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It is measured as E(ŝ − s) with respect to s. • Second Plot : the standard

deviation of the experimental results in Figure 2-11. It is measured as
√

Var(ŝ)
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Traffic measurement provides critical real-world data for service providers and

network administrators to perform capacity planning, accounting and billing, anomaly

detection, and service provision. We observe that in many measurement functions,

statistical methods play important roles in system designing, model building, formula

deriving, and error analyzing. In this dissertation, we first propose several novel online

measurement functions in high-speed networks. We then notice that statistical methods

for measurement problems are generic in many network systems. They can be also

applied to wireless systems such as RFID (radio frequency identification) systems,

which have been gaining popularity for inventory control, object tracking, and supply

chain management in warehouses, retail stores, hospitals, etc. The second part of

the dissertation studies the RFID estimation problem and designs two probabilistic

algorithms for it.

One of the greatest challenges in designing an online measurement module is to

minimize the per-packet processing time in order to keep up with the line speed of the

modern routers. To meet this challenge, we should minimize the number of memory

accesses per packet and implement the measurement module in the on-die SRAM,

which is fast but expensive. Because many other essential routing/security/performance

functions may also run from SRAM, it is expected that the amount of high-speed
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memory allocated for the module will be small. Hence, it is critical to make the

measurement module’s data structure as compact as possible.

The first work of this dissertation focuses on a particularly challenging problem,

the measurement of per-flow information in high-speed networks. We design a fast

and compact measurement function that estimates the sizes of all flows. It achieves

the optimal processing speed: 2 memory accesses per packet. In addition, it provides

reasonable measurement accuracy in a tight space where the best existing methods

no longer work. Our design is based on a new data encoding/decoding scheme, called

randomized counter sharing. This scheme allows us to mix per-flow information together

in storage for compactness and, at the decoding time, separate the information of each

flow through statistical removal of the error introduced during information mixing from

other flows. The effectiveness of our online per-flow measurement approach is analyzed

and confirmed through extensive experiments based on real network traffic traces. We

also propose several methods to increase the estimation range of flow sizes.

Our second work studies the scan detection problem, which is one of the most

fundamental functions in intrusion detection systems. We propose an efficient scan

detection scheme based on dynamic bit sharing, which incorporates probabilistic

sampling and bit sharing for compact information storage. We design a maximum

likelihood estimation method to extract per-source information from the shared bits in

order to determine the scanners. Our new scheme ensures that the false positive/false

negative ratios are bounded with high probability. Moreover, given an arbitrary set of

bounds, we develop a systematic approach to determine the optimal system parameters

that minimize the amount of memory needed to meet the bounds. Experiments based

on a real Internet traffic trace demonstrate that the proposed scan detection scheme

reduces memory consumption by three to twenty times when comparing with the best

existing work.
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The origin-destination flow measurement is the focus of our third work. An

origin-destination (OD) flow between two routers is the set of packets that pass both

routers in a network. We design a new measurement method that employs a compact

data structure for packet information storage and uses a novel statistical inference

approach for OD-flow size estimation. Not only does the proposed method require

smaller per-packet processing overhead, but also it achieves much better measurement

accuracy, when comparing with existing approaches. We perform both simulations and

experiments to demonstrate the effectiveness of our method.

Our last work focuses on estimating the number of RFID tags deployed in a large

area, which has many important applications in inventory management and theft

detection. Prior works focus on designing time-efficient algorithms that can estimate

tens of thousands of tags in seconds. We observe that, for a RFID reader to access

tags in a large area, active tags are likely to be used due to their longer operational

ranges. These tags are battery-powered and use their own energy for information

transmission. However, recharging batteries for tens of thousands of tags is laborious.

Hence, conserving energy for active tags becomes critical. Some prior works have

studied how to reduce energy expenditure of a RFID reader when it reads tag IDs.

We study how to reduce the amount of energy consumed by active tags during the

process of estimating the number of tags in a system. We design two energy-efficient

probabilistic estimation algorithms that iteratively refine a control parameter to optimize

the information carried in transmissions from tags, such that both the number and the

size of transmissions are reduced. These algorithms can also take time efficiency into

consideration. By tuning a contention probability parameter ω, the new algorithms can

make tradeoff between energy cost and estimation time.
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CHAPTER 1
INTRODUCTION

1.1 Online Network Functions

Modern high-speed routers forward packets from incoming ports to outgoing ports

via switching fabric, bypassing main memory and CPU. New technologies are pushing

line speeds beyond OC-768 (40Gb/s) to reach 100Gb/s or even tera bits per second

[47]. The line cards in core routers must therefore forward packets at a rate exceeding

150Mpps [104]; that leaves no more than 6.7ns to process each packet. Parallel

processing and pipeline are used to speed up packet switching to a few clock cycles per

packet [51]. In order to keep up with such high throughput, online network functions for

traffic measurement, packet scheduling, access control, and quality of service will also

have to be implemented using on-chip cache memory and bypassing main memory and

CPU almost entirely [75, 104, 129]. However, fitting these network functions in fast but

small on-chip memory represents a major technical challenge today [51, 95].

The commonly-used cache memory on network processor chips is SRAM, typically

a few megabytes. Further increasing on-chip memory to more than 10MB is technically

feasible, but it comes with a much higher price tag and access time is longer. There is

a huge incentive to keep on-chip memory small because smaller memory can be made

faster and cheaper. Off-chip SRAM is larger. For example, QDR-III SRAM has 36MB

[91]. But it is slower to access. Hence, on-chip memory remains the first choice for

online network functions that are designed to match the line speeds.

On-chip memory is limited in size. To make the matter even more challenging,

it may have to be shared by security [57], measurement [75], routing [20], and

performance [55] functions that are implemented on the same chip. When multiple

network functions share the same memory, each of them can only use a fraction of

the available space. Depending on their relative importance, some functions may be

allocated tiny portions of the limited memory, whereas the amount of data they have

17



to process and store can be extremely large in high-speed networks. The disparity in

memory demand and supply requires us to implement online functions as compact as

possible [106, 114]. Furthermore, when different functions share the same memory, they

may have to take turns to access the memory, making memory access the performance

bottleneck. Since most online functions require only simple computations that can

be efficiently implemented in hardware, their throughput will be determined by the

bottleneck in memory access. Hence, we must also minimize the number of memory

accesses made by each function when it processes a packet. The challenge is that

compactness (in terms of space requirement) and speed (in terms of memory accesses)

are sometimes conflicting objectives.

1.2 Fundamental Primitives

We observe that the implementations of many online functions heavily rely on

several fundamental building blocks for data processing and storage. The first part

of this dissertation studies three important fundamental online functions: per-flow

estimators, spread estimators, and origin-destination flow estimators.

Per-flow estimators are used to measure per-flow information for high-speed links.

The goal is to estimate the size of each flow (in terms of number of packets). A flow

is identified by a label that can be a source address, a destination address, or any

combination of addresses, ports, and other fields in the packet header. Measuring

the sizes of individual flows has important applications. For example, if we use the

addresses of the users as flow labels, per-flow traffic measurement provides the basis

for usage-based billing and graceful service differentiation, where a user’s service

priority gracefully drops as he over-spends his resource quota. Studying per-flow data

over consecutive measurement periods may help us discover network access patterns

and, together with user profiling, reveal geographic/demographic traffic distributions

among users. Such information will help Internet service providers and application

developers to align network resource allocation with the majority’s needs.
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Spread estimators [70] are designed for the measurement of distinct elements in

each flow, where “flows” can be per-source flows, per-destination flows, TCP flows, P2P

flows, and so on. And “elements” can be source addresses, destination addresses, or

any other application-specific addresses. For example, if we treat all packets that are

from the same source address as a flow, a spread estimator that measures the number

of distinct destinations for each flow can be used to detect port scans [106]. Spread

estimators may be used to detect DDoS attacks when too many hosts send traffic to a

receiver [92], i.e., the spread of a destination is abnormally high. They can be used to

estimate the infection rate of a worm by monitoring how many addresses each infected

host contacts over a period of time.

Origin-destination (OD) flow estimators are used to measure OD flow sizes.

Consider two routers r1 and r2. We define the set of packets that first pass r1 and

then pass r2 or first pass r2 and then pass r1 as an origin-destination (OD) flow of the

two routers. The cardinality of the packet set is called the OD flow size. The OD flow

measurement is also an important topic in many network management applications

[39, 46, 80, 82, 99]. For example, Internet service providers may use the OD-flow

information between points of interest as a reference to align traffic distribution within

the network. They may also study the OD-flow traffic pattern and identify anomalies that

deviate significantly from the normal pattern. In the event of a persistent congestion,

OD-flow data may help point out the source of the congestion.

One of the greatest challenges in designing an online measurement module is to

minimize the per-packet processing time in order to keep up with the line speed of the

modern routers. To meet this challenge, we should minimize the number of memory

accesses per packet and implement the measurement module in the on-die SRAM,

which is fast but expensive. Because many other functions may also run from SRAM,

it is expected that the amount of high-speed memory allocated for the module will be
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small. Hence, it is critical to make the measurement module’s data structure as compact

as possible.

We observe that when studying these measurement problems, statistical methods

play important roles in system designing, model building, formula deriving, and error

analyzing. We first propose several novel schemes which employ classical statistical

methods such as maximum likelihood estimation method. We then learn that statistical

methods for measurement problems are generic in many network systems. They can

also be applied to wireless systems such as RFID (radio frequency identification)

systems, which have been gaining popularity for inventory control, object tracking, and

supply chain management in warehouses, retail stores, hospitals, etc. The second

part of this dissertation studies the RFID estimation problem and designs several

probabilistic algorithms for it.

1.3 Per-Flow Traffic Measurement through Randomized Counter Sharing

This work focuses on a particularly challenging problem, the measurement of

per-flow information for a high-speed link without using per-flow data structures [69]. It

has been shown in [40] that maintaining per-flow counters cannot scale for high-speed

links. Even for efficient counter implementations [96, 102, 130], SRAM will only be able

to hold a small fraction of per-flow state (including counters and indexing data structures

such as pointers and flow identities for locating the counters). The counter braids avoid

per-flow counters and achieve near-optimal memory efficiency [75, 76]. This method

maps each flow to three arbitrary counters; they are all incremented by one for every

packet of the flow. Many flows may be mapped to the same counter, which stores the

sum of the flow sizes. Essentially, the counters represent linear equations, which can

be solved for the flow sizes. Two levels of counters are used to reduce the memory

overhead. The counter braids require slightly more than 4 bits per flow and are able to

count the exact sizes of all flows. But it also has two limitations. First, it performs 6 or

occasionally 12 memory accesses per packet. Second, when the memory allocated
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to a measurement function is far less than 4 bits per flow, our experiments show that

the message passing decoding algorithm of counter braids cannot converge to any

meaningful results. When the available memory is just 1∼2 bits per flow, the exact

measurement of the flow sizes is no longer possible. We have to resort to estimation

methods. The key is to efficiently utilize the limited space to improve the accuracy of

the estimated flow sizes, and do so with the minimum number of memory accesses per

packet. This is what this work tries to achieve.

We design a fast and compact per-flow traffic measurement function that achieves

three main objectives: i) It shares counters among flows to save space, and does not

incur any space overhead for mapping flows to their counters. This distinguishes our

work from [96, 102, 130]. ii) It updates exactly one counter per packet, which is optimal.

This separates our work from the counter braids that update three or more counters

per packet. Updating each counter requires two memory accesses for read and then

write. iii) It provides estimation of the flow sizes, as well as the confidence intervals that

characterize the accuracy, even when the available memory is too small such that other

exact-counting methods including [75, 76] no longer work. We believe our work is the

first one that achieves all these objectives. It complements the existing work by providing

additional flexibility for the practitioners to choose when other methods cannot meet the

speed and space requirements.

The design of our measurement function is based on a new data encoding/decoding

scheme, called randomized counter sharing. It splits the size of each flow among a

number of counters that are randomly selected from a counter pool. These counters

form the storage vector of the flow. For each packet of a flow, we randomly select a

counter from the flow’s storage vector and increment the counter by one. Such a simple

online operation can be implemented very efficiently. The storage vectors of different

flows share counters uniformly at random; the size information of one flow in a counter

is the noise to other flows that share the same counter. Fortunately, this noise can be
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quantitatively measured and removed through statistical methods, which allow us to

estimate the size of a flow from the information in its storage vector. We propose two

estimation methods whose accuracies are statistically guaranteed. They work well even

when the total number of counters in the pool is by far smaller than the total number

of flows that share the counters. Our experimental results based on real traffic traces

demonstrate that the new methods can achieve good accuracy in a tight space. We also

propose several methods to increase the range of flow sizes that the estimators can

measure.

The randomized counter sharing scheme proposed in this work for per-flow traffic

measurement has applications beyond the networking field. It may be used in the data

streaming applications to collect per-item information from a stream of data items.

1.4 Scan Detection in High-Speed Networks

Internet security is a fundamental problem and has received considerable attention

for years [23, 24, 56]. Many network-based attacks are preceded with a reconnaissance

phase, in which the attacker or its zombies scan the hosts in a network to identify

vulnerability. As a result, scan detection is one of the most fundamental functions

in almost any network intrusion detection system (IDS). Cisco has been pushing for

years to build security functions into its high-end routers. Scan detection is increasingly

performed by routers with security modules or firewalls that inspect packets [32].

We define a contact as a source-destination pair, for which the source sends

a packet to the destination. The source or destination can be an IP address, a port

number, or a combination of them together with other fields in the packet header. The

spread of a source is the number of distinct destinations contacted by the source during

a measurement period. A source is classified as a scanner if its spread exceeds

a certain threshold. Therefore, scan detection is fundamentally an online traffic

measurement problem.
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A great challenge for scan detection is that the data volume to be stored can be

huge. For example, the main gateway at our campus observes more than 10 million

distinct source-destination pairs on an average day. Suppose each measurement period

is one day long (in order to catch stealthy low-rate scanners). If we simply store all

distinct source/destination address pairs for scan detection, it will require more than

80MB of SRAM, which is too much. A major thrust in the scan detection research is to

reduce the memory consumption [13, 41, 110, 114, 129].

Reducing memory consumption does not come for free. The prior research

sacrifices detection accuracy for memory saving. The basic idea is to compress the

contact information in limited memory space. The compressed information allows us

to estimate the spreads of the sources, instead of counting them exactly. However,

the estimated spread values may cause false positives (in which a non-scanner is

mistakenly reported as a scanner) and false negatives (in which a scanner is not

reported). Consequently, the following questions become important for any practical

security system: How serious is the false positive/false negative problem? Can the

system be configured such that the false positive/false negative ratios are bounded? To

date, few papers directly addressed these questions.

The prior work follows two general methods for memory reduction: probabilistic

sampling and storage sharing. The probabilistic sampling method is to record only a

certain percentage of randomly sampled contacts. An example is the one-level/two-level

algorithms proposed by Venkataraman et al. [110]. These algorithms store the

source/destination addresses of the sampled contacts in hash tables. Their main

contribution is to derive the optimal sampling probability that ensures with high

probability that the false positive/false negative ratios do not exceed certain pre-defined

bounds.

However, it is not memory-efficient to directly store the addresses of the contacts

made by each source. A naive solution is to use per-source counters to record the
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number of packets from each source. Near-optimal counter architectures such as

counter braids [75] require only a few bits per source. The problem is that counters

cannot remove duplicates: A thousand packets from the same source to the same

destination should count as one contact, instead of a thousand. In order to remove

duplicates, one may use Bloom filters [110] or bitmap algorithms [41]. They encode

the contacts made by each source in a separate bitmap, which automatically filters

duplicates. However, per-source bitmaps still take too much space. Cao et al. use a

series of Bloom filters and a hash table to reduce the number of sources that need

bitmaps [13].

Instead of using a separate bitmap for each source, an interesting space-saving

method is to allow storage sharing, where each data structure is no longer dedicated

to a single source but shared among multiple sources. This is particularly necessary

when the number of sources is more than the number of available bits. Zhao et al. [129]

encodes each contact in three shared bitmaps using a technique similar to Bloom filters.

Yoon et al. [114] design another storage sharing method with superior performance.

Although both methods can be used for scan detection, none of them provides any

means to ensure that the false positive/false negative ratios are bounded. Moreover, our

experiments show that these existing methods [13, 114, 129] take far more memory than

the one proposed in this study.

This study proposes an efficient scan detection scheme based on a new storage

sharing method, called dynamic bit sharing, which shares the available bits uniformly

at random among all sources, such that the memory space is fully utilized for storing

contact information. It employs a maximum likelihood estimation method to extract

per-source information from the shared bits in order to determine the scanners. It

also enhances security through a private key. Our new method ensures that the

false positive/false negative ratios are bounded. Moreover, given an arbitrary set of

bounds, we show analytically how to choose the optimal system parameters such that
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the amount of memory needed to satisfy the bounds is minimized. We also perform

experiments based on a real traffic trace and demonstrate that, using these optimal

parameters, we can reduce the memory consumption by three to twenty times when

comparing with the best existing work.

1.5 Origin-Destination Flow Measurement in High-Speed Networks

Our third work focuses on the problem of origin-destination (OD) flow measurement

[71]. The goal is to design an efficient method to measure the number of packets that

traverse between two routers during a measurement period. It generally consists of two

phases: One for online packet information storage and the other for offline OD-flow size

computation. In the first phase, routers record information about arrival packets. In the

second phase, each router reports its stored information to a centralized server, which

performs the measurement of each OD flow based on the information sent from the

origin/destination router pair.

Measurement efficiency and accuracy are two main technical challenges. In terms

of efficiency, we want to minimize the per-packet processing overhead to accommodate

future routers that forward packets at extremely high rates. More specifically, the function

should minimize the computational complexity and the number of memory accesses for

each packet.

Accuracy is another important design goal. In high-speed networks, we have to

deal with a very large volume of packets. And it is unrealistic to store all packet-level

information in order to achieve 100% accuracy. To solve this problem, some past

research [119–121] uses data such as link load, network routing, and configuration data

to indirectly measure the OD flows. Cao, Chen and Bu [11] propose a quasi-likelihood

approach based on a continuous variant of the Flajolet-Martin sketches [43]. However,

none of them is able to achieve both efficiency and accuracy at the same time.

To meet these challenges, we design a novel OD flow measurement method,

which uses a compact bitmap data structure for packet information storage. At the end

25



of a measurement period, bitmaps from all routers are sent to a centralized server,

which examines the bitmaps of each origin/destination router pair and uses a statistical

inference approach to estimate the OD flow size. The proposed method has three

elegant properties. First, its processing overhead is small and constant, only one hash

operation and one memory access per packet. Second, it is able to achieve excellent

measurement results, which will be demonstrated by both simulations and experiments.

Finally, its data storage is very compact. The memory allocation is less than 1 bit for

each packet on average.

1.6 Size Estimation Problem in RFID Systems

Radio-frequency identification (RFID) technology has been widely used in

various commercial applications. RFID tags (each storing a unique ID) are attached

to merchandizes at retail stores, equipment at hospitals, or goods at warehouses,

allowing an authenticated RFID reader to quickly access properties of each individual

item or collect statistical information about a large group of items.

This work focuses on a RFID-enabled function that is very useful in inventory

management. Imagine a large warehouse with thousands of laptops, cell phones,

electronics, apparel, bags, or furniture pieces. A national retail survey showed that

administration error, vendor fraud and employee theft caused about 20 billion dollars

lost a year [52]. Hence, it is desirable to have a quick way of counting the number of

items in the warehouse or in each section of the warehouse. To timely detect theft or

management errors, such counting may be performed frequently.

If each item is attached with a RFID tag, the counting problem can be solved

by a RFID reader that receives the IDs transmitted (or backscattered) from the tags

[112]. However, reading the actual tag IDs can be time-consuming because so many

of them have to be delivered in the same low-rate channel and collisions caused by

simultaneous transmissions by different tags make the matter worse. To address

this problem, Kodialam and Nandagopal [63, 64] showed that reading time can be
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greatly reduced through probabilistic methods that estimate the number of tags. This is

called the RFID estimation problem. The follow-up work by Qian et al. [93] significantly

reduces estimation time when comparing with [63]. It can be shown that even for

applications that require reading the actual tag IDs, estimating the number of tags as a

pre-processing step will help make the main procedure of reading tag IDs much more

efficient [63]. Another advantage of estimating the number of tags without reading the

IDs is that it ensures anonymity of the tags, which may be useful in privacy-sensitive

scenarios involving RFID-enhanced passports or driver’s licences, where counting the

number of people present is needed but revealing their identities is not necessary.

Is time efficiency the only performance metric for the estimation problem in

large-scale RFID systems that use active tags? We argue that energy cost is also

an important issue that must be carefully dealt with. For any application that requires

a RFID reader to access tags in a large area, it is likely that battery-powered active

tags will be used. Passive tags harvest energy from radio signal of a reader and use

such a minute amount of energy to deliver information back to the reader. Their typical

reading range is only several meters, which do not fit well with the big warehouse

scenario. Active tags use their own power to transmit. A longer reading range can

be achieved by transmitting at higher power. They are also richer in resources for

implementing advanced functions. Their price becomes less of a concern if they are

used for expensive merchandizes or reused many times as goods moving in and out of

the warehouse. But active tags also have a problem. They are powered by batteries.

Recharging batteries for tens of thousands of tags is a laborious operation, considering

that tagged products may be stacked up, making tags not easily accessible. To prolong

the lifetime of tags and reduce the frequency of battery recharge, all functions that

involve large-scale transmission by many tags should be made energy-efficient.

Prior works focus on energy-efficient anti-collision protocols that minimize energy

consumption of a mobile reader [61, 85] when the reader collects tag IDs. To the best of
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our knowledge, this work is the first to study energy-efficient solutions for the estimation

problem in large-scale RFID systems that use active tags.

This work has four major contributions. First, we observe that there exists an

asymmetry in energy cost. Solving the RFID estimation problem incurs energy cost both

at the RFID reader and at active tags. The asymmetry is that energy cost at tags should

be minimized while energy cost at the reader is relatively less of a concern because the

reader’s battery can be replaced easily or it may be powered by an external source. To

exploit this asymmetry, our new algorithms follow a common framework that trades more

energy cost at the reader for less cost at the tags. The reader will continuously refine

and broadcast a control parameter called contention probability, which optimizes the

amount of information the reader can extract from transmissions by tags. This in turn

reduces the number of transmissions by tags that are necessary to achieve a certain

estimation accuracy.

