send its bitmap first. In that case,

the larger set (Sl ) will be reduced first and the overall message size is reduced. Another

observation is that this approach is sensitive to the size of common elements. Intuitively,

elements in the common set will never be eliminated. So they are encoded into the

message in all the iterations. However, in a lot of applications nc is very small comparing

to nl and nr . One example is in the scanner detection the proportion of scanners is

actually very small compared to the normal users. The other example is the search

results of multiple key words are much fewer than that of each single one [23, 132].

Now, if Bloom filters are exchanged instead of bit maps, we have two series of new

variables: kli and kri , where kli represents the number of hash functions for the Bloom

filter that the local host send in the i th iteration, while kri stands for the number of hash

functions for the Bloom filter that the remote host replies in the i th iteration. We have
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∑t
i=1 kri = k , where t is the number of iterations. Now, we have an optimization problem

as follows:

Optimize M, with constraints:

M =
1

ln 2

t∑
i=1

(nli + nc)× kli +
1

ln 2

t∑
i=1

(nri + nc)× kri ;

nl1 = nl ;

nr0 = nr ;

nli+1 = nli × fpri + n̂c , for 1 ≤ i < t;

nri+1 = nri × fpli+1 + n̂c , for 0 ≤ i < t;

fpri = (
1

2
)kri ;

fpli = (
1

2
)kli ;

t∑
i=1

kri = k ;

k ≥ − log2 α;

kli ≥ 1, for 1 ≤ i ≤ t;

kri ≥ 1, for 1 ≤ i ≤ t;

kl1 = 1;

The optimal setting kli and kri depends on size nc of the intersection set. However,

it is not known as a prior. Therefore, the last condition in the constraints is there for

estimating nc . We may use the methods mentioned in [86] to compute an approximate

intersection size with the AND of two bloom filters. As more Bloom filters are exchanged,

the estimation can become more precise. If necessary, we can re-compute the optimal

parameters on the way.

5.5 Summary

In this chapter, we study the distributed join problem, which is to find out common

elements between two sets in distributed systems. We introduce the adaptive Bloom
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filter – a new family of Bloom filter variant which is designed for data sharing via

network. The idea is to iteratively eliminate non-candidates. We transform the problem

into an optimization problem.
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CHAPTER 6
USING PARTITIONED BLOOM FILTERS FOR INFORMATION COLLECTION IN RFID

SYSTEMS

6.1 From Space-Time Efficiency to Time-Energy Efficiency

Switching our perspective from space domain to time domain, and from time

domain to energy domain, we found that space-time efficient data structure can also

be used to design energy-time efficient RFID protocols. In a typical computer/network

system, information is stored in memory as 0/1 bits. While in a wireless environment

such as an RFID system, information is sent/received via continuous time slots while

the protocol is executing. The length of overall time slots defines the execution time of

the protocol. As a result, the space domain in computer/network systems becomes time

domain in RFID systems. Meanwhile, RFID tags send/receive information to/from

one or more time slots. The amount of data that a tag send/receive determines

its energy expenditure. Therefore, the time domain in computer/network systems

(accessing/updating the data structure) can be mapped to the energy domain of

RFID tags (sending/receiving information to/from time slots). As a result, designing

an time-energy efficient RFID protocol shares the same discipline as implementing a

space-time data structure in a computer/network system.

6.2 RFID Background, Model, and Problem Definition

6.2.1 RFID System

Traditional barcodes can only be read in close ranges. RFID tags replace barcodes

with electronic circuits that can transmit identification numbers wirelessly over a

distance. The longer operational range makes them popular in automatic transportation

payments, object tracking, and supply chain management [72, 119, 149]. A typical

RFID system consists of one or multiple readers and numerous tags. Each tag carries a

unique identifier (ID). Tags do not communicate amongst themselves; they communicate

directly with the reader.
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Passive tags are most widely used today. They are cheap, but do not have internal

power sources. They rely on radio waves emitted from the reader for power, and have

small operational ranges of a few meters, which seriously limit their applicability. For

example, consider a large warehouse in a distribution center of a major retailer, where

hundreds of thousands of tagged commercial products are stored. In such an indoor

environment, if we use passive tags, hundreds of RFID readers may have to be installed

in order to access tags in the whole area, which is not only costly but also causes

interference when nearby readers communicate with their tags simultaneously. It is

not a good solution to use a mobile reader and walk through the whole area whenever

we need information from tags. To automate warehouse management in large scale,

a much better choice is to use battery-powered active tags because of their long

transmission ranges. The lifetime of these tags is determined by how their battery power

is used. Energy conservation must be one of the top priorities in any protocol design

that involves active tags.

With richer on-tag resources, active tags are likely to gain more popularity in the

future, particularly when their prices drop over time as manufactural technologies are

improved and markets are expanded. These tags can be integrated with miniaturized

sensors [112, 119, 130, 136]. Not only will they report their IDs, but also they can report

dynamic, real-time information about the operation status of the tags or the conditions of

the environment.

We study a general problem of how to design efficient information collection

protocols to collect information from a subset of tags in a large RFID system. For

example, consider a large chilled food storage facility, where each food item is attached

with a RFID tag that has a thermal sensor. A RFID reader periodically collects

temperature readings from tags to check whether any area is too hot (or too cold),
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which may cause food spoil (or energy waste).1 Because each area in the facility may

be packed with many food items, the temperature readings from these close-by tags

are highly redundant. Hence, it is not necessary for the reader to collect information

from all tags in the system. The reader may select a subset of tags each time to collect

temperature information. In another example, a RFID reader periodically accesses

the residual energy levels of on-tag batteries to see if some tags (or their batteries)

need to be replaced. If the reader has information about which tags are new and which

ones are old, it may choose to only query the old tags. As we will see later, it costs less

energy to query a smaller number of tags. On the other hand, it is a harder problem to

collect information from a subset of tags than from all tags because the reader has to

make sure that tags that are not under query do not transmit — their transmissions will

interfere with the transmissions made by tags of interest, causing unnecessary energy

waste.

Much existing research focused on designing ID-collection protocols that read

IDs from tags in a RFID system [1, 6, 19, 78, 115, 137, 140, 154, 159, 169, 170, 174].

In recent years, some interest is shifted to other functions such as estimating the

number of tags in a system [55, 71, 72, 89, 129, 154, 167, 172, 173], detecting the

missing tags [83, 85, 100–102, 149] or misplaced tags [14], and tag authentication

and privacy [42, 87, 95, 161]. The primary performance objective in most papers is

to minimize the execution time it takes a protocol to read all tag IDs or perform other

functions. Energy efficiency, particularly, how to reduce energy consumption by the tags,

is an under-studied subject. There exists prior work on energy-efficient protocols for

estimating the number of tags [88], or anti-collision protocols that minimize the energy

consumption of a mobile reader [70, 116]. To the best of our knowledge, we were the

1 If a tag reports an abnormal temperature, the reader may instruct the tag to keep
transmitting beacons, which guide a mobile signal detector to locate the tag.

102



first to investigate energy-efficient protocols for collecting information from a subset of

tags in a large RFID system [? ].

In this chapter, we first show that the standard, straightforward polling design is

not energy-efficient because each tag has to continuously monitor the wireless channel

and receive O(m) tag IDs, which is energy-consuming if the number m of tags that the

reader needs to collect information from is large. We then show that a coded polling

protocol (CP) is able to cut the amount of data each tag has to receive by half, which

means that energy consumption per tag is also reduced by half. This is still far away

from our objective of reducing energy consumption to O(1). We propose a novel

tag-ordering polling protocol (TOP) that can reduce per-tag energy consumption by more

than an order of magnitude when comparing with the coded polling protocol. We also

reveal an energy-time tradeoff in the protocol design: per-tag energy consumption can

be reduced to O(1) at the expense of longer protocol execution time. We then apply

partitioned Bloom filters to enhance the performance of TOP, such that it can achieve

much better energy efficiency without degradation in protocol execution time. Finally, we

show how to configure the new protocols for time-constrained energy minimization.

6.2.2 System Model

We consider a large RFID system using active tags. Each tag carries a unique ID

and one or more sensors. It also has the capability of performing certain computations

as well as communicating with the RFID reader wirelessly. The reader and the tags

transmit with sufficient power such that they can communicate over a long distance. We

assume that the RFID reader knows the IDs of all tags in the system by executing an

ID-collection protocol, and it has enough power supply.

6.2.3 Problem Definition

Let N be the set of tags in the system and n = |N|. Let M be a subset of tags,

m = |M|, and M ⊆ N. Our objective is to design efficient information collection protocols

that collect information from tags in M. An information collection protocol may be

103



scheduled to execute periodically. M may change over time so that different subsets

of tags are queried. We have two performance objectives. The primary performance

objective is to achieve energy efficiency. We want to minimize the average amount of

energy that a tag spends during one execution of an information collection protocol.

The energy expenditure by a tag has two components: (1) energy for transmitting its

information (e.g., 32 bits) to the reader, and (2) energy for receiving the polling request

and other information from the reader. The former is a small, fixed amount of energy that

must be spent. The latter is dependent on the protocol design as we will see shortly. It

is a variable amount of energy that should be minimized. Simple protocol designs will

result in all tags in the system, including those not in M, to be continuously active and

unnecessarily receive a large amount of data from the reader for an extended period of

time. How to minimize such energy cost is the focus of this chapter.

Our secondary performance objective is to reduce protocol execution time. RFID

systems use low-rate communication channels. For example, in the Philips I-Code

system, the rate from a reader to a tag is about 27Kbps and the rate from a tag to a

reader is about 53Kbps. Low rates, coupled with a large number of tags, often cause

long execution times for RFID protocols. To apply such protocols in a busy warehouse

environment, it is desirable to reduce protocol execution time as much as possible.

Communication between the reader and tags is time-slotted. The reader’s signal

synchronizes the clocks of tags. Let ttag be the length of a time slot during which the

reader is able to broadcast a tag ID, and tinf be the length of a time slot during which a

tag is able to transmit its information.

6.2.4 Prior Art

Much existing work on RFID systems is to design anti-collision ID-collection

protocols, which read IDs from all the tags in the system. They mainly fall into two

categories. One is ALOHA-based [19, 78, 137, 140, 154, 170], and the other is Tree-

cased [1, 6, 115, 174]. The ALOHA-based protocols work as follows: The reader
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broadcasts a query request. With a certain probability, each tag chooses a time

slot in the current frame to transmit its ID. If there is a collision, the tag will continue

participating in the next frame. This process repeats until all tags are identified

successfully.

The tree-based protocols organize all IDs in a tree of ID prefixes [6, 115, 174]. Each

in-tree prefix has two child nodes that have one additional bit, ‘0’ or ‘1’. The tag IDs are

leaves of the tree. The RFID reader walks through the tree. As it reaches an in-tree

node, it queries for tags with the prefix represented by the node. When multiple tags

match the prefix, they will all respond and cause collision. Then the reader moves to a

child node by extending the prefix with one more bit. If zero or one tag responds (in the

one-tag case, the reader receives an ID), it moves up in the tree and follows the next

branch. Another type of tree-based protocols tries to balance the tree by letting the tags

randomly pick which branches they belong to [1, 18, 115].

ID-collection protocols can be adopted to solve our problem, but they are inefficient

comparing to our approaches. For ALOHA-based protocols, tags can send sensor

information along with their IDs. But each tag need to continuously listen to the channel

and may send its sensor information multiple times due to collision, which results in at

lease O(n) per-tag energy consumption. For tree-based protocols, reader can use an

additional time slot to receive a tag’s information when it becomes the sole leaf of a

branch. However, all tags need to receive at least O(m) prefixes, which is equivalent to

the Basic Polling protocol design in Section 6.3.

Shen et al. proposed a data collection protocol in hybrid mobile networks consisting

of wireless sensor nodes, RFID readers, and smart RFID tags [139]. Zheng and Li

proposed a two-phase fast tag search protocol to find the subset of wanted tags in

readers’ interrogation zone [171]. Chen, Zhang and Xiao proposed efficient information

collection protocols for sensor-augmented RFID networks [28]. Yue et al. designed

efficient protocols to collect sensor information from RFID tags in multi-reader scenarios
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[165]. A reader first detects which tags are located in its interrogation region. Then it

broadcasts a distributively constructed Bloom Filter to tags and wait for tags’ response.

A follow up work [166] further analyzes the impact of cardinality estimation error and

channel error to the execution time / overhead of the protocol. Min et al. proposed an

iterative tag search protocol, which uses filtering vectors to iteratively filter out tags

not of interest [24]. These methods however only improves time efficiency [24, 28,

139, 165, 166, 171] or infrastructure-cost efficiency [139]. Tag energy consumption

are not considered. Our proposed methods on the other hand, minimizes tag-energy

consumption while constraining execution time.

