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Malware, or malicious software such as viruses, worms, trojan horses or rootkits, pose

a grave challenge to the computer user community by obtaining unauthorized access to

computer resources. Among various malware, worms interest computer security researchers

immensely due to their ability to infect millions of computers in a short period of time

and cause hundreds of millions of dollars in damage. Unlike other malware, worms can

replicate themselves over the Internet without requiring any human involvement, which

makes their damage potential very high. Security researchers strive to prevent, detect and

contain worms, as well as model their propagation patterns over the Internet.

Our work is primarily divided into three parts. The first part is geared towards

devising a detection mechanism for an advanced worm called ASCII worm which has a

very high damage potential due to its ability to compromise servers that are otherwise not

vulnerable to common worms. The second part derives an exact analytical model for the

propagation of permutation-scanning worms, a class of worms that employ a sophisticated

propagation strategy called permutation scanning. The final piece of work re-examines

the classical worm propagation models in light of the pseudo-random nature of the output

generated by the random number generators used by the worms, and designs a worm that

exploits the pseudo-randomness to achieve an optimal scanning strategy with high speed

of infection, fault tolerance and low detectability.
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Our work focuses on highlighting the damage potential of worms, and shows novel

ways to detect them. It also provides accurate analytical propagation model for worms.

This can help network security personnel to better understand the worms’ spreading

behavior, and design containment techniques and other countermeasures.
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CHAPTER 1
INTRODUCTION

Security has been one of the primary concerns since the advent of computers. In

fact, one of the first generation of the known computer viruses emerged in as early as

1970 over the ARPANET [36]. In that era, because not all the computers in the world

were connected like today, the outbreaks of viruses were not pandemic. However, with

the arrival of Internet, the computers all over the world were now networked and thus

communicable. While this ubiquitous connectivity resulted in a great number of beneficial

effects in the computer industry as well as in everyday life, it also had an unfortunate

side-effect – now the problem of computer security had a new dimension called network

security that needed to be addressed.

In a broad sense, network security comprises of the provisions and policies undertaken

by network administrators to protect the underlying network and the network-accessible

resources from unauthorized access, and the effectiveness (or lack) of these measures.

Network security is subtly different from computer security, and we demonstrate the

difference between the two using the following example from medieval history. Suppose

our goal is to protect all the inhabitants (hosts) inside a fortress. Network security is akin

to guarding all the entry points of the fortress, while computer security is comparable to

providing armors to individual soldiers inside the fortress. It is evident that the former

method is more powerful, because without it, we will have to rely upon the secureness of

each individual hosts, which may not be a very good idea considering the heterogeneity of

the hosts and their individual capability of defending themselves.

A network is under attack every day, and thwarting the attacks is the basic challenge

of network security researchers. Examples of such attacks include obtaining unauthorized

entry by fooling the authentication system, eavesdropping, and modification of the data

to name a few. Most of the vulnerabilities that are exploited in such an attack are either

cryptographic or resulting out of insecure implementation of policies. Malicious software
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designed to infiltrate or damage a computer system without the owner’s informed consent

in such attacks are known as malware. It is a general term used to indicate a variety of

forms of hostile, intrusive, or annoying software or code snippets. Examples of malware

include computer viruses, worms, trojans horses, rootkits and many more. In this work, we

focus on the worms.

1.1 The Computer Worm: A Brief History

Similar to its real-world counterpart, a computer worm (or Internet worm) replicates

itself multiple times over the Internet, thereby rendering its target hosts compromised

and the network congested. It has the ability to infect millions of computers in a very

short period of time [42]. It is different from a computer virus in the sense that a virus

requires human action to activate and popagate, while a worm is able to propagate by

itself. However, it must also be noted that with a significant amount of malware being

distributed via email nowadays, the distinction between the two is getting somewhat

blurred. In fact, the very first case of replicated malware, the Christmas Tree EXEC

Trojan horse [23] that brought down many IBM mainframe computers in 1987 spread

using mass-mailing mechanism only, though it required human action for spreading. The

true first case of a self-replicating worm causing significant damages is attributed to the

Morris worm in 1988 [57]. Since then, both sophistication and damage potential of worms

have increased tremendously, infecting millions of computer and causing hundreds of

millions of dollars in damage. Notable mentions include Melissa (1999) [12], ILOVEYOU

(2000) [10], Code Red (2001) [80], Nimda (2001) [11], Sapphire/Slammer (2003) [42],

SoBig(2003) [14], MyDoom (2004) [15] and Zotob (2005) [54]. Symantec stated in their

2008 global internet security threat report [64], “Of the top 10 new malicious code families

detected in the last six months of 2007, five were Trojans, two were worms, two were

worms with a back door component, and one was a worm with a virus component.”
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1.2 Propagation Methods of a Worm