Second, the design of our estimation algorithms is based on the maximum

likelihood estimation method (MLE) that is different from the probabilistic counting

methods [113] used by [63, 64]. Our estimation algorithms optimize their performance

by iteratively applying MLE with continuously refined parameters. These new algorithms

not only require fewer transmissions by tags but also minimize the size of each

transmission. The number of transmissions made by tags in our best algorithm is

less than one fourth achieved by the state-of-the-art algorithms. In terms of the total

number of bits transmitted by tags, it is more than an order of magnitude smaller.

Third, we formally analyze the confidence intervals of estimations made by our new

algorithms and establish the termination conditions for any given accuracy requirement.

We perform extensive simulations to demonstrate that the measured results match well

with the analytical results and that the new algorithms perform far better in terms of

energy saving than the best existing algorithms.
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Fourth, our algorithms are generalized with a tunable parameter ω, specifying the

contention probability that tags use to decide whether they will transmit. By modifying

this parameter, the generalized algorithms can make tradeoff between energy cost and

estimation time (i.e., the time it takes to complete the process of estimating the number

of tags). Even though our main goal is to reduce energy cost, the ability for performance

tradeoff makes our algorithms more adaptable in practical setting that are sensitive not

only to energy cost but also to estimation time.

In the broad context of computer networks, there are many other important topics

that have drawn extensive attention from researchers. They are QoS and maxmin

routing [19, 21, 22, 77, 84, 103, 109], P2P networks [59, 125, 126], distributed

computing [6, 18], etc.

1.7 Outline of the Dissertation

The rest of the dissertation is organized as follows: Chapter 2 presents a fast and

compact per-flow traffic measurement approach through randomized counter sharing. In

this section, we design of a novel data encoding/decoding scheme, which mixes per-flow

information randomly in a tight SRAM space for compactness. Chapter 3 proposes an

efficient scan detection scheme based on a new method called dynamic bit sharing,

which optimally combines probabilistic sampling, bit-sharing storage, and maximum

likelihood estimation. Chapter 4 designs a new method for OD flow measurement which

employs the bitmap data structure for packet information storage and uses statistical

inference approach to compute the measurement results. Chapter 5 proposes two

probabilistic algorithms for estimating the number of RFID tags in a region. Chapter 6

draws the conclusion.
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CHAPTER 2
PER-FLOW TRAFFIC MEASUREMENT THROUGH RANDOMIZED COUNTER

SHARING

This chapter studies the measurement of per-flow information for high-speed links.

It is a particularly difficult problem because of the need to process and store a huge

amount of information, which makes it difficult for the measurement module to fit in

the small but fast SRAM space (in order to operate at the line speed). We propose

a novel measurement function that estimates the sizes of all flows. It delivers good

performance in tight memory space where the best existing approaches no longer

work. The effectiveness of our online per-flow measurement approach is analyzed and

confirmed through extensive experiments based on real network traffic traces.

The rest of this chapter is organized as follows: Section 2.1 discusses the

performance metrics. Section 2.2 gives an overview of our system design. Section 2.3

discusses the state of the art. Section 2.4 presents the online data encoding module.

Sections 2.5-2.6 propose two offline data decoding modules. Section 2.7 discusses

the problem of setting counter length. Section 2.8 addresses the problem of collecting

flow labels. Section 2.9 presents the experimental results. Section 2.10 extends our

estimators for large flow sizes. Section 2.11 gives the summary.

2.1 Performance Metrics

We measure the number of packets in each flow during a measurement period,

which ends every time after a certain number (e.g., 10 millions) of packets are

processed. The design of per-flow measurement functions should consider the following

three key performance metrics.

2.1.1 Processing Time

The per-packet processing time of an online measurement function determines the

maximum packet throughput that the function can operate at. It should be made as small

as possible in order to keep up with the line speed. This is especially true when multiple
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routing, security, measurement, and resource management functions share SRAM and

processing circuits.

The processing time is mainly determined by the number of memory accesses and

the number of hash computations (which can be efficiently implemented in hardware

[97]). The counter braids [75, 76] update three counters at the first level for each packet.

When a counter at the first level overflows, it needs to update three additional counters

at the second level. Hence, it requires 3 hashes and 6 memory accesses to read and

then write back after counter increment. But in the worse case, it requires 6 hashes and

12 memory accesses. The multi-resolution space-code Bloom filters [66] probabilistically

select one or more of its 9 filters and set 3∼6 bits in each of the selected ones. Each of

those bits requires one memory access and one hash computation.

Our objective is to achieve a constant per-packet processing time of one hash

computation and two memory accesses (for updating a single counter). This is the

minimum processing time for any method that uses hash operations to identify counters

for update.

2.1.2 Storage Overhead

The need to reduce the SRAM overhead has been discussed in Chapter 1. One

may argue that because the amount of memory needed is related to the number

of packets in a measurement period, we can reduce the memory requirement by

shortening the measurement period. However, when the measurement period is smaller,

more flows will span multiple periods and consequently the average flow size in each

period will be smaller. When we measure the flow sizes, we also need to capture

the flow labels [76], e.g., a tuple of source address/port and destination address/port

to identify a TCP flow. The flow labels are too large to fit in SRAM. They have to be

stored in DRAM. Therefore, in a measurement period, each flow incurs at least one

DRAM access to store its flow label. If the average flow size is large enough, the

overhead of this DRAM access will be amortized over many packets of a flow. However,
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if the average flow size is too small, the DRAM access will become the performance

bottleneck that seriously limits the throughput of the measurement function. This means

the measurement period should not be too small. Our experiments in Section 2.9 set a

measurement period such that the average flow size is about 10.

2.1.3 Estimation Accuracy

Let s be the size of a flow and ŝ be the estimated size of the flow based on a

measurement function. The estimation accuracy of the function can be specified by a

confidence interval: the probability for s to be within [ŝ · (1 − β), ŝ · (1 + β)] is at least a

pre-specified value α, e.g., 95%. A smaller value of β means that the estimated flow size

is more accurate (in a probabilistic sense).

There is a tradeoff between the estimation accuracy and the storage overhead. If

the storage space and the processing time are unrestricted, we can accurately count

each packet to achieve perfect accuracy. However, in practice, there will be constraints

on both storage and processing speed, which make 100% accurate measurement

sometimes infeasible. In this case, one has to settle with imperfect results that can be

produced with the available resources. Within the bounds of the limited resources, we

must explore novel measurement methods to make the estimated flow sizes as accurate

as possible.

2.2 System Design

2.2.1 Basic Idea

We use an example to illustrate the idea behind our new measurement approach.

Suppose the amount of SRAM allocated to one of the measurement functions is 2Mb

(2 × 220 bits), and each measurement period ends after 10 million packets, which

translate into about 8 seconds for an OC-192 link (10+ Gbps) with an average packet

size of 1,000 bytes. The types of flows that the online functions may measure include

per-source flows, per-destination flows, per-source/destination flows, TCP flows, WWW
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flows (with destination port 80), etc. Without losing generality, suppose the specific

function under consideration in this example measures the sizes of TCP flows.

Fig. 2-1 shows the number of TCP flows that have a certain flow size in log scale,

based on a real network trace captured by the main gateway of our campus. If we

use 10 bits for each counter, there will be only 0.2 million counters. The number of

concurrent flows in our trace for a typical measurement period is around 1 million. It

is obvious that allocating per-flow state is not possible and each counter has to store

the information of multiple flows. But if an “elephant” flow is mapped to a counter,

that counter will overflow and lose information. On the other hand, if only a couple of

“mouse” flows are mapped to a counter, the counter will be under-utilized, with most of

its high-order bits left as zeros.

To solve the above problems, we not only store the information of multiple flows in

each counter, but also store the information of each flow in a large number of counters,

such that an “elephant” is broken into many “mice” that are stored at different counters.

More specifically, we map each flow to a set of l randomly-selected counters and split

the flow size into l roughly-equal shares, each of which is stored in one counter. The

value of a counter is the sum of the shares from all flows that are mapped to the counter.

Because flows share counters, they introduce noise to each other’s measurement. The

key to accurately estimate the size of a flow is to measure the noise introduced by other

flows in the counters that the flow is mapped to.

Fortunately, this can be done if the flows are mapped to the counters uniformly at

random. Any two flows will have the same probability of sharing counters, which means

that each flow will have the same probability of introducing a certain amount of noise

to any other flow. If the number of flows and the number of counters are very large,

the combined noise introduced by all flows will be distributed across the counter space

about uniformly. The statistically uniform distribution of the noise can be measured and
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removed. The above scheme of information storage and recovery is called randomized

counter sharing.

We stress that this design philosophy of “splitting” each flow among a large number

of counters is very different from “replicating” each flow in three counters as the counting

Bloom filter [27] or counter braids [75] do — they add the size of each flow as a whole

to three randomly selected counters. Most notably, our method increments one counter

for each arrival packet, while the counting Bloom filter or counter braids increment three

counters. We store the information of each flow in many counters (e.g., 50), while they

store the information of each flow in three counters.

2.2.2 Overall Design

Our online traffic measurement function consists of two modules. The online data

encoding module stores the information of arrival packets in an array of counters. For

each packet, it performs one hash function to identify a counter and then updates the

counter with two memory accesses, one for reading and the other for writing. At the end

of each measurement period, the counter array is stored to the disk and then reset to

zeros.

The offline data decoding module answers queries for flow sizes. It is performed by

a designated offline computer. We propose two methods for separating the information

about the size of a flow from the noise in the counters. The first one is called the counter

sum estimation method (CSM), which is very simple and easy to compute. The second

one is called the maximum likelihood estimation method (MLM), which is more accurate

but also more computationally intensive. The two complementary methods provide

flexibility in designing a practical system, which may first use CSM for rough estimations

and then apply MLM to the ones of interest.

2.3 State of the Art

A related thread of research is to collect statistical information of the flows [36,

65], or identify the largest flows and devote the available memory to measure their
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sizes while ignoring the smaller ones [34, 40, 58, 60]. For example, RATE [62] and

ACCEL-RATE [50] measure per-flow rate by maintaining per-flow state, but they use a

two-run sampling method to filter out small-rate flows so that only high-rate flows are

measured.

Another thread of research is to maintain a large number of counters to track

various networking information. One possible solution [30, 107] can be statistically

update a counter according to the current counter size. This approach is fit for the

applications with loose measurement accuracy. In order to enhance the accuracy

performance, Zhao et al. [127] propose a statistical method to make a DRAM-based

solution practical, which uses a small cache and request queues to balance the counter

values. Since DRAM is involved and wirespeed is achieved, this approach is able to

achieve decent measurement accuracy.

Also related is the work [110] that measures the number of distinct destinations

that each source has contacted. Per-flow counters cannot be used to solve this problem

because they cannot remove duplicate packets. If a source sends 1,000 packets to a

destination, the packets contribute only one contact, but will count as 1,000 when we

measure the flow size. To remove duplicates, bitmaps (instead of counters) should be

used [13, 41, 114, 115, 128]. From the technical point of view, this represents a separate

line of research, which employs a different set of data structures and analytical tools.

Attempt has also been made to use bitmaps for estimating the flow sizes, which is

however far less efficient than counters, as our experiments will show.

2.4 Online Data Encoding

The flow size information is stored in an array C of m counters. The i th counter

in the array is denoted as C [i ], 0 ≤ i ≤ m − 1. The size of the counters should be

set so that the chance of overflow is negligible; we will discuss this issue in details

in Section 2.7. Each flow is mapped to l counters that are randomly selected from C

through hash functions. These counters logically form a storage vector of the flow,
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denoted as Cf , where f is the label of the flow. The i th counter of the vector, denoted as

Cf [i ], 0 ≤ i ≤ l − 1, is selected from C as follows:

Cf [i ] =C [Hi(f )], (2–1)

where Hi(...) is a hash function whose range is [0,m). We want to stress that Cf is not

a separate array for flow f . It is merely a logical construction from counters in C for the

purpose of simplifying the presentation. In all our formulas, one should treat the notation

Cf [i ] simply as C [Hi(f )]. The hash function Hi , 0 ≤ i ≤ l − 1, can be implemented from a

master function H(...) as follows: Hi(f ) = H(f |i) or Hi(f ) = H(f ⊕ R[i ]), where ‘|’ is the

concatenation operator, ‘⊕’ is the XOR operator, and R[i ] is a constant whose bits differ

randomly for different indices i .

All counters are initialized to zeros at the beginning of each measurement period.

The operation of online data encoding is very simple: When the router receives a

packet, it extracts the flow label f from the packet header, randomly selects a counter

from Cf , and increases the counter by one. More specifically, the router randomly picks

a number i between 0 and l − 1, computes the hash Hi(f ), and increases the counter

C [Hi(f )], which is physically in the array C , but logically the i th element in the vector Cf .

2.5 Offline Counter Sum Estimation

2.5.1 Estimation Method

At the end of a measurement period, the router stores the counter array C to a disk

for long-term storage and offline data analysis. Let n be the combined size of all flows,

which is
∑m−1

i=0 C [i ]. Let s be the true size of a flow f during the measurement period.

The estimated size, ŝ, based on our counter sum estimation method (CSM) is

ŝ =

l−1∑
i=0

Cf [i ]− l
n

m
. (2–2)

The first item is the sum of the counters in the storage vector of flow f . It can

also be interpreted as the sum of the flow size s and the noise from other flows due
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to counter sharing. The second item captures the expected noise. Below we formally

derive (2–2).

Consider an arbitrary counter in the storage vector of flow f . We treat the value

of the counter as a random variable X . Let Y be the portion of X contributed by the

packets of flow f , and Z be the portion of X contributed by the packets of other flows.

Obviously, X = Y + Z .

Each of the s packets in flow f has a probability of 1
l

to increase the value of the

counter by one. Hence, Y follows a binomial distribution:

Y ∼ Bino(s,
1

l
). (2–3)

Each packet of another flow f ′ has a probability of 1
m

to increase the counter by one.

That is because the probability for the counter to belong to the storage vector of flow f ′

is l
m

, and if that happens, the counter has a probability of 1
l

to be selected for increment.

Assume there is a large number of flows, the size of each flow is negligible when

comparing with the total size of all flows, and l is large such that each flow’s size is

randomly spread among many counters. We can approximately treat the packets

independently. Hence, Z approximately follows a binomial distribution:

Z ∼ Bino(n − s,
1

m
) ≈ Bino(n,

1

m
), because s ≪ n. (2–4)

We must have

E(X ) = E(Y + Z) = E(Y ) + E(Z) =
s

l
+

n

m
. (2–5)

That is,

s = l × E(X )− l
n

m
. (2–6)

From the observed counter values Cf [i ], E(X ) can be measured as
∑l−1

i=0 Cf [i ]

l
. We have

the following estimation for s:

ŝ =

l−1∑
i=0

Cf [i ]− l
n

m
. (2–7)

37



If a flow shares a counter with an “elephant” flow, its size estimation can be skewed.

However, our experiments show that CSM works well in general because the number of

“elephants” is typically small (as shown in Fig. 2-1) and thus their impact is also small,

particularly when there are a very large number of counters and flows. Moreover, our

next method based on maximum likelihood estimation can effectively reduce the impact

of an outlier in a flow’s storage vector that is caused by an “elephant” flow.

2.5.2 Estimation Accuracy

The mean and variance of ŝ will be given in (2–9) and (2–10), respectively. They are

derived as follows: Because X = Y + Z , we have

E(X 2) = E((Y + Z)2) = E(Y 2) + 2E(YZ) + E(Z 2)

= E(Y 2) + 2E(Y )E(Z) + E(Z 2)

=
s2

l2
− s

l2
+
s

l
+ 2 · s

l
· n
m

+
n2

m2
− n

m2
+

n

m
.

The following facts are used in the above mathematical process: E(Y 2) = s2

l2
− s

l2
+ s

l

because Y ∼ Bino(s, 1/l). E(YZ) = E(Y )E(Z) since Y and Z are independent.

E(Z 2) = n2

m2 − n
m2 +

n
m

because Z ∼ Bino(n, 1/m).

Var(X ) = E(X 2)− (E(X ))2

=
s

l
(1− 1

l
) +

n

m
(1− 1

m
). (2–8)

In (2–7), Cf [i ], 0 ≤ i ≤ l − 1, are independent samples of X . We can interpret ŝ as a

random variable in the sense that a different set of samples of X may result in a different

value of ŝ. From (2–7), we have

E(ŝ) = l × E(X )− l
n

m

= l(
s

l
+

n

m
)− l

n

m
= s, (2–9)
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which means our estimation is unbiased. The variance of ŝ can be written as

Var(ŝ) = l2 × Var(X ) = l2
(
s

l
(1− 1

l
) +

n

m
(1− 1

m
)

)
= s(l − 1) + l2

n

m
(1− 1

m
). (2–10)

2.5.3 Confidence Interval

The confidence interval for the estimation will be given in (2–13), and it is derived

as follows: The binomial distribution, Z ∼ Bino(n, 1/m), can be closely approximated

as a Gaussian distribution, Norm( n
m
, n
m
(1 − 1

m
)), when n is large. Similarly, the binomial

distribution, Y ∼ Bino(s, 1
l
), can be approximated by Norm( s

l
, s
l
(1 − 1

l
)). Because the

linear combination of two independent Gaussian random variables is also normally

distributed [14], we have X ∼ Norm( s
l
+ n

m
, s
l
(1 − 1

l
) + n

m
(1 − 1

m
)). To simplify the

presentation, let µ = s
l
+ n

m
and � = s

l
(1− 1

l
) + n

m
(1− 1

m
).

X ∼ Norm(µ, �), (2–11)

where the mean µ and the variance � agree with (2–5) and (2–8), respectively.

Because ŝ is a linear function of Cf [i ], 0 ≤ i ≤ l − 1, which are independent samples

of X , ŝ must also approximately follow a Gaussian distribution. From (2–7) and (2–11),

we have

ŝ ∼ Norm(s, s(l − 1) + l2
n

m
(1− 1

m
)). (2–12)

Hence, the confidence interval is

ŝ ± Zα

√
s(l − 1) + l2

n

m
(1− 1

m
), (2–13)

where α is the confidence level and Zα is the α percentile for the standard Gaussian

distribution. As an example, when α = 95%, Zα = 1.96.
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2.6 Maximum Likelihood Estimation

In this section, we propose the second estimation method that is more accurate but

also more computationally expensive.

2.6.1 Estimation Method

We know from the previous section that any counter in the storage vector of flow

f can be represented by a random variable X , which is the sum of Y and Z , where

Y ∼ Bino(s, 1
l
) and Z ∼ Bino(n, 1/m). For any integer z ∈ [0, n), the probability for the

event Z = z to occur can be computed as follows:

Pr{Z = z} =

(
n

z

)
(
1

m
)z(1− 1

m
)n−z .

Because n and m are known, Pr{Z = z} is a function of a single variable z and thus

denoted as P(z).

Based on the probability distribution of Y and Z , the probability for the observed

value of a counter, Cf [i ], ∀i ∈ [0, l), to occur is

Pr{X = Cf [i ]}

=

Cf [i ]∑
z=0

(Pr{Z = z} · Pr{Y = Cf [i ]− z})

=

Cf [i ]∑
z=0

(
s

Cf [i ]− z

)
(
1

l
)Cf [i ]−z(1− 1

l
)s−(Cf [i ]−z)P(z). (2–14)

Let y = Cf [i ] − z to simplify the formula. The probability for all observed values in

the storage vector of flow f to occur is

L =

l−1∏
i=0

Pr{X = Cf [i ]}

=

l−1∏
i=0

( Cf [i ]∑
z=0

(
s

y

)
(
1

l
)y(1− 1

l
)s−yP(z)

)
. (2–15)
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The maximum likelihood method (MLM) is to find an estimated size ŝ of flow f that

maximizes the above likelihood function. Namely, we want to find

ŝ = arg max{L}.
s

(2–16)

To find ŝ, we first apply logarithm to turn the right side of the equation from product

to summation.

ln(L) =

l−1∑
i=0

ln

( Cf [i ]∑
z=0

(
s

y

)
(
1

l
)y(1− 1

l
)s−yP(z)

)
. (2–17)

Because
d(sy)
ds

=
(
s

y

)
(ψ(s +1)−ψ(s +1− y)), where ψ(...) is the polygamma function

[4], we have

d(
(
s

y

)
(1− 1

l
)s−y)

ds
=(

s

y

)
(1− 1

l
)s−y

(
ψ(s + 1)− ψ(s + 1− y) + ln(1− 1

l
)

)
.

To simplify the presentation, we denote the right side of the above equation as

O(s). From (2–17), we can compute the first-order derivative of ln(L) as follows:

d ln(L)

ds
=

l−1∑
i=0

∑Cf [i ]
z=0

(
O(s)(1

l
)yP(z)

)
∑Cf [i ]

z=0

(
s

y

)
(1
l
)y(1− 1

l
)s−yP(z)

. (2–18)

Maximizing L is equivalent to maximizing ln(L). Hence, by setting the right side

of (2–18) to zero, we can find the value for ŝ through numerical methods. Because
d ln(L)
ds

is a monotone function of s , we have used the bisection search method in all our

experiments in Section 2.9 to find the value ŝ that makes d ln(L)
ds

equal to zero.