6.3 Basic Polling Protocol (BP)

In a standard, straightforward way of designing a polling protocol, we simply let the

RFID reader broadcast the tag IDs in M one by one. After it transmits an ID, it waits for

a time slot of tinf during which the corresponding tag transmits its information. Each tag

continuously listens to the wireless channel. Whenever it receives an ID from the reader,

the tag compares the received ID with its own ID. If they match, the tag will transmit its

information and then go to sleep until the next scheduled execution of the protocol.

In the above protocol, each tag in M will have to receive m
2

IDs on average from the

reader before it transmits. Each tag not in M will have to receive all m IDs. The amount

of energy spent by a tag in receiving such data grows linearly with respect to m. It takes

a constant amount of energy for a tag to receive an ID and another constant amount

of energy for it to transmit its information. The energy cost of the whole system is thus

O(nm). The protocol execution time is m(ttag + tinf ).

We use a numerical example to explain the energy cost. Consider a military base

that has a large warehouse storing 50,000 weapons, ammunition magazines, and

other equipment, which are tagged with RFID sensors. Among them, there are 1,000

sensitive devices, from which a RFID reader needs to access information in order to

make sure that they are in good conditions or simply to confirm their presence (against
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unauthorized removal). Let er be the amount of energy a tag spends in receiving an ID

and es be the amount of energy a tag spends in transmitting its information. The total

energy consumed by all tags for transmitting is 1, 000es , and the total energy consumed

by all tags for receiving is about 50, 000, 000er . Even though er may be smaller than

es , the total amount of energy spent by tags in receiving can be much greater than the

amount spent in transmitting.

6.4 Coded Polling Protocol

We show that a coded polling protocol (CP) [25] is able to reduce the amount of

data each tag has to receive by half. The protocol assumes that each tag ID carries

an identification number and a CRC (cyclic redundancy code) for error detection. This

requirement is satisfied by the EPCglobal Gen-2 standard, where each 96-bit tag ID

contains a CRC checksum. The CRC is computed based on the identification number

and a generator. When a tag receives an ID from a wireless channel, it computes a

CRC based on the received identification number and then compares the result with the

received CRC. If they are the same, we say the ID contains a valid CRC.

CRC has the following property: If x and y are two tag IDs with valid CRCs, then

x ⊕ y also has a valid CRC. The same property does not hold for x ⊕ ŷ , where ŷ contains

the same bits in y but in the reverse order. For example, if y = 10110, then ŷ = 01101.

We call ŷ the reversal of y .

In the coded polling protocol, the RFID reader first arranges the IDs in M in pairs.

Each pair consists of two IDs that are arbitrarily selected from M. Consider an arbitrary

pair, x and y , which are called each other’s paring ID. We define the polling code of the

pair as c = x ⊕ ŷ .

Instead of sending out the IDs in M one after another, the reader broadcasts the

polling code of each pair one after another. After each broadcast of a polling code

c = x ⊕ ŷ , the reader waits for two time slots, during which tag x and tag y will transmit.

More specifically, when an arbitrary tag z receives the polling code c , it first computes
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z ⊕ c , and checks whether the CRC in the reversal of z ⊕ c is valid. If it is, the tag will

transmit its information. Otherwise, the tag computes ẑ ⊕ c , and checks whether the

CRC in ẑ ⊕ c is valid. Again, if it is valid, the tag will transmit. Otherwise, the tag will not

transmit. We show that only tag x and tag y will transmit.

First, consider the case of z = x . The tag first computes z ⊕ c = x ⊕ x ⊕ ŷ = ŷ . The

reversal of ŷ is y . The CRC in any tag ID (including y ) is valid. Hence, tag x will transmit.

Moreover, it now knows its pairing ID, y . If x is greater than y , the tag will transmit in the

first slot after receiving the polling code; otherwise, it will transmit in the second slot.

Second, we consider the case of z = y . The tag first computes y ⊕ c = y ⊕ x ⊕ ŷ . Its

reversal is likely to have an invalid CRC; the chance for an arbitrary number to contain a

valid CRC is very small. Then, the tag computes ẑ ⊕ c = ŷ ⊕ x ⊕ ŷ = x , which contains

a valid CRC. Consequently, y will transmit. Since it now knows its pairing ID, x , it also

knows in which slot it should transmit.

Finally, consider the case of z ̸= x and z ̸= y . The tag computes the reversal of

z ⊕ c = z ⊕ x ⊕ ŷ and then computes ẑ ⊕ c = ẑ ⊕ x ⊕ ŷ . Both of them are likely to have

invalid CRCs.

A minor problem is that y ⊕ c in the second case and z ⊕ c or ẑ ⊕ c in the third

case still have a small probability to contain a valid CRC. However, the reader can easily

prevent this from happening. It knows all tag IDs. It can precompute all polling codes

and check whether a valid CRC happens in the above cases by chance when it is not

supposed to. If this is true for a pair of tags, x and y , the reader must break up the pair,

and use them to form new pairs with other IDs in M. Such an approach is effective

because the probability for this to happen is exceedingly small when CRC is sufficiently

long.

Because each polling code represents two tag IDs, the number of polling codes

in CP is m
2

. Hence, when comparing with the basic polling protocol, CP reduces the

number of broadcasts made by the reader by half, and it also reduces the amount of
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data that each tag has to receive by half. This not only saves energy for tags, but also

reduces the protocol execution time to m
2
ttag +mtinf .

6.5 Tag-Ordering Polling Protocol (TOP)

Although CP is more efficient, the expected amount of energy that each tag spends

in receiving remains O(m). In this section, we propose a new tag-ordering polling

protocol that reduces such energy cost to O(1).

6.5.1 Motivation

In the basic polling protocol, a RFID reader broadcasts m IDs in time slots of length

ttag. All tags must continuously monitor the wireless channel in order to know whether

their own IDs are in the broadcast. In CP, the reader broadcasts m
2

polling codes also in

time slots of length ttag. Again, all tags must continuously monitor the wireless channel.

They have to keep receiving and processing the polling codes. Each tag in the basic

protocol has to receive up to m IDs. Even though CP is more efficient, a tag still has to

receive up to m
2

codes.

We want to remove the necessity for any tag to keep monitoring the wireless

channel. Ideally, a tag should stay in an energy-conserving standby mode for most of

time, and only wake up at the right time slot to receive information about itself, such as

whether it is polled and, if so, when it should transmit. To further reduce the amount of

data that tags have to receive, we let the reader broadcast a so-called reporting-order

vector V , instead of IDs in M. Each ID in M is mapped to a bit in V through a hash

function; the bit is set as one to encode the ID in the vector. A tag only needs to check

a specific bit in V at a location determined by the hash of its ID. This bit is called

the representative bit of the tag. If its value is one, the tag is polled by the reader for

reporting, i.e., the tag belongs to M; if its value is zero, the tag is not polled. The vector

V also carries information about the order in which the polled tags will report their data.

Each bit whose value is one in V represents a polled tag. If a tag finds that there are i

ones in V preceding its representative bit, it knows that it should be the (i + 1)th tag in
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M to report its information. With such an ordering, it becomes possible for tags in M to

report at different times and avoid collision.

However, this basic idea has two problems. First, there should be at least m bits

in V to encode m IDs in M. The energy cost of receiving V remains O(m). How can a

tag find out the number of ones in V preceding its representative bit without having to

receive the whole vector? Second, hash collision causes two issues. If a tag not in M

is hashed to the same bit in V as a tag in M does, it will find its representative bit to be

one, causing false positive. If two tags in M are mapped to the same bit in V , they will

transmit at the same time, causing report collision. In the rest of this section, we design

a new tag-ordering polling protocol (TOP) to solve these problems. It consists of three

phases: ordering phase, polling phase, and reporting phase. In the ordering phase, the

reader broadcasts the vector V so that each tag knows whether it is polled and where it

is located in the reporting order. The polling phase resolves the issues of false positive

and report collision. Finally, in the reporting phase, tags in M report their information in

the order defined by V without collision.

6.5.2 Protocol Description

6.5.2.1 Ordering Phase

The RFID reader does not broadcast any IDs or indices. It only broadcasts the

reporting-order vector, V . If V cannot fit in one time slot of length ttag, the reader breaks

the vector into segments and broadcasts each segment in a time slot of ttag. In addition,

the reader also broadcasts the vector size v .

Knowing the vector size, a tag t is able to hash its ID and find out the location

of its representative bit in V . Because the segment size is fixed, t also knows which

segment its representative bit belongs to. This segment, denoted as Vt , is called the

representative segment of tag t. A tag will stay in the standby mode and be active only

when receiving its representative segment.

110



Figure 6-1. Vt is the representative segment of tag t, xt is the total number of ones in all
previous segments, and yt is the number of ones in Vt that precede tag t ’s
representative bit. It is the position of t in the reporting order. It = xt + yt .

If a tag finds that its representative bit is zero, it knows for sure that it is not a

member in M. If a tag finds that its representative bit is one, it may be a member in M

or a non-member that is mapped to a bit which a member in M is also mapped to. The

latter case causes false positive. Because the reader knows all IDs in the system, it can

pre-compute the set F of non-member tags that cause false positive.

When the reader broadcasts any segment of V , it includes in the same time slot

the total number of ones in the previous segments. For an arbitrary tag t, let It be the

number of ones in V preceding the representative bit of t. When tag t receives Vt , it can

computes It as the sum of (a) the number of ones in the previous segments and (b) the

number of ones in Vt before its representative bit. See Figure 6-1 for illustration. As we

will see later, the value of It specifies when tag t will transmit during the reporting phase.

If two tags in M are mapped to the same bit in V , they will have the same It value

and thus transmit at the same time during the reporting phase, causing collision.

Because the reader has all IDs in M, it knows exactly which tags will be mapped to the

same bit. This makes it easy to resolve collision. The reader simply removes all but one

tag that are mapped to a bit, and puts them in a set C . These tags, together with tags in

F , will not participate in the reporting phase. They are handled separately in the polling

phase.

111



6.5.2.2 Polling Phase

In this phase, the reader issues two types of polling requests. For each tag in C , it

sends a positive polling request. For each tag in F , it sends a negative polling request.

To distinguish these two types, the reader must transmit a one-bit flag together with a

tag ID in each request, specifying whether the polling is positive or negative and which

tag is polled.

Tags that find their representative bits to be ones in the previous phase must

continuously listen to the channel during the polling phase. After sending a positive

request, the reader waits for a time slot to receive information. The tag that finds its ID in

the request will transmit its information in this slot. This tag, which belongs to C , will not

participate in the reporting phase. After sending a negative request, the reader does not

wait before sending out the next request. The tag that finds its ID in a negative request

knows that it must belong to F and hence should not further participate in the protocol

execution.

The total number of polling requests is |F | + |C |. By choosing an appropriate

size for the reporting-order vector, we can make sure that |F | + |C | = O(1) (see

Section 6.6). Note that only tags in M and F have to listen to the channel in this phase.

Tags in N −M − F , which may contain the majority of tags in the system, have already

known that they do not belong to M and thus do not need to participate in the protocol

execution.

6.5.2.3 Reporting Phase

A tag participates in the reporting phase only if it satisfies the following two

conditions: (1) it finds that its representative bit is one in the ordering phase, and (2)

it does not find its ID in the requests of the polling phase.

The reporting phase consists of m − |C | time slots. In each time slot, one tag

in M − C transmits its information. Recall that each tag in M learns its index in the
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reporting order during the ordering phase. The tag will transmit in the reporting phase at

the time slot of the same index.

6.5.2.4 Timing

Before executing the protocol, the RFID reader uses its broadcasting signal to

synchronize the clocks of the tags. The reader computes the vector V and breaks it

into segments. Suppose each time slot of length ttag can carry 96 bits. We may set the

segment size to be 80 bits and use the remaining 16 bits to carry the total number of

ones in the previous segments.2 The reader is able to compute the execution time T1 of

the ordering phase, which is the number of segments multiplied by ttag.

Since the reader knows all IDs in the system, it can precompute the set F of tags

that cause false positive and the set C of tags that should not participate in the reporting

phase in order to avoid collision. Based on F and C , the reader can compute the

execution time T2 of the polling phase, which is |F | × ttag + |C | × (ttag + tinf ).

Suppose all tags wake up at each scheduled execution of the protocol. The reader

computes and broadcasts the values of T1 and T2 right before the ordering phase, so

that the tags know when each phase of the protocol will begin. They will remain in the

standby mode unless they have to receive their representative segments, participate in

the polling phase, or transmit their information in the reporting phase.

If the system requires on-demand polling of tag information instead of periodic

execution, there are two possible solutions to wake the tags up in the first place. The

first one is ”pseudo-on-demand” polling, where tags still wake up periodically, but the

reader only issues the polling request when needed. The second approach is to attach

a wake-up circuit to each tag, and use the two-stage wake-up scheme proposed in [29]

2 Using 16 bit to carry the number of ones in previous segments will limit the value
of m to (0, 65,535]. To get rid of this limitation, we can use ⌈log2m⌉ bits instead and
broadcast the value of ⌈log2m⌉ to tags at the beginning of protocol. However, for the
sake of simplicity, we use 16 bits in the following to help demonstrate the main idea.
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to activate the tags. In this approach, tags responde almost immediately to the polling

event. However, the wake-up circuit requires the reader to be close enough so that the

radio power is strong enough to trigger the wake-up event. As a result, we may have to

deploy extra readers to cover all the tags.