The way a worm propagates is as follows. Since by definition a worm code does not

need to be executed manually by a human, it must compromise a program that is already

executing. This is why in order to take over a host, worms attack the servers, programs

that are always running and expecting input from other hosts (clients). A worm’s behavior

can be classified into two orthogonal categories: host-level behavior and network-level

behavior. The host-level behavior comprises of its action on that target host, which

may include infecting the host, modifying data, terminating or starting other programs,

installing backdoors and Trojans etc. To analyze the host-level behavior, it is necessary

to analyze the actual worm code, i.e. the payload. The network-level behavior is an

Internet-scale picture of the worm traffic and is caused by a worm’s act of self-replication,

where it attempts to initiate connections to other potentially vulnerable hosts that could

possibly be running the same server software that can be compromised. The network-level

behavior is defined by the worm’s propagation characteristics over the Internet, which tells

how fast the worm spreads and how quick must any defense mechanism be in order to

counter it. These two aspects of the worms behavior are discussed in further detail below.

1.2.1 Host-Level Behavior

First we take a closer look into how a worm compromises a host. Although there

are exceptions, most of the worms employ a control hijacking technique known as buffer

overflow, and the seminal paper by Aleph One in 1995 [3] describes in great detail how it

can be achieved. A very brief overview of the process is as follows. Unlike Java, inherently

unsafe languages like C and C++ do not consider arrays to be first-class objects and hence

do not provide automatic bound checks for them at runtime. This allows a buffer to be

overflown with a string longer than the buffer length, thereby overwriting the adjoining

memory locations. Inside the runtime stack, the return address for the called procedure

is located near the locations for the local variables of the called procedure (including the

buffer), and is thus vulnerable to be overwritten by an overflowing buffer. If the return
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address is overwritten with a new value, then when the procedure returns, it returns to the

memory location pointed to by the new address. This process is aptly known as control

hijacking. This new return address either directly points to the injected attack code in

the buffer (method employing NOP sled), or points to some static address containing a

instruction that causes the instruction stream to point back to the injected code. The

latter method, mostly found in the static DLLs which are loaded at fixed locations in

memory for Windows, is known as register spring [20]. In either case, the immediate

effect is the execution of the attack code, with the final result of spawning a shell. Also,

if the compromised application was running with root privilege, as many Windows server

applications do, the attacker will now have access to a root shell.

1.2.2 Network-Level Behavior

The network level behavior of a worm, which is mostly influenced by its choice of

propagation mechanism, is the Internet-scale picture of the network traffic generated

by the worm. Generally, the goal of a worm is to infect as much of the vulnerable

population as possible before malware detectors become aware of its presence and

take countermeasures to block the propagation of the worm. Therefore, a worm must

have a good infection speed, a term we use to indicate how fast a worm can infect the

vulnerable host population. Paradoxically, high infection speed may also hinder the

worm’s propagation. To see why, we observe that predominantly a worm does not know

beforehand which hosts in the Internet are vulnerable. Therefore, in order to infect the

whole of the vulnerable population, it must send the attack code to arbitrary addresses

over the Internet, a process known as scanning. It is evident that if the worm scans at a

higher rate, i.e. sends the attack code to more number of target hosts within the same

time period, then it will be able to infect the vulnerable host population faster. However,

the overall network traffic generated by this increased scanning activity will also be

higher, and this increased traffic may be noticed by a network administrator or malware

detectors, thus revealing the presence of worm activity and causing countermeasures to be
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taken. Worse, high amount of worm traffic may cause the network to be clogged or even

partitioned, thereby hindering further propagation of the worm itself. Therefore, worms

must maintain a fine balance between infection speed and detectability, and hence they

must choose their spreading mechanism very judiciously.

One interesting observation is that the propagation efficiency of a worm depends not

only on how fast it is scanning, but also how intelligently each actively scanning host is

choosing its scan target addresses. Scanning strategy, i.e. the mechanism using which a

worm chooses its target addresses to be scanned, has a significant impact on its network

level behavior. It may select those addresses completely randomly (random scanning

method), or it may choose to scan some portions of the Internet with a bias, e.g., once

a vulnerable host is found, hosts belonging to the same subnet are scanned first (local

subnet scanning). Or, the worm may also find a list of other communicable hosts from

certain files of the infected host (like rhosts file in UNIX) and scan those addresses first

(topological scanning). Although historically most worms choose the random scanning

method or its variant, worms often deploy other methods of scanning as well, or a mixture

of different scanning strategies. We would pay particular attention to one strategy called

“permutation scanning” later.

While the network level behavior of a worm is dependent on the scanning strategy

chosen by the worm author, it also depends on the properties of the network itself, i.e. the

bandwidth, the link capacity, computational power of the routers etc., parameters that

are not controlled by the worm author. A worm scanning at a very fast pace may put

excessive burden on a router and thus cause it to go down or reboot, causing a partitioned

network. While this does not help the worms propagation, it causes tremendous amount

of damage by disconnecting multitude of hosts from the Internet, essentially performing

a denial of service attack not only on e-commerce and personal activities but also on

life-saving communication infrastructures. The slammer worm, which did not cause any

damage to the individual hosts it infected, nonetheless caused hundreds of millions of
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dollars in damage in cleanup activities [42]. Therefore, depending on the propagation

strategy used, a worm can target either the hosts on the Internet, or the network itself.