2.6.2 Estimation Accuracy

The estimation confidence interval will be given in (2–26), and it is derived as

follows: The estimation formula is given in (2–16). According to the classical theory for

MLM, when l is sufficiently large, the distribution of the flow-size estimation ŝ can be
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approximated by

Norm(s,
1

I(ŝ)
), (2–19)

where the fisher information I(ŝ) [67] of L is defined as follows:

I(ŝ) = −E
(
d2 ln(L)

ds2

)
. (2–20)

In order to compute the second-order derivative, we begin from (2–11) and have the

following:

Pr{X = Cf [i ]} =
1√
2π�

e−
(Cf [i ]−µ)2

2�

ln(Pr{X = Cf [i ]}) = − ln(
√
2π�)− (Cf [i ]− µ)2

2�
, (2–21)

where 0 ≤ i ≤ l − 1. Performing the second-order differentiation, we have

d2 ln(Pr{X = Cf [i ]})
ds2

= − µ′

l�
+

(1
2
(1− 1

l
) + µ− Cf [i ])�

′

l�2

+
1

l�3
(1− 1

l
)

(
(µ− Cf [i ])µ

′�− (µ− Cf [i ])
2�′

)
, (2–22)

where µ′ = 1
l

and �′ = 1
l
(1− 1

l
). Therefore,

E(
d2 ln(Pr{X = Cf [i ]})

ds2
)

= − µ′

l�
+

1
2
(1− 1

l
)�′

l�2
+

1

l�3
(1− 1

l
)E(µ− Cf [i ])

2�′

= − 1

l2�
+

3(1− 1
l
)2

2l2�2
, (2–23)

where we have used the following facts: E(µ−Cf [i ]) = 0 and E(µ−Cf [i ])
2 = �. Because

L =
∏l−1

i=0 Pr{X = Cf [i ]}, we have

I(ŝ) = −E
(
d2 ln(L)

ds2

)
=

l−1∑
i=0

E(
d2 ln(Pr{X = Cf [i ]})

ds2
)

=
1

l�
−

3(1− 1
l
)2

2l�2
. (2–24)
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From (2–19), the variance of ŝ is

Var(ŝ) =
1

I(ŝ)
=

2l�2

2�− 3(1− 1
l
)2
. (2–25)

Hence, the confidence interval is

ŝ ± Zα ·

√
2l�2

2�− 3(1− 1
l
)2
, (2–26)

where Zα is the α percentile for the standard Gaussian distribution.

2.7 Setting Counter Length

So far, our analysis has assumed that each counter has a sufficient number of

bits such that it will not overflow. However, in order to save space, we want to set the

counter length as short as possible. Suppose each measurement period ends after

a pre-specified number n of packets are received. (Note that the value of n is the

combined sizes of all flows during each measurement period.) The average value of

all counters will be n
m

. We set the number of bits in each counter, denoted as b, to be

log2
n
m
+ 1. Due to the additional bit, each counter can hold at least two times of the

average before overflowing. If the allocated memory has M bits, the values of b and m

can be determined from the following equations:

b ×m = M, log2
n

m
+ 1 = b. (2–27)

Due to the randomized counter sharing design, roughly speaking, the packets are

distributed in the counters at random. We observe in our experiments that the counter

values approximately follow a Gaussian distribution with a mean of n
m

. In this distribution,

the fraction of counters that are more than four times of the mean is very small — less

than 5.3% in all our experiments. Consequently, the impact of counter overflow in CSM

or MLM is also very small for most flows. Though it is small, we will totally eliminate this

impact in Section 2.10.4.

43



2.8 Flow Labels

The compact online data structure introduced in Section 2.4 only stores the flow

size information. It does not store the flow labels. The labels are per-flow information,

and it cannot be compressed in the same way we do for the flow sizes. In some

applications, the flow labels are pre-known and do not have to be collected. For

example, if an ISP wants to measure the traffic from its customers, it knows their IP

addresses (which are the flow labels in this case). Similarly, if the system administrator

of a large enterprise network needs the information about the traffic volumes of the

hosts in the network, she has the hosts’ addresses.

In case that the flow labels need to be collected and there is not enough SRAM

to keep them, the labels have to be stored in DRAM. An efficient solution for label

collection was proposed in [76]. A Bloom filter [7, 8] can be implemented in SRAM to

encode the flow labels that have seen by the router during a measurement period, such

that each label is only stored once in DRAM when it appears for the first time in the

packet stream; storing each label once is the minimum overhead if the labels must be

collected.

If we use three hash functions in the Bloom filter, each packet incurs three SRAM

accesses in order to check whether the flow label carried the packet is already encoded

in the Bloom filter. A recent work on one-memory-access Bloom filters [94] shows that

three SRAM accesses per packet can be reduced to one. This overhead is further

reduced if we only examine the UDF packets and the SYN packets (which carry the

label information of TCP traffic). A recent study shows that UDF accounts for 20% of the

Internet traffic [10] and the measurement of our campus traffic shows that SYN packets

accounts for less than 10% of all TCP traffic. Therefore, the Bloom filter operation only

needs to be carried out for less than 28% of all packets, which amortizes the overhead.
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2.9 Experiments

We use experiments to evaluate our estimation methods, CSM (Counter Sum

estimation Method) and MLM (Maximum Likelihood estimation Method), which are

designed based on the randomized counter sharing scheme. We also compare our

methods with CB (Counter Braids) [75] and MRSCBF (Multi-Resolution Space-Code

Bloom Filters) [66]. Our evaluation is based on the performance metrics outlined in

Section 2.1, including per-packet processing time, memory overhead, and estimation

accuracy.

The experiments use a network traffic trace obtained from the main gateway of

our campus. We perform experiments on various different types of flows, such as

per-source flows, per-destination flows, per-source/destination flows, and TCP flows.

They all lead to the same conclusions. Without losing generality, we choose TCP flows

for presentation. The trace contains about 68 millions of TCP flows and 750 millions

of packets. In each measurement period, 10 million packets are processed; it typically

covers slightly more than 1 million flows.

2.9.1 Processing Time

The processing time is mainly determined by the number of memory accesses

and the number of hash computations per packet. Table 2-1 presents the comparison.

CSM or MLM performs two memory accesses and one hash computation for each

packet. CB incurs three times of the overhead. It performs six memory accesses and

three hash computations for each packet at the first counter level, and in the worst

case makes six additional memory accesses and three additional hash computations

at the second level. MRSCBF has nine filters. The i th filter uses ki hash functions and

encodes packets with a sampling probability pi , where k1 = 3, k2 = 4, ki = 6, ∀i ∈ [3, 9],

and pi = (1
4
)i−1, ∀i ∈ [1, 9]. When encoding a packet, the i th filter performs ki hash

computations and sets ki bits. Hence, the total number of memory accesses (or hash

computations) per packet for all filters is
∑9

i=1(pi · ki) ≈ 4.47.
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2.9.2 Memory Overhead and Estimation Accuracy

We study the estimation accuracies of CSM and MLM under different levels of

memory availability. In each measurement period, 10M packets are processed, i.e.,

n = 10M, which translates into about 8 seconds for an OC-192 link (10+ Gbps) or about

2 seconds for an OC-768 link (40+ Gbps) with an average packet size of 1,000 bytes.

The memory M allocated to this particular measurement function is varied from 2Mb

(2× 220 bits) to 8Mb. The counter length b and the number of counters m are determined

based on (2–27). The size of each storage vector is 50.

When M = 2Mb, the experimental results are presented in Fig. 2-2. The first

plot from the left shows the estimation results by CSM for one measurement period;

the results for other measurement periods are very similar. Each flow is represented

by a point in the plot, whose x coordinate is the true flow size s and y coordinate is

the estimated flow size ŝ. The equality line, y = x , is also shown for reference. An

estimation is more accurate if the point is closer to the equality line.

The second plot presents the 95% confidence intervals for the estimations made

by CSM. The width of each vertical bar shows the size of the confidence interval at a

certain flow size (which is the x coordinate of the bar). The middle point of each bar

shows the mean estimation for all flows of that size. Intuitively, the estimation is more

accurate if the confidence interval is smaller and the middle point is closer to the equality

line.

The third plot shows the estimation results by MLM, and the fourth plot shows the

95% confidence intervals for the estimations made by MLM. Clearly, MLM achieves

better accuracy than CSM. The estimation accuracy shown in Fig. 2-2 is achieved with a

memory of slightly less than 2 bits per flow,

We can improve the estimation accuracy of CSM or MLM by using more memory.

We increase M to 4Mb and repeat the above experiments. The results are shown in

Fig. 2-3. We then increase M to 8Mb and repeat the above experiments. The results
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are shown in Fig. 2-4. The accuracy clearly improves as the confidence intervals shrink

when M becomes larger.

We repeat the same experiments on CB, whose parameters are selected according

to [75]. The results are presented in Fig. 2-5. The first plot shows that CB totally fails

to produce any meaningful results when the available memory is too small: M = 2Mb,

which translates into less than 2 bits per flow. In fact, its algorithm cannot converge, but

instead produce oscillating results. We have to artificially stop the algorithm after a very

long time. The second plot shows that CB works well when M = 4Mb. The algorithm

still cannot converge by itself, even though it can produce very good results when we

artificially stop it after a long time without observing any further improvement in the

results. It can be seen that the results carry a small positive bias because most points

are on one side of the equality line. The third plot shows that CB is able to return the

exact sizes for most flows when the memory is M = 8Mb.

Combining the results in Table 2-1, we draw the following conclusion: (1) In

practice, we should choose CSM/MLM if the requirement is to handle high measurement

throughput (which means low per-packet processing time) or if the available memory is

too small such that CB does not work, while relatively coarse estimation is acceptable.

(2) We should choose CB if the processing time is less of a concern, sufficient memory

is available, and the exact flow sizes are required.

We also run MRSCBF under different levels of memory availability. We begin

with M = 8Mb. CSM or MLM works very well with this memory size (Fig. 2-4). The

performance of MRSCBF is shown in the first plot of Fig. 2-6. There are some very large

estimated sizes. To control the scale in the vertical axis, we artificially set any estimation

beyond 2,800 to be 2,800. The results demonstrate that MRSCBF totally fails when

M = 8Mb. The performance of MRSCBF improves when we increase the memory.
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The results when M = 40Mb are shown in the second plot.1 In the third plot, when we

further increase M to 80Mb,2 no obvious improvement is observed when comparing the

second plot. A final note is that the original paper of MRSCBF uses log scale in their

presentation. The third plot in Fig. 2-6 will appear as the fourth plot in log scale.

Clearly, the bitmap-based MRSCBF performs worse than CB, CSM or MLM. To

measure flow sizes, counters are superior than bitmaps.

2.10 Extension of Estimation Range

We set the upper bound on the flow size that CSM and MLM can estimate in

Section 2.9 to 2,500. However, in today’s high-speed networks, the sizes of some flows

are much larger than 2,500. In order to extend the estimation range to cover these

large flows, we propose four approaches that increase the estimation upper bound, and

present extensive experimental results to demonstrate their effectiveness. Since MLM

generally performs better than CSE, we only discuss how to extend the estimation range

of MLM. CSE can be easily enhanced by similar approaches.

According to Section 2.4, each flow is assigned a unique storage vector. A flow’s

storage vector consists of l counters and each counter has b bits. Therefore, the

maximum number of packets that the storage vector can represent is l × (2b − 1). If we

increase b by one, the number of packets that the vector can represent will be doubled.

Similarly, if we increase l by a certain factor, the number of packets that the vector can

represent will be increased by the same factor. Based on these observations, we extend

the estimation range of MLM by increasing the value of b and l , respectively. In addition,

1 At the end of each measurement period, about half of the bits in the filters of
MRSCBF are set to ones.

2 At the end of each measurement period, less than half of the bits in the filters of
MRSCBF are set to ones.
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we add a sampling module to MLM and consider hybrid SRAM/DRAM implementation to

extend the estimation range.

2.10.1 Increasing Counter Size b

Our first approach to extend the estimation range is to enlarge the counter size

b. We repeat the same experiment on MLM presented in the third plot of Fig. 2-3

(Section 2.9.2), where M = 4Mb, l = 50, and n = 10M. This time, instead of computing

b from (2–27), we vary its value from 6 to 9. The new experimental results are shown in

Fig. 2-7. In the first plot, the maximum flow size that MLM can estimate is about 1,400

when b = 6. In the second plot, where b = 7, the maximum flow size is about 2,800,

which is twice of the maximum flow size that the first plot can achieve. When b is set to

8, the third plot shows that the estimation range of MLM is further extended. The fourth

plot shows that, when b = 9, the maximum flow size that MLM can estimate does not

increase any more when comparing with the third plot, which we will explain shortly. The

estimation accuracy of the above experiments is presented in Fig. 2-8, where the first

plot shows the estimation bias and the second plot shows the standard deviation of the

experimental results in Fig. 2-7. Generally speaking, both bias and standard deviation

increase slightly when b increases.

Since flows share counters in MLM, the size information of one flow in a counter

is the noise to other flows that share the same counter. When the amount of memory

allocated to MLM is fixed (M = 4Mb in these experiments), a larger value for b will

result in a smaller value for m, i.e., the total number of counters is reduced. Hence,

each counter has to be shared by more flows, and the average number of packets

stored in each counter will increase. That means heavier noise among flows, which

degrades the estimation accuracy, as is demonstrated by Figure 2-8. Moreover, although

a counter with a larger size b can keep track of a larger number of packets, since it also

carries more noise, MLM has to substract more noise from the counter value during the

estimation process. As a result, the estimation range cannot be extended indefinitely by
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simply increasing b, which explains the fact that the maximum flow size that MLM can

estimate does not increase when b reaches 9 in Figure 2-7.

2.10.2 Increasing Storage Vector Size l

Our second approach for extending the estimation range is to increase the storage

vector size l . We repeat the experiments in the previous subsection for MLM with

M =4Mb, b = 7, and n = 10M. We vary l from 50 to 1,000. Figure 2-9 presents the

experimental results. The first plot shows that the maximum flow size that MLM can

estimate is about 5,800 when l = 50. As we increase the value of l , MLM can estimate

increasingly larger flow sizes. However, when l becomes too large, estimation accuracy

will degrade, which is evident in the fourth plot. The reason is that each flow shares

too many counters with others, which results in excessive noise in the counters and

consequently introduce inaccuracy in the estimation process.

The estimation accuracy of the above experiments is presented in Fig. 2-10, where

the first plot shows the estimation bias and the second plot shows the standard deviation

of the experimental results in Fig. 2-9. Generally speaking, both bias and standard

deviation increase slightly when l increases. Clearly, the value of l should not be chosen

too large (such as l = 1, 000) in order to prevent estimation accuracy to degrade

significantly.

2.10.3 Employing Sampling Module

In our third approach, we add a sampling module to MLM to enlarge the estimation

range. The sampling technique has been widely used in network measurement [13, 35,

36, 66, 128]. We show that it also works for MLM. Let p be the sampling probability. For

each packet that the router receives in the data encoding phase, the router generates

a random number r in a range [0,N]. If r < p × N, the router processes the packet as

we describe in Section 2.4. Otherwise, it ignores the packet without encoding it in the

counter array. In the data decoding phase, the estimated flow size should be ŝ
p
, where ŝ

is computed from (2–18). The estimation range is expanded by a factor of 1
p
.
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We again repeat the experiments in the previous subsections for MLM with

M = 4Mb, l = 50, and n = 10M. The value of b is computed from (2–27). This

time, we introduce a sampling probability p and varies its value. Fig. 2-11 presents

the experimental results of MLM with p = 75%, 50%, 25%, and 2%, respectively. It

demonstrates that when the sampling probability decreases, the estimation range

increases. However, it comes with a penalty on estimation accuracy. Fig. 2-12 shows

the estimation bias and standard deviation of the estimation results in Fig. 2-11. If the

sampling probability is not decreased too small, e.g., when p ≥ 25%, the increase in bias

and standard deviation is insignificant. However, if the sampling probability becomes too

small such as 2%, the degradation in estimation accuracy also becomes noticeable.

2.10.4 Hybrid SRAM/DRAM Design

Can we extend the estimation range without any limitation and do so without any

degradation in estimation accuracy? This will require a hybrid SRAM/DRAM design.

In SRAM, we still choose the value of b based on (2–27). The limited size of each

counter means that a counter may be overflowed during the data encoding phase even

though the chance for this to happen is very small (Section 2.7). To totally eliminate the

impact of counter overflow, we keep another array of counters in DRAM, each of which

has a sufficient number of bits. The counters in DRAM are one-to-one mapped to the

counters in SRAM. When a counter in SRAM is overflowed, it is reset to zero and the

corresponding counter in DRAM is incremented by one. During offline data analysis,

the counter values are set based on both SRAM and DRAM data. Because overflow

happens only to a small fraction of SRAM counters and a DRAM access is made only

after an overflowed SRAM counter is accessed 2b times, the overall overhead of DRAM

access is very small.

2.11 Summary

Per-flow traffic measurement provides real-world data for a variety of applications

on accounting and billing, anomaly detection, and traffic engineering. Current online
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data collection methods cannot meet the requirements of being both fast and compact.

This work proposes a novel data encoding/decoding scheme, which mixes per-flow

information randomly in a tight SRAM space for compactness. Its online operation

only incurs a small overhead of one hash computation and one counter update per

packet. Two offline statistical methods — the counter sum estimation and the maximum

likelihood estimation — are used to extract per-flow sizes from the mixed data structures

with good accuracy. Due to its fundamentally different design philosophy, the new

measurement function is able to work in a tight space where exact measurement is

no longer possible, and it does so with the minimal number of memory accesses per

packet.
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Table 2-1. Number of memory accesses and number of hash computations per packet

memory hash constant?
accesses computations

CSM 2 1 Y
MLM 2 1 Y
CB ≥ 6 ≥ 3 N

MRSCBF 4.47 4.47 N
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Figure 2-1. Traffic distribution: each point shows the number (y coordinate) of flows that
have a certain size (x coordinate).
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Figure 2-2. • First Plot : estimation results by CSE when M = 2Mb. Each flow is
represented by a point in the plot, whose x coordinate is the true flow size s

and y coordinate is the estimated flow size ŝ . The equality line, y = x , is also
shown for reference. An estimation is more accurate if the point is closer to
the equality line. • Second Plot : 95% confidence intervals for the
estimations made by CSE when M = 2Mb. The width of each vertical bar
shows the size of the confidence interval at a certain flow size (which is the x

coordinate of the bar). The y coordinate of the middle point of each bar
shows the mean estimation for all flows of that size. Intuitively, the estimation
is more accurate if the confidence interval is smaller and the middle point is
closer to the equality line. • Third Plot : estimation results by MLM when
M = 2Mb. • Fourth Plot : 95% confidence intervals for the estimations made
by MLM when M = 2Mb. In these experiments, n = 10M.
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Figure 2-3. • First Plot : estimation results by CSM when M = 4Mb. • Second Plot : 95%
confidence intervals for the estimations made by CSM when M = 4Mb. •
Third Plot : estimation results by MLM when M = 4Mb. • Fourth Plot : 95%
confidence intervals for the estimations made by MLM when M = 4Mb. See
the caption of Fig. 2-2 for more explanation. In these experiments, n = 10M.
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Figure 2-4. • First Plot : estimation results by CSM when M = 8Mb. • Second Plot : 95%
confidence intervals for the estimations made by CSM when M = 8Mb. •
Third Plot : estimation results by MLM when M = 8Mb. • Fourth Plot : 95%
confidence intervals for the estimations made by MLM when M = 8Mb. See
the caption of Fig. 2-2 for more explanation. In these experiments, n = 10M.
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Figure 2-5. • First Plot : estimation results by CB when M = 2Mb. • Second Plot :
estimation results by CB when M = 4Mb. • Third Plot : estimation results by
CB when M = 8Mb.
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Figure 2-6. • First Plot : estimation results by MRSCBF when M = 8Mb. • Second Plot :
estimation results by MRSCBF when M = 40Mb. • Third Plot : estimation
results by MRSCBF when M = 80Mb. • Fourth Plot : estimation results in
logarithmic scale by MRSCBF when M = 80Mb.
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Figure 2-7. • First Plot : estimation results by MLM when b = 6. • Second Plot :
estimation results by MLM when b = 7. • Third Plot : estimation results by
MLM when b = 8. • Fourth Plot : estimation results by MLM when b = 9. In
these experiments, n = 10M, M = 4Mb.
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Figure 2-8. • First Plot : the estimation bias in the experimental results shown in
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Figure 2-9. • First Plot : estimation results by MLM when l = 50. • Second Plot :
estimation results by MLM when l = 70. • Third Plot : estimation results by
MLM when l = 100. • Fourth Plot : estimation results by MLM when
l = 1000. In these experiments, n = 10M, M = 4Mb.
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Figure 2-11. • First Plot : estimation results by MLM when p = 75%. • Second Plot :
estimation results by MLM when p = 50%. • Third Plot : estimation results
by MLM when p = 25%. • Fourth Plot : estimation results by MLM when
p = 2%. In these experiments, n = 10M, M = 4Mb.
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CHAPTER 3
SCAN DETECTION IN HIGH-SPEED NETWORKS

This chapter attempts to fill a missing piece in the existing research landscape.

Its goal is to optimally combine probabilistic sampling and bit sharing — the two most

effective memory reduction methods — to fulfill quantitatively specified performance

objectives. We have three contributions. First, we present a generalized scheme for

scan detection based on bit sharing. It incorporates probabilistic sampling and enhances

security through a private key. Second, as the main results in this chapter, we show

analytically how to optimally combine probabilistic sampling and bit sharing. We derive

the probability for the integrated sampling/bit-sharing scheme to miss reporting a

scanner and the probability to mistakenly report a non-scanner. We then construct

an iterative algorithm that solves a non-linear constrained optimization problem to

obtain the optimal values for the sampling probability and other parameters such

that the memory required to bound the above probabilities is minimized. Third, we

perform experiments based on real traffic trace and demonstrate that, using the optimal

parameters obtained from this work, we can reduce the memory consumption by three

to twenty times when comparing with the best existing work. Remarkably, the number

of bits required by our scheme is far smaller than the number of distinct sources in

the traffic trace. On average, it takes much less than 1 bit per source to perform scan

detection.

The rest of this chapter is organized as follows: Section 3.1 gives the problem

definition. Section 3.2 describes the related work. Section 3.3 describes our generalized

bit-sharing scheme. Section 3.4 presents the analytical results for optimal parameters.

Section 3.5 presents the experimental results. Section 3.6 gives the summary.

3.1 Problem Statement

The number of distinct destination addresses that an external source has contacted

is called the spread of the source. The problem of scan detection is to configure a
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firewall or an intrusion detection system to report all external sources whose spreads

exceed a certain threshold during a measurement period. We refer to these sources as

potential scanners (or scanners for short).

If a firewall or an IDS keeps the exact count of distinct destinations that each source

has contacted, it is able to report the scanners precisely. However, keeping track of

per-source information consumes a large amount of resources. The limited SRAM may

only allow us to estimate a rough count of distinct destinations that each source contacts

[110, 114, 115, 129]. When precisely reporting scanners is infeasible, the function of

scan detection must be defined in a probabilistic term.