6.6 Performance Analysis of TOP

6.6.1 Energy Cost

We show how to configure TOP such that the energy cost per tag is O(1). The

energy cost of a tag has four components: (1) receiving v , T1 and T2, (2) receiving

a segment of V in the ordering phase, (3) listening to the channel during the polling

phase, and (4) transmitting information in a slot at the reporting phase (or at the

polling phase if the tag is in C ). The first two components incur small, constant

energy expenditure to every tag in the system. The fourth component also incurs

small, constant energy cost, but only to the tags in M. The third component incurs

energy cost only to tags in F and M. In the worse case, a tag has to listen to all |C |+ |F |

polling requests from the reader. Suppose it takes one unit of energy to receive a polling

request. The total energy cost of a tag, denoted as Ω, is

Ω ≤ |C |+ |F |+O(1). (6–1)

We treat |C | and |F | as random variables and derive their expected values. Recall that v

be the number of bits in the reporting-order vector V . Let bi be the value of the i th bit in

V , 0 ≤ i < v . For each tag in M, the reader maps it to a random bit in V and sets the bit

to one. After encoding all m tags in V , the probability for bi to be one is

Prob{bi = 1} = 1− (1−
1

v
)m ≈ 1− e−m/v . (6–2)

The bits, b0, b2, ..., bv−1, are independent of each other. Thus, the expected number of

ones in V is
∑v
i=1 Prob{bi = 1}. The value of |C | is equal to m subtracted by the number
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of ones in V . Hence, we have

E(|C |) = m −
v∑
i=1

Prob{bi = 1} ≈ m − v(1− e−m/v). (6–3)

A tag not in M will cause false positive when its representative bit is one. The probability

for this to happen is Prob{bi = 1}. Hence,

E(|F |) = (n −m)Prob{bi = 1} ≈ (n −m)(1− e−m/v). (6–4)

Both E(|C |) and E(|F |) are monotonically decreasing functions of v . We show that

E(|C |) = O(1) if v is sufficiently large. Let v = m2

2
. From Taylor expansion, we know that

1− e−m/v =
m

v
− 1
2!
(
m

v
)2 +

1

3!
(
m

v
)3 − 1

4!
(
m

v
)4...

≥ m
v

− 1
2!
(
m

v
)2.

Applying it to (6–3), we have

E(|C |) = m − v(1− e−m/v) ≤ 1
2!

m2

v
= 1. (6–5)

Next we show that E(|F |) = O(1) if v is sufficiently large. If n = m, E(|F |) = 0. Now

assume n > m. Let v = − m
ln(1− 1

n−m )
. Applying it to (6–4), we have

E(|F |) = (n −m)(1− e−m/v) = 1. (6–6)

Therefore, if we choose v = max{m2
2

, − m
ln(1− 1

n−m )
}, we have

E(Ω) ≤ E(|C |) + E(|F |) +O(1) ≤ 1 + 1 +O(1) = O(1).

We conclude that TOP can be configured such that the expected energy cost per tag

is O(1). As we will see shortly, the protocol execution time increases when v becomes

too large. To strike a balance between energy cost and protocol execution time, we may

choose a value of v much smaller than max{m2
2
,− m

ln(1− 1
n−m )

}. In Section 6.10, we use

simulations to study the performance of TOP under practical values of v . For example,
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when v = 24m, the amount of data that a tag receives in TOP is more than an order of

magnitude smaller than what a tag has to receive in CP.

We characterize the energy cost in the polling phase by counting the amount of

data (in Kilobits) that a tag has to receive. Numerical results are shown in the first plot of

Figure 6-2, where n = 50, 000 and m = 5, 000, 10, 000, or 25, 000, corresponding to three

curves in the plot. Clearly, as v increases, the energy cost decreases.

6.6.2 Execution Time

The protocol execution time also consists of four components. To begin with, it

takes the reader a small, constant time to broadcast v , T1 and T2. The time for the

ordering phase is v
l
ttag, where l is the segment size. The time for the polling phase is

|F | × ttag + |C | × (ttag + tinf ). The time for the reporting phase is |M − C | × tinf . Hence,

the total execution time is

T = (
v

l
+ |F |+ |C |)ttag +m · tinf +O(1). (6–7)

From (6–3) and (6–4), the expected protocol execution time is

E(T ) =
[v
l
+ (n −m)(1− e−m/v) +m − v(1− e−m/v)

]
· ttag +m · tinf +O(1)

≈
[v
l
+
(n −m)m
v

]
· ttag +m · tinf +O(1). (6–8)

The second plot of Figure 6-2 presents the protocol execution time (excluding the

constant O(1)) when n = 50, 000, m = 5, 000, 10, 000, or 25, 000, ttag = 3297µs,

and tinf = 906µs; see Section 6.10 for how they are determined. Interestingly, as

v increases, the execution time first decreases and then increases. We can find the

optimal value of v that minimizes the execution time from δE(T )
δv
= 0.

Combining the results in the first and second plots, we can figure out the tradeoff

relation between energy cost and protocol execution time, which is presented in the

third plot. As v becomes large, the energy cost decreases at the expense of increased

execution time.
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Figure 6-2. Energy, time, and energy-time trade-off of TOP. First plot: Energy cost per
tag with respect to v . Second plot: Protocol execution time with respect to v .
Third plot: Energy-time tradeoff controlled by v .
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6.6.3 Choosing v for Time-constrained Energy Minimization

Recall the performance objectives of TOP are energy efficiency and time efficiency.

However, as shown in Figure 6-2, we may not be able to achieve the best performance

in both metrics using one configuration. Below we study how to configure TOP for

time-constrained energy minimization.

Consider a warehouse with a large number of RFID-tagged goods. Suppose

the system administer wants to maximize the tags’ battery lifetime, but there is a

requirement on the execution time of a polling operation because excessively long

execution time increases the chance of interfering with other scheduled tasks. From

the previous analysis, we know that the protocol execution time is treated as a random

variable. Let T be the execution time of TOP, B be a pre-defined time bound, and α be a

probability value, 0 < α < 1. The time constraint can be specified in a probabilistic way,

Prob{T ≤ B} ≥ α. (6–9)

Our performance objective is to find the optimal value of v that minimizes the energy

cost, subject to the above constraint.

As shown in the first plot of Figure 6-2, the energy cost decreases as the size of the

reporting-order vector, v , increases. Hence, our goal becomes finding the largest v that

satisfies (6–9). In the following, we derive Prob{T ≤ B} as a function of v . Based on

this function, we will be able to compute the optimal value of v .

Let d be the total number of ones in V after encoding tags in M, 0 < d ≤ m. The

probability that x bits are ones, expressed as Prob{d = x}, can be calculated by the

“balls and bins algorithm”, which will be given in the next subsection. For now we denote

the function for computing Prob{d = x} as pd(m, v , x).

After encoding tags in M, the reader removes colliding tags to C . The value of |C | is

equal to m subtracted by the number of ones in V . Hence,

Prob{|C | = c} = Prob{d = m − c} = pd(m, v ,m − c). (6–10)
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When a tag not in M is mapped to a bit that is one, false positive happens. The

reader puts all false positive tags to F . When there are x bits that are ones in V , the

conditional false positive probability is x
v
. Thus,

Prob{false positive
∣∣d = x} = x

v
.

Obviously, when d = x , the total number of false positive tags follows a binomial

distribution Bino(n −m, x
v
).

Prob{|F | = f
∣∣d = x} = (

n −m
f

)
(
x

v
)f (1− x

v
)n−m−f .

Let S be the union of C and F , so |S | = |C | + |F |. The probability distribution of |S |

is

Prob{|S | = s} =
s∑
c=0

Prob{|F | = s − c
∣∣|C | = c} · Prob{|C | = c}

=

m∑
x=1

Prob{|F | = s −m + x |d = x} · Prob{d = x}

=

m∑
x=1

(
n −m
s −m + x

)
(
x

v
)s−m+x(1− x

v
)n−s−xpd(m, v , x). (6–11)

Adopt (6–7) and ignore O(1), a small constant time for the reader to broadcast v , T1

and T2, which is negligibly small when comparing with other components on the right

side of (6–7). We have

Prob{T ≤ B} =
smax∑
s=0

Prob{|S | = s}, (6–12)

where smax = B−mtinf
ttag

− v
l
. We denote the right side of (6–12) as Pt(v ,B), which is the

probability for the protocol execution time to be bounded by B under a certain value of v .

It is computable as a function of v and B after (6–11) is applied and parameters m and n

are given.

We want to find the largest value of v that satisfies the inequality, Pt(v ,B) ≥ α.

Our numerical computation shows that, given a fixed value of B, Pt(v ,B) is not a
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Figure 6-3. Bound B that satisfies Prob{T ≤ B} ≥ α with respect to v . Parameters:
n = 10, 000, m = 1, 000.

monotonic function with respect to v . Hence, we cannot directly apply the bisection

search method to find the largest v that satisfies Pt(v ,B) ≥ α. We may use the False

Position algorithm [16] to find the optimal value of v . The computation overhead is

reasonable. For n = 10, 000, m = 1, 000, B = 4 seconds, and α = 99%, it takes an Apple

macbook (2.4GHz CPU and 4GB memory) 3 seconds to find the optimal v = 60, 160.

And for n = 10, 000, m = 1, 000, B = 3 seconds, and α = 99%, it takes the same

computer 16 seconds to find that no v can satisfy the requirement, because B = 3

seconds is smaller than the minimum execution time that TOP can achieve.

As a related problem, if v and α are given, we can also use Pt(v ,B) to compute

the time bound that TOP can achieve. More specifically, given a value of v , we are able

to find the smallest B that satisfies Pt(v ,B) ≥ α through bi-section search: Recall that

Pt(v ,B) is the formula for Prob{T ≤ B}, the probability for the protocol execution time

to be bounded by B. Clearly, it is an increasing function of B with Pt(v , 0) = 0 and

Pt(v , +∞) = 1. We choose a small value B1 (e.g., 0) such that Pt(v ,B1) < α and a

large value B2 such that Pt(v ,B2) ≥ α. Let B3 = ⌈B1+B2
2

⌉. If Pt(v ,B3) < α, assign

B3 to B1; otherwise, assign B3 to B3. Hence, the search range [B1,B2] is cut by half.

Repeat the above process until B1 = B2, which gives the smallest bound B that satisfies
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Pt(v ,B) ≥ α. Let n = 10, 000 and m = 1, 000. Figure 6-3 shows the smallest bound B

with respect to v when α = 90%, 95% and 99%, which correspond to the three curves in

the figure.

6.6.4 Computing pd(m, v , x)— the Balls And Bins Algorithm

Problem: Suppose we throw m balls into v empty bins. Each ball is thrown to

a random bin, and each bin can hold unlimited number of balls. We want to find the

probability that after m balls are thrown, x bins are not empty, denoted as pd(m, v , x).

Solution: There are many solutions to this problem. We now provide a recursive

one. Assume after we throw m balls, there are x non-empty bins, 1 ≤ x ≤ m. When

x > 1, there are two possibilities of where the mth ball goes: (1) If the mth ball is placed

to a previously empty bin, there should be x − 1 non-empty bins after m − 1 balls were

thrown, and the possibility for this to happen is v−x+1
v

; (2) Otherwise if the mth ball goes

to a previously non-empty bin, there must be x non-empty bins after m − 1 balls were

thrown, and the possibility of this option is x
v
. Thus,

pd(m, v , x) =



1; x = m = 1.

x
v
pd(m − 1, v , x) + v−x+1

v
pd(m − 1, v , x − 1);

1 ≤ x ≤ m and x ≤ v .

0; all other cases.

pd(m, v , x) can be calculated from simple dynamic programing.

6.7 Enhanced Tag-Ordering Polling Protocol (ETOP)

6.7.1 Motivation

If we do not want to significantly increase execution time, we cannot choose a large

value for v . In this case, we must find other means to lower energy cost. The key is to

reduce the number of IDs that have to be transmitted in the polling phase. Namely, we

should reduce the number of tags in F and C . Let us first focus our discussion on false

positive. Consider an arbitrary tag t /∈ M. Its representative segment is Vt . Let q be
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the number of tags in M that are also mapped to Vt . False positive occurs if t and one

of those q tags have the same representative bit. The probability for this to happen is

1− (1− 1
l
)q, where l is the number of bits in Vt .

To further reduce the false-positive probability, we can implement each segment of

V as a Bloom filter [7, 12]. The reader uses multiple hash functions to map each tag to

k(> 1) representative bits in V , instead of just one in TOP. More specifically, for each

member t ′ ∈ M, the reader first maps it to a representative segment Vt′ through a hash

function whose range is [0, v
l
). Then the reader further maps t ′ to k representative bits in

Vt′ and set them to ones.