This makes the propagation strategy of a worm very important.

1.3 Recent Trends Among Worms

Although a significant amount of research has already been done in the various

countermeasures against worms, as keeping with the paradigms in security research, a

countermeasure is rarely foolproof forever and is only good until worm authors find a novel

way to circumvent it. Thus, the landscape in worm research is constantly changing, and

worm researchers will always have to play a cat-and-mouse game with worm authors, who

are constantly upgrading their arsenal with innovative techniques and practices. Some of

the alarming trends that have been observed in the recent past are discussed as follows.

1.3.1 Advent of Zero-Day Worms

The gap between the discovery of a vulnerability and the emergence of a worm

exploiting that vulnerability is decreasing at an alarming rate. The Sapphire-Slammer

worm (Jan 25, 2003) exploited a vulnerability which was discovered more than six months

ago [42]. However, since then the gap has been decreasing, and starting from 2004 we

have been seeing zero-day worms [60]. Considering the amount of damage Slammer was

able to do in spite of its six-month lag, zero-day worms, which literally give no time for

fixing the vulnerable systems, can cause very serious damage. This is also exacerbated by

the fact that even when the vendor releases the software update (i.e. the “patch”) that

eliminates the vulnerability, a lot of computers do not get patched immediately due to

various reasons, some of which are listed as follows. First, the user may be simply inactive,

lazy or lacking the necessary bandwidth to download and install the patch. Second, many

system administrators are wary to install a patch to the computers they manage before

testing it adequately, as the patch might break existing applications, and rollback is often

difficult, time consuming, or simply not possible. Third, the patch might only be available

for the genuine copies of the software, as was the case for Windows XP service packs,
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which was a number of patches bundled together into a single software upgrade. These

service packs were available only through the auto-update option for the genuine copies of

Windows XP, which means many of the vulnerable computers, which used a pirated copy

of Windows XP, would not get these updates.

1.3.2 Emergence of Polymorphic Worms

Since their inception, worms have been showing an increasing trend of resisting

detection by using various evasion and obfuscation techniques. In fact, the very first

Internet worm [57] deployed encryption techniques in order to hide its code. Of late,

we have been seeing more and more instances of polymorphic worms, where the worm

changes its code every time it infects a host. Also worms with self-mutating code, where

the original code modifies itself during execution to generate a completely new code body,

are becoming more commonplace [24, 1]. These kind of worms are very hard to detect,

since different instances of the same worm share few similarities. Commercial malware

detectors, which in most of the cases rely upon substring matching to detect a malware,

are often ineffective against such kind of attacks. In this dissertation, we will develop

detection strategies for one such worm, viz. the ASCII worm.

1.3.3 Arrival of Script Kiddies

Another worrying trend is that the task of creating a new worm, which previously was

limited to only a group of selected individuals with the so-called “hacking” skills, has now

been made considerably easier with the abundant supply of worm-creating frameworks

over the Internet [24, 1]. With these frameworks, it is now possible for a common person

with very limited knowledge (called the script kiddy) to create and release a worm in the

wild. Also, the worm authors now use modularization techniques in their programs so that

attack components can be readily added or substituted. This has exacerbated the problem

of creating new worms and their variants.
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1.3.4 Shift in Hackers’ Mindset

The last trend is the most worrying one – it is regarding the changing mindset of

the worm-author from being a prankster to a fraudster. Originally, worm authors were

interested to create worms that would do visible damage, and sheer joy of creating global

nuisance and making a name for themselves seemed to be the intended goal. However,

due to many reasons including successful prosecution and incarceration of worm-authors,

of late the focus has shifted from prank to money. Nowadays hackers are more interested

in creating worms that compromise a host without any perceivable changes to the user,

so that the host can serve as a zombie of a botnet, which is the network of compromised

computers under the control of the attacker. Worse, since there are no uniform laws

regarding cyber crimes across the globe, it is often hard if not impossible to prosecute an

attacker residing in a distant foreign country. Thus, while worm attacks nowadays seldom

create as much newspaper headlines as they used to do at the beginning of the current

decade, reports published by anti-malware industries confirm significant and sustained

worm activity [64].

1.4 Key Challenges in the Worm Research Area

As a result of the recent developments stated above, we are starting to observe more

and more zero-day worms armed with different evasion methods including encryption,

polymorphism and mutation. Moreover, due to significant amounts of research being

done regarding efficient propagation strategies, todays worms enjoy having access to an

abundance of smart propagation mechanisms that can be easily harnessed. Deploying such

advanced propagation strategies enables a worm to significantly reduce its network

footprint, i.e. the total amount of scan traffic generated over the Internet. If the

worm keeps it scanning rate low, then such a worm would be very difficult to detect

by monitoring traffic surge on the Internet alone. Thus, in order to thwart this new threat

of advanced worms, worm researchers need to keep up with the latest developments, which
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opens up ample research opportunities. Some of the basic challenges in worm research,

details of which are presented in chapter 2, are:

• Worm Prevention: How do we prevent worm outbreaks?