We adopt the probabilistic performance objective from [110]. Let h and l be two

positive integers, h > l . Let α and β be two probability values, 0 < α < 1 and 0 < β < 1.

The objective is to report any source whose spread is h or larger with a probability

no less than α and report any source whose spread is l or smaller with a probability

no more than β. Let k be the spread of an arbitrary source src . The objective can be

expressed in terms of conditional probabilities:

Prob{report src as a scanner | k ≥ h} ≥ α

Prob{report src as a scanner | k ≤ l} ≤ β

(3–1)

We treat the report of a source whose spread is l or smaller as a false positive, and

the non-report of a source whose spread is h or larger as a false negative. Hence, the

above objective can also be stated as bounding the false positive ratio by β and the false

negative ratio by 1− α.

Our goal is to minimize the amount of SRAM that is needed for achieving the above

objective.

The memory requirement for detecting aggressive scanners is likely to be small.

For example, suppose an aggressive scanner makes 100 distinct contacts each second,

whereas a normal host rarely makes 100 distinct contacts in a day. To detect such a
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scanner, a firewall can set the measurement period to be a second. The number of

contacts that pass the firewall in such a small period is likely to be small. Consequently,

it does not need much memory to store them. However, the situation is totally different

for stealthy scanners that make contacts at low rates. Consider a scanner that makes

500 distinct contacts a day. If the measurement period is a day, we are able to set it

apart from the normal hosts. However, if the measurement period is a second, we

will not detect this scanner because it makes less than 0.006 contact per second on

average.

In order to detect different types of scanners, a firewall may execute multiple

instances of a scan detection function simultaneously, each having a different measurement

period. For aggressive scanners, a small period will be chosen so that they can be

detected in real time. For stealthy scanners, a large period will be chosen. In the

latter case, timely detection is of second priority because the scanners themselves

operate slowly. But the memory requirement is of first priority due to the large number

of contacts that are expected to pass through the firewall in a long measurement period.

Reducing memory consumption is the focus of this study.

3.2 Related Work

Venkataraman et al. [110] use hash tables to store the addresses of the sampled

contacts. Their main contribution is to derive the optimal sampling probability that

achieves a classification objective with pre-specified upper bounds on false-positive

ratio and false-negative ratio. However, because their algorithms store the contact

addresses, it leaves great room for improvement. Even if Bloom filters are used, the

room for improvement is still significant, as we have argued in Section 3.5.

Estan et al. [41] propose a variety of bitmap algorithms to store the contacts (or

active flows in their context). It saves space because each destination address is stored

as a bit. However, assigning one bitmap to each source is not cheap if the average

number of contacts per source is small. In addition, an index structure is needed
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to map a source to its bitmap. It is typically a hash table where each entry stores a

source address and a pointer to the corresponding bitmap. Cao et al. [13] develop the

thresholded bitmap algorithm based on the virtual bitmap algorithm presented in [41]

for spread estimation. They use probabilistic sampling to reduce the information to be

stored. Zhao et al. [129] share a set of bitmaps among all sources. The scheme assigns

three pseudo-randomly selected bitmaps to each source. When the source contacts

a destination, the destination is stored by setting one bit in each of the three bitmaps.

Because the bitmaps are shared by others, the information stored for one source

becomes noise for others. Yoon et al. [114, 115] observe that the noise introduced

by sharing bitmaps cannot be appropriately removed if the number of bitmaps is not

sufficiently large. By sharing bits instead of bitmaps, CSE considerably reduces the

memory consumption.

Also related is the work by Bandi et al. [5] on the heavy distinct hitter problem,

which is essentially the same as spreader classification. Their algorithm exploits TCAM

(Ternary Content Addressable Memory), a special kind of memory found in NPUs

(Network Processing Units). The emphasis of their work is on the processing time. A

related branch of research is the detection of heavy-hitters [17, 29, 33, 35, 40, 48, 81,

123]. A heavy-hitter is a source that sends a lot of packets during a measurement period

no matter whether the packets are sent to a few or many distinct destinations.

3.3 An Efficient Scan Detection Scheme

This section presents our efficient scan detection scheme (ESD).

3.3.1 Probabilistic Sampling

To save resources, a firewall (or IDS) samples the contacts made by external

sources to internal destinations, and it only stores the sampled contacts. The firewall

selects contacts for storage uniformly at random with a sampling probability p. The

sampling procedure is simple: the firewall hashes the source/destination address pair

of each packet that arrives at the external network interface into a number in a range
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[0,N). If the hash result is smaller than p × N, the contact will be stored; otherwise, the

contact will not be stored.

3.3.2 Bit-Sharing Storage

A bit array (also called bitmap) may be used to store all sampled contacts made

by a source [41]. The bits are initially zeros. Each sampled contact is hashed to a bit

in the bitmap, and the bit is set to one. At the end of the measurement period, we can

estimate the number of contacts, i.e., the spread of the source, based on the number of

zeros remaining in the bitmap. Using per-source bitmaps is not memory-efficient. On

one hand, the size of each bitmap has to be large enough to ensure the accuracy in

estimating the spread values of the scanners. On the other hand, the vast majority of

normal sources have small spread values and their bitmaps are largely wasted because

most bits remain zeros. To solve this problem, we want to put those wasted bits in good

use by allowing bitmaps to share their bits.

To fully share the available bits, ESD stores contacts from different sources in a

single bit array B. Let m be the number of bits in B. For an arbitrary source src , we

use a hash function to pseudo-randomly select a number of bits from B to store the

contacts made by src . The indices of the selected bits are H(src ⊕ R[0]), H(src ⊕ R[1]),

..., H(src ⊕ R[s − 1]), where H(...) is a hash function whose range is [0,m), R is an

integer array, storing randomly chosen constants whose purpose is to arbitrarily alter the

hash result, and s (≪ m) is a system parameter that specifies the number of bits to be

selected. The above bits form a logical bitmap of source src , denoted as LB(src).

Similarly, a logical bitmap can be constructed from B for any other source.

Essentially, we embed the bitmaps of all possible sources in B. The bit-sharing

relationship is dynamically determined on the fly as each new source src ′ whose

contacts are sampled by the firewall will be allocated a logical bitmap LB(src ′) from B.

At the beginning of a measurement period, all bits in B are reset to zeros. Consider

an arbitrary contact ⟨src , dst⟩ that is sampled for storage, where src is the source
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address and dst is the destination address. The firewall sets a single bit in B to one.

Obviously, it must also be a bit in the logical bitmap LB(src). The index of the bit to be

set for this contact is given as follows:

H(src ⊕ R[H(dst ⊕ K) mod s]).

The second hash, H(dst ⊕ K), ensures that the bit is pseudo-randomly selected from

LB(src). The private key K is introduced to prevent the hash collision attacks. In such

an attack, a scanner src finds a set of destination addresses, dst1, dst2, ..., that have

the same hash value, H(dst1) = H(dst2) = ... If it only contacts these destinations, the

same bit in LB(src) will be set, which allows the scanner to stay undetected. This type of

attacks can be prevented if we use a cryptographic hash function such as MD5 or SHA1,

which makes it difficult to find destination addresses that have the same hash value.

However, if a weaker hash function is used for performance reason, then a private key

becomes necessary. Without knowing the key, the scanners will not be able to predict

which destination addresses produce the same hash value.

To store a contact, ESD only sets a single bit and performs two hash operations.

This is more efficient than the methods that use hash tables [110] or have features

similar to Bloom filters that require setting multiple bits for storing each contact [129].

3.3.3 Maximum Likelihood Estimation and Scanner Report

At the end of the measurement period, ESD will send the content of B to an offline

data processing center. There, the logical bitmap of each source src is extracted and the

estimated spread k̂ of the source is computed. Only if k̂ is greater than a threshold value

T , ESD reports the source as a potential scanner. We will discuss how to keep track of

the source addresses in Section 3.3.5, and explain how to determine the threshold T in

Section 3.4. Below we derive the formula for k̂ .

Let k be the true spread of source src , and n be the number of distinct contacts

made by all sources. Let Vm be the fraction of bits in B whose values are zeros at the
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end of the measurement period, Vs be the fraction of bits in LB(src) whose values are

zeros, and Us be the number of bits in LB(src) whose values are zeros. Clearly, Vs =
Us

s
.

Depending on the context, Vm (or Vs , Us) is used either as a random variable or an

instance value of the random variable.

The probability for any contact to be sampled for storage is p. Consider an arbitrary

bit b in LB(src). A sampled contact made by src has a probability of 1
s

to set b to ‘1’,

and a sampled contact made by any other source has a probability of 1
m

to set b to ‘1’.

Hence, the probability q(k) for b to remain ‘0’ at the end of the measurement period is

q(k) = (1− p

m
)n−k(1− p

s
)k . (3–2)

Each bit in LB(src) has a probability of q(k) to remain ‘0’. The observed number of

‘0’ bits in LB(src) is Us . The likelihood function for this observation to occur is given as

follows:

L = q(k)Us (1− q(k))s−Us . (3–3)

In the standard process of maximum likelihood estimation, the unknown value k is

technically treated as a variable in (3–3). We want to find an estimate k̂ that maximizes

the likelihood function. Namely,

k̂ = arg max{L}
k

. (3–4)

Since the maxima is not affected by monotone transformations, we use logarithm to turn

the right side of (3–3) from product to summation:

ln(L) = Us · ln(q(k)) + (s − Us) · ln(1− q(k)).
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From (3–2), the above equation can be written as

ln(L) =Us((n − k) ln(1− p

m
) + k ln(1− p

s
))

+ (s − Us) · ln(1− (1− p

m
)n−k(1− p

s
)k).

To find the maxima, we differentiate both sides:

∂ ln(L)

∂k
= ln(

1− p

s

1− p

m

) ·
Us − s(1− p

m
)n−k(1− p

s
)k

1− (1− p

m
)n−k(1− p

s
)k

. (3–5)

We then let the right side be zero. That is,

Us = s(1− p

m
)n−k(1− p

s
)k . (3–6)

Taking logarithm on both sides, we have

ln
Us

s
= n ln(1− p

m
) + k(ln(1− p

s
)− ln(1− p

m
)),

k =
lnVs − n ln(1− p

m
)

ln(1− p

s
)− ln(1− p

m
)
. (3–7)

where Vs =
Us

s
. Suppose the number of sources (which equals to the number of logical

bitmaps) is sufficiently large. Because every bit in every logical bitmap is randomly

selected from B, in this sense, each of the n contacts has about the same probability p

m

of setting any bit in B. Hence, we have

E(Vm) = (1− p

m
)n. (3–8)

Applying (3–8) to (3–7), we have

k =
lnVs − lnE(Vm)

ln(1− p

s
)− ln(1− p

m
)
. (3–9)

Replacing E(Vm) by the instance value Vm, we have the following estimation for k .

k̂ =
lnVs − lnVm

ln(1− p

s
)− ln(1− p

m
)
, (3–10)
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where Vs can be measured by counting the number of zeros in LB(src), Vm can be

measured by counting the number of zeros in B, and s, p and m are pre-set parameters

of ESD (see the next section).

3.3.4 Variance of Vm

Let Ai be the event that the i th bit in B remains ‘0’ at the end of the measurement

period and 1Ai
be the corresponding indicator random variable. Let Um be the random

variable for the number of ‘0’ bits in B. We first derive the probability for Ai to occur and

the expected value of Um. For an arbitrary bit in B, each distinct contact has a probability

of p

m
to set the bit to one. All contacts are independent of each other when setting bits in

B. Hence,

Prob{Ai} = (1− p

m
)n, ∀i ∈ [0, s).

The probability for Ai and Aj , ∀i , j ∈ [0,m), i ̸= j , to happen simultaneously is

Prob{Ai ∩ Aj} = (1− 2p

m
)n.

Since Vm = Um

m
and Um =

∑m

i=1 1Ai
, we have

E(V 2
m) =

1

m2
E((

m∑
i=1

1Ai
)2)

=
1

m2
E(

m∑
i=1

12Ai
) +

2

m2
E(

∑
1≤i<j≤m

1Ai
1Aj

)

=
1

m
(1− p

m
)n +

m − 1

m
(1− 2p

m
)n.

Based on (3–8) and the equation above, we have

Var(Vm) = E(V 2
m)− E(Vm)

2

=
1

m
(1− p

m
)n +

m − 1

m
(1− 2p

m
)n − (1− p

m
)2n

≃
e−

np

m (1− (1 + np2

m
)e−

np

m )

m
. (3–11)
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3.3.5 Source Addresses

ESD does not store the source address of every arrival packet. Instead, it stores a

source address only when a contact sets a bit in B from ‘0’ to ‘1’. Hence, the frequency

of storing source addresses is much smaller than the frequency at which contacts are

sampled for setting bits in B. First, numerous packets may be sent from a source to

a destination in a TCP/UDP session. Only the first sampled packet may cause the

source address to be stored because only the first packet sets a bit from ‘0’ to ‘1’ and

the remaining packets will set the same bit (which is already ‘1’). Second, a source may

send thousands or even millions of packets through a firewall, but the number of times

its address will be stored is bounded by s (which is the number of bits in the source’s

logical bitmap). In summary, because the operation of storing source addresses is

relatively infrequent, these addresses can be stored in the main memory.

3.4 Optimal System Parameters and Minimum Memory Requirement

In this section, we first develop the constraints that the system parameters must

satisfy in order to achieve the probabilistic performance objective. Based on the

constraints, we determine the optimal values for the size s of the logical bitmaps, the

sampling probability p, and the threshold T . We also determine the minimum amount

of memory m that should be allocated for ESD to achieve the performance objective.

Recall that on-die SRAM may be shared by other functions.

3.4.1 Report Probability

Consider an arbitrary source src whose spread is k . Given a set of system

parameters, m, s, p and T , we derive the probability for ESD to report src as a scanner,

68



i.e., Prob{k̂ ≥ T}. From (3–10), we know that the following inequalities are equivalent.

k̂ ≥ T

lnVs − lnVm

ln(1− p

s
)− ln(1− p

m
)
≥ T

Vs ≤ Vm(
1− p

s

1− p

m

)T

Let Us be the random variable for the number of ‘0’ bits in LB(src). Us = s · Vs . The

above inequality becomes

Us ≤ s · Vm · (
1− p

s

1− p

m

)T . (3–12)

For a set of parameters m, s, p and T , we define a constant

C = s · Vm · (
1− p

s

1− p

m

)T ,

where the instance value of Vm can be measured from B after the measurement period.

Hence, the probability for ESD to report src is Prob{k̂ ≥ T} = Prob{Us ≤ C}.

Us follows the binomial distribution with parameters s and q(k), where q(k) in

(3–2) is the probability for an arbitrary bit in LB(src) to remain zero at the end of the

measurement period. Hence, the probability of having exactly i zeros in LB(src) is given

by the following probability mass function:

Prob{Us = i} =

(
s

i

)
· q(k)i · (1− q(k))s−i . (3–13)

We must have

Prob{k̂ ≥ T} = Prob{Us ≤ C}

=

⌊C⌋∑
i=0

(
s

i

)
· q(k)i · (1− q(k))s−i . (3–14)

69



3.4.2 Constraints for the System Parameters

We derive the constraints that the system parameters must satisfy in order to

achieve the performance objective in (3–1). First, we give the variance of Vm, which is

provided in (3–11).

Var(Vm) ≃
e−

np

m (1− (1 + np2

m
)e−

np

m )

m
. (3–15)

It approaches to zero as m increases. In Figure 3-1, we plot the ratio of the standard

deviation Std(Vm) =
√
Var(Vm) to E(Vm), which can be found in (3–8). The figure

shows that Std(Vm)/E(Vm) is very small when m is reasonably large. In this case, we

can approximately treat Vm as a constant.

Vm ≃ E(Vm) ≃ (1− p

m
)n. (3–16)

The probabilistic performance objective can be stated as two requirements. First,

the probability for ESD to report a source with k ≥ h must be at least α. That is,

Prob{k̂ ≥ T} ≥ α,∀k ≥ h. From (3–14), this requirement can be written as the following

inequality:

⌊C⌋∑
i=0

(
s

i

)
· q(k)i · (1− q(k))s−i ≥ α,

where C = s · Vm · ( 1− p

s

1− p

m

)T ≃ s · (1 − p

m
)n · ( 1− p

s

1− p

m

)T . The left side of the inequality is an

increasing function in k . Hence, to satisfy the requirement in the worst case when k = h,

the following constraint for the system parameters must be met:

⌊C⌋∑
i=0

(
s

i

)
· q(h)i · (1− q(h))s−i ≥ α. (3–17)
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Second, the probability for ESD to report a source with k ≤ l must be no more than β.

This requirement can be similarly converted into the following constraint:

⌊C⌋∑
i=0

(
s

i

)
· q(l)i · (1− q(l))s−i ≤ β. (3–18)

3.4.3 Optimal System Parameters

Our goal is to optimize the system parameters such that the memory requirement,

m, is minimized under the constraints (3–17) and (3–18). The problem is formally

defined as follows.

Minimize m (3–19)

Subject to
⌊C⌋∑
i=0

(
s

i

)
· q(h)i · (1− q(h))s−i ≥ α,

⌊C⌋∑
i=0

(
s

i

)
· q(l)i · (1− q(l))s−i ≤ β,

C = s · (1− p

m
)n · (

1− p

s

1− p

m

)T .

The parameters, h, l , α and β, are specified in the performance objective. The value

of n is decided based on the history data in the past measurement periods. To be

conservative, we take the the maximum number n∗ of distinct contacts observed in a

number of previous measurement periods. More specifically, (3–8) can be turned into a

formula for estimating n in each previous period if we replace E(Vm) with the instance

value Vm.

n̂ = −m

p
lnVm (3–20)

We derive the relative bias and the relative standard deviation of the above estimation.

Bias(
n̂

n
) = E(

n̂

n
)− 1 ≃

e
np

m − np2

m
− 1

2np
(3–21)
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Std(
n̂

n
) =

√
m

np
(e

np

m − np2

m
− 1)1/2 (3–22)

They both approach to zero as m increases. Based on the largest n̂ value observed in a

certain number of past measurement periods, we can set the value of n∗.

To solve the constrained optimization problem (3–19), we need to determine the

optimal values of the remaining three system parameters, s, p and T , such that m will be

minimized. We consider the left side of (3–17) as a function Fh(m, s, p,T ), and the left

side of (3–18) as Fl(m, s, p,T ). Namely,

Fh(m, s, p,T ) =

⌊C⌋∑
i=0

(
s

i

)
· q(h)i · (1− q(h))s−i ,

Fl(m, s, p,T ) =

⌊C⌋∑
i=0

(
s

i

)
· q(l)i · (1− q(l))s−i .

Both of them are non-increasing functions in T , according to the relation between C and

T . In the following, we present an iterative numerical algorithm to solve the optimization

problem. The algorithm consists of four procedures.

Algorithm 1 Potential(m, s, p)

INPUT: m, s, p and β
OUTPUT: The maximum value of Fh(m, s, p,T ) under the condition that Fl(m, s, p,T ) ≤ β
————————————————————————————————————————–
Pick a small integer T1 such that Fl(m, s, p,T1) > β and a large integer T2 such that
Fl(m, s, p,T2) ≤ β;
while T2 − T1 > 1 do

�T = ⌊(T1 + T2)/2⌋;
if Fl(m, s, p, �T ) ≤ β then T1 = �T else T2 = �T ;

end while
T ∗ = �T ;
return Fh(m, s, p,T ∗);

First, we construct a procedure called Potential(m, s, p), which takes a value of m,

a value of s and a value of p as input and returns the maximum value of Fh(m, s, p,T )

under the condition that Fl(m, s, p,T ) ≤ β is satisfied. Because Fh(m, s, p,T ) is a

non-increasing function in T , we need to find the smallest value of T that satisfies

Fl(m, s, p,T ) ≤ β. That can be done numerically through binary search: Pick
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a small integer T1 such that Fl(m, s, p,T1) ≥ β and a large integer T2 such that

Fl(m, s, p,T2) ≤ β. We iteratively shrink the difference between them by resetting one

of them to be the average T1+T2

2
, while maintaining the inequalities, Fl(m, s, p,T1) ≥ β

and Fl(m, s, p,T2) ≤ β. The process stops when T1 = T2, which is denoted as T ∗. The

procedure Potential(m, s, p) returns Fh(m, s, p,T ∗). The pseudo code is presented in

Algorithm 3.4.3.

Essentially, what Potential(m, s, p) returns is the maximum value of the left

side in (3–17) under the condition that (3–18) is satisfied. The difference between

Potential(m, s, p) and α provides us with a quantitative indication on how conservative or

aggressive we have chosen the value of m. If Potential(m, s, p) − α is positive, it means

that the performance achieved by the current memory size is more than required. We

shall reduce m. On the contrary, if Potential(m, s, p) − α is negative, we shall increase

m.

Given the above semantics, when we determine the optimal values for p and s, our

goal is certainly to maximize the return value of Potential(m, s, p).

Second, given a value of m and a value of s , we construct a procedure OptimalP(m, s)

that determines the optimal value p∗ such that Potential(m, s, p∗) is maximized. When

the values of m and s are fixed, Potential(m, s, p) becomes a function of p. It is a curve

as illustrated in Figure 3-2; see explanation under the caption (a) and ignore the arrows

in the figure for now.

We use a binary search algorithm to find a near-optimal value of p. Let p1 = 0

and p2 = 1. Let δ be a small positive value (such as 0.001). Repeat the following

operation: Let �p = (p1 + p2)/2. If Potential(m, s, �p) < Potential(m, s, �p + δ), set p1 to

be �p; otherwise, set p2 to be �p. The above iterative operation stops when p2 − p1 < δ.

The procedure OptimalP(m, s) returns (p1 + p2)/2, which is within ±δ/2 of the optimal.

This difference can be made arbitrarily small when we decrease δ at the expense of

increased computation overhead. We want to stress that it is one-time overhead (not
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online overhead) to determine the system parameters before deployment. The operation

of OptimalP(m, s) is illustrated by the arrows in Figure 3-2; see explanation under the

caption (b).

Third, given a value of m, we construct a procedure OptimalS (m) that determines

the optimal value s∗ such that Potential( m, s∗,OptimalP(m, s∗)) is maximized. When

the value of m is fixed, Potential(m, s,OptimalP(m, s)) becomes a function of s. It is a

curve as illustrated in Figure 3-3. We can use a binary search algorithm similar to that of

OptimalP(m, s) to find s∗.