After all members in M are encoded in the segments of V , the reader broadcasts

the segments in the ordering phase. A tag t only listens for its representative segment

Vt and then checks its representative bits. If any representative bit is zero, the tag can

not be in M. If all representative bits are ones, the tag may be a member in M or a

false positive. In the case of false positive, even though the tag does not belong to M,

every one of its representative bits is set because it is also a representative bit of a

member tag in M. The probability for this to happen is (1 − (1 − 1
l
)kq)k , where q is the

number of tags in M whose representative segments are also Vt . For example, if l = 80,

k = 3, and q = 2, the false-positive probability is just 3.8 × 10−4, much lower than

1− (1− 1
l
)q = 2.5× 10−2 in TOP under the same parameters.

Bloom filters can reduce the false-positive probability. But it is more difficult to use

them to carry the reporting order, based on which the tags will take turn to transmit

during the reporting phase. In TOP, we use the number of ones that precede the

representative bit of a tag to determine the tag’s position in the reporting order. Bloom

filters use multiple representative bits to encode each member. The representative bits

of different members may overlap in an arbitrary way. Hence, we cannot simply use

all bits whose values are ones to represent tags in M because there is no one-to-one

mapping between them.
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Figure 6-4. Vt is the representative segment of tag t. Vt is evenly divided into k
partitions, each having ⌊ l

k
⌋ bits. Tag t has one representative bit in every

partition.

In the following, we design an enhanced tag-ordering polling protocol (ETOP) to

solve the above problem. ETOP uses partitioned Bloom filters, which not only reduce

false positive and encode the reporting order, but also reduce |C | as well as overall

execution time of the protocol.

6.7.2 Protocol Description

The main difference between ETOP and TOP is that ETOP implements each

segment of V as a partitioned Bloom filter instead of a simple bit array. When we

describe the protocol of ETOP, we focuses on the difference while omitting the details

that it shares in common with TOP.

In a partitioned Bloom filter, the l bits of a segment are evenly divided into k

partitions. Each partition has ⌊ l
k
⌋ bits. See Figure 6-4 for illustration. For every member

tag t in M, the reader applies a hash function on its ID to obtain a number of hash

bits. The reader uses ⌈log2 v⌉ hash bits to map t to a representative segment Vt ,

and then uses k⌈log2 lk ⌉ hash bits to further map t to one representative bit in every

partition of the segment. Like a classical Bloom filter, the partitioned Bloom filter sets

k representative bits for each encoded member; unlike a classical Bloom filter, a

partitioned Bloom filter spreads the k representative bits in k different partitions.

After receiving its representative segment, a tag checks the k representative bits to

determine if it is a member in M. False positive cases are handled by the reader in the

polling phase as usual.

123



How does a tag t know its position in the reporting order? First we consider the

reporting order among tags that are encoded in the same segment Vt . Since every

tag has exactly one representative bit in each partition of Vt , we may be able to use

one of the partitions to carry the order information. In other words, if there is a partition

P∗ whose number of ones is equal to the number of tags encoded in Vt , we know that

there must be a one-to-one mapping between these tags and the ‘1’ bits in P∗. We can

use the order of ‘1’ bits in P∗ as the reporting order of the corresponding tags. We will

explain later how the reader makes sure that such a partition exists. When the reader

sends out Vt , in the same time slot it also sends the total number xt of tags that are

encoded in all previous segments of V . The position of tag t in the reporting order can

be computed from xt and the information in P∗, which we will further explain shortly.

How to make sure that any segment of V always has a partition whose number

of ones is equal to the number of tags encoded in the segment? The reader has to do

some extra work. After encoding all tags in M, the reader examines the partitions one by

one for each segment. If there is not such a partition, the reader removes an encoded

tag and places it in the set C , which will be explicitly polled in the polling phase. The

reader keeps removing tags until it finds a partition that satisfies the above requirement.

Note that the requirement is always satisfied when the number of tags encoded in a

segment is one.

After receiving its representative segment Vt , a tag t ∈ M computes its position in

the reporting order as follows: It finds out a partition P∗ in Vt that has the largest number

of ones. This partition must have a one-to-one mapping between ‘1’ bits and encoded

tags. Let yt be the number of ones in P∗ that precedes the representative bit of t. The

tag computes its position in the reporting order as yt + xt . Recall that xt is the number

of tags that are encoded in the previous segments. It is received together with Vt in the

same time slot.
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The polling phase and the reporting phase of ETOP are identical to their counterparts

in TOP.

6.8 Performance Analysis of ETOP

6.8.1 Energy Cost

We show that ETOP can be configured such that the energy cost per tag is O(1).

ETOP has the same upper bound formula for per-tag energy cost as TOP does, which

is shown in (6–1), but it has different values of |C | and |F |. In the following, we derive

|C | and |F | for ETOP. Let mi be the number of tags in M that are encoded in the i th

segment, 0 ≤ i < v
l
. Each tag in M has a probability of l

v
to be mapped to the i th

segment. Hence, mi follows a binomial distribution Bino(m, l
v
).

Prob{mi = x} =
(
m

x

)
(
l

v
)x(1− l

v
)m−x . (6–13)

Let Ci be a subset of C , containing the tags that are removed from the i th segment.

We know the following facts: (1) When mi = 0, |Ci | = 0. (2) When mi = 1, |Ci | = 0. (3)

When mi ≥ 1, |Ci | ≤ mi − 1. Hence, we must have

E(|Ci |) < (mi − 1) ·
(
1− Prob{mi = 0} − Prob{mi = 1}

)
= (mi − 1) ·

(
1− (1− l

v
)m − ml

v
(1− l

v
)m−1).

Since (1− l
v
)m > 1− ml

v
, we have

E(|Ci |) <
mi(m − 1)2l2

v 2
<
mim

2l2

v 2
.

|C | is the sum of all |Ci |s, 0 ≤ i < v
l
. We know

∑v/l
i=1mi = m. So,

E(|C |) =
v/l∑
i=1

E(|Ci |) < m
m2l2

v 2
=
m3l2

v 2
.

If we let v =
√
m3l2, E(|C |) < 1.

Consider an arbitrary tag not in M. Without loss of generality, suppose it is mapped

to the i th segment. In any partition of the segment, the probability for it to share a
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representative bit with a tag in M is 1 − (1 − k
l
)mi . The probability for that to happen in

all partitions is [1− (1− k
l
)mi ]k . Hence, the probability for the tag to cause false positive,

denoted as pf is

pf =

m∑
q=0

Prob{mi = q}
[
1− (1− k

l
)q
]k

< (1− Prob{mi = 0})
[
1− (1− k

l
)m

]k
≈ (1− e−lm/v)(1− e−km/l).

The expected valus of |F | is

E(|F |) = (n −m) · pf < (n −m)(1− e−lm/v)(1− e−km/l). (6–14)

If we let v = − ml
ln (1− 1

(n−m)(1−e−km/l )
)

and apply it to (6–14), we have E(|F |) < 1. Now, if

we choose v = max{
√
m3l2,− ml

ln (1− 1

(n−m)(1−e−km/l )
)
}, the expected energy cost E(Ω) ≤

E(|C |) +E(|F |) +O(1) < 1+ 1+O(1) = O(1). Therefore, ETOP can also be configured

such that the energy cost per tag is O(1).

6.8.2 Execution Time

Following the same analysis as in Section 6.6.2, it is easy to see that ETOP has the

same formula for protocol execution time as TOP does: T = ( v
l
+ |F |+ |C |)ttag+m×tinf +

O(1), but the values of |C | and |F | are different. Our simulation results in Section 6.10

show that ETOP has smaller execution time than TOP.

6.8.3 Choosing v for Time-constrained Energy Minimization

Following the same reasoning in Section 6.6.3, we define the time bound for ETOP

to be

Prob{T ≤ B} ≥ α, (6–15)

where T is the execution time of ETOP, B is a pre-defined time bound, and α is a

probability value, 0 < α < 1. The objective is to find the largest value v that

minimizes the energy cost, subject to the constraint (6–15). In the following, we derive a
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computable formula for Prob{T ≤ B}, which can be found in (6–23) and (6–24). Based

on the formula, we will be able to find the optimal value v .

Let mi be the number of tags in M that are encoded in the i th segment, denoted as

Vi , 0 ≤ i < v
l
. Obviously, mi follows a binomial distribution Bino(m, l

v
),

Prob{mi = x} =
(
m

x

)
(
l

v
)x(1− l

v
)m−x .

Let ni be the number of tags not in M that are mapped to the i th segment, 0 ≤ ni ≤

n −m. Obviously, ni follows the binomial distribution Bino(n −m, l
v
).

Prob{ni = z} =
(
n −m
z

)
(
l

v
)z(1− l

v
)n−m−z .

Let Ci be a subset of C , containing the tags that are removed from Vi ; Let Fi be a

subset of F , consisting the false positive tags that are mapped to Vi ; Let Si be the union

of Ci and Fi , thus |Si | = |Ci |+ |Fi |, and,

Prob{|Si | = s
∣∣mi = x , ni = z}

=

s∑
c=0

Prob{|Fi | = s − c
∣∣∣|Ci | = c ,mi = x , ni = z} · Prob{|Ci | = c∣∣mi = x}. (6–16)

Firstly, we show how to calculate Prob{|Ci | = c
∣∣mi = x}. After encoding mi tags in

Vi , let dij be the number of ones in the j th partition, 1 ≤ j ≤ k . As a tag in M has exactly

1 representative bit in each partition, 0 ≤ dij ≤ min{mi , lk }. The reader removes a tag to

Ci only if it shares a representative bit with another tag in the partition that contains the

largest number of ones. As a result, |Ci | = mi −maxj∈[1,k] dij . When y ≥ 1, we have
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Prob{ max
j∈[1,k]

dij = y
∣∣mi = x}

=

k∏
j=1

Prob{dij ≤ y
∣∣mi = x} − k∏

j=1

Prob{dij ≤ y − 1
∣∣mi = x}

=
( y∑
d=0

Prob{dij = d
∣∣mi = x})k − ( y−1∑

d=0

Prob{dij = d
∣∣mi = x})k

=
( y∑
d=0

pd(x ,
l

k
, d)

)k − ( y−1∑
d=0

pd(x ,
l

k
, d)

)k
, (6–17)

where pd(x , lk , d) = Prob{dij = d
∣∣mi = x} is the conditional probability that a partition

containing mi = x tags happens to have d ones. The calculation of pd(·) can be found in

Section 6.6.4. Hence, the conditional distribution of |Ci | is,

Prob{|Ci | = c
∣∣mi = x} = ( x−c∑

d=0

pd(x ,
l

k
, d)

)k − ( x−c−1∑
d=0

pd(x ,
l

k
, d)

)k
. (6–18)

Secondly, we derive Prob{|Fi | = s − c
∣∣|Ci | = c ,mi = x , ni = z}. A tag not in M maps

itself to k partitions and choose one bit randomly from each partition. If all these bits are

ones, false positive happens. The conditional false positive probability is,

Prob{false positive in Vi
∣∣mi = x} = ( x∑

d=0

kd

l
pd(x ,

l

k
, d)

)k
. (6–19)

When |Ci | = c , maxj∈[1,k] dij = mi − c , hence,

Prob{false positive in Vi
∣∣∣|Ci | = c ,mi = x}

=
1

pd(x ,
l
k
, x − c)

[( x−c∑
d=0

kd

l
pd(x ,

l

k
, d)

)k
−

( x−c−1∑
d=0

kd

l
pd(x ,

l

k
, d)

)k]
, (6–20)

denoted as pfc , which represents the false positive probability when mi = x tags are

encoded in the i th segments and |Ci | = c tags are moved to the collision set C . When ni

tags in N −M are mapped to Vi , the conditional distribution of |Fi | follows the binomial
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distribution Bino(ni , pfc), thus,

Prob{|Fi | = s − c
∣∣∣|Ci | = c ,mi = x , ni = z} = (

z

s − c

)
ps−cfc (1− pfc)

z−s+c . (6–21)

From (6–18) and (6–21), we can derive Prob{|Si | = s
∣∣mi = x , ni = z}. Thus, the

probability distribution of |Si | is,

Prob{|Si | = s} =
m∑
x=0

n−m∑
z=0

s∑
c=0

Prob{|Si | = s
∣∣mi = x , ni = z} · Prob{mi = x} · Prob{ni = z}

=

m∑
x=0

n−m∑
z=0

s∑
c=0

[( x−c∑
d=0

pd(x ,
l

k
, d)

)k − ( x−c−1∑
d=0

pd(x ,
l

k
, d)

)k]
·
(
z

s − c

)
ps−cfc (1− pfc)

z−s+c ·
(
m

x

)
(
l

v
)x(1− l

v
)m−x

·
(
n −m
z

)
(
l

v
)z(1− l

v
)n−m−z . (6–22)

Let S be the union of C and F . We have |S | = |C | + |F | and |S | =
∑v/l
i=1 |Si |. As S1, S2,

..., Sv/l are independent of each other, the probability distribution of |S | is the convolution

of |Si |. Hence,

Prob{|S | = s} = Prob{|S1| = s} ∗ ... ∗ Prob{|S v
l
| = s},

where ∗ is the convolution operator. With the help of Fourier Transform, we have

Prob{|S | = s} = ˆFFT
[(
FFT

(
Prob{|Si | = s}

))v/l]
, (6–23)

where FFT is the Fast Fourier Transform, and ˆFFT is the inverse Fast Fourier

Transform. Adopting (6–7), we have

Prob{T ≤ B} =
smax∑
s=0

Prob{|S | = s}, (6–24)

where smax = B−mtinf
ttag

− v
l
. The right side is denoted as P ′

t(v ,B), which is the probability

for the protocol execution time to be bounded by B under a certain value of v . It is

computable as a function of v and B after (6–22) is applied and parameters m and n are
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Figure 6-5. Bound B that satisfies Prob{T ≤ B} ≥ α with respect to v . Parameters:
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given. Given a value of B, we can find the largest v that satisfies P ′
t(v ,B) < α using

the False Position algorithm [16]. For example, when n = 10, 000, m = 1, 000, B = 2

seconds, and α = 99%, the optimal value of v is 23,200.