• Worm Detection: Considering the availability of advanced obfuscation strategies
like encryption, polymorphism and mutation, how do we detect worms?

• Worm Containment: Assuming that prevention and detection strategies do not
always work, how do we contain an ongoing infection and minimize the damage?

• Worm Propagation Modeling: For the different propagation strategies deployed
by worms, how do we assess their effects on the Internet?

• Worm Design: How do we design a worm that has an optimal scanning strategy,
i.e. it achieves the right combination of high infection speed, resilience to cure and
low network footprint?

Since different worms deploy different infection strategies, it is difficult to envision a

universal countermeasure that will be equally applicable, and effective, against all kinds

of worms. Similarly, because of the heterogeneity in the espoused scanning strategies,

a single propagation model cannot describe the traffic pattern generated by all possible

worms. Therefore, the detection methods and propagation modelings must be done for

each class of worm on an individual basis. In this dissertation, we address the following

specific problems in the area of detection, propagation modeling, and design, respectively:

1.4.1 Worm Detection

As mentioned earlier, in order to evade malware detectors, today’s worms employ

encryption, mutation and various other obfuscation techniques. ASCII worm, whose

body consists of entirely text. i.e. printable ASCII characters, is an example of such a

self mutating worm. It is very appealing since it can sneak in places where usual worms

cannot. For example, since a large number of network protocols (or parts thereof) are

text-based, at times the servers based on those protocols use ASCII filters to allow text

input only. However, simply applying ASCII filters to weed out the binary data is not

enough from the security viewpoint since the assumption that malware are always binary

21



is false. As we will demonstrate, although text is a subset of binary, the effectiveness of

binary malware detectors is severely dwindled for detecting text malware. We investigate

the threat posed by an ASCII worm and design an efficient scheme for its detection.

1.4.2 Worm Propagation Modeling

The scanning strategy chosen by a worm determines its infection speed, i.e. how

fast it can infect the whole of the vulnerable host population, and its stealthiness, i.e.

how much less network footprint it generates. An accurate analytical propagation model

is an important tool in understanding the threat posed by a worm, since it also allows

us to comprehensively study how a worm propagates under various conditions, which

is often computationally too intensive for simulations. More importantly, it gives us an

insight into the impact of each worm/network parameter on the propagation of the worm.

Traditionally, most modeling work in this area concentrates on the relatively simple

random-scanning worms. However, modeling the propagation of permutation-scanning

worms [63], a class of worms that are fast yet stealthy, has been a challenge to date. We

attempt to solve this problem here.

1.4.3 Worm Design

We have already observed that worm authors need to maintain a delicate balance

between infection speed and stealth in order to create maximum impact with minimum

alerts generated. Therefore, an optimal scanning strategy would be one that allows a high

infection speed while keeping a low network footprint. While searching for the optimal

scanning strategy, we stumble upon a very important discovery: the output of the random

number generator used by a worm is pseudo-random and not truly random, and this

observation raises doubts about the validity of the derivation of the epidemic model used

for explaining random-scanning worms. We attempt to derive the correct model, and

investigate if this pseudo-random property can be exploited to make the worms scanning

optimality.
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We note that only the rudimentary details of the proposed work is given here. Once

we discuss the state of the current research in Chapter 2, the undertaken work will be

presented in greater detail in Section 2.5.
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CHAPTER 2
RELATED WORK

Since a worm has a very high damage potential, the main challenges facing worm

researchers are how to detect, stall and prevent their spread. Correct modeling of their

propagation is also very important since it gives an idea of how fast the worm can spread

and how quickly a defense must react to mitigate the damage by stalling its advancements.

Thus, correct propagation modeling may not be a direct line of defense in thwarting

a worm, but it is a very important tool in aiding other countermeasures and helping

to make policy decisions. The worm research is traditionally focused mostly on the

following countermeasures: prevention, detection and containment, along with propagation

modeling. A survey of the related work in each of the research areas is presented below.

2.1 Prevention

The goal of prevention is to make sure that the hosts are not vulnerable to worm

attacks in the first place, and the focus is on ensuring that either the code or the

infrastructure executing the code is secure. The first approach includes espousal of

good programming practices of writing secure code. The other approach assumes that

the server code is inherently vulnerable, and hence strives to fortify the code execution

infrastructure of the server in such a way that even if a vulnerability is targeted by a

worm, the server is still not compromised. For example, any change that makes the buffer

overflow impossible would automatically reduce the number of worm attacks significantly.

Some of the preventive methods that use infrastructural modifications to thwart a worm

using buffer overflow techniques are discussed below.

StackGuard [19] proposed using a canary beside the return address on the stack to

detect if the return address has been overwritten by checking if that canary has been

changed. However, it still failed to protect other function pointers and heap corruption.