Fourth, we construct a procedure OptimalM() that determines the minimum

memory requirement m∗ through binary search: Denote Potential(m,OptimalS(m),OptimalP(m,

OptimalS(m))) as Potential(m, ...). Pick a small value m1 such that Potential(m1, ...) ≤

α, which means that the performance objective is not met — more specifically, according

to the semantics of Potential(...), the constraint (3–17) cannot be satisfied if the

constraint (3–18) is satisfied. Pick a large value m2 such that Potential(m2, ...) ≥ α,

which means that the performance objective is met. Repeat the following operation. Let

�m = ⌊(m1 + m2)/2⌋. If Potential( �m, ...) ≤ α, set m1 to be �m; otherwise, set m2 to be

�m. The above iterative operation terminates when m1 = m2, which is returned by the

procedure OptimalM().

In practice, a network administrator will first define the performance objective that is

specified by α, β, h and l . He or she sets the value of n∗ based on history data, and then

sets m = OptimalM(), s = OptimalS(m), p = OptimalP(m, s) and T as the threshold

value T ∗ before the last call to Potential(m, s, p) is returned during the execution of

Optim-alM(). After the firewall (or IDS) is configured with these parameters and begins

to measure the network traffic, it also monitors the value of n∗. If the maximum number

of distinct contacts in a measurement period changes significantly, the values of m, s , p

and T will be recomputed.
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3.5 Experiments

3.5.1 Experimental Setup

We evaluate the performance of ESD and compare it with the existing work,

including the Two-level Filtering Algorithm (TFA) [110], the Thresholded Bitmap

Algorithm (TBA) [13], and the Compact Spread Estimator (CSE) [114]. TFA uses

two filters to reduce both the number of sources to be monitored and the number of

contacts to be stored. It is designed to satisfy the probabilistic performance objective in

(3–1). TBA is not designed for meeting the probabilistic performance objective. It cannot

ensure that the false positive/false negative ratios are bounded. CSE is designed to

estimate the spreads of the external sources in a very compact memory space. It can

be used for scan detection by reporting the sources whose estimated spreads exceed

a certain threshold. However, the design of CSE makes it unsuitable for meeting the

objective in (3–1).

Online Streaming Module (OSM) [129] is another related work. We do not

implement OSM in this study because Yoon et al. show that, given the same amount of

memory, CSE estimates spread values more accurately than OSM [114]. Moreover, the

operations of OSM share certain similarity with Bloom filters. To store each contact, it

performs three hash functions and makes three memory accesses. In comparison, ESD

performs two hash functions and makes one memory access.

The experiments use a real Internet traffic trace captured by Cisco’s Netflow at

the main gateway of our campus for a week. For example, in one day of the week, the

traffic trace records 10,702,677 distinct contacts, 4,007,256 distinct source IP addresses

and 56,167 distinct destination addresses. The average spread per source is 2.67,

which means a source contacts 2.67 distinct destinations on average. Figure 3-4 shows

the number of sources with respect to the source spread in log scale. The number of

sources decreases exponentially as the spread value increases from 1 to 500. After that,

there is zero, one or a few sources for each spread value.
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We implement ESD, TFA, TBA and CSE, and execute them with the traffic trace

as input. As part of the setup in each experiment, the values of h and l are given to

specify what to report as scanners. For example, if h = 500 and l = 0.7h, the sources

whose spreads are 500 or more should be reported, and the sources whose spreads

are 350 or less should not be reported. In the experiments, the source of a contact

is the IP address of the sender and the destination is the IP address of the receiver.

The measurement period is one day. A long measurement period helps to separate

low-rate scanners from normal hosts. The experimental results are the average over the

week-long data.

One performance metric used in comparison is the amount of memory that is

required for a scan detection scheme to meet a given probability performance objective.

Remarkably, the number of bits required by ESD is far smaller than the number of

distinct sources in the traffic trace. That is, ESD requires much less than 1 bit per source

to perform scan detection. Other performance metrics include the false positive ratio and

the false negative ratio, which will be explained further shortly.

3.5.2 Comparison in Terms of Memory Requirement

The first set of experiments compares ESD and TFA for the amount of memory

that they need in order to satisfy a given probabilistic performance objective, which is

specified by four parameters, α, β, h, and l . See Section 3.1 for the formal definition of

the performance objective. We do not compare TBA and CSE here because they are

not designed to meet this objective.

The memory required by ESD is determined based on the iterative algorithm in

Section 3.4.3. The values of other parameters, s, T and p, are decided by the same

algorithm. Using these parameters, we perform experiments on ESD with the traffic

trace as input, and the experimental results confirm that the performance objective is

indeed achieved for each day during the week. The amount of memory required by TFA
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is determined experimentally based on the method in [110] together with the traffic trace.

The parameters of TFA are chosen based on the original paper.

The memory requirements of ESD and TFA are presented in Tables 3-1-3-2 with

respect to α, β, h and l . For α = 0.9 and β = 0.1, Table 3-1 shows that TFA requires six

to twenty-four times of the memory that ESD requires, depending on the values of h and

l (which the system administrator will select based on the organization’s security policy).

For example, when h = 500 and l = 0.5h, ESD reduces the memory consumption by an

order of magnitude when comparing with TFA.

To demonstrate the impact of probabilistic sampling, the table also includes the

memory requirement of ESD when sampling is turned off (by setting p = 1). This version

of ESD is denoted as ESD-1. Since p is set as a constant, the iterative algorithm in

Section 3.4.3 needs to be slightly modified: The procedure OptimalP(m, s) will always

return 1, while other procedures remain the same. Table 3-1 shows that the memory

saved by sampling is significant when h is large. For example, when h = 5, 000 and

l = 0.3h, ESD with sampling uses less than one thirteenth of the memory that is needed

by ESD-1. However, when h becomes smaller or l
h

becomes larger, ESD has to choose

a larger sampling probability in order to limit the error in spread estimation caused by

sampling. Consequently, it has to store more contacts and thus require more memory.

For instance, when h = 500 and l = 0.5h, ESD with sampling uses 55.6% of the memory

that is needed by ESD-1.

Table 3-2 compares the memory requirements when α = 0.95 and β = 0.05. It

shows similar results: (1) ESD uses significantly less memory than TFA, and (2) the

probabilistic sampling method in ESD is critical for memory saving especially when h is

large or l
h

is small. The table also demonstrates that the memory requirement of either

ESD or TFA increases when the performance objective becomes more stringent, i.e., α

is set larger and β smaller.

77



TFA requires more memory because it stores the source and destination addresses

of the contacts. In [128], the authors also indicate that Bloom Filters [7, 8] can be used

to reduce the memory consumption. However, the paper does not give detailed design

or parameter settings. Therefore, we cannot implement the Bloom-filter version of TFA.

The paper claims that the memory requirement will be reduced by a factor of 2.5 when

Bloom filters are used. Even when this factor is taken into account in Tables 3-1-3-2,

memory saving by ESD will still be significant.

3.5.3 Comparison in Terms of False Positive Ratio and False Negative Ratio

The false positive ratio (FPR) is defined as the fraction of all non-scanners (whose

spreads are no more than l) that are mistakenly reported as scanners. The false

negative ratio (FNR) is the fraction of all scanners (whose spreads are no less than h)

that are not reported by the system. In the previous subsection, we have shown that,

given the bounds of FPR and FNR, it takes ESD much less memory to achieve the

bounds than TFA. Since CSE and TBA are not designed for meeting a given set of

bounds, we compare our ESD with them by a different set of experiments that measure

and compare the FPR and FNR values under a fixed amount of SRAM.

Given a fixed memory size m, we use OptimalS(m, s) in Section 3.4.3 to determine

the value of s in ESD, use OptimalP(m, s) to determine the value of p, and then set

the threshold T as h+l
2

. We perform experiments using the week-long traffic trace. For

m = 0.05MB, l = 0.5h, the results are presented in Tables 3-3. We also perform the

same experiments for CSE and TBA, and the results are presented in the table as well.

The optimal parameters are chosen for each scheme based on the original papers.

When the available memory is very small, such as 0.05MB in Table 3-3, CSE has

zero FNR but its FPR is 1.0, which means it reports all non-scanners. The reason is

that, without probabilistic sampling, CSE stores information of too many contacts such

that its data structure is fully saturated. In this case, the spread estimation method

of CSE breaks down. TBA has a small FPR but its FNR is large. For example, when
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h = 500, its FNR is 26%. Only ESD achieves small values for both FNR and FPR. For

example, when h = 500, its FNR is 7.4% and its FPR is 5.0%. These values decrease

quickly as h increases. When h = 1, 000, they are 1.0% and 0.55%, respectively, while

the FNR of TBA remains to be 26%.

3.6 Summary

Scan detection is one of the most important functions in intrusion detection

systems. The recent research trend is to implement such a function in the tight SRAM

space to catch up with the rapid advance in network speed. This work proposes an

efficient scan detection scheme based on a new method called dynamic bit sharing,

which optimally combines probabilistic sampling, bit-sharing storage, and maximum

likelihood estimation. We demonstrate theoretically and experimentally that the new

scheme is able to achieve a probabilistic performance objective with arbitrarily-set

bounds on worst-case false positive/negative ratios. It does so in a very tight memory

space where the number of bits available is much smaller than the number of external

sources to be monitored.
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distinct contacts that are sampled by ESD for storage. In our experiments
(reported in Section 3.5), when we use the system parameters determined
by the algorithm proposed in this section, the load factor never exceeds 2.
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Figure 3-2. (A) The curve (without the arrows) shows the value of Potential(m, s, p) with
respect to p when m = 0.45MB and s = 150. Its non-smooth appearance is
due to ⌊C⌋ in the formula of Fh(m, s, p,T ∗). Fh(m, s, p,T ∗) depends on the
values of ⌊C⌋ and q(h), which are both functions of p. (B) The arrows
illustrate the operation of OptimalP(m, s). In the first iteration (arrow i1), p2 is
set to be (p1 + p2)/2. In the second iteration (arrow i2), p1 is set to be
(p1 + p2)/2. In the third iteration (arrow i3), p2 is set to be (p1 + p2)/2.
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Table 3-1. Memory requirements (in MB) of ESD, TFA and ESD-1 (i.e. ESD with p = 1)
when α = 0.9 and β = 0.1.

l = 0.1h l = 0.3h l = 0.5h l = 0.7h
h ESD TFA ESD-1 ESD TFA ESD-1 ESD TFA ESD-1 ESD TFA ESD-1

500 0.09 2.02 0.33 0.19 2.53 0.43 0.30 3.61 0.54 0.97 6.12 1.01
1000 0.07 1.10 0.27 0.09 1.29 0.33 0.15 1.85 0.42 0.47 3.11 0.86
2000 0.03 0.55 0.24 0.05 0.71 0.29 0.08 1.02 0.42 0.25 1.62 0.86
3000 0.02 0.42 0.24 0.03 0.51 0.27 0.06 0.68 0.42 0.17 1.09 0.86
4000 0.01 0.32 0.21 0.03 0.38 0.27 0.03 0.52 0.42 0.13 0.83 0.86
5000 0.01 0.24 0.21 0.02 0.31 0.27 0.03 0.43 0.42 0.11 0.66 0.86

Table 3-2. Memory requirements (in MB) of ESD, TFA and ESD-1 (i.e. ESD with p = 1)
when α = 0.95 and β = 0.05.

l = 0.1h l = 0.3h l = 0.5h l = 0.7h
h ESD TFA ESD-1 ESD TFA ESD-1 ESD TFA ESD-1 ESD TFA ESD-1

500 0.12 2.41 0.38 0.22 3.27 0.48 0.48 4.59 0.68 1.56 8.03 1.60
1000 0.08 1.29 0.32 0.12 1.65 0.38 0.24 2.34 0.50 0.76 4.04 1.20
2000 0.03 0.69 0.26 0.08 0.87 0.32 0.13 1.21 0.47 0.38 2.12 1.20
3000 0.02 0.46 0.26 0.06 0.60 0.32 0.09 0.83 0.47 0.26 1.42 1.20
4000 0.02 0.37 0.23 0.04 0.45 0.32 0.06 0.63 0.47 0.20 1.08 1.20
5000 0.01 0.29 0.23 0.04 0.35 0.32 0.05 0.52 0.47 0.16 0.89 1.20

Table 3-3. False negative ratio and false positive ratio of ESD, CSE and TBA with
m = 0.05MB.

FNR FPR
h ESD CSE TBA ESD CSE TBA

500 7.4e-2 0 2.6e-1 5.0e-2 1 9.0e-6
1000 1.0e-2 0 2.6e-1 5.5e-3 1 9.0e-6
2000 4.2e-3 0 2.5e-1 2.0e-3 1 1.1e-5
3000 5.5e-3 0 2.5e-1 2.0e-3 1 1.0e-5
4000 0 0 2.4e-1 2.0e-3 1 7.0e-6
5000 0 0 2.4e-1 2.0e-3 1 7.0e-6
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CHAPTER 4
ORIGIN-DESTINATION FLOW MEASUREMENT IN HIGH-SPEED NETWORKS

This chapter designs an efficient approach for origin-destination flow measurement

in high-speed networks, where an origin-destination (OD) flow between two routers is

the set of packets that pass both routers. The OD flow measurement has widely usage

in many network management applications. We consider two performance challenges,

measurement efficiency and accuracy. The former requires measurement functions to

minimize per-packet processing overhead to keep up with today’s high-speed network.

The latter requires measurement functions to achieve accurate measurement results

with small bias and standard deviation. We design a novel measurement method

that employs a compact data structure for packet information storage and uses a

new statistical inference approach for OD flow measurement. Both simulations and

experiments are performed to demonstrate the effectiveness of our method.

The rest of this chapter is organized as follows: Section 4.1 gives the problem

statement and performance metrics. Section 4.2 describes the related work. Section 4.3

presents our new origin-destination flow measurement method. Section 4.4 discusses

the simulation results. Section 4.5 presents the experimental results. Section 4.6 gives

the summary.

4.1 Problem Statement and Performance Metrics

4.1.1 Problem Statement

Let S be a subset of routers of interest in a network. The problem is to measure

traffic volume between any pair of routers in S . We model an origin-destination (OD)

flow as the set of packets traverse between two routers (the undirectional case) or

traverse from one router to the other (the directional case). Our goal is to measure the

size of each OD flow in terms of number of packets.

Consider the set of access routers on the perimeter of an ISP network. If each

access router stores information about ingress packets (that enter the ISP network)
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and egress packets (that leave the ISP network) in separate data structures, we can

figure out the size of an directional OD flow by comparing the information in the ingress

data structure of the origin router and the information in the egress data structure of

the destination router. On the other hand, if each access router stores information of all

arrival packets in the same data structure, we can figure out the size of an undirectional

OD flow by comparing the information in the data structures of both routers. The

measurement method proposed in this work can be applied to both cases even though

our description uses the undirectional case for simplicity.

We consider two performance metrics, per-packet processing overhead and

measurement accuracy, which are discussed below.

4.1.2 Per-packet Processing Overhead

The maximum packet throughput that an online measurement function can achieve

is determined by the per-packet processing overhead of the function. In order to keep

up with today’s high-speed network, it is desirable to make the per-packet processing

overhead as small as possible, especially when the SRAM and processing circuits are

shared by other critical functions for routing, packet scheduling, traffic management and

security purposes.

The per-packet processing overhead is mainly determined by the computational

complexity and the number of memory accesses for each packet. When a router

receives a packet, it needs to perform certain computations to determine the proper

location for the information storage of that packet and at least one memory access for

the storage operation. We will show that our OD flow measurement function is able to

achieve extremely small per-packet processing overhead.

4.1.3 Measurement Accuracy

Let nc be the OD flow size of an origin/destination router pair and n̂c be the

corresponding measured result. The event for nc to fall into the interval [n̂c · (1 −

β), n̂c · (1 + β)] with probability at least α specifies the measurement accuracy of our

84



function, where α is a pre-determined accuracy parameter, e.g., 95%. A smaller value of

β means better measurement results.

If the memory requirement and the processing speed for each packet are unlimited,

we can achieve 100% measurement results. Otherwise, we have to compromise the

measurement accuracy if the memory resource is not enough or the processing speed

requirement is relatively stringent.

4.2 Related Work

The origin-destination (OD) flow measurement methods mainly fall into two

categories. One is intermediate-based [74, 82, 88, 105, 119–121] and the other is

end-to-end-based [11, 37, 42]. The intermediate based methods [119–121] employ

statistical techniques to indirectly estimate the OD flows based on link load, network

routing, and configuration data, which are widely available information. Zhang et al.

[119] assume an underlying gravity model [82, 100] for OD flows and use edge link load

data together with additional information on intermediate routers to analyze the model.

After that, they introduce the tomographic method [12, 26] to determine the results

that most fit with the obtained gravity model. The methods in [120, 121] extend the

point-to-point measurement to point-to-multipoint measurement using a regularization

based on entropy penalization. These intermediate-based methods share a common

property that jeopardizes them from being widely applied: the estimation relies on traffic

volumes, which are usually unknown information. As a result, these methods either

cannot achieve high measurement accuracy or incurs severe computational cost.

Considine et al. [28] use the method of moments for OD packet counts, which

extracts a traffic digest from the packet stream. As the study in [11] points out, when the

noise-to-signal ratios are high, the performance of [28] will be degraded.

Cao, Chen and Bu [11] design a quasi-likelihood approach (QMLE) for OD flow

measurement based on a continuous variant of the Flajolet-Martin sketches [43]. The

approach maintains an array of buckets, whose initial values are all set to infinity at
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the beginning of a measurement period, in each network node. When it receives a

packet, the node performs two hash operations. The first one pseudo-randomly chooses

a bucket i in the array for packet information storage. The second one generates an

exponential random number v based on the packet, whose expected value is one. After

the two hash operations, the node updates the bucket i by v . If the original value of i

is larger than v , the node will set the value of bucket i to v . Otherwise, it will skip this

packet. At the end of the measurement period, in order to estimate the OD flow size

of two routers r1 and r2, QMLE derives the quasi-probability distribution of the packet

information and employs the maximum likelihood estimation to compute the OD flow size

based on the values of the two bucket arrays.

QMLE claims that it is able to achieve small per-packet update overhead and

accurate measurement result with a compact memory requirement. However, for each

packet, it needs to perform two hash operations and more than one memory access on

average (It always needs one memory read and sometimes one memory write), while

the optimal should be exactly one hash operation and one memory access per-packet.

Moreover, it also has space to improve in terms of measurement accuracy. With the

assignment of the same amount of memory resource, the proposed method in this study

is able to achieve much more accurate measurement result, which will be demonstrated

by simulations and experiments in Section 4.4 and 4.5, respectively.

Also related is to recover the missing values during traffic measurement by the

technique of compressive sensing in [122], which proposes a spatio-temporal framework

to exploit the presence of both global structure and local structure. Rincon et al. [98]

provide a multi-resolution analysis to develop a general model for traffic matrices, which

is based on the diffusion wavelet transform. They find that the model must be sparse

and also demonstrate it by experimental results.
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4.3 Origin-Destination Flow Measurement

We first describe two straightforward approaches and discuss their limitations.

We then motivate the bitmap idea that we use in this study. Finally, we present our

origin-destination flow measurement method (ODFM) in details.

4.3.1 Straightforward Approaches and Their Limitations

A straightforward approach is for each router to store the information of all packets

that pass it. In this way, when we want to measure the OD flow size of two routers, we

only need to compare the two sets of packet information and count how many packets

the two sets have in common, i.e., the cardinality of the intersection of the two sets.

Clearly, storing information of all packets is unrealistic since the number of packets

passing a router is huge in high-speed networks and it imposes an extremely large

memory requirement on the router.

In order to reduce the memory requirement, we can store the signatures of packets

instead. The signature of a packet is a hash value of the packet with a fixed length.

When the length of the signature is long enough, e.g., 160 bits if using SHA-1 [89], the

chance of two packets having the same signatures is negligibly small. Therefore, we

can count the number of identical signatures that stored in the two routers to obtain the

OD flow size. This enhancement can reduce the memory requirement to some extent.

However, it is still not memory efficient. Suppose there are 1M packets that pass a

router during a measurement period. When the length of the signature is 160 bits long,

a router needs 20MB (1M × 160/8) memory to store the information of all signatures,

which is still too much in practise. Using smaller signatures cannot solve the problem.

For example, if we reduce the signature length to just 16 bits, the memory requirement is

still 2MB, far higher than the goal of this study, less than 1 bit per packet.

Another solution is for a router to maintain a counter, whose initial value is set to

zero, for each of other routers in the network. In order to notify the current router which

routers a packet has passed, it needs to carry the information of all previous routers
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in its header. When a router receives a packet, it first checks the packet header and

obtains the information of which routers this packet has passed. It then increases the

corresponding counters by one. Finally, the router adds its own information into the

packet before sending it out. At the end of the measurement period, in order to obtain

the OD flow size of router r1 and router r2, we first check r1 and find the counter that

corresponds to r2, which stores the number of packets that enter r2 and exit from r1.

We then check r2 and find the counter that corresponds to r1, which stores the number

of packets that enter r1 and exit from r2. The summation of the two counters is the OD

flow size of r1 and r2. Although the computation for the OD flow size is very simple at

the end of the measurement period, this approach has two main drawbacks during the

packet processing period. First, the router needs to extract the information of all routers

that stored in a packet and updates the corresponding counters, which slows down the

packet processing speed and cannot keep up with the line speed in today’s high-speed

networks. Second, each packet has to carry the information of all routers it has passed,

which requires the modification of the packet structure and incurs unnecessary storage

overhead to the packet.

4.3.2 ODFM: Motivation and Overview

We design a bitmap based OD flow measurement method that is able to solve

the problems that the above two approaches have. Instead of storing the signatures

of packets, each router maintains a bit array with a fixed length and initially all bits

in the array are set to zero. When the router receives a packet, it pseudo-randomly

maps the packet to one bit of the array by a hash operation and sets the bit to one.