As a related problem, if v and α are given, we can use P ′
t(v ,B) to compute the

time bound that ETOP can achieve. More specifically, given a value of v , we are able to

find the smallest B that satisfies P ′
t(v ,B) ≥ α through bi-section search as described

in Section 6.6.3. Figure 6-5 shows the time bound of ETOP with respect to v when

α = 90%, 95% and 99%, which correspond to the three curves in the figure.

6.9 Channel Error

Channel error may corrupt the data exchanged between the reader and tags.

For example, if a negative polling request is corrupted, the tag that is not supposed to

participate in the reporting phase will transmit and cause collision in the reporting phase.

A segment of V sent from the reader may be corrupted so that tags encoded in this

segment will not report their information. There exists other scenarios of corruption in

the execution of TOP or ETOP. They cause two effects: 1) A tag in M does not transmit

its information in the slot when it is supposed to transmit, and 2) it transmits but collides

with another tag that is not supposed to transmit in the slot. To detect these cases,
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when a tag transmits, we require it to include a CRC checksum that is computed from

the concatenation of the information bits and the tag’s ID. When the reader expects

information from a tag in a time slot, if the slot turns out to be empty or the data received

in the slot do not carry a correct CRC, the reader knows that information from the tag is

not correctly received. At the end of the protocol, all missed information can be retrieved

by polling the tags directly.

6.10 Simulation Results

In this section, we evaluate the performance of our new protocols, the tag ordering

polling protocol (TOP) and the enhanced tag ordering polling protocol (ETOP). We

compare them with the basic polling protocol (BP) and the coded polling protocol (CP).

Our evaluation uses two performance metrics: (1) the average number of bits that each

tag has to receive during the protocol execution, and (2) the overall execution time.

We only consider energy consumption of tags in receiving information for two

reasons. First, this is the major, variable portion of the energy cost per tag. As we will

see shortly, each tag may have to receive hundreds of thousands of bits during protocol

execution, whereas it only sends a small, fixed amount, e.g., 32 bits. Second, the energy

cost for tags in M to transmit their information is the same for all protocols. Omitting

them does not affect the comparison.

We use the following parameters to configure the simulation: each tag ID is 96 bits

long, information reported from a tag to the reader is 32 bits long, and each segment

in ETOP is 80 bits long and divided into 4 partitions, i.e. k = 4. The transmission time

is based on the parameters of the Philips I-Code specification [138]. The rate from a

tag to the reader is 53Kb/sec; it takes 18.88µs for a tag to transmit one bit. Any two

consecutive transmissions (from the reader to tags or vice versa ) are separated by a

waiting time of 302µs . The value of tinf is calculated as the sum of a waiting time and

the time for transmitting the information, which is 18.88µs multiplied by the length of the

information. For 32-bit information, tinf = 906µs. The transmission rate from the reader
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Figure 6-6. Energy and time comparison between BP, CP, TOP, and ETOP. Parameters:
m = 0.1n, v = 24m for TOP and ETOP. Note that the horizontal ‘0’ line is not
at the bottom in order to make the ETOP curve visible.

to tags is 26.5Kb/sec; it takes 37.76µs for the reader to transmit one bit. The value of ttag

is calculated as the sum of a waiting time and the time for transmitting a 96-bit ID. The

result is 3927µs.

6.10.1 Varying number n of tags

We first vary the number n of tags in the system from 10,000 to 100,000. We set

v = 24m and m = 0.1n, i.e., 10% of all tags are selected by the reader to report

information. Figure 6-6 compares four protocols in terms of energy cost and protocol

execution time. The left plot shows energy costs. TOP and ETOP reduce energy

consumption by one or multiple orders of magnitude. For example, when n = 100, 000,

per-tag energy cost in TOP is 9.4% of the cost in CP, and 5.0% of the cost in BP. Per-tag

energy cost in ETOP is just 0.52% of the cost in CP, and 0.28% of the cost in BP. The

right plot shows the execution time comparison. TOP requires 25% less time than BP,

but 27% more time than CP. ETOP requires 55% less time than BP and 24% less time

than CP.

In summary, CP reduces both energy cost and execution time nearly by half when

comparing with BP. TOP makes great improvement over CP in terms of energy cost,

but has modestly higher execution time. ETOP considerably outperforms CP in terms of

both energy cost and execution time.
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6.10.2 Varying Size v of Reporting-order Vector

Next, we show how the value of v influences the performance of TOP and ETOP.

We set n = 50, 000 and m = 5, 000, 10, 000, or 25, 000. We vary v from 4m to 64m and

use simulation to find energy cost per tag and protocol execution time. Figure 6-7 shows

the simulation results. The top left and top right plots present the average amount of

data each tag receives in TOP and ETOP, respectively. The curves match the theoretical

results we have given in Section 6.6. When v is reasonably large, e.g., v ≥ 7m, ETOP

consumes less energy than TOP. The bottom left and bottom right plots present the

protocol execution time of TOP and ETOP, respectively. ETOP also requires less time

than TOP when v ≥ 7m.
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6.11 Summary

In this chapter, we introduce two energy-efficient information collection protocols,

TOP and ETOP, for large-scale RFID systems. These protocols are designed to collect

real-time information from a subset of tags in the system. Our primary objective is to

lower energy consumption by tags in order to extend their lifetime. TOP shares similarity

with the Bloom-1 filter we discussed in Chapter 3, while ETOP can be treated as an

extension of it adopting the idea of partitioned Bloom filter. The new protocols can be

configured to achieve O(1) energy cost per tag. Performance tradeoff between energy

cost and execution time can be made by controlling the size of the reporting-order

vector. Simulation results show that the new protocols are able to cut energy cost by

more than an order of magnitude, when comparing with other protocols.
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CHAPTER 7
SET SIZE ESTIMATION IN MOBILE VEHICULAR P2P NETWORKS

7.1 Background, System Model, and Problem Definition

7.1.1 Mobile Vehicular P2P Networks

RFID system is not the only cyber-physical system that requires time and energy

efficiency. Future automobiles may be equipped with wireless devices that enable

vehicular peer-to-peer (VP2P) networks to make our transportation systems more

efficient. As vehicles move close or pass by each other, data may be exchanged to

inform road conditions ahead, and statistical information or system-wide measurement

may be generated collaboratively [151]. In a VP2P network, moving cars communicate

using short-range wireless technologies such as IEEE 802.11 and Dedicated Short

Range Communications (DSRC). Vehicles in these networks can be highly mobile.

Constantly unstable network topologies may make it unsuitable to use some popular

routing protocols such as DSDV [125], AODV [126] and DSR [64], which are designed

for traditional mobile ad-hoc networks (whose topologies should be relatively stable

enough for these protocols to work). If the vehicles are GPS-capable, geographical

routing protocols [9, 67] can be used to route data over multiple hops.

New functions have to be developed in the context of VP2P to support emerging

applications. This paper investigates one basic function: estimating the cardinality

of a mobile VP2P network, i.e., the number of vehicles in the network. In literature,

this problem is also called “the vehicle density estimation problem”. Such a function

is useful when a transportation department needs to know information about traffic

volume, i.e., number of moving cars,1 in each district of a city, where cars within the

boundary of each district forms a VP2P network with the assistance of GPS and

1 Parked cars do not contribute to traffic. They are mostly powered off and therefore
do not participate in the network.
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wireless communication devices. Each vehicle in a VP2P network only has knowledge

about its immediate neighborhood. Without a central entity that has access to all

vehicles, cardinality estimation is a distributed process carried out among peer nodes,

as vehicles enter and depart from the network dynamically.

The function of cardinality estimation can be easily implemented in a static wireless

network where all nodes are stationary. A query node broadcasts a request message

into the network. Each node transmits the message once when it receives the message

for the first time. The node also remembers its predecessor, which is the one from

which it receives the message for the first time. This simple broadcast protocol is not

an efficient one, comparing with others [60, 91, 105]. But it quickly establishes a routing

tree if each node treats its predecessor as the parent node. In this tree, each node

learns the numbers of nodes in the subtrees rooted at its children, sum them up for

the number of nodes in the subtree rooted at itself, and then reports that information

to its parent. As this distributed computation is recursively carried out from the leaf

nodes toward the root, the query node — which is located at the root of the tree — will

learn the number of nodes in the whole network. However, any node failure will break

the tree. To solve this problem, the synopsis diffusion approach [117] is proposed to

collect information based on a more robust DAG(Directed Acyclic Graph [32]) routing

structure. Each node aggregates data from its upstream neighbors, integrates its own

information, and broadcasts the aggregated information downstream. To ensure each

node only transmits once, it must receive data from all upstream neighbors before its

own transmission. This requires a static topology such as the type of sensor networks

investigated in [117]. Other more efficient approaches have been invented to estimate

the number of nodes in a stationary sensor network [15, 33, 34, 81] or estimate the

number of tags in a large RFID system [55, 71, 72, 129, 173], assuming a centralized
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communication model where all tags directly communicate with a RFID reader.2 The

above solutions cannot be applied to the multi-hop mobile network model in the context

of chapter.

In a mobile VP2P network, because nodes (i.e., vehicles) are moving, there is no

stable routing structure for collecting information. Moreover, the number of nodes may

change as new nodes join and existing nodes depart. This requires the operation of

determining the number of nodes to be carried out frequently if applications demand

an evolving picture of network size over time. On one hand, it is not efficient to rely on

a flooding (or broadcasting) approach for such an operation due to high overhead. On

the other hand, many applications may not require the exact count of the nodes, which

varies over time anyway. An estimated number can already be very useful if a certain

accuracy requirement is met. For example, the transportation department may not

have to know the exact number of vehicles that are present in a district. If an estimated

number, say within ±10% of the exact number, meets their need, then we can adopt

more efficient approaches that work well for mobile networks.

This chapter proposes two statistical methods for estimating the cardinality of

a mobile VP2P network. The first method is called the circled random walk (CRW).

It estimates the number of nodes with an accuracy that is tunable. It makes tradeoff

between communication overhead and estimation error. The error can be made

arbitrarily small at the expense of increasing overhead. One problem of CRW is that

it has an idealized assumption for randomized neighboring relationship among the

nodes, which approximates the case of a relatively small network of highly mobile

nodes. This assumption is however not generally applicable. Our second method, called

the tokened random walk (TRW), removes such an assumption. With the assistance

2 Normally, RFID tags cannot communicate with each other to form a multi-hop
wireless network.
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of randomly distributed tokens, TRW provides a statistical estimation on the number of

nodes in an arbitrarily connected VP2P network. Our extensive simulations demonstrate

that CRW works well in networks of high mobility, whereas TRW works well with high or

low mobility.

There are other types of mobile P2P networks [157, 160], where communication

infrastructure does not exist or cannot be accessed due to technical or economical

reasons. Mobile P2P networks have many civilian and military applications. For

instance, soldiers in a battlefield may carry small wireless devices and form a mobile

P2P network among them. In another example, smart phones or PDAs may carry

applications that benefit from peer-to-peer networks for information discovery or social

networking functions. Solutions developed for VP2P networks, including the methods for

cardinality estimation in this chapter, will be able to find their applicability in other types

of mobile P2P networks as well.

7.1.2 Network Model

Consider a large vehicular peer-to-peer system where we abstract vehicles as

wireless nodes. Wireless links are established between nearby nodes that are within

the communication range of each other. All links form a connected graph. Two nodes

are neighbors of each other if there is a wireless link between them. Because the nodes

move, the neighboring relationship changes over time.