Pointguard [18] went one step further by keeping track of each pointer. However, it

could still be broken using brute force approach in some cases. The Address Space
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Randomization technique [4] suggested randomization of the address of the stack and

various other libraries, thus making the job of guessing the return address much harder

for the attacker. There have been other hardware-based approaches like Return Address

Stack [49, 25] that attempted to detect if the return address has been overwritten. Also, as

most of the overflows happen on the stack (heap is also another alternative), making the

stack non-executable also appears to be an immediate solution, since very few applications

actually require the stack to be executable by design. This approach was proposed by

Solar Designerand implemented as the NX patch in the Linux kernels in Red Hat Fedora

Core 2 as of build 2.6.6-1.427 [5]. Similar prevention method has been offered by Windows

XP SP2 as an optional feature as DEP (Data Execution Protection) in both hardware and

software level (if the added NX bit in the page table is not yet available by the processor).

The same feature is called EVP (Enhanced Virus Protection) in AMD64 architecture [79].

We note that most of these prevention techniques are host-based and hence dependent

on the proper implementation on the user’s part for it to function properly. Therefore,

these kind of prevention techniques can be thought of as the last line of defense against

the computer worms, where the worm is thwarted just when it is about to compromise its

victim.

2.2 Detection

A significant amount of worm research focuses on timely detection of worm, with

good precision and recall. The worm may be detected at many stages: when the scan

packets are being sent (extrusion detection), at the border router of the destination

network, at the network layer of the target host, at the application level of the target

host, or even during execution of the malicious code. However, the distinction between

prevention and detection becomes blurred for some cases. For example, once StackGuard

detects a buffer overflow, further execution of malicious code is prevented, which makes

it is unclear whether its action should be categorized under prevention or detection.

Nevertheless, when the malicious traffic is detected at the network level itself, it is much

25



easier to classify the countermeasure as pure detection. For detection at the network-level,

the Intrusion Detection System (IDS) may take into account not only the payload of the

worm but also the network traffic data such as volume surge, nonexistent destination hosts

etc. A survey of selected network-level detection methods is given below.

We start with vulnerability-specific detection methods. It is a fact that for a worm to

spread, an exploitable vulnerability must exist. Usually, this vulnerability lies on a specific

branch of control flow which is less traversed, as otherwise the chances of the vulnerability

getting detected during the software testing phase is higher. Therefore, to ensure that the

control traverses through that specific route, the worm must have vulnerability-specific

input data. For example, for the LSASS exploit, one must have the “\PIPE\lsarpc” string

and a particular field of a logged record long enough for the buffer overflow to occur [20].

Shield [71], which models vulnerability signatures consisting of all possible sequences of

application messages and payload characteristics that would lead to any remote exploit

of that vulnerability, is based on this idea. Another detection method is Vigilante [17],

which upon information of an attack generates vulnerability-specific self-certifying alerts

that can be distributed among hosts to warn about the danger and expecting them to use

vulnerability-specific filter.

Examining the content and underlying structural properties of the malicious payload

is the key in detection of worms for many IDSs. For example, many detection mechanisms

including Earlybird [61], Autograph [30] and Polygraph [44] are based on the premise that

different instances of a zero-day worm would contain common substrings or fingerprints,

which would potentially have vulnerability-specific patterns. Buttercup [50] tries to find

the range of Return Addresses, which usually forms part of the string which is used to

overflow the buffer. Unfortunately, since it must know the range of the Return Addresses

apriori, it only works for known worms. Abstract Payload Execution [67] hypothesizes

that the presence of a NOP sled would lead to a long sequence of valid instruction stream,

which is uncharacteristic of a random data. However, since NOP sleds are hardly used any
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more, this method will miss today’s worms that do not use the NOP sled and instead uses

the Register Spring technique [20]. STRIDE [2] also employs similar technique to find the

existence of NOP sleds in polymorphic worms. There are also other detection strategies

that involve inspecting the structure of the payload and finding anything anomalous. In

Styx [9], Chinchani et al make the following observation that normal (benign) data is

different from a program code fragment, which has got a definite control and data flow.

Styx tries to detect the worms by identifying those program structures, by creating CFGs

(Control Flow Graphs), which were first introduced by Kruegel et al [34] for designing the

fingerprint of polymorphic worms. SigFree [73], a zero-day worm blocker also does not rely

on any signature but depends on the presence of executable code inside network data flow.

It claims to have the capability to detect ASCII worms; however, it usually bypasses the

ASCII traffic since processing it would degrade the performance significantly. Emulation

method [51] contends that with advanced polymorphic engines, different instances of the

same worm will hardly have any common strings, and network-level emulation is the only

way to catch a worm. PADS [65] uses expectation maximization techniques to detect the

presence of decrypter in a polymorphic worm by generating a statistical signature of the

worm.