At the end of the measurement period, we measure the OD flow size of two routers

by comparing their bit arrays. Since a packet always uses the same hash function to

choose a bit in the arrays for all routers and the size of each bit array is fixed within a

measurement period, it will map to the same location in the bit arrays of any routers it

has passed. Therefore, if a packet enters router r1 and exits from r2 or the other way
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around, its corresponding bit in these two bit arrays must be both set to one. Based on

this observation, we can take a bitwise AND operation of the two bit arrays and count

the number of ones in the combined bit array to measure the OD flow.

Note that this approach may introduce the overestimation problem, which could

lead to an inaccurate measurement result. Suppose two packets, called p1 and p2, map

to a same location j by the hash function. While p1 passes one router and p2 passes

the other. In this case, the j th bit of both bit arrays of the two routers will be set to one.

When we compare the two bit arrays, we will falsely treat p1 and p2 as a same packet

and overestimate the OD flow size. However, there is a nice property of our scheme:

Because the bit for each packet is randomly picked in the bit array, the event for any two

packets to choose the same bit in the array has an equal probability to happen. When

the number of packets and the size of the bit array are large enough, this event occurs

in the bit array uniformly at random and the overestimation problem can be removed

through statistical analysis. This property enables us to design a compact yet accurate

measurement method. Moreover, in our scheme, a router only needs to perform one

hash operation and one memory accesses per packet, which is very efficient and

feasible for high-speed networks.

4.3.3 ODFM: Storing the Packet Information

ODFM consists of two components: one for storing the packet information into

routers, the other for measuring the OD flow of any two routers. This subsection

presents the first component and the second one will be described in the next

subsection.

At the beginning of the measurement period, each router maintains a bit array

B with a fixed length m. Initially each bit in B is set to zero. The i th bit in the array is

denoted as B[i ]. When a router receives a packet p, it pseudo-randomly picks one bit

in B by performing a hash operation H(p) and set the bit to one, where H(..) is a hash

function whose output range is [0..m − 1]. More specifically, to store the packet p, ODFM
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performs the following assignment:

B[H(p)] := 1. (4–1)

Actually a router does not have to perform the hash operation on all the content of a

packet. In the network layer, a packet can be uniquely identified by its IP header, which

stores the packet label information, i.e., source IP address and destination IP address

and so on. For two packets that are fragments of some original, larger packet, although

they share the same source/destination IP addresses and identification number, their

fragmentation offset values are different. Therefore, a router only needs to perform the

hash operation (H(p)) on the IP header of a packet, which can further reduce the hash

computational complexity and improve the processing speed. This enhancement can be

also applied to the two straightforward approaches in Section 4.3.1.

It is worth noting that a router only needs to perform one hash operation and sets

one bit in its bit array per packet, which is very simple, efficient, and can be easily

implemented in high-speed routers.

4.3.4 ODFM: Measuring the Size of Each OD Flow

At the end of the measurement period, all routers will report its bit array to a

centralized server, e.g., the network management center, which performs the offline

measurement. ODFM employs the maximum likelihood estimation (MLE) [15] to

measure the OD flow of any two routers based on their bit arrays. Let S1 and S2 be the

set of packets that pass the two routers r1 and r2. Let n1 and n2 be the cardinalities of

S1 and S2, respectively, i.e., n1 = |S1|, n2 = |S2|, nc be the number of common packets

that r1 and r2 share, i.e., the OD flow size of the two routers, which is the value that we

want to measure in this study. Figure 4-1 illustrates the relationship of n1, n2 and nc .

Obviously, we have nc = |S1 ∩ S2|. Let B1 and B2 be the two bit arrays of r1 and r2, U1

and U2 be the number of ‘0’s in B1 and B2, respectively, V1 and V2 be the percentage of

bits in B1 and B2 whose values are zero. Clearly, V1 =
U1

m
and V2 =

U2

m
.
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The measurement consists of two steps. In the first step, we compute the cardinality

of S1 (i.e., n1) and the cardinality of S2 (i.e., n2) based on B1 and B2, respectively. In the

second step, we take a bitwise AND operation of B1 and B2 to generate a new bit array,

denoted as Bc , to compute the OD flow size nc . Let Uc be the number of ‘0’s in Bc , Vc

be the percentage of bits in Bc whose values are zero. Clearly, Vc = Uc

m
. We compute nc

based on Bc and the results obtained in previous step, i.e., the values of n1 and n2.

4.3.4.1 Measure n1 and n2

The number of packets that a router receives during a measurement period can be

easily obtained by adding a counter whose initial value is set to zero. When it comes

a new packet, the router simply increases the counter by one. In this way, we can

obtain the exact values of n1 and n2, which we will use to measure nc in the following

subsection.

4.3.4.2 Measure nc

After n1 and n2 are obtained, we take a bitwise AND operation of B1 and B2,

denoted as Bc , to measure nc . More specifically, we have

Bc [i ] = B1[i ] & B2[i ], ∀i ∈ [0..m − 1]. (4–2)

For an arbitrary bit b in Bc , it is ‘0’ if and only if the following two conditions are

both satisfied. First, it is not chosen by any packet in S1 ∩ S2. If b is chosen by a packet

p ∈ S1 ∩ S2, we know the corresponding bits in both B1 and B2 will be set to ‘1’.

Therefore, b will be ‘1’. Second, it is either not chosen by any packet in S1 − S2 or not

chosen by any packet S2 − S1. If it is chosen by both a packet p1 ∈ S1 − S2 and a packet

p2 ∈ S2 − S1, the corresponding bits in both B1 and B2 will be also set to ‘1’. As a result,

b will be ‘1’. For the first condition, a packet in S1 ∩ S2 has probability 1
m

to set b to ‘1’,

which means the probability for b not to be set by this packet is 1 − 1
m

. As Figure 4-1

shows, nc = |S1 ∩ S2|. Therefore, the probability for b not to be set to ‘1’ by any packet

in S1 ∩ S2 is (1 − 1
m
)nc . Similarly, the probability for it not to be chosen by any packet in
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S1 − S2 is (1− 1
m
)n1−nc and the probability for it not to be chosen by any packet in S2 − S1

is (1− 1
m
)n2−nc . As a result, the probability q(nc) for b to remain ‘0’ in Bc is

q(nc) = (1− 1

m
)nc{1− (1− (1− 1

m
)n1−nc )

× (1− (1− 1

m
)n2−nc )}

= (1− 1

m
)n1 + (1− 1

m
)n2 − (1− 1

m
)n1+n2−nc (4–3)

Each bit in Bc has a probability q(nc) to be ‘0’. The observed number of ‘0’ bits in Bc

is Uc . Therefore, the likelihood function for this observation to occur is given as follows:

L = q(nc)
Uc × (1− q(nc))

m−Uc (4–4)

Following the standard process of maximum likelihood estimation, we find an optimal

value of nc that can maximize the above likelihood function. Namely, we want to find

n̂c = arg max{L}
nc

(4–5)

To find n̂c , we take a logarithm operation to both sides of (4–4).

lnL = Uc × ln q(nc) + (m − Uc)× ln(1− q(nc)) (4–6)

We then differentiate the above equation:

d lnL

dnc
= (

Uc

q(nc)
− m − Uc

1− q(nc)
)× q′(nc)

= (
Uc

q(nc)
− m − Uc

1− q(nc)
)× ln(1− 1

m
)

× (1− 1

m
)n1+n2−nc , (4–7)

since according to (4–3), we have

q′(nc) =
dq(nc)

dnc

= ln(1− 1

m
)× (1− 1

m
)n1+n2−nc . (4–8)
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In order to compute n̂c , we set the right side of (4–7) to zero, i.e.

(
Uc

q(nc)
− m − Uc

1− q(nc)
)× ln(1− 1

m
)× (1− 1

m
)n1+n2−nc = 0 (4–9)

Since neither of ln(1− 1
m
) and (1− 1

m
)n1+n2−nc could be 0 when m is positive, we have

Uc

q(nc)
− m − Uc

1− q(nc)
= 0. (4–10)

Applying (4–3) to (4–10), we have

(1− 1

m
)n1 + (1− 1

m
)n2 − (1− 1

m
)n1+n2−nc =

Uc

m

= Vc . (4–11)

In above equation, m, n1, and n2 are all known values, and Vc can also be computed

when the packets information are recorded. As a result, we can measure nc in the

following formula:

nc =n1 + n2 −
ln((1− 1

m
)n1 + (1− 1

m
)n2 − Vc)

ln(1− 1
m
)

(4–12)

4.3.5 Measurement Accuracy

The previous subsection gives the measurement formula for nc by MLE. We analyze

the measurement accuracy of our method in this subsection. According to the standard

theory of MLE [86], when the values of m, n1, and n2 are large enough, the measured

OD flow size n̂c approximately follows a normal distribution:

n̂c ∼ Norm

(
nc ,

1

I(n̂c)

)
, (4–13)
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where I(n̂c) is the fisher information 1 of L, which is defined as follows

I(n̂c) = −E
[
d2lnL

dn2c

]
. (4–14)

According to (4–7), we compute the second-order derivative of lnL

d2lnL

dn2c
= ln(1− 1

m
)×

[(
− Uc · q′(nc)

q2(nc)
− (m − Uc) · q′(nc)

(1− q(nc))2

)
× C −

(
Uc

q(nc)
− m − Uc

1− q(nc)

)
× C

]
, (4–15)

where C = (1− 1
m
)n1+n2−nc and q′(nc) is given in (4–8).

We use the probabilistic counting method [54] to compute the expected value of

Uc . Let Xi be the event that the i th bit in Bc remains ‘0’ at the end of the measurement

period and 1Xi
be the corresponding indicator random variable. As the size of Bc is m,

for an arbitrary bit b, it has probability q(nc) to remain ‘0’. Uc is the number of ‘0’s in Bc ,

Uc =
∑m−1

i=0 1Xi
. Hence,

E(Uc) =

m−1∑
i=0

E(1Xi
) =

m−1∑
i=0

q(nc) = m · q(nc) (4–16)

Therefore, we have

I(n̂c) = −E
[
d2lnL

dn2c

]
= ln(1− 1

m
)×

(
m · q′(nc)

q(nc)
+
m · q′(nc)

1− q(nc)

)
× C , (4–17)

as the expected value of ( Uc

q(nc)
− m−Uc

1−q(nc)
) is 0.

1 The fisher information [67] is a way of measuring the amount of information that an
observable random variable x carries about an unknown parameter θ upon which the
likelihood function of θ, L(θ) = f (x ; θ), depends.
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According to (4–13), the variance of n̂c is

Var(n̂c) =
1

I(n̂c)

=
1

ln(1− 1
m
)×

(
m·q′(nc)
q(nc)

+ m·q′(nc)
1−q(nc)

)
× C

. (4–18)

and the confidence interval of our measurement is

n̂c ±
Zα√

ln(1− 1
m
)×

(
m·q′(nc)
q(nc)

+ m·q′(nc)
1−q(nc)

)
× C

, (4–19)

where α is the confidence level parameter and Zα is the α percentile for the standard

Gaussian distribution [9]. For example, when α = 99%, Zα = 2.58.

4.4 Simulations

We first evaluate the performance of our method ODFM by simulations in this

section. We will present experimental results based on real traffic trace in the next

section. In both simulations and experiments, we compare ODFM with the most related

work, QMLE [11]. For fair comparison, we assign the same amount of memory to ODFM

and QMLE. We compare them in terms of online processing overhead and offline

measurement accuracy.

Simulations are performed under system parameters, n1, n2, and nc . For an

origin-destination router pair, n1 is the number of packets that one router receives

during the measurement period, and n2 is the number of packets that the othe router

receives. Parameter nc is the actual OD flow size. The amount of memory used is set to

be 1MB.

In the first set of simulations, we let n1 = 6, 000, 000, n2 = 6, 000, 000, 300, 000, or

100, 000. We vary nc from 100 to 50,000. We use ODFM and QMLE to measure the flow

size, and compare it with nc to see how accurate the measurement is.
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In the second set of simulations, we model a more realistic scenario, where n1,

n2 and nc are randomly chosen. The values of n1 and n2 are randomly selected from

the range of [100, 000, 10, 000, 000], and the value of nc is randomly selected from

[100, 50, 000] in each simulation run.

4.4.1 Processing Overhead

Per-packet processing overhead of a measurement method is mainly determined by

the number of memory accesses and the number of hash operations for each packet.

Table 4-1 shows the averaged results when n1 = 6, 000, 000, n2 = 6, 000, 000, and

nc varies from 100 to 50, 000. ODFM requires only 1 hash operation and 1 memory

access (memory write) for each packet, which is the optimal. QMLE requires more

per-packet processing overhead. It incurs 1.50 memory accesses and 2 hash operations

on average. Furthermore, per-packet processing overhead of ODFM is constant,

while QMLE requires variable per-packet processing overhead, which is undesirable in

practice. Table 4-2 and Table 4-3 present similar results with n2 = 300, 000 and 100, 000

respectively. Table 4-4 shows the results when the values of n1 and n2 are randomly

chosen in the range [100, 000, 10, 000, 000] and the value of nc is randomly chosen in the

range of [100, 50, 000].

4.4.2 Measurement Accuracy

Figures 4-2-4-4 present the measurement results of ODFM and QMLE. Each figure

consists of four plots. Each point in the first plot (ODFM) or the second plot (QMLE)

represents an OD flow. The x-axis is the actual flow size nc , and the y -axis is the

estimated value n̂c . We also show the equality line, y = x , for reference. Clearly, the

closer a point is to the equality line, the better the estimation result is. The third plot

shows the corresponding measured bias of the first two plots, which is E(n̂c − nc). The

fourth plot shows the corresponding standard deviation of the first two plots, which is
√

Var(n̂c)

nc
. In order to clearly present the estimation results of the two methods, we divide

the horizontal coordinate into 25 measurement bins of width 2,000, and numerically
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measure the bias and standard deviation in each bin. The three figures present the

following results.

As shown in the first plot of Figure 4-2, when the values of n1 and n2 are the same,

ODFM has a small bias in its measurement, which is understandable because it is well

known that the maximum likelihood estimation may produce small bias under certain

parameter settings. The second plot shows that QMLE performs better and produces

almost perfect results. However, this is only part of the story. When the values of n1

and n2 are different, as shown in Figure 4-3 where n1 = 6, 000, 000 and n2 = 300, 000,

ODFM performs nearly perfectly, while QMLE produces large bias. As the difference

between n1 and n2 widens, the bias of QMLE becomes larger, whereas the performance

of ODFM is actually improved, which is shown in Figure 4-4 where n1 = 6, 000, 000 and

n2 = 100, 000. Now the question is which case is closer to the reality, n1 and n2 having

close values or diverse values? It is the latter, as we will show in the next section.

Figure 4-5 compares the performance of ODFM and QDFM when n1 and n2 are

randomly picked in the range [100, 000, 10, 000, 000]. Clearly, ODFM outperforms QMLE

by a wide margin. The reason is that randomly-selected values of n1 and n2 tend to be

very different than being close to each other.

4.5 Experiments

We further evaluate the performance of ODFM and QMLE by experiments in

this section. The experimental dataset that we use is obtained from Abilene network

(Internet2) [3], which is collected and shared by Yin Zhang [124]. The network consists

of 12 routers that are located at different cities in US [1]. The dataset contains 24 weeks

of Abilene traffic matrices from March 1st to September 10th, 2004. The resolution of

the dataset is 5 minutes, which means there are 24× 7× 24× 12 = 48, 384 5-min traffic

matrices. In each 5-min traffic matrices, the traffic flows of the routers range from 0.5

Gigabytes to 20 Gigabytes. We set the duration of a measurement period to 5 minutes
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and assume that the packet size is 1,500 bytes, which means the routers receive about

0.3M to 13M packets in one measurement period.

We allocate 1MB memory resource to each router and implement the two

measurement methods based on the 24 weeks’ traffic matrices. The experimental

results are similar for those weeks. In this section, we only present the results for the

first week.

4.5.1 Number of Packets for an Origin-Destination Pair

Before measuring the size of each OD flow, we first study the number of packets

that the origin router and the destination router receive, which are denoted as n1 and

n2 respectively. We randomly pick 100 OD pair in the traffic matrices and present the

values of n1 and n2 in Figure 4-6. The x-axis is the index of the OD pair. Each index

corresponds to an Origin-Destination pair, (n1, n2). The figure shows that the values of n1

and n2 are very different from each other in most cases. For example, for the tenth OD

pair, n1 = 1, 111, 022 and n2 = 17, 795, 961. The ratio between n1 and n2 is about 0.06.

As the previous section shows, ODFM is not able to work well in this situation. We will

demonstrate it shortly.

4.5.2 Processing Overhead

Table 4-1 shows the averaged results of the per-packet processing overhead in

terms of the number of memory accesses and the number of hash operations for each

packet. Like previous section, ODFM requires only 1 hash operation and 1 memory

access (memory write) for each packet. QMLE requires more per-packet processing

overhead than ODFM. It incurs 1.17 memory accesses for each packet and 2 hash

operations on average. Furthermore, ODFM requires constant per-packet processing

overhead. While QMLE requires unpredicted per-packet processing overhead in terms

of memory accesses.
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4.5.3 Measurement Accuracy

Similar to Figure 4-2-4-5, Figure 4-7 has four plots. The first plot presents the

estimation results of ODFM. The second plots presents the estimation results of QMLE.

The third plot shows the corresponding estimation bias and the last plot shows the

standard deviation. Clearly ODFM works far better than QMLE, which matches the

simulation results in Figure 4-5. The reason is that in the traffic matrices, the origin

router and the destination router are likely to receive different number of packets. And

the performance of QMLE will degrade in that situation, while ODFM does not have this

kind of problem.

4.6 Summary

This chapter proposes a new method for OD flow measurement which employs

the bitmap data structure for packet information storage and uses statistical inference

approach to compute the measurement results. Our method not only requires smaller

per-packet processing overhead but also achieves much more accurate results,

when comparing with the best existing approach. We implement both simulations

and experiments to demonstrate the superior performance of our method.
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Figure 4-1. The relation between two routers r1 and r2

 0

 10000

 20000

 30000

 40000

 50000

 0  10000 20000 30000 40000 50000

E
st

im
at

ed
 v

al
ue

OD flow size

ODFM

 0

 10000

 20000

 30000

 40000

 50000

 0  10000 20000 30000 40000 50000

E
st

im
at

ed
 v

al
ue

OD flow size

QMLE

-5000

-4000

-3000

-2000

-1000

 0

 1000

 0  10000  20000  30000  40000  50000

OD flow size

ODFM_bias
QMLE_bias

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10000  20000  30000  40000  50000

OD flow size

ODFM_stderr
QMLE_stderr

Figure 4-2. • First Plot : estimation results by ODFM when n1 = 6, 000, 000 and
n2 = 6, 000, 000. • Second Plot : estimation results by QMLE when
n1 = 6, 000, 000 and n2 = 6, 000, 000. • Third Plot : bias of ODFM and QMLE,
which is the measured E(n̂c − nc) with respect to nc . • Fourth Plot : standard

deviation of ODFM and QMLE, which is the measured
√

Var(n̂c)

nc
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Figure 4-3. • First Plot : estimation results by ODFM when n1 = 6, 000, 000 and
n2 = 300, 000. • Second Plot : estimation results by QMLE when
n1 = 6, 000, 000 and n2 = 300, 000. • Third Plot : bias of ODFM and QMLE,
which is the measured E(n̂c − nc) with respect to nc . • Fourth Plot : standard

deviation of ODFM and QMLE, which is the measured
√

Var(n̂c)
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.
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Table 4-1. Number of memory accesses and number of hash operations per packet with
n1 = 6, 000, 000 and n2 = 6, 000, 000

memory hash constant?
accesses operations

ODFM 1 1 Yes
QMLE 1.50 2 No

Table 4-2. Number of memory accesses and number of hash operations per packet with
n1 = 6, 000, 000 and n2 = 300, 000

memory hash constant?
accesses operations

ODFM 1 1 Yes
QMLE 1.56 2 No

Table 4-3. Number of memory accesses and number of hash operations per packet with
n1 = 6, 000, 000 and n2 = 100, 000

memory hash constant?
accesses operations

ODFM 1 1 Yes
QMLE 1.54 2 No

Table 4-4. Number of memory accesses and number of hash operations per packet with
the values of n1 and n2 are randomly assigned between 100,000 and
10,000,000

memory hash constant?
accesses operations

ODFM 1 1 Yes
QMLE 1.22 2 No
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Figure 4-4. • First Plot : estimation results by ODFM when n1 = 6, 000, 000 and
n2 = 100, 000. • Second Plot : estimation results by QMLE when
n1 = 6, 000, 000 and n2 = 100, 000. • Third Plot : bias of ODFM and QMLE,
which is the measured E(n̂c − nc) with respect to nc . • Fourth Plot : standard

deviation of ODFM and QMLE, which is the measured
√

Var(n̂c)
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Figure 4-5. • First Plot : estimation results by ODFM when the values of n1 and n2 are
randomly assigned between 100,000 and 10,000,000. • Second Plot :
estimation results by QMLE when the values of n1 and n2 are randomly
assigned between 100,000 and 10,000,000. • Third Plot : bias of ODFM and
QMLE, which is the measured E(n̂c − nc) with respect to nc . • Fourth Plot :

standard deviation of ODFM and QMLE, which is the measured
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Table 4-5. Number of memory accesses and number of hash operations per packet

memory hash constant?
accesses operations

ODFM 1 1 Yes
QMLE 1.17 2 No
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Figure 4-7. • First Plot : estimation results by ODFM when n1 = 1, 000, 000 and
n2 = 1, 000, 000. • Second Plot : estimation results by QMLE when
n1 = 1, 000, 000 and n2 = 1, 000, 000. • Third Plot : bias of ODFM and QMLE,
which is the measured E(n̂c − nc) with respect to nc . • Fourth Plot : standard

deviation of ODFM and QMLE, which is the measured.
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.

103



CHAPTER 5
SIZE ESTIMATION PROBLEM IN RFID SYSTEMS

RFID (radio-frequency identification) tags are becoming ubiquitously available

in warehouse management, object tracking and inventory control. Researchers have

been actively studying RFID systems as an emerging pervasive computing platform

[73, 78, 79, 87, 116, 118], which helps create a multi-billion dollar market [31]. This

chapter focuses on periodically and automatically estimating the number of RFID tags

in a large deployment area. In a large RFID systems, active tags are likely to use due

to their longer transmission distance. However, these battery-powered tags need to

be recharged when they run out of energy. Recharging tens of thousands of tags is

a laborious operation. Moreover, sometimes tagged products may be stacked up,

which makes tags not easily accessible. To prolong the lifetime of tags and reduce the

frequency of battery recharge, all functions that involve large-scale transmission by

many tags should be energy-efficient. To the best of our knowledge, this work is the

first to design energy-efficient protocols for the estimation problems in large-scale RFID

systems that use active tags.