7.1.3 Problem Definition

The problem is to estimate the number n of nodes in a mobile VP2P network, i.e.,

the cardinality of the network. Our goal is to develop statistical methods that estimate

the value of n without flooding the network or requiring the participation of all nodes

(for overhead reduction). Let n̂ be the estimated number of nodes. The goal is that the

probability for n to fall in the range [(1 − β)n̂, (1 + β)n̂] is at least α, where α(< 1) and

β(< 1) are the parameters of the accuracy requirement.

138



We assume that there exist end-to-end routing protocols [9, 67] that are able to

route a message to a certain node.

Consider a large vehicular peer-to-peer system where we abstract vehicles as

wireless nodes. Wireless links are established between nearby nodes that are within

the communication range of each other. All links form a connected graph. Two nodes

are neighbors of each other if there is a wireless link between them. Because the nodes

move, the neighboring relationship changes over time.

The problem is to estimate the number n of nodes in a mobile VP2P network, i.e.,

the cardinality of the network. Our goal is to develop statistical methods that estimate

the value of n without flooding the network or requiring the participation of all nodes

(for overhead reduction). Let n̂ be the estimated number of nodes. By sampling only

a subset of nodes, our methods ensure that the probability for n to fall in the range

[(1 − β)n̂, (1 + β)n̂] is at least α, where α(< 1) and β(< 1) are the parameters of the

accuracy requirement.

We assume that there exist end-to-end routing protocols [9, 67] that are able to

route a message to a certain node.

For mobile VP2P networks, we may approximately consider that the neighbors

of a node are randomly selected from the network if the movement of a node allows

it to frequently change neighbors and have chance of neighboring with many other

nodes over time. In practice, the random-neighbor assumption cannot really be met.

However, our simulation reveals that even though this assumption is not accurate, our

method based on the assumption still provides good cardinality estimation. We also

observe that for static networks or networks of low mobility, the method based on the

random-neighbor assumption does not work well.

We develop cardinality estimation methods for mobile VP2P networks. Our first

method uses the random neighbor assumption. It is simpler and easy to implement.

Removing the random neighbor assumption, our second method is able to work for
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network of high or low mobility. It is more robust but requires additional assistance in its

execution.

7.1.4 Prior Art

The most related topic in vehicular networks is the vehicle density estimation

problem, which aims to calculate the number of vehicles per road length in an area. Our

estimated cardinality can be directly applied to calculate vehicle density by dividing it

with the total length of the road in the area. Most related work estimate the traffic density

on specific road or section. Yet our approach focuses on a relative large district, for

example, the whole downtown area, whose actually density changes much slower over

time comparing to street segments.

Vehicle density estimation methods can be divided into two general categories:

infrastructure-assisted approaches and infrastructure-free approaches.

Infrastructure-assisted approaches [4, 36, 51] rely on detecting devices such as

inductive loop detectors [146], roadside radar, sensors, or cameras to be installed for

collecting traffic data. These devices may collect the vehicle count, the vehicle speed, or

the instance at which each vehicle moves past them, which are then used to estimate

the vehicle density. However, these approaches suffer from limited coverage, low

reliability, and high deployment and maintenance costs [80].

Infrastructure-free density estimation approaches do not rely on any pre-installed

detecting devices. Existing works in this category can be further divided into two

sub-categories: speed-based approaches and message-based approaches.

Speed-based approaches [5, 141, 153] assume a speed-density relationship

between vehicle’s speed and vehicle density on the road. For example, low speed

implies dense traffic. However, these approaches could give inaccurate densities since

the speed is not always an indication of the vehicles density on the road. An example is

when vehicles stop at sparse intersections with low speed and low density.
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The following works, together with our approach, belong to message-based

category. Jerbi et al. proposed a fully distributed grouping approach for density

estimation [63]. In this approach, a road segment is divided into multiple fixed-size

cells. Group leader, which is a designated vehicle in a cell, computes vehicle density

and spreads this information among other members in the cell and group leaders of

other cells. The average density on the road can be obtained.

Panichpapiboon and Pattara-atikom proposed a neighbor-based density estimation

[123]. Local density is first calculated based on the number of one-hop or two-hop local

neighbors. Then, the global density of the road is estimated assuming the inter-vehicle

spacing is exponentially distributed. However, in sparse network, this approach become

unreliable because the probe vehicle is not able to find a sufficient number of neighbors

to make an accurate estimation. Also, their assumption of exponential distributed

inter-vehicle spacing might not be the case for all possible traffic scenarios.

Garelli et al. proposed a method called MobSampling to calculate the density of

a specific target area [50]. It selects a vehicle called “sampler”, which broadcast a

“POLL” message with the sampler position and the radius of the target area at random

intervals. When a vehicle in the target area receives the message, it replies after

waiting for random time to avoid flooding the receiver. The sampler counts the received

messages to estimate the local density. When a sampler leaves the target area, a new

vehicle is chosen as sampler. As sampler and sampler position randomly changes,

continuous measurements of local density gives an estimation of density of the whole

area. However, this method needs relatively long time due to the random waiting and

sampler handing-over.

In [2], Akhtar et al. adapted mechanisms from system size estimation in peer-to-peer

system [62, 73, 108] for vehicular density estimation. They adapted and implemented

three fully distributed algorithms, namely Sample & Collide, Hop Sampling and

Gossip-based Aggregation. Sample & Collide algorithm tries to sample the nodes from
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the network, and then estimating the system size depending on how many samples of

the nodes are collected, before an already sampled node is re-selected. This algorithm

is similar to our CRW approach in terms variable used for estimation, but random

sampling is achieve differently. In their algorithm, an initiator node sends a message

with a pre-defined value T to one of its neighboring nodes (T > 0). Upon receiving

a sampling message, a node decrements T by a random amount, and send the new

value to one of its neighbors selected uniformly at random. When a node finds T ≤ 0,

it is sampled and replies to the initiator. The initiator keeps sending sampling message

until a already sampled node replies. This algorithm has three disadvantages: First, it

does not take advantage of node mobility, which itself shows randomness in neighboring

relationship. Second, even though it sends out several probe messages, it essentially

has only one measurement of C (equivalent to X in our approach). It is not efficient.

Third, precision is not bounded in their algorithm.

The Hop Sampling algorithm works as followsThe initiator node broadcasts a

message to all the vehicles in the network using gossiping. The vehicles reply back

to the initiator with a probability, which is inversely proportional to the distance (hop

count) from the initiator. Based on the replies that the initiator gets from other vehicles

at different distances, it estimates the size of the network. However, the overhead

of this approach is too much. Even though nodes reply probabilistically, gossiping

message traverses every edge in the network at least once. Moreover, as network

topology dynamically changes, a vehicle’s probability of replying is larger than expected,

because its stored hop count never goes up even if its real distance has increased. As

a consequence, the algorithm has over-estimation problem, which is indicated by their

simulation results.

In Gossip-based Aggregation algorithm, the initiator samples K vehicles at

random and assign a value 1 to them (Random sampling is achieved using the method

mentioned in Sample $ Collide algorithm). Other vehicles are assigned 0. Neighbors
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periodically exchanges information with one of its neighbours selected at random, and

update their value to the average of the two. In steady state, the value in each vehicle

will be K/N, where N is the number of vehicles in the network. However, this algorithm

needs time to converge. Also, if a node leaves the network during the initial phase of the

algorithm after receiving the gossip message, the accuracy of the algorithm decreases

significantly [2].

There are also works that estimate local density to dynamically change transmission

power [110, 152]. For example, Noureddine and Samira propose an efficient local

density estimation method using segmented roads and extended beacons to estimate

the number of neighbors around a vehicle [120]. These algorithms can be used

collaboratively with our approach to prevent MAC level collision.

7.2 Circled Random Walk Protocol (CRW)

In this section, we describe our first statistical method for estimating the number of

nodes in a large VP2P network.

7.2.1 Description of the Protocol

A query node a sends out a number of probe messages. Each probe independently

performs a circled random walk (CRW). The probe carries a globally unique identifier

and a hop count. The identifier consists of node a’s location and a sequence number.

The hop count is initialized to be zero. When a node receives a probe, it records the

probe’s identifier and increases the hop count in the probe by one. If the node receives

the probe for the first time, it forwards the probe to a randomly selected neighbor except

for the one from which the probe was just received. If the node receives the probe for

the second time, it discards the probe and sends the probe’s hop count back to node

a. The random walk of a probe terminates once its traversing path forms a circle. An

illustration is given in Figure 7-1.

Let X be the length of a circled random walk, which is the number of hops that the

probe traverses before it reaches a node for the second time. X is a random number. In
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Figure 7-1. Illustration of CRW.

the next subsection, we establish the following mathematical formula that links E(X ) to

n:

E(X ) = f (n) =

n∑
i=3

i(

i−1∏
j=2

(1− j − 2
n − 2

))
i − 2
n − 2

,

n = f −1(E(X )).

(7–1)

Using the formula, we can estimate n after we measure E(X ) by performing a number of

circled random walks and taking the average X̄ of the received hop counts. Let n̂ be the

estimated value of n.

n̂ = f −1(X̄ ) (7–2)

The pseudo code of the algorithm we use to numerically compute n̂ numerically from X̄

based on (7–2) is given below. Note that f (n) is a monotonically increasing function.

1. pick a small value n1 and a large value n2 such

that f (n1) < X̄ and f (n2) > X̄

2. WHILE (n1 ̸= n2) DO

3. let n3 = ⌊(n1 + n2)/2⌋

4. IF f (n3) < X̄ THEN n1 = n3 ELSE n2 = n3

5. END WHILE

6. RETURN n1
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7.2.2 Linking E(X ) to n

In this subsection, we derive Equation (7–1) and the variance of X . We also give

a way for quick estimation of n. It is less accurate than what is computed by Equation

(7–2) but is easier to calculate.

Let q(i) be the probability of not visiting any node twice after a probe moves for i

hops in its random walk. The node a that initializes the random walk is a visited node by

default. It is obvious that q(1) = q(2) = 100%. Consider the i th hop of the random walk,

∀i > 2. The previous (i − 1) hops visited i nodes, including node a. The next hop can

be any node except for the current node and the previous node of the random walk. The

probability for the i th hop to be an unvisited node is 1− i−2
n−2 . Hence,

q(i) = q(i − 1)(1− i − 2
n − 2

).

Here, we have used the random neighbor assumption in Section 7.1. It does not work

well for low mobility as we will demonstrate through simulations. This assumption will be

removed in the next section.

Recursively applying the above equation, we have

q(i) = q(1)

i∏
j=2

(1− j − 2
n − 2

) =

i∏
j=2

(1− j − 2
n − 2

).

X is a random variable with a distribution from 3 to n. We know that q(i − 1) is the

probability of not visiting any node twice after the first (i − 1) hops, and i−2
n−2 is the

conditional probability for the i th hop to reach a node that has been visited previously.

Clearly, q(i − 1) i−2
n−2 is the probability of visiting a node twice after i hops. Hence, the

expected value of X is

E(X ) =

n∑
i=3

iq(i − 1) i − 2
n − 2

=

n∑
i=3

i(

i−1∏
j=2

(1− j − 2
n − 2

))
i − 2
n − 2
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The variance of X is

V (X ) =

n∑
i=3

(i − E(X ))2(
i−1∏
j=2

(1− j − 2
n − 2

))
i − 2
n − 2

.

Figure 7-2 shows E(X ) with respect to n in log scale. In the same plot, two

additional curves, 1.31
√
n and 1.25

√
n, are shown to closely overlap with E(X ). In

fact, numerical computation shows that they are upper and lower bounds of E(x) for a

wide range of n ∈ [103, 107]. This indicates that E(X ) = O(
√
n) in this range.

1.25
√
n < E(X ) < 1.31

√
n

n < 0.64(E(X ))2 < 1.1n

Therefore, if the network size is in the range of [103, 107], then 0.64X̄ 2, which approximates

0.64(E(X ))2, can be used as a quick but less accurate estimation of n. For accurate

estimation, we use the estimator (7–2), which is based on (7–1). We analyze its

accuracy below.

7.2.3 Determining the Number of Probes

The number m of probes initially sent from the query node controls the tradeoff

between the communication overhead and the estimation accuracy. A wireless

transmission is required when a node sends a probe to the next hop. We also know

that E(X ) = O(
√
n). Hence, the expected overhead of CRW in terms of the number of

transmissions made by all nodes is O(m
√
n), which is linear in m.

Our goal is to determine the minimum number of probes that are needed to ensure

that the probability for n to fall in the range [(1− β)n̂, (1 + β)n̂] is at least α, where α and

β are the parameters of the accuracy requirement. In other words, the estimation has to

achieve an α confidence interval that is bounded by [(1− β)n̂, (1 + β)n̂].

First, we prove that X̄ is an unbiased estimate of E(X ), which is the mean hop

count of a circled random walk. Let Xi be the hop count of the circled random walk by
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the i th probe. As X̄ is the average hop counts of probes, we have,

X̄ =
1

m

m∑
i=1

Xi

E(X̄ ) =
1

m
E(

m∑
i=1

Xi) =
1

m

m∑
i=1

E(Xi)

(7–3)

Each Xi is an independent random sample of X . Therefore E(Xi) = E(X ). From (7–3),

we have E(X̄ ) = E(X ).