There have been other detection techniques that focus more on the anomalous

behavior of an infected host to detect worm activity. For example, since a random-scanning

worm has little knowledge whether its target host actually exists or not, Honeycomb

(2003) [33] exploits this by deploying honeypots, i.e. decoy computers, to generate

signatures by detecting patterns in the traffic seen on the honeypots, with the assumption

that any traffic destined towards non-existent hosts is malicious. The signature generation

involves both behavior (protocol) analysis and substring matching of the payload, often

requiring human intervention. One shortcoming of this method is that non-malicious

traffic may accidentally hit the honeypots, creating noise in signature generation. Other

drawback of this method is that creation of a good signature often requires a large number
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of samples, which may take a long time to acquire considering the fact that the same

honeypot may be targeted by different malware, and by the time the traffic is filtered

for a single worm and the signature is prepared, the damage could be already be done.

DOME [55] assumes that any dynamically generated or obfuscated code is malicious, and

proceeds to statically preprocess the Windows executable to identify the location of the

Win32 API calls relative to the executable, and raises alarm if the API call is made from a

different location at runtime.

2.3 Containment

This approach assumes that it is not possible to prevent infection by worm completely,

and hence a more practical strategy would be to focus more on damage control, i.e. slow

down the spread of the worm so that not only the overall damage is mitigated, but

also more time is available for researchers to come up with a countermeasure. Most

common initiatives include throttling the scanning rate, limiting the number of outbound

connections etc.

Moore et al. investigated the effectiveness of worm containment technologies (address

blacklisting and content filtering) and concluded that not only such systems must

react very fast, but also nearly all ISPs must employ the content filtering for it to be

successful [43]. Park et al studied worm containment methods in power-law Internet

topologies and with partial deployment [47]. Williamson et al proposed to modify the

network stack to bound the rate of connection requests to distinct destinations [77, 68].

This method has the disadvantage that it restricts a normal host the same way as a

worm-infected host. Also, in order to succeed, this approach must be adopted universally,

which is a very unrealistic requirement. Weaver et al showed that fast containment of

random scanning worms on a large scale network [76] is possible using the Threshold

Random Walk (TRW) algorithm first introduced by Balakrishnan et al in [29]. Schechter

et al [58] proposed a credit-based algorithm to limit the scan rate of a host, whose credit

(i.e., allowance of making connections) is increased by one for each successful connection
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made and decreased by one for each failed connection made. This algorithm can once

again be circumvented by an infected host that scans while making legitimate connections

at the same rate. DAW [6] inspects the failed connection statistics for the hosts inside an

ISP and employs spatial and temporal rate-limit algorithm (limiting the number of failed

connection attempts) to slow down the worm based on the DAW parameters, not the

worm parameters.

2.4 Propagation Modeling

In the real world, the knowledge of an outbreak is a necessary criterion for the

subsequent development of a cure for the unknown disease. In the perspective of network

security, one must first be aware that there is an worm outbreak in order to analyze the

malicious traffic and then prepare a suitable patch. The worst kind of worm is one that

is never detected, since such a worm can do extensive damage without the user ever

being aware of it. However, even though such a worm will leave little evidence about

their presence on the target hosts, in order to propagate, it will still generate a surge

in the network traffic in the destination port. Therefore, one way to detect such an

outbreak could be through detection of a surge in the global network traffic on specific

port(s). Since noise is a significant factor in the Internet traffic, one must know the exact

propagation characteristics of a worm to decide whether there is any worm activity or

not. Due to these reasons, propagation modeling remains a very important tool in the war

against worms.

We describe some of the important propagation models as follows.

• Classical Epidemic Model (the SI Model)
In classical simple epidemic model, there are only two possible states for each host:
susceptible (vulnerable) or infectious. Since infection attempts have no effect on the
non-vulnerable hosts, they are not considered in this model. The model also assumes
that once a host is infected, it stays in that infectious state forever – there is no
“infected but not infectious” state. Thus state transition of any host can only be:
susceptible → infectious [28]. The classical simple epidemic model for a finite
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Figure 2-1. Classic epidemic model of propagation of contagion

population is

dI(t)

dt
= βI(t) [V − I(t)] (2–1)

Dividing both sides by V , we obtain

dĪ(t)

dt
= βV Ī(t) [1− Ī(t)] (2–2)

where I(t) and Ī(t) are the number and the fraction of infected hosts at time t
respectively; V is the size of vulnerable host population; and β is the pairwise
infection rate. At beginning, t = 0, I(0) hosts are infectious and the other V − I(0)
hosts are all susceptible. Solving the differential equations for V = 213, I(0) = 1,
and β = 1

210 , we obtain a sigmoid curve as in the Figure 2-1. The beginning of
most of the worm epidemics matches the early part of this curve, until the effects
of bandwidth limitation and network congestion set in. This was demonstrated by
Staniford et al [63] for Code Red worm.