The rest of the study is organized as follows: Section 5.1 discusses the related

work. Section 5.2 defines the problem to be solved and the system model. Sections 5.3

and 5.4 propose two energy-efficient algorithms for the RFID estimation problem.

Section 5.5 evaluates the algorithms through simulations. Section 5.6 gives the

summary.

5.1 Related Work

Most existing work focuses on how to efficiently read the tag IDs. Collision occurs

when multiple tags transmit their IDs in the same time slot. Collision arbitration protocols

mainly fall into two categories: the framed ALOHA-based protocols [16, 61, 94, 111,

117] and the tree-based protocols [25, 53, 72, 83, 85, 90]. In the former category, each

polling request carries a frame length, and every tag individually chooses a slot in the
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frame to transmit its ID. The process repeats until all tags successfully transmit their IDs

to the RFID reader. In the latter category, a reader first sends out an ID prefix string.

The tags whose ID matches the string will respond. If a collision happens, the reader will

append a ‘0’ or ‘1’ to the prefix string and send out the new string. This process repeats

until only one tag responds. Essentially the approach traverses a binary tree with the tag

IDs being the leaf nodes.

Instead of identifying individual RFID tags, Floerkemeier [44, 45] studies the

problem of estimating the cardinality of a tag set based on the number of empty slots.

The proposed scheme employs a Bayesian probability estimation to achieve fast

estimation. The scheme is similar to hash-based estimators [38, 113] and the difference

is discussed in [64]. In Kodialam and Nandagopal’s approach [63], information from

tags are collected by a RFID reader in a series of time frames. Each frame consists

of a number of slots, and the tags probabilistically respond in those slots. Using the

probabilistic counting methods, the reader estimates the number of tags based on

the number of empty slots or the number of collision slots in each frame. Their best

estimator is called the Unified Probabilistic Estimator (UPE). A follow-up work by the

same authors proposes the Enhanced Zero-Based Estimator (EZB) [64], which makes

its estimation based on the number of empty slots. The focus of the above estimators is

to reduce the time it takes a reader to complete the estimation process. Because their

goal is not conserving energy for active tags, their design is not geared towards reducing

the number of transmissions made by the tags.

The Lottery-Frame scheme (LoF) [93] by Qian et al. employs a geometric

distribution-based scheme to determine which slot in a time frame each tag will respond.

It significantly reduces the estimation time when comparing with UPE. However, every

tag must respond in each of the time frames, resulting in large energy cost when active

tags use their own power to transmit. The First Non-Empty slots Based algorithm
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(FNEB) [49] uses the slot number of the first reply from tags in a frame to count RFID

tags in both static and dynamic environments.

Also related is a novel security protocol proposed by Tan et al. to monitor the event

of missing tags in the presence of dishonest RFID readers [108]. In order to prevent a

dishonest reader from replaying previously collected information, they maintain a timer

in the server and periodically update the system clock. Li et al. [68] design a series of

efficient protocols that employ novel techniques to identify missing tags in large-scale

RFID systems.

None of the above estimators are designed with energy conservation in mind. In the

following, we will present our energy efficient estimators.

5.2 Problem Definition And System Model

5.2.1 RFID Estimation Problem

The problem is to design efficient algorithms to estimate the number of RFID

tags in a deployment area without actually reading the ID of each tag. Let N be the

actual number of tags and N̂ be the estimate. The estimation accuracy is specified by

a confidence interval with two parameters: a probability value α and an error bound

β, both in the range of (0, 1). The requirement is that the probability for N

N̂
to fall in the

interval [1− β, 1 + β] should be at least α, i.e.,

Prob{(1− β)N̂ ≤ N ≤ (1 + β)N̂} ≥ α.

Our goal is to reduce the energy overhead incurred to the tags during the estimation

process that achieves the above accuracy. Prior works on the RFID estimation problem

focus on time-efficiency, which is the amount of time a RFID reader spends in estimating

the number of tags in the system. Our work focuses on energy-efficiency, which is the

amount of energy the tags spend during estimation process.
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5.2.2 Active Tags

The type of active RFID systems considered in this work is applicable to a large

deployment area that is hundreds of feet or more across. Passive tags are beyond the

scope of this work. If they were used, one would have to take the RFID reader and move

around the whole area, collecting tag information once every few feet. Active tags allow

a reader to collect information from one location.

Tagged goods (such as apparel) may stack in piles, and there may be obstacles,

such as racks filled with merchandize, between a tag and the reader. We expect active

tags are designed to transmit with significant power that is high enough to ensure

reliable information delivery in such a demanding environment. Hence, energy cost due

to the tags’ transmissions is the main concern in our algorithm design; it increases at

least in the square of the maximum distance to be covered by the RFID system. Energy

consumption that powers a tag’s circuit for computing and receiving information is not

affected by long distance and obstacles. Our new estimators are designed for RFID

systems where power consumption by tags is dominated by transmission events due to

long distances that the systems need to cover. Energy consumed by the RFID reader is

less of a concern. We assume the reader transmits at sufficiently high power.

5.2.3 Communication Protocol

We use the following communication protocol between a reader and tags. The

reader first synchronizes the clocks of the tags and then performs a sequence of

pollings. Clock synchronization only needs to happen at the beginning of the protocol

execution. RFID systems operate in low-rate wireless channels. Our new estimators

only take a few seconds to complete. Clock drift should not be a major issue in a

low-rate channel within such a short period time.

In each polling, the reader sends out a request, which is followed by a slotted time

frame during which the tags respond. The polling request from the reader carries a

contention probability 0 < p ≤ 1 and a frame size f . Each tag will participate in the
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current polling with probability p. If it decides to participate, it will pick a slot uniformly

at random from the frame, and transmit a bit string (called response) in that slot. The

format of the response depends on the application. If the tag decides to not participate,

it will keep silent. In our solutions, p will be set in the order of 1
N

.

If we know a lower bound Nmin of N, the contention probability can be implemented

efficiently to conserve energy. For example, a company’s inventory of certain goods may

be in the thousands and never before reduced below a certain number, or the company

has a policy on the minimum inventory, or the RFID estimation becomes unnecessary

when the number of tags is below a threshold. In these cases, we will have a lower

bound Nmin, which can be much smaller than N. If we know such a value of Nmin, we

can implement a contention probability p without requiring all tags to participate in the

contention process. Since only a small number of tags actually participate in contention,

energy cost is reduced. The implementation is described as follows: At the beginning

of a polling, each tag makes a probabilistic decision: It goes to a standby mode for the

current polling with probability 1 − 1
Nmin

and wakes up until the next polling starts, or

it stays awake to receive the polling request with probability 1
Nmin

and then decides to

respond with probability min{p × Nmin, 1}. For example, if N = 10, 000 and Nmin = 1, 000,

then only 10 tags stay awake in each polling. In Section 5.3.5, another energy-reduction

method, called request-less pollings, will be proposed to eliminate most polling requests.

In the above communication protocol, the reader’s request may include an optional

prefix and only tags that satisfy the prefix will participate in the polling. For example,

suppose all tags deployed in one section of a warehouse carry the 96-bit GEN2 IDs that

begin with “000” in the Serial Number field. In order to estimate the number of tags in

this section, the request carries a predicate testing whether the first three bits of a tag’s

Serial Number is “000”.
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5.2.4 Empty/Singleton/Collision Slots

A slot is said to be empty if no tag responds (transmits) in the slot. It is called a

singleton slot if exactly one tag responds. It is a collision slot if more than one tag

responds. A singleton or collision slot is also called a non-empty slot. The Philips I-Code

system [101] requires a slot length of 10 bits in order to distinguish singleton slots from

collision slots. On the contrary, one bit is enough if we only need to distinguish empty

slots from non-empty slots — ‘0’ means empty and ‘1’ means non-empty. Hence, the

response will be much shorter (or consume much less energy) if an algorithm only

needs to know empty/non-empty slots, instead of all three types of slots as required by

[63].

In order to prolong the lifetime of tags, there are two ways to reduce their energy

consumption: reducing the size of each response and reducing the number of

responses. We will design algorithms that require only the knowledge of empty/non-empty

slots and employ statistical methods to minimize the amount of transmission needed

from the tags.

5.3 Generalized Maximum Likelihood Estimation Algorithm

Our first estimator for the number of RFID tags is called the generalized maximum

likelihood estimation (GMLE) algorithm. It fully utilizes the information from all pollings in

order to minimize the number of pollings it needs to meet the accuracy requirement.

5.3.1 Overview

GMLE uses the polling protocol described in Section 5.2.3. The frame size f is fixed

to be one slot. The RFID reader adjusts the contention probability for each polling. Let pi

be the contention probability of the i th polling. GMLE only records whether the sole slot

in each polling is empty or non-empty. Based on this information, it refines the estimate

N̂ until the accuracy requirement is met. Let zi be the slot state of the i th polling. When

at least one tag responds, the slot is non-empty and zi = 1. When no tag responds, it is

empty and zi = 0. The sequence of zi , i ≥ 1, forms the response vector.
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At the i th polling, each tag has a probability pi to transmit and, if any tag transmits,

zi will be one. Hence,

Prob{zi = 1} = 1− (1− pi)
N ≈ 1− e−Npi , (5–1)

where N is the the actual number of tags.

If the contention probabilities of the pollings are picked too small, the response

vector will contain mostly zeros. If the contention probabilities are picked too large, the

response vector will contain mostly ones. Both cases do not provide sufficient statistical

information for accurate estimation. As will be discussed shortly, our analysis shows that

the optimal contention probability for minimizing the number of pollings is pi = 1.594/N.

The problem is that we do not know N (which is the quantity we want to estimate).

In order to determine pi , GMLE consists of an initialization phase and an iterative

phase. The former quickly produces a coarse estimation of N. The latter refines the

contention probability and generates the estimation result.

5.3.2 Initialization Phase

We want to pick a small value for the initial contention probability p1 at the first

polling. The expected number of responding tags is Np1. If p1 is picked too large, a lot of

tags will respond, which is wasteful because one response or many responses produce

the same information — a non-empty slot. Suppose we know an upper bound Nmax of

N. This information is often available in practice. For example, we know Nmax is 10,000 if

the warehouse is designed to hold no more than 10,000 microwaves (each tagged with

a RFID), or the company’s inventory policy requires that in-store microwaves should not

exceed 10,000, or the warehouse only has 10,000 RFID tags in use. Nmax can be much

bigger than N. We pick p1 = 1
Nmax

such that the expected number of responding tags is

no more than one. If z1 = 0, we multiply the contention probability by a constant C(> 1),

i.e., p2 = p1×C for the second polling. We continue multiplying the contention probability

by C after each polling until a non-empty slot is observed. When that happens (say, at
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the l th polling), we have a coarse estimation of N to be 1/pl . Then we move to the next

phase. When C is relatively large, the initialization phase only takes a few pollings to

complete due to the exponential increase of the contention probability.

5.3.3 Iterative Phase

This phase iteratively refines the estimation result after each polling, and terminates

when the specified accuracy requirement is met. Let N̂i be the estimated number of tags

after the i th polling. To compute N̂i , the reader performs three tasks at the i th polling.

First, it sets the contention probability as follows before sending out the polling request:

pi =
ω

N̂i−1

, (5–2)

where N̂i−1 is the estimate after the previous polling and ω is a system parameter, which

will be extensively analyzed in the next subsection. Second, based on the received zi

and the history information, the reader finds the new estimate of N that maximizes the

following likelihood function:

Li =

i∏
j=1

(1− pj)
N(1−zj )(1− (1− pj)

N)zj , (5–3)

where (1− pj)
N(1−zj )(1− (1− pj)

N)zj is the probability for the observed state zj of the j th

polling to occur. Namely, we want to find

N̂i = arg max{Li}
N

. (5–4)

Third, after computing N̂i , the reader has to determine if the confidence interval of the

new estimate meets the requirement. In the following, we show how the above tasks can

be achieved.

5.3.3.1 Compute the value of N̂i

We compute the new estimate of N that maximizes (5–3). Since the maxima is not

affected by monotone transformations, we use logarithm to turn the right side of the
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equation from product to summation:

ln(Li) =

i∑
j=1

[
N(1− zj) ln(1− pj) + zj ln(1− (1− pj)

N)

]
.

To find the maxima, we differentiate both sides:

∂ ln(Li)

∂N
=

i∑
j=1

[
(1− zj) ln(1− pj)− zj

(1− pj)
N ln(1− pj)

1− (1− pj)N

]
. (5–5)

We then set the right side to zero and solve the equation for the new estimate N̂i . Note

that the derivative is a monotone function of N, we can numerically obtain N̂i through

bisection search.

5.3.3.2 Termination Condition

Using the δ−method [15], we show in Appendix A that, when i is large, N̂i

approximately follows the Gaussian distribution:

Norm

(
N,

(1− (1− pi)
N)

i(1− pi)N ln2(1− pi)

)
.

The variance of N̂i is

Var(N̂i) ≈
1− (1− pi)

N

i(1− pi)N ln2(1− pi)
. (5–6)

When N is large and pi is small, we can approximate (1− pi)
N as e−Npi and ln(1− pi) as

pi . The above variance becomes

Var(N̂i) ≈
eNpi − 1

ip2i
. (5–7)

Hence, the confidence interval of N is

N̂i ± Zα ·

√
eN̂ipi − 1

ip2i
, (5–8)

where Zα is the α percentile for the standard Gaussian distribution. For example, when

α = 95%, Zα = 1.96. Because N is undetermined, we use N̂i as an approximation when

computing the standard deviation in (5–8).
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The termination condition for GMLE is therefore

Zα ·

√
eN̂ipi − 1

ip2i
≤ N̂i · β, (5–9)

where β is the error bound. The above inequality can be rewritten as

√
i ≥ Zα

√
eN̂ipi − 1

N̂ipiβ
. (5–10)

When i is large, the estimation changes little from one polling to the next. Hence,

pi = ω/N̂i−1 ≈ ω/N̂i . We have

i ≥ Z 2
α · (eω − 1)

ω2β2
. (5–11)

Hence, if ω is determined, we can theoretically compute the approximate number of

pollings that is required in order to meet the accuracy requirement. For example, if

α = 95%, β = 5%, and ω = 1.594 (which is the optimal value to be given shortly), 2372

pollings will be required. Note that (5–11) is independent with the actual number of tags,

N. Hence, our approach has perfect scalability.

Fig. 5-1 shows the simulation result of GMLE when N = 10, 000, α = 95%, β = 5%

and ω = 1.594. The simulation setup can be found in Section 5.5. The middle curve is

the estimated number of tags, N̂i , with respect to the number pollings. It converges

to the true value N represented by the central straight line. The upper and lower

curves represent the 95% confidence interval, which shrinks as the number of pollings

increases.

5.3.4 Determine the value of ω

We demonstrate the impact of the value ω on two performance metrics: the number

of pollings and the number of tag responses (i.e., the number of tag transmissions). The

former measures the estimation time since each polling takes an equal amount of time

for request/response exchange. The latter measures the energy cost because each

response corresponds to one tag making one transmission in a slot.
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5.3.4.1 Number of Pollings

According to (5–11), the number of pollings for meeting the accuracy requirement is
Z2
α·(eω−1)

ω2β2 . To find its minimum value, we differentiate it with respect to ω and let the result

be zero. Solving the equation, we have ω = 1.594. Hence, the optimal value of pi that

minimizes the number of pollings is

pi =
1.594

N̂i−1

. (5–12)

5.3.4.2 Number of Responses

We count the total number of responses during the estimation process. After a

small number of pollings, the estimation will closely approximate N (see Fig. 5-1).

Hence, the expected number of responses for each polling is Npi ≈ Ni−1pi = ω. After
Z2
α·(eω−1)

ω2β2 pollings are made, the total number of responses is roughly

Z 2
α · (eω − 1)

ω2β2
ω =

Z 2
α · (eω − 1)

ωβ2
. (5–13)

Our simulation results in Section 5.5 demonstrate that the approximation in the

above count is reasonably accurate. It is an increasing function with respect to ω,

which means that a larger value of ω will lead to a larger number of responses. We

give the intuition as follows: A larger ω means a larger contention probability and

thus more collisions. Two or more responses in a collision slot produce the same

amount of information as one response in a singleton slot (see further explanation in

Section 5.3.6). In other words, in order to generate the necessary amount of information

for meeting the accuracy requirement, more responses must be needed if there are

more collisions.
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5.3.4.3 Summary

In Fig. 5-2, we plot the number of pollings and the number of responses with

respect to the value of ω. The number of pollings is minimized at ω = 1.594. When

ω is smaller than 1.594, its value controls the performance tradeoff between the two

metrics. When we decrease ω, the energy cost (i.e., the number of responses) drops at

the expenses of the estimation time (i.e., the number of pollings). Our further simulations

in Section 5.5 show that even at ω = 1.594, the energy cost of GMLE is far below those

of the existing protocols.

5.3.5 Request-less Pollings

We observe that, after a number of pollings, the value of pi will stay in a very small

range and does not change much. It becomes unnecessary for the RFID reader to

transmit it at each polling. Hence, we improve GMLE as follows: If the percentage

change in pi during a certain number M1 of consecutive pollings is below a small

threshold, the reader will broadcast a polling request, carrying the latest value of pi ,

a flag indicating that it will no longer transmit polling requests for a certain number

M2 of slots, and the value of M2. Without receiving further polling requests, the tags

will respond with the same contention probability in the subsequent M2 slots. This is

called the request-less pollings. After M2 slots, the reader will recalculate the contention

probability, broadcast another polling request, carrying the new probability value, a flag,

and M2. This process repeats until the termination condition in (5–9) is met. With the

threshold being 10%, M1 = 10, and M2 = 50, our simulation results show that the

performance difference caused by request-less pollings is negligibly small even though

the contention probability during request-less pollings may be slightly off the value set by

(5–2). Request-less pollings can also be applied to the algorithm in the next section.

5.3.6 Information Loss due to Collision

GMLE has a frame size of one slot. It obtains only binary information at each

polling. No matter how many tags respond, the information that the reader receives is
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always the same, i.e., zi = 1, which implies information loss when two or more tags

decide to transmit at a polling. Let’s compare two scenarios. In one scenario, only one

tag responds at a polling. In the other, two tags respond. These two scenarios generate

the same information but the energy cost of the second scenario is twice of the first. To

address this issue, we design another algorithm that reduces the probability of collision

and, moreover, compensate the impact of collision in its computation.

5.4 Enhanced Generalized Maximum Likelihood Estimation Algorithm

The enhanced generalized maximum likelihood estimation (EGMLE) algorithm is

our second estimator for the number of RFID tags. It also utilizes history information

from previous pollings and uses the maximum likelihood method to estimate the number

of tags. However, instead of only obtaining binary information, it computes the number

of responses in each polling. Because more information can be extracted, it is able to

achieve much better energy efficiency than GMLE.

5.4.1 Overview

EGMLE uses the same polling protocol as GMLE does, except that its frame size

f is larger than one in order to reduce the probability of collision. The result of the i th

polling, xi , is no longer a binary value. Instead, it is an estimate of the number of tags

that respond during the polling.

EGMLE takes two steps to solve the collision problem. First, it increases the frame

size f such that the tags that decide to respond at a polling are likely to respond

at different slots in the frame. We pick values for pi and f such that the collision

probability is very small. Second, we compensate the remaining impact of collision

in our computation.

EGMLE also consists of an initialization phase and an iterative phase. The

initialization phase of EGMLE is the same as the initialization phase of GMLE, except

that when the RFID reader obtains the first non-zero result xl at the l th polling with a
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contention probability pl , it computes a coarse estimation of N as xl
pl

. Then it moves to

the next phase below.

5.4.2 Iterative Phase

This phase iteratively refines the estimation after each polling, and terminates when

the specified accuracy requirement is met. The reader performs four tasks during the

i th polling. First, it computes the contention probability before sending out the polling

request.

pi =
ω

N̂i−1

, (5–14)

where N̂i−1 is the estimate after the previous polling and ω is one by default. As we

will show in the next subsection, performance tradeoff can be made by choosing other

values for ω.

Second, the reader computes the number of responses xi in the current frame.

Third, based on the received xi and the history information, the reader computes the

new estimate of N that maximizes the following likelihood function:

Li =

i∏
j=l+1

[
1√

2πNpj(1− pj)
· e−

((1+ε)xj−Npj )
2

2Npj (1−pj )

]
, (5–15)

where ε is introduced to compensate for collision and the iterative phase begins from the

(l + 1)th polling. The above formula and the value of ε will be derived shortly. The new

estimate is
N̂i = arg max{Li}

N
. (5–16)

Fourth, after computing N̂i , the reader determines if the estimate meets the

accuracy requirement. In the following, we give the details of the above tasks.

5.4.2.1 Compute the number of responses

At the i th polling, the reader measures the number of non-empty slots in the frame,

denoted as xi , which is an integer in the range of [0..f ]. Due to possible collision, the
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actual number of responses, denoted as x∗i , can be greater. Let x∗i = (1+ ε)xi . The value

of ε is determined below.

Since each tag independently decides to respond with probability pi , x∗i follows a

binomial distribution, Bino(N, pi), i.e.,

Prob{x∗i = k} =

(
N

k

)
pki (1− pi)

N−k . (5–17)

Suppose ω takes the default value, 1. When i is large, Ni−1 approximates N and thus

pi ≈ 1/N. If N is sufficiently large, Prob{x∗i = 2} ≈ 0.1839, Prob{x∗
i = 3} ≈ 0.0613,

Prob{x∗i = 4} ≈ 0.0153, and the probability decreases exponentially with respect to k .

Prob{x∗i > 4} is only about 0.0037.

Next, we compute the probability for collision to happen at the i th polling, which is

denoted as Probi{collision}.