Next, we determine the value of m such that the probability for E(X ) to fall in the

range [(1 − β′)X̄ , (1 + β′)X̄ ] is at least α, where β′ is a constant whose value will be

determined shortly. The α confidence interval of E(X ) is X̄ ± st∗/
√
m, where s is the

standard deviation calculated from the received hop counts and t∗ is the upper 1+α
2

point

of the t distribution with (m − 1) degree of freedom. The value of m is calculated as

follows:

st∗/
√
m = β′X̄

m =
(st∗)2

(β′X̄ )2

(7–4)

Then, we determine an appropriate value for β′. We know that if m is chosen based

on (7–4), then the following inequality is satisfied with probability α:

(1− β′)X̄ ≤ E(X ) ≤ (1 + β′)X̄

f −1((1− β′)X̄ ) ≤ f −1(E(X )) ≤ f −1((1 + β′)X̄ )

f −1((1− β′)X̄ ) ≤ n ≤ f −1((1 + β′)X̄ )

Our estimation accuracy requirement is to satisfy (1−β)n̂ ≤ n ≤ (1+β)n̂ with probability

α. To meet this requirement, we select the maximum value of β′ that meets the following

conditions:

f −1((1 + β′)X̄ ) ≤ (1 + β)n̂

f −1((1− β′)X̄ ) ≥ (1− β)n̂,

(7–5)
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where β is a constant specified in the accuracy requirement, X̄ and n̂ are results of the

CRW execution, and we know how to solve f −1 based on the algorithm in Section 7.2.1.

Hence, β′ can be computed numerically from the above inequalities.

Finally, based on (7–4) and (7–5), we design an iterative process for determining

the number of probes that is required to meet a given accuracy requirement specified

by α and β. The query node a begins with a certain number (e.g., 50) of probes. After

it receives the hop counts of the probes and computes X̄ and n̂, node a determines β′

from (7–5) and then the value of m from (7–4). If the total number m′ of probes that have

already been sent is equal to or greater than m, it returns the current value of n̂ as the

estimation of n. Otherwise, if m′ is less than m, node a send (m −m′) more probes and

use the returned hop counts to refine the value of m. This process continues until the

total number of probes that have been sent is equal to or greater than m.

7.3 Tokened Random Walk Protocol (TRW)

In this section, we describe our second statistical method for estimating the number

of nodes in a large mobile P2P network.

7.3.1 Description of the Protocol

We randomly distribute a number T of tokens to nodes in the network. The problem

of how to randomly distribute tokens will be discussed in Section 7.3.3. The nodes that

hold tokens are called the tokened “nodes”.

A query node a sends out a number of probe messages. Each probe independently

performs a tokened random walk (TRW) and counts the number of hops that it has

traversed. When a node that does not hold a token receives a probe, it increases the

hop count in the probe by one and forwards the probe to one of its neighbors. When a
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tokened node receives a probe, it discards the probe and sends the probe’s hop count

back to node a. An illustration of TRW is shown in Fig 7-3.3

Let Y be the length of a tokened random walk, which is the number of hops that a

probe traverses before it reaches a tokened node. In the next subsection, we establish a

mathematical formula that links E(Y ) to n:

E(Y ) = g(n) =

n−T+1∑
i=1

i
(n − i + 1)!(n − T )!
n!(n − i − T + 1)!

T

n − i + 1
,

n = g−1(E(Y )).

(7–6)

Using the formula, we can estimate n after we measure E(Y ) by performing a number

of tokened random walks and taking the average Ȳ of the received hop counts. The

estimated number n̂ of nodes is calculated as

n̂ = g−1(Ȳ ). (7–7)

7.3.2 Linking E(Y ) to n

Let p(i) be the probability of not reaching a tokened node after a probe has visited i

nodes. This happens when and only when the set of T tokened nodes does not overlap

with the set of i visited nodes. Recall that the tokened nodes are randomly chosen from

the network. (Tn ) is the number of different ways for picking the set of tokened nodes.

( Tn−i) is the number of different ways for picking them from the nodes that are not visited.

Hence,

p(i) =
( Tn−i)

(Tn )
=
(n − i)!(n − T )!
n!(n − i − T )!

Y is a random variable with a distribution from 1 to n − T + 1. We know that p(i − 1) is

the probability of not reaching a tokened node after the first (i − 1) hops. The conditional

3 In practice, we may allow the probes to make some random walks before starting
to count the hops. Our simulation shows that it increases the randomness and returns
better estimation results.
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probability for the i th visited node to have a token is T
n−2 . Clearly, p(i − 1) · T

n−2 is the

probability of reaching the first tokened node at the i th hop. The expected value of Y is

E(Y ) =

n−T+1∑
i=1

i · p(i − 1) · T
n − 2

=

n−T+1∑
i=1

i
(n − i + 1)!(n − T )!
n!(n − i − T + 1)!

T

n − 2
.

The variance of Y is

V (Y ) =

n−T+1∑
i=1

(i − E(Y ))2 (n − i + 1)!(n − T )!
n!(n − i − T + 1)!

T

n − 2
.

7.3.3 Random Token Distribution

The process of deriving (7–6) in the previous subsection does not require the

assumption of a randomly-connected network. Instead, it requires that the tokens are

randomly distributed. Essentially, we shift the random topology requirement of CRW to

a random token distribution requirement, which can be implemented by the following

distributed algorithm: Every token independently moves around in the network. When

a node receives a token, it holds the token for a period that is inversely proportional to

its current number of neighbors, i.e., the node’s degree. After that period, it forwards the

token to a neighbor selected uniformly at random. The transmission of a token may be

piggybacked in the periodic hello exchange between the neighbors [135]. In order to

support communications in a mobile network, each node has to periodically broadcast a

hello packet (or called a beacon), which allows the node to learn its new neighbors. One

bit in the hello packet can be used to encode a token transmission. ’0’ means there is no

token carried in the hello packet, and ’1’ means there is.

We prove that, in the steady state, the rate at which a node receives tokens is

proportional to the node’s degree. Because the holding time after each receipt of a token

is inversely proportional to the node’s degree, the aggregate holding time at every node

is about the same, which ensures the uniform random distribution of tokens.
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Consider an arbitrary token. The movement of the token in the network is modeled

as a discrete-time finite-state Markov chain. The current state is i if node i holds the

token. The set of states is {1, ..., n} for the n nodes. Let Ni be the set of neighbors of

node i . Let ni = |Ni |. The transition probability from state i to state j is

pij =


1
ni

if j ∈ Ni

0 if j ̸∈ Ni

The matrix of transition probabilities is P = (pij , i , j ∈ [1, n]). Let π = (π1, π2, ...,πn) be

the stationary distribution of the Markov chain, which satisfies πP = π and
∑n
i=1 πi = 1,

where πi represents how often node i has (or receives) the token in the steady state of

the stochastic token movement process. πP = π can be rewritten as

∑
j∈Ni

πj
nj
= πi , i ∈ [1, n].

It can be easily verified that the solution is

πi =
ni∑n
j=1 nj

, i ∈ [1, n].

Therefore, the rate at which a node receives a particular token is proportional to its

degree. Because all tokens move independently, the rate at which a node receives

tokens is also proportional to its degree. Our goal is for each node to have an equal

chance of being a tokened node. To compensate the rate difference, when a node

receives a token, the holding time should be inversely proportional to the degree. In

particular, we may randomly pick a holding time from an exponential distribution whose

mean is inversely proportional to the degree. If a node’s degree changes during this

period, we use the degree when it first receives the token.

In a mobile environment, a node may depart from the network or be powered down.

To support the TRW protocol, we require that if a node has a token, it must transmit

the token to a neighbor before it departs or is powered down. There may be rare cases
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where a node crashes to cause a permanent token loss. One solution is to release a

new set of tokens periodically. Each release is identified by a sequence number s . The

sequence number is initialized to be one and increased by one for every subsequent

release. Each token must be associated with the sequence number that identifies which

release it belongs to. When a node transmits a token to a neighbor piggybacked in a

hello packet, instead of using one bit, the packet carries a sequence number. If the

number is zero, it means no token; otherwise, it means a token of a certain release.

Each query is made with a sequence number, and each probe of the query carries

that sequence number. When a node receives a probe, only if it has a token of the same

sequence number, it will discard the probe and send the probe’s hop count back to the

query node.

Let D be the period between two consecutive token releases. Suppose D is chosen

to be sufficiently large, such that tokens will be randomly distributed after they are

released for a time period of D. Now, after tokens of sequence number s are released

and before tokens of sequence number s + 1 are released, all queries can be made

with sequence number s − 1. Moreover, all previous tokens (with sequence numbers

s − 2 or smaller) are no longer useful. To remove outdated tokens, when a node receives

a token with a new sequence number s, it knows that it should remove any token with

sequence number s − 2 or less that it may receive in the future. Hence, as tokens with a

new sequence number start to travel in the network, nodes begin to remove old, useless

tokens.

7.3.4 Determining the Number of Probes

We now determine the minimum number of probes that are needed to ensure that

the probability for n to fall in the range [(1− β)n̂, (1 + β)n̂] is at least α.

First, we prove that Ȳ is an unbiased estimate of E(Y ), which is the mean hop

count of a tokened random walk. Let Yi be the hop count of the tokened random walk by
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the i th probe. As Ȳ is the average hop count of the probes, we have,

Ȳ =
1

m

m∑
i=1

Yi

E(Ȳ ) =
1

m
E(

m∑
i=1

Yi) =
1

m

m∑
i=1

E(Yi)

(7–8)

Each Yi is an independent random sample of Y . Therefore E(Yi) = E(Y ). From (7–8),

we have E(Ȳ ) = E(Y ).

Next, based on the same process as Section 7.2.3, it can be shown that if the

number of probes is

m =
(st∗)2

(β′Ȳ )2
, (7–9)

then the probability for E(Y ) to fall in [(1 − β′)Ȳ , (1 + β′)Ȳ ] is at least α, where β′ is a

given value, s is the standard deviation calculated from the received hop counts, and t∗

is the upper 1+α
2

point of the t distribution with (m − 1) degree of freedom. We have the

following inequalities:

(1− β′)Ȳ ≤ E(Y ) ≤ (1 + β′)Ȳ

g−1((1− β′)Ȳ ) ≤ g−1(E(Y )) ≤ g−1((1 + β′)Ȳ )

g−1((1− β′)Ȳ ) ≤ n ≤ g−1((1 + β′)Ȳ ).

The accuracy requirement is (1 − β)n̂ ≤ n ≤ (1 + β)n̂ with probability α. To meet this

requirement, we select the maximum value of β′ that meets the following conditions:

g−1((1 + β′)Ȳ ≤ (1 + β)n̂

g−1((1− β′)Ȳ ≥ (1− β)n̂.

(7–10)

Given an accuracy requirement specified by α and β, the query node a begins

with a certain number of probes. After it receives the hop counts of the probes, node a

determines β′ from (7–10) and then the value of m from (7–6). If the total number m′ of

probes that have already been sent is equal to or greater than m, it returns the current

value of n̂ as the estimation of n. Otherwise, if m′ is less than m, node a send (m − m′)
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more probes and use the returned hop counts to refine the value of m. This process

continues until the total number of probes that have been sent is equal to or greater than

m.

7.4 Simulation

In this section, we use simulations to evaluate the performance of our cardinality

estimation methods in terms of accuracy and overhead. Our simulations are performed

based on two models: (1) street model, which estimates the number of moving vehicles

in the streets of a city district; (2) random waypoint model [10, 61, 64, 118], which is

used to demonstrate the performance of our methods for other mobile P2P systems that

are not restricted to streets.

7.4.1 Simulation Setup for Street Model

Suppose future cars are equipped with wireless devices that not only support user

applications but also assist transportation management functions such as information

gathering. One such function may be estimating the number of moving vehicles. When

a vehicle is powered down, we can consider it to be in parking status (in most cases).

When a vehicle is powered up with its wireless device running, we can consider it be to

in moving status (in most cases).

Consider a square area of 1000 meters by 1000 meters. Let the time unit be

a second. Suppose the streets and avenues are arranged in a grid pattern and the

distance between two adjacent streets (or avenues) is 100 meters. The number n of

moving vehicles ranges from 1,000 to 5,000. The transmission range of a vehicle is

100 meters. Each vehicle is capable of forwarding messages to any other vehicle in its

transmission range. Each moving vehicle selects an arbitrary intersection and a velocity

in the range of [20, 40] miles/hour, i.e., [32, 64] kilometers/hour. Then it moves first along

a street and then along an avenue or vice versa towards the destination at the selected

speed. For simplicity, we do not implement variable speed and stops at signal lights.
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We use CRW and TRW to estimate the number n of vehicles in the area. Both

methods send probe messages to the network. For CRW, when a vehicle receives a

probe message, it holds the message for 10 seconds before forwarding it. This holding

period allows each vehicle to have chance to change neighbors. TRW does not need

the random-neighbor assumption, and therefore the holding period for probe messages

is not necessary. For TRW, if a vehicle receives a token, it keeps the token for 10 to 100

seconds before passing it to another vehicle. The actual time that it holds the token is

inversely proportional to the number of its neighbors. We set the number of tokens in the

network to be 100. In order to increase randomness, we let probe messages to make

some random walks before starting to count the hops. Assume each vehicle knows its

geographic location (possibly through GPS). A vehicle also knows approximately the

geographic locations of its neighbors, which are piggybacked in the hello exchanges.