• Generalized Epidemic Model (the SIR Model)
Kermack-Mckendrick extended the simple epidemic model by considering the
removal process of infectious hosts [28]. In this extended model, it assumes that
during an epidemic, some infectious hosts either recover or die; however, once a host
recovers from the disease, it attains perpetual immunity to the disease. The hosts
that recover or die from the disease are put in the “removed” state (which is an
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addition to the simple model). Thus each host can be in only one of following three
states at any time: susceptible, infectious, or removed. Any host in the system either
undergoes the state transition “Susceptible (S) → Infectious (I) → Removed

(R)” or stays in “susceptible” state forever. In this model, A(t) and R(t) denote
the number of hosts that are infectious and removed at time t. Now, let S(t), I(t)
and R(t) denote the number of susceptible, infectious and removed hosts by time t.
Evidently, V = S(t) + I(t) + R(t). We obtain the following propagation equations:

dS(t)

dt
= −βI(t)S(t) (2–3)

dI(t)

dt
= βI(t)S(t)− γI(t) (2–4)

dR(t)

dt
= γI(t) (2–5)

where V is the vulnerable host population size, β is the pairwise infection rate and γ
is the rate of removal of infectious hosts.
One can see that from the model that in order for an epidemic to happen, the
number of infectious hosts must rise initially. Thus, at the beginning, we must have
dI
dt

> 0, which implies βI(t)S(t) > γI(t), or S(t) > γ
β
I(t). This γI(t)

β
is known as

the epidemiological threshold, which is defined as the number of secondary infections
caused by a single primary infection. Stated differently, it determines the number of
people infected by contact with a single infected person before his death or recovery.
When this threshold is below 1, each person who gets infected will infect fewer than
one person before recovering or dying, so the outbreak will eventually wane.

• Realistic Scenario – Two-Factor Worm Model
Although the Kermack-Mckendrick model does extend the original SI model,
there are a few reasons it cannot be applied to Internet straightaway. First, the
Kermack-Mckendrick model considers removal of infectious hosts only, while in
reality patching, filtering and similar countermeasures remove both infectious
and susceptible hosts from the total vulnerable population. Moreover, this model
assumes that the infection rate is constant, which is not necessarily true for a
rampantly spreading worm like Code Red. The reason for the latter event is that
large-scale worm propagation causes excessive load on the routers, sometimes even
overwhelming them as their ARP caches fill up. And once one router goes down,
other routers need to recompute new paths and update their routing tables, which
again causes even more load, and further degradation of performance. While the
degradation of performance of routers and the resulting disruption of service may
very well be one of intended result of the worm, this also has a negative effect on
the worm propagation itself. Because now not all scan packets would reach their
destinations, the overall scanning rate (and thus scanning efficiency) of the worm
decreases.
We do not pursue the details of this model any further as the goal of this model is to
obtain the propagation curves in presence of practical constraints like congestion and
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recovery. However, these conditions do not necessarily apply, or hinder, the progress
of a smart worm that scans at a rather slower rate and is thus able to reduce its
network footprint drastically.

2.5 Contributions

In this section, we give a brief description of the research work that has been

undertaken in this dissertation. The research problems described here will be discussed in

more detail in the following three chapters.

The broad objective of this research is to analyze the host-level and network-level

behavior of today’s worms, which are equipped with latest evasion and obfuscation tools

and intelligent scanning strategies, and devise possible countermeasures. Since different

worms use different strategies, evidently it will be implausible to devise a generalized

defense strategy that will be effective for all possible kinds of worms. Therefore, instead

of proposing a cure-all solution, we attempt to solve the following specific problems that

highlight some of the prevalent threats posed by worms today:

2.5.1 Detection of ASCII Worm

ASCII worms, i.e. worms whose body consists of entirely text, or printable ASCII

characters, are one of the latest generations of the self-mutating worms. It was shown in

as early as 2001 that it is trivial to convert a binary worm into an ASCII worm [56](by

binary, we mean containing both printable and non-printable characters). They are

very appealing since such a worm can obtain access to places where a worm is not

expected to be able to get in under normal circumstances. For example, there are cases

where a server expects certain kind of traffic to be strictly text, which is in fact quite

common as many important applications work with protocols that, or parts thereof, are

text-based. Examples of such text-only traffic include the URL in a HTTP request, or

the email traffic. To ensure that only the text characters get in at times when text is

expected, these servers usually employ ASCII filters [26] which drop any binary input.

This filtering results in a beneficial side effect of eliminating worms that exploit any

possible vulnerability in the execution paths for processing the input, since worms are

32



usually binary. However, using the ASCII filter alone as the sole defense against malware

is dangerous, since the malware may very well be text-based. Thus, we believe that the

text stream should not be bypassed from any scrutiny reserved for binary, and should be

treated with equal suspicion. There are other cases too where the ASCII stream is not

bypassed, but the detectors find the ASCII stream yielding too many false positives due

to their structural properties. Therefore, efficient detection of ASCII worms remain a

challenge till date.