Probi{collision} =

N∑
k=2

Probi{collision|x∗i = k} × Prob{x∗i = k}

=

f∑
k=2

(1− P(f , k)

f k
)× Prob{x∗i = k}+

N∑
k=f+1

1× Prob{x∗i = k},

where P(f , k) = f !
(f−k)!

is the permutation function. Fig. 5-3 shows the collision

probability Probi{collision} with respect to f . It diminishes quickly as f increases. When

f = 10 (which is what we use in the simulations), Probi{collision} is just 0.046. With

such a small probability, the chance for more than two tags involved in a collision or

more than one collision at a polling is exceedingly small and thus ignored. Therefore, to

approximate x∗
i , we multiply xi by 1.046 to compensate the impact of collision. Namely,

ε = 0.046.

5.4.2.2 Compute the value of N̂i

Recall that the iterative phase starts at the (l + 1)th polling. After the i th polling,

the reader has collected the values of xj , l < j ≤ i . By our previous analysis, we know
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that x∗
i = (1 + ε)xi and it follows a binomial distribution Bino(N, pj). When N is large

enough, the binomial distribution can be closely approximated by a Gaussian distribution

Norm(µj ,σj) with parameters µj = Npj and σj =
√
Npj(1− pj). Namely,

x∗j ≈ (1 + ε)xj ∼ Norm(Npj ,Npj(1− pj)). (5–18)

Hence, the probability for the measured number of responses, (1 + ε)xj , to occur

under this distribution is 1√
2πNpj (1−pj )

· exp[− ((1+ε)xj−Npj )
2

2Npj (1−pj )
]. The likelihood function for all

measured numbers of responses in the pollings, (1 + ε)xj , l < j ≤ i , to occur is

Li =

i∏
j=l+1

[
1√

2πNpj(1− pj)
· e−

((1+ε)xj−Npj )
2

2Npj (1−pj )

]
. (5–19)

Our goal is to find the value N̂i that maximizes the likelihood function. We first take

logarithm on both sides of (5–19).

ln(Li) =

i∑
j=l+1

[
ln

1√
2πNpj(1− pj)

− ((1 + ε)xj − Npj)
2

2Npj(1− pj)

]
. (5–20)

We then differentiate both sides.

∂ln(Li)

∂N
=

i∑
j=l+1

[
− 1

2N
+

(1 + ε)2x2j − (Npj)
2

2N2pj(1− pj)

]

=

i∑
j=l+1

(1 + ε)2x2j − (Npj)
2

2N2pj(1− pj)
− i − l

2N
. (5–21)

Finally, we set the right side to be zero and numerically compute the value of N̂i .

5.4.2.3 Termination Condition

The fisher information1 I(N̂i) of Li is defined as follows

I(N̂i) = −E
[
∂2ln(Li)

∂N2

]
. (5–22)

1 The fisher information [67] is a way of measuring the amount of information that an
observable random variable x carries about an unknown parameter θ upon which the
likelihood function of θ, L(θ) = f (x ; θ), depends.
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According to (5–21), we have

I(N̂i) = E

[ i∑
j=l+1

(1 + ε)2x2j
N3pj(1− pj)

− i − l

2N2

]

=

i∑
j=l+1

(Npj)
2 + Npj(1− pj)

N3pj(1− pj)
− i − l

2N2
(5–23)

=

i∑
j=l+1

pj

N(1− pj)
+
i − l

2N2
. (5–24)

Above, we have applied E((1 + ε)2x2j ) = (Npj)
2 + Npj(1 − pj) in (5–23) because

(1 + ε)xj ∼ Norm(Npj ,Npj(1− pj)) and E(x2) = (E(x))2 + Var(x).

Following the classical theory for MLE, when i is sufficiently large, the distribution of

N̂i is approximated by

Norm(N,
1

I(N̂i)
). (5–25)

Hence, the confidence interval is

N̂i ± Zα ·
√

1

I(N̂i)
. (5–26)

Note that we use N̂i as an approximation for N in the computation when necessary since

N is unknown. The termination condition for EGMLE to achieve the required accurary is

Zα ·
√

1

I(N̂i)
≤ N̂i · β. (5–27)

Fig. 5-4 shows the simulation result of EGMLE when N = 10, 000, α = 95%,

β = 5%, and ω = 1. The middle curve is the value of N̂i , which converges to the value

of N represented by the central straight line. The upper and lower curves represent

the 95% confidence interval, which shrinks as the number of pollings increases. The

algorithm terminates after 1081 pollings.

5.4.3 Performance Tradeoff

According to (5–14), the contention probability is proportional to ω. We study

how the value of ω controls the tradeoff between the estimation time and the energy
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cost, which are measured by the number of pollings and the number of responses,

respectively.

5.4.3.1 Number of Pollings

Since the MLE approach provides statistically consistent estimate, when i is large,

(5–24) can be approximated as follows:

I(N̂i) =

i∑
j=l+1

pj

N(1− pj)
+
i − l

2N2

≈
(

pi

N(1− pi)
+

1

2N2

)
· (i − l)

≈ 2Npi + 1

2N2
· (i − l). (5–28)

where pi ≪ 1. According to (5–27), we have

I(N̂i) ≥ (
Zα

N̂i · β
)2 (5–29)

(5–28) and (5–29) give us the following inequality:

2Npi + 1

2N2
· (i − l) ≥ (

Zα

N̂i · β
)2,

i ≥ 2Z 2
α

(2ω + 1)β2
, (5–30)

where N̂i ≈ N and l ≪ i . Hence, the number of pollings it takes to achieve the accuracy

requirement is 2Z2
α

(2ω+1)β2 .

The solid line in Fig. 5-5 shows the number of pollings with respect to ω when

α = 95% and β = 5%. It is a decreasing function in ω. The reason is that a larger ω

results in more responses (and thus more information) in each polling. Consequently, a

less number of pollings is needed to achieve a certain accuracy requirement.

5.4.3.2 Number of Responses

When i is large, the expected number of responses for each polling is Npi ≈

Ni−1pi = ω. After 2Z2
α

(2ω+1)β2 pollings are made, the total number of responses is roughly

121



Z 2
α · (eω − 1)

ω2β2
ω =

Z 2
α · (eω − 1)

ωβ2
. (5–31)

The dotted line in Fig. 5-5 shows the number of responses with respect to ω when

α = 95% and β = 5%. It is an increasing function in ω, which means that a larger value

of ω will lead to a larger number of responses.

5.4.3.3 Summary

Fig. 5-5 demonstrates the performance tradeoff under different values of ω. As we

decrease ω, EGMLE achieves better energy efficiency by requiring a fewer number of

responses, at the expense of time efficiency by requiring a larger number of pollings.

5.5 Simulations

We evaluate the performance of GMLE and EGMLE by simulations. In order to

demonstrate the performance tradeoff between energy cost and estimation time, we

choose two different contention probability parameters for each of the two algorithms.

We use ω = 0.5 and 1.594 for GMLE, i.e., pi = 0.5
^Ni−1

and 1.594
^Ni−1

. Note that 1.594 is the

optimal value of ω for time efficiency in GMLE. We denote the corresponding variants of

the algorithm as GMLE(0.5) and GMLE(1.594).

For EGMLE, Fig. 5-5 shows that the number of pollings and the number of

responses are both monotonic functions with respect to ω, which means there is no

optimal ω for either energy efficiency or time efficiency. We choose ω = 0.5 and 1.0

for EGMLE, i.e., pi = 0.5
^Ni−1

and 1.0
^Ni−1

. The corresponding variants of the algorithm is

denoted as EGMLE(0.5) and EGMLE(1.0). Section 5.4.2 shows how to compute the

compensation parameter ε for EGMLE(1.0), which is 0.046. Following the same steps,

we obtain ε = 0.012 for EGMLE(0.5). We compare the proposed algorithms with

the state-of-the-art algorithms in the related work. They are the Unified Probabilistic

Estimator (UPE) [63] and the Enhanced Zero-Based (EZB) estimator [64]. The original

UPE, denoted as UPE-O, is very energy-inefficient because its contention probability
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begins from 100% and thus all tags will respond. We modify it (denoted as UPE-M)

to begin from a small initial contention probability 1
Nmax

and keep the remaining part of

UPE-O. This section shows the performance of both UPE-O and UPE-M. We run each

simulation 100 times and average the outcomes.

In the initialization phase of our algorithms, let Nmax = 1, 000, 000 and C = 2.

The frame size in EGMLE(0.5) and EGMLE(1.0) is 10 slots. The parameters for UPE

and EZB are chosen based on the original papers whenever possible. All algorithms

except for UPE need only to identify empty and non-empty slots. To set a non-empty

slot apart from an empty slot, a tag only needs to respond with a short bit string (one

bit) to make the channel busy. UPE has to identify empty, singleton and collision slots.

To set a singleton slot apart from a collision slot, many more bits (10 used by UPE) are

necessary [2]. For example, CRC may be used to detect collision.

The energy cost of an algorithm depends on (1) the number of responses that all

tags transmit before the algorithm terminates and (2) the size of each response. We use

‘S’ to mean that the response is a short bit string (in the empty/non-empty case), and ‘L’

to mean a long bit string (in the empty/singleton/collision case).

We do not include the simulation results for LoF [93] because its energy cost is

much higher than others. Its number of responses transmitted by the tags is kN, where k

is the number of frames used in the estimation process.

5.5.1 Number of Responses

The first simulation studies the number of responses in each algorithm with respect

to N, α and β. Table 5-1 shows the number of responses with respect to N when

α = 90% and β = 9%. The proposed algorithms require fewer responses than UPE

and EZB. As predicted, UPE-O is energy-inefficient; UPE-M works much better. The

best algorithm is EGMLE(0.5), whose number of responses is about one fifth of what

UPE-M requires and one ninetieth of what EZB requires when N is 20,000. Moreover,

each response in UPE is much longer.
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GMLE(0.5) has a smaller energy cost than GMLE(1.594). For example, N =

10, 000, the ratio between the number of responses by GMLE(1.594) and that by

GMLE(0.5) is 2.01, which is close to the theoretically-computed ratio of 1.90 in Fig. 5-2.

Similarly, EGMLE(0.5) is more energy efficient than EGMLE(1.0). When N = 10, 000, the

ratio between the number of responses by GMLE(1.594) and that by GMLE(0.5) is 1.28,

which is also close to the theoretical value of 1.34 in Fig. 5-5.

We vary α from 90% to 95% and to 99%, and vary β from 9% to 6% and to 3%.

Tables 5-2 to 5-9 show similar comparison under different values of α and β values. In

all cases, the number of responses increases when α increases or β decreases, and

except for EZB, the number does not vary much with respect to N, meaning that all

algorithms except for EZB achieve good scalability. The ratio between the numbers for

different algorithms appears to be quite stable under different parameter settings.

5.5.2 Total Number of Bits Transmitted

The second simulation evaluates the energy cost of the algorithms. As mentioned

before, one bit is enough to separate empty/non-empty slot. Hence, the response of

GMLE, EGMLE and EZB is one bit long. A response in UPE-M is 10 bits long [63].

We compare the total number of bits transmitted by all tags before each algorithm

terminates. We omit the results for UPE-O, which are much worse than the results of

UPE-M. Fig. 5-6 shows the simulation results with respect to N when α = 90%, β =

9%, 6% and 3%. For example, when α = 90%, β = 3%, and N = 20, 000, the ratio

between the number of bits transmitted by UPE-M (EZB) and that by our best estimator

EGMLE(0.5) is 45.32 (71.28). Fig. 5-7 and Fig. 5-8 show the comparison under different

β values when α = 95% and 99%, respectively. Their results are similar to Fig. 5-6. It

should be noted that the number of bits transmitted is not an accurate measurement

of the energy cost because it ignores the energy spent to power up the radio and

synchronize with the reader. However, combining the number of bits and the number of
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transmissions (in the previous subsection) still gives a good idea on how energy-efficient

each algorithm is.

5.5.3 Estimation Time

The third simulation compares the time it takes for each algorithm to complete the

estimation of N. Based on the specification of the Philips I-Code system [101], after

the required waiting times (e.g., gap between transmissions) are included, it can be

calculated that a RFID reader needs 0.4ms to detect an empty slot, 0.8ms to detect

a collision or a singleton slot, and 1ms to broadcast a polling request. Hence, GMLE,

EGMLE and EZB requires a slot length of 0.4ms , while UPE-M requires a slot length of

0.8ms. Recall that the contention probability takes the form of ω
N̂i

, where ω is a known

constant. Thus the reader transmits N̂i instead of the actual probability value in the

polling requests. If we assume Nmax is no more than a million, then 20 bits for N̂i are

sufficient. GMLE has a fixed frame size of one slot. EGMLE has a fixed frame size of 10

slots. EZB and UPE-M also have pre-determined frame sizes. Let α = 90%, β = 9%, 6%

and 3%. The three plots in Fig. 5-9 show the estimation times of the algorithms with

respect to the number of tags in the deployment. The times grow very slowly as the

number of tags increase, which suggests the algorithms all scale well. In the first plot

of Fig. 5-9, UPE-M takes the least amount of time, only about 0.5 second, to estimate

20,000 tags, while the other algorithms take between 0.7 to 2.0 seconds. GMLE(1.594)

takes less estimation time than GMLE(0.5) and the ratio is 0.61, which is consistent

with the theoretical value of 0.58 in Fig. 5-2. Similarly, EGMLE(1.0) takes less time than

EGMLE(0.5) and the ratio is 0.68, which is also consistent with the theoretical value of

0.67 in Fig. 5-5. Fig. 5-10 and Fig. 5-11 show similar simulation results when α = 95%

and 99%, respectively. Even though the new algorithms take longer to complete, their

estimation time is still small. We believe the extra time needed can be well justified for

the large energy saving.
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There exists a performance tradeoff between GMLE and EGMLE. In the previous

two subsections, we have examined energy cost in terms of number of responses

and number of transmitted bits. EGMLE always performs better than GMLE. In this

subsection, we compare estimation time of our two methods. GMLE performs better

than EGMLE. Because the focus of this work is on energy efficiency, we regard EGMLE

as our best estimator for energy saving.

5.6 Summary

This chapter proposes two probabilistic algorithms for estimating the number of

RFID tags in a region. We believe the algorithms are the first of its kind that targets

at prolonging the lifetime of the active RFIDs. Their energy cost is far less than the

state-of-the-art algorithms in the related work. Moreover, we reveal a fundamental

tradeoff between the energy cost and the estimation time. By tuning a system

parameter, the algorithms can trade longer estimation time for less energy cost, or

vice versa.

Appendix A: Distribution and Variance of N̂i

Let i be a large positive integer. Consider the sequence of Bernoulli random

variables, Zj , 1 ≤ j ≤ i , whose success probability is q = 1 − (1 − pi)
N . Let q̂ =

(
∑i

j=1 Zj)/i , which is the estimation of the success probability q. It is known that

asymptotically q̂ follows a normal distribution:

q̂ ∼ Norm

(
q,

q(1− q)

i

)
. (5–32)

Because the MLE approach provides statistically consistent estimate, when i is

large, we can consider the contention probabilities in the later stage of the pooling

process to be approximately a constant. In addition, the number of polling results before

stabilization of the contention probability is limited, and their impact will diminish as

i becomes large. That is, they can be ignored when the asymptotic property of N̂i is

considered. Hence, for the asymptotic property, we can let pj = pi , for 1 ≤ j ≤ i , and
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Eq. (5–5) becomes

∂ ln(Li)

∂N
= ln(1− pi)

[
(i −

i∑
j=1

Zj)−
(1− pi)

N

1− (1− pi)N

i∑
j=1

Zj

]
. (5–33)

Therefore, the MLE N̂i that solves ∂ ln(Li )
∂N

= 0 satisfies

(1− pi)
N̂i = 1− (

i∑
j=1

Zj)/i = 1− q̂. (5–34)

Hence, from (5–32), (1− pi)
N̂ asymptotically follows the following normal distribution

Norm

(
(1− pi)

N ,
(1− (1− pi)

N)(1− pi)
N

i

)
. (5–35)

According to the δ-method [15], if a random variable Xi satisfies

Xi
D→ Norm(θ,

σ2

i
), (5–36)

where θ and σ are finite constants and D→ means convergence in distribution, then we

must have

g(Xi)
D→ Norm

(
g(θ),

σ2 [g′(θ)]
2

i

)
, (5–37)

for any function g such that g′(θ) exists and takes a non-zero value. Based on (5–36)

and (5–37), taking the logarithm of (5–35), we have

N̂i · ln(1− pi) ∼ Norm

(
N ln(1− pi),

(1− (1− pi)
N)

i(1− pi)N

)
. (5–38)

That is, N̂i ∼ Norm

(
N,

(1− (1− pi)
N)

i(1− pi)N ln2(1− pi)

)
. (5–39)
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Figure 5-1. The middle curve shows the estimated number of tags with respect to the
number of pollings. The upper and lower curves show the confidence
interval. The straightline shows the true number of tags.
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Figure 5-2. The solid line shows the number of pollings with respect to ω when α = 95%
and β = 5%. The dotted line shows the number of responses with respect to
ω for the same parameter settings.
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Figure 5-3. The collision probability with respect to the frame size f .
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Figure 5-4. The middle curve shows the estimated number of tags with respect to the
number of pollings. The upper and lower curves show the confidence
interval. The straightline shows the true number of tags.
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Figure 5-5. The solid line shows the number of pollings with respect to ω when α = 95%
and β = 5%. The dotted line shows the number of responses with respect to
ω for the same parameter settings.
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Table 5-1. Number of Responses when α = 90%, β = 9%

N Total number of responses
GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 432S 767 S 172 S 225 S 6345 L 709 L 4342 S
10000 414S 832 S 180 S 231 S 11986 L 899 L 8683 S
20000 402S 844 S 186 S 213 S 22895 L 977 L 17366 S

Table 5-2. Number of Responses when α = 90%, β = 6%

N Total number of responses
GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 1041 S 1855 S 402 S 523 S 7144 L 1811 L 7236 S
10000 1153 S 1924 S 414 S 519 S 12645 L 1687 L 14472 S
20000 1015 S 1797 S 375 S 503 S 23808 L 1814 L 28944 S

Table 5-3. Number of Responses when α = 90%, β = 3%

N Total number of responses
GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 3927S 7341 S 1499 S 2037 S 12664 L 6426 L 27497 S
10000 3760S 7339 S 1489 S 2059 S 18023 L 6581 L 54993 S
20000 3783S 7350 S 1543 S 2002 S 28708 L 6993 L 109987 S
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Table 5-4. Number of Responses when α = 95%, β = 9%

N Total number of responses
GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 603S 1112 S 258 S 330 S 6715 L 1073 L 4342 S
10000 669S 1120 S 247 S 304 S 12062 L 961 L 8683 S
20000 680S 1197 S 262 S 320 S 23345 L 1136 L 17366 S

Table 5-5. Number of Responses when α = 95%, β = 6%

N Total number of responses
GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 1340 S 2515 S 581 S 736 S 7712 L 2598 L 10130 S
10000 1354 S 2511 S 596 S 736 S 13477 L 2318 L 20261 S
20000 1381 S 2630 S 555 S 749 S 24631 L 2510 L 40521 S

Table 5-6. Number of Responses when α = 95%, β = 3%

N Total number of responses
GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 5687 S 10493 S 2181 S 2915 S 14678 L 8858 L 39074 S
10000 5673 S 10286 S 2267 S 2924 S 20845 L 9364 L 78148 S
20000 5588 S 10637 S 2217 S 2990 S 32339 L 9683 L 156297 S
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Table 5-7. Number of Responses when α = 99%, β = 9%

N Total number of responses
GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 1040 S 2162 S 427 S 453 S 7240 L 1726 L 7236 S
10000 1071 S 2135 S 416 S 529 S 12842 L 1906 L 14472 S
20000 1017 S 1916 S 439 S 573 S 23982 L 1819 L 28944 S

Table 5-8. Number of Responses when α = 99%, β = 6%

N Total number of responses
GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 2527 S 4785 S 965 S 1269 S 9679 L 4311 L 17366 S
10000 2527 S 4637 S 973 S 1248 S 15336 L 4130 L 34733 S
20000 2440 S 4580 S 991 S 1293 S 26128 L 4044 L 69465 S

Table 5-9. Number of Responses when α = 99%, β = 3%

N Total number of responses
GMLE(0.5) GMLE(1.594) EGMLE(0.5) EGMLE(1.0) UPE-O UPE-M EZB

5000 9693 S 18690 S 3818 S 4993 S 21823 L 16705 L 65124 S
10000 9606 S 18223 S 3791 S 4998 S 27667 L 15882 L 130247 S
20000 9385 S 17735 S 3847 S 5027 S 38935 L 16471 L 260495 S
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Figure 5-6. Numbers of bits transmitted when α = 90%, β = 9%, 6% and 3%.
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Figure 5-7. Numbers of bits transmitted when α = 95%, β = 9%, 6% and 3%.
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Figure 5-8. Numbers of bits transmitted when α = 99%, β = 9%, 6% and 3%.
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Figure 5-9. Estimation times of the algorithms when α = 90%, β = 9%, 6% and 3%.
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Figure 5-10. Estimation times of the algorithms when α = 95%, β = 9%, 6% and 3%.
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Figure 5-11. Estimation times of the algorithms when α = 99%, β = 9%, 6% and 3%.
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CHAPTER 6
CONCLUSIONS

In this dissertation, we first develop a fast and compact per-flow traffic measurement

approach through randomized counter sharing. The approach employs a novel data

encoding/decoding scheme, which mixes per-flow information randomly in a tight SRAM

space for compactness.

We then focus on the scan detection problem in high-speed networks, which is

another important research topic of online network measurement. We optimally combine

probabilistic sampling, bit-sharing storage, and maximum likelihood estimation to

achieve an efficient scan detection scheme.

Thirdly, we propose a new method for OD flow measurement which employs the

bitmap data structure for packet information storage and uses statistical inference

approach to compute the measurement results. Our method is able to achieve smaller

per-packet processing overhead and much more accurate results, when comparing with

the best existing approach.

Finally, we design two probabilistic algorithms for estimating the number of

RFID tags in a region. We believe the algorithms are the first of its kind that targets

at prolonging the lifetime of the active tags. Their energy cost is far less than the

state-of-the-art algorithms in the related work. Moreover, we reveal a fundamental

tradeoff between the energy cost and the estimation time. By tuning a system

parameter, the algorithms can trade longer estimation time for less energy cost, or

vice versa.
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