We implement geographic routing [67] for the hop count result to be sent back to the

query node whenever a probe message completes its random walk. The location of the

query node is carried by the probe message.

7.4.2 Accuracy and Overhead under Street Model

Figure 7-4 presents the estimations made by CRW. Each point in the figure

represents one simulation result; the x coordinate of the point is the actual number

n of vehicles, and the y coordinate is the estimated number n̂. An estimation is more

accurate if the point is closer to the equality line, y = x . In the leftmost plot, we let

α = 95% and β = 0.2, which require that 95% of estimated numbers should fall within

± 20% of the true numbers. In the middle plot, α = 99% and β = 0.2. In the rightmost

plot, α = 95% and β = 0.1. Our statistical measurement based on the data points in

the figure confirms that the accuracy requirement is indeed met. Figure 7-5 presents the

estimations made by TRW. Again, the accuracy requirement is met.

Next, we investigate the overhead of the two methods. For CRW, the overhead is

caused by probe message transmissions. For TRW, the overhead comes from both
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Table 7-1. Average completion time of Circled Random Walk (CRW)
n 1000 2000 3000 4000 5000

CRW Time 6’41” 9’18” 11’35” 13’32” 14’59”

probe transmissions and token transmissions. A probe transmission is a separate

packet with headers at MAC, network, and application (CRW/TRW) layers, as well as

physical-layer cost. A token transmission is piggybacked in the hello exchanges, which

incurs far smaller overhead than a probe. Hence, we only count the probe message

transmissions in overhead comparison. Figure 7-6 compares CRW and TRW in terms

of the total number of message transmissions. For each data point, we make 100

simulation runs, average the overhead results, and present the mean overhead and

its standard deviation. TRW outperforms CRW. Its communication overhead is only a

fraction of CRW’s overhead.

For a circled random walk, the time for a probe to travel each hop has two

components: the holding period and the transmission time from one node to the next.

When comparing the holding time (10 seconds in this simulation), the transmission

time is negligible. Hence, our simulation only considers the holding time. The average

completion time of CRW (including all its probes) is shown in Table 7-1. Because of the

long holding period, the time for CRW is significant. However, it is probably acceptable in

practice to spend six to fifteen minutes for the task of measuring the number of vehicles

in a city distinct. Because TRW does not need any holding period, its completion is

much quicker. When n = 1000 and the number of tokens is 100, each tokened random

walk has an average of just 10 hops, and only the transmission time is needed.

7.4.3 Simulation Setup for Random Waypoint Model

We study how our methods will perform for arbitrary mobile P2P networks under

the random waypoint model. Consider a square area of 1000 × 1000 units of length.

The number n of wireless nodes ranges from 1,000 to 5,000. The transmission range of

the nodes is 100 units of length. Each node is capable of forwarding messages to any
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other node in its transmission range. We use the random waypoint model to simulate the

mobility of nodes: Each node randomly selects a position within the area as destination

and a velocity in the range of [5, 30]. Then it moves towards the destination at the

selected speed. After it arrives at the destination, it moves again with a new destination

and a new velocity. Other parameters are similar to those in Section 7.4.1 with “second”

being replaced with “unit of time”, in correspondence with the abstract term of “unit of

length” above.

7.4.4 Accuracy and Overhead under the Random Waypoint Model

We first present the estimation accuracy of the two methods. We vary the number

n of wireless nodes from 1000 to 5000. We run the simulation under three different

accuracy requirements: α = 95%, β = 20%; α = 99%, β = 20%; and α = 95%, β = 10%.

Figures 7-7 and 7-8 compare the actual number of nodes, n, and the estimated

number, n̂. Each point in the figures represents one simulation result; the x coordinate of

the point is the actual number n of nodes, and the y coordinate is the estimated number

n̂. In the leftmost plot, the requirement specified by α and β is that the estimated number

n̂ should have a 95% chance to fall within ± 20% of the actual number n. Our statistical

measurement based on the data points in the figure shows that this requirement is met.

The same is true for other plots in Figures 7-7 and 7-8 with different combinations of α

and β values.

Figure 7-9 compares CRW and TRW in terms of the total number of message

transmissions. From the figure, we observe that TRW is much more efficient, only

requiring 20% to 30% of the overhead incurred by CRW.

7.4.5 Performance under Low Mobility

As we have shown in the previous simulations, CRW produces good estimation

when the nodes move relatively fast. Even though the random neighbor assumption is

not accurate, it approximates well for the highly mobile scenarios. However, our next set
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of simulations show that CRW does not work well for networks of low mobility. On the

contrary, TRW remains accurate for those networks.

The simulation setup is the same as described in Section 7.4.3 except that the

velocity of each node is randomly selected from [3, 10], instead of [5, 30], when the

node moves from one location to another. Figure 7-10 shows that CRW consistently

under-estimates the number of nodes in a network of low mobility. That is because

nodes have relatively stable neighbors and as they forward probe messages, the

messages tend to make short cycles within small neighborhood, which leads to the

under-estimation.

Figure 7-11 shows that TRW remains accurate for networks of low mobility because

its design does not rely on the random neighbor assumption.

Figure 7-12 compares the overhead of the two methods. Again, TRW outperforms

CRW significantly.

Overall, our simulation results are consistent across the street model and the

random waypoint model. In summary, TRW is a better method in terms of communication

overhead, and it is also better in terms of accuracy for low-mobility networks. CRW is

able to produce results that meet the accuracy requirement in VP2P or other mobile

networks with relatively high mobility. Its advantage is simplicity (without the assistance

of tokens).

7.5 Summary

This chapter investigates the problem of how to estimate the number of nodes in a

large VP2P network. We propose two statistical methods, called the circled random walk

and the tokened random walk, respectively. The proposed methods are adjustable for

estimation accuracy and communication overhead. Their estimation process involves

only a subset of the nodes, and the estimation errors can be made arbitrarily small.

While the circled random walk method requires a randomized neighboring relationship

among the nodes and it works well in high-mobility networks, the tokened random walk
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is more practical for all types of VP2P or other mobile networks because it removes the

random-neighbor requirement through a randomized token distribution process.
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Figure 7-3. Illustration of TRW.
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Figure 7-4. CRW’s estimation accuracy under the street model.

 1000

 2000

 3000

 4000

 5000

 6000

 1000  2000  3000  4000  5000

E
st

im
at

ed
 n

Actual n

TRW α=95%,β=0.2

 1000

 2000

 3000

 4000

 5000

 6000

 1000  2000  3000  4000  5000

E
st

im
at

ed
 n

Actual n

TRW α=99%,β=0.2

 1000

 2000

 3000

 4000

 5000

 6000

 1000  2000  3000  4000  5000

E
st

im
at

ed
 n

Actual n

TRW α=95%,β=0.1

Figure 7-5. TRW’s estimation accuracy under the street model.
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Figure 7-6. Number of message transmissions for each estimation, under the street
model.
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Figure 7-7. CRW’s estimation accuracy under the random waypoint model with nodal
moving velocity in range of [5, 30].
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Figure 7-8. TRW’s estimation accuracy under the random waypoint model with nodal
moving velocity in range of [5, 30].
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Figure 7-9. Number of message transmissions for each estimation, under the random
waypoint model with nodal moving velocity in range of [5, 30].
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Figure 7-10. CRW’s estimation accuracy under the random waypoint model with nodal
moving velocity in range of [3, 10].

 1000

 2000

 3000

 4000

 5000

 6000

 1000  2000  3000  4000  5000

E
st

im
at

ed
 n

Actual n

TRW α=95%,β=0.2

 1000

 2000

 3000

 4000

 5000

 6000

 1000  2000  3000  4000  5000

E
st

im
at

ed
 n

Actual n

TRW α=99%,β=0.2

 1000

 2000

 3000

 4000

 5000

 6000

 1000  2000  3000  4000  5000

E
st

im
at

ed
 n

Actual n

TRW α=95%,β=0.1

Figure 7-11. TRW’s estimation accuracy under the random waypoint model with nodal
moving velocity in range of [3, 10].
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Figure 7-12. Number of message transmissions for each estimation, under the random
waypoint model with nodal moving velocity in range of [3, 10].
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CHAPTER 8
CONCLUSION AND FUTURE WORK

In this work, we propose several space-time efficient data structures protocols

and place them into various application scenarios. We first study a new family of

space-time efficient Bloom filters that provide the same compactness as the Bloom

filter, but requires much fewer memory access for each lookup. We open new design

space with trade-offs among space usage, false positive ratio, memory access, and

number of hash bits. We show the design trade-offs through theoretical analysis and

experiments. Our proposed family of Bloom filter variant – the Bloom-g filter constantly

uses less number of memory access and less hash bits than the Bloom filter when k

is the same. If we allow the Bloom-g filter to use as many hash bits as standard Bloom

filter, it will produce even better result in terms of the false positive ratio. When a small

k is used, the Bloom-1 filter makes only one memory access and has comparable false

positive ratio as standard Bloom filter. When the optimal k is used and the load factor

is small, Bloom-1 introduces much more false positives than standard Bloom filter due

to unbalanced load among different words. As a compensation, the Bloom-2 filter and

Bloom-3 filter makes 2 and 3 memory accesses respectively, yet produce comparable

false positive ratio as standard Bloom filter. As a conclusion, we suggest to use Bloom-1

as a substitute of the Bloom filter when k is small, and use Bloom-2 or Bloom-3 to

replace the Bloom filter with optimal k .

In order to allow more design trade-offs, we propose another Bloom filter variant

– the Bloom-α filter, which makes 1.x memory access on average, and produces false

positive ratios that are between Bloom-1 and Bloom-2.

Then, we further propose an idea of representing multi-set, where a set ID is

associated with each member element. Our idea is to separate membership encoding

and set ID storage in two data structures, called “index encoder” and “set-id table”,

respectively. The index encoder adopts ideas from the Bloom-g filter, which takes
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g memory accesses to check the membership of a given element and to locate the

index where set-id is stored. The set-id table is a multi-hashing table employing a novel

load-to-left, candidate-to-right policy for element placement. These techniques together

allow the proposed multi-set membership lookup function to work in very compact

memory, take only a few memory accesses and hash operations for each lookup, and

have much lower error probabilities when comparing with alternative data structures.

Next, we design another Bloom filter variant called adaptive Bloom filter for

joining two sets stored distributively in the network. The idea is to iteratively eliminate

non-candidates using small Bloom filters. We transform the problem into an optimization

problem. Our design outperforms the Bloom filter and compressed Bloom filter in terms

of exchanged message size.

After that, we apply the Bloom-1 filter idea together with the partitioned Bloom filter

in the design of efficient information collection protocols for large-scale RFID systems.

Our primary objective is to lower energy consumption by tags in order to extend their

lifetime. TOP shares similarity with the Bloom-1 filter, where tags only listen to one

vector that the reader broadcasts for necessary information. ETOP is an extension of

TOP, adopting the idea of partitioned Bloom filter. The new protocols can be configured

to achieve O(1) energy cost per tag. Performance tradeoff between energy cost

and execution time can be made by controlling the size of the reporting-order vector.

Simulation results show that the new protocols are able to cut energy cost by more than

an order of magnitude, when comparing with other protocols.

Lastly, we design two efficient protocols for estimating the network size of mobile

vehicular peer-to-peer networks. Existing solution either requires flooding the network,

or takes too long to converge. We present two novel statistical methods, called the

circled random walk and the tokened random walk, to address this interesting problem.

While the circled random walk method requires a randomized neighboring relationship

among the nodes and it works well in high-mobility networks, the tokened random walk
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is more practical for all types of VP2P or other mobile networks because it removes

the random-neighbor requirement through a randomized token distribution process.

Both methods provide cardinality estimation by involving only a small subset of the

nodes (vehicles). They make tradeoff between overhead and estimation accuracy. The

estimation error can be made arbitrarily small at the expense of larger overhead.

Future research will go on. We will further explore the design space of the adaptive

Bloom filter, for example, when it is used for multi-party information sharing. We will test

it using real network traces. Also, for the multi-set membership checking problem, we

proposed idea for element update/deletion. In practice, there will be practical issues,

such as the introduction of false negatives. How to reduce the down side as much as

possible whiling utilizing its advantage, remains an open problem.
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