2.5.2 Exact Modeling of the Propagation of Permutation-Scanning Worm

Unlike a real-world contagion which spreads in all directions randomly, a computer

worm has control over its choice of the next target host to be scanned. Most of the worms

till date use random scanning or its variant, where each infected host chooses its next

potential victim randomly. Among the various intelligent scanning strategies available,

Permutation-Scanning [63] features as one of the most interesting strategies. In that

strategy, the infected host uses permutation to map the real address space into a virtual

one, which effectively causes the vulnerable hosts to be dispersed evenly in the virtual

address space, even if they were present in clusters in the original address space. Initially

a small number of infected hosts start scanning the addresses sequentially after their own

addresses on this virtual address space. Whenever any of them infects a new vulnerable

host, it continues to scan sequentially, while the freshly infected host chooses a random

location on the permuted address space and starts scanning sequentially from there in

the same direction. After hitting an already infected host, the scanning host may either

choose to retire or select yet another random location on the permuted space to resume

its scanning. Simulations show that while this propagation strategy has a high infection

speed, it also causes significantly less network traffic compared to a randomly-scanning

worm, and hence is much stealthier. Therefore, modeling the propagation of this worm is

very important, since without the knowledge of its exact propagation characteristics, it has

the potential of passing undetected.
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2.5.3 Worm Design: Exploiting Pseudo-Randomness for Optimizing Scanning
Strategy

The virulence of a worm is indicated by how quickly, resiliently and stealthily it

can comprise the entire vulnerable host population, and it is dependent on the scanning

strategy chosen by the worm. Different scanning strategies yield different results in

terms of 1) Infection speed, which indicates how quickly the entire vulnerable host

population is infected, 2) Stealth, which indicates how much network scanning traffic

is generated, and 3) Fault tolerance, which indicates the ability to infect the vulnerable

population completely in spite of failure of certain scanning hosts. Most worms till date

use random scanning or its variant; however, some employ differential scanning, where

different destination address blocks are scanned with different probabilities. An example

of differential scanning is local subnet scanning, where based on the assumption that

more vulnerable hosts will be clustered in the vicinity of the currently infected host, the

addresses in the same subnet of the infected host are scanned with a higher probability.

Our goal is to find the optimal scanning strategy that achieves all these goals, i.e., it

ensures high infection speed with low network footprint and high fault tolerance. Since

most random-scanning worms use a pseudo-random number generator (PRNG) to produce

the sequence of target addresses to be scanned, we first investigate whether the classical

epidemic model, which is universally accepted as the propagation model for such worms,

takes into account the pseudo-randomness of the output from the PRNG. Surprisingly, we

find that it does not, and this discovery casts reasonable doubt about that correctness of

the derivation process of the classical epidemic model. We attempt to provide the correct

derivation, and explore whether the pseudo-randomness property can be exploited to make

the existing random-scanning worms much stealthier without losing infection speed and

fault tolerance, thus progressing towards the elusive optimal scanning strategy.
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CHAPTER 3
DETECTION OF THE TEXT MALWARE

In the past decade, the Internet has witnessed the rapid evolution of various malware

(virus, worm, Trojan, to name a few) [64]. While a considerable amount of research

has been devoted to the detection of the classical binary malware, the possibility of

using purely text stream (keyboard-enterable, Hex 0x20 through 0x7E) as the carrier of

malware has remained under-researched and often underestimated. Rix [56] and Eller [26]

showed a few years ago that any binary code can be turned into functionally equivalent

text (or even alphanumeric) code. Having a malware that is completely text-based is

very appealing to the malware authors since it can open new attack channels that were

earlier assumed to be malware-resistant simply by virtue of accepting text-only input.

Today, many popular protocols or their components are text-based, e.g., HTTP requests,

HTML, XML, or email traffic. To ensure text-only input, these servers often employ an

ASCII filter to discard or mangle the binary input [26]. However, if the filter is the only

defense, then these servers remain vulnerable, as the assumption that all malware are

binary is false. Worse yet, even some malware detectors deliberately bypass text streams.

For example, SigFree usually does not process the text-only input to avoid performance

degradation [73]. Thus, the notion of regarding the text data as benign and not subjecting

it to malware detection is dangerous, and we believe text should undergo the same

scrutiny as binary.

Even when the text input is examined, today’s malware detectors are not adequately

suited for efficiently detecting text-based malware due to the structural properties of text.

We consider two popular detection schemes: 1) disassembling the input into instructions

and then checking for the validity and executability of the instruction sequence (e.g.

APE [67]), and 2) examining the frequency distribution and other statistical properties

of the payload (e.g. PAYL [72]). The first scheme has two problems. First, almost any

text string translates into a syntactically correct sequence of instructions, which means
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checking for syntactic validity is of little value for detecting text malware. Second, since

most branch (jump) opcodes are text, the proportion of branch instructions in text data

is significantly higher than that in binary data. Since each branch instruction forks the

current execution path into two directions, having a lot of them exponentially increases

the total number of paths to be inspected by a detector that checks for executability. In

other words, to ensure quick detection of malware in text data, one must find novel ways

to prune the number of execution paths to be inspected. Regarding the other scheme that

examines the frequency distribution and other statistical properties of the payload, there

are instances where text malware has been shown to successfully evade such detectors. For

example, Kolesnikov et al [32] showed a way to create a text malware that follows normal

traffic pattern to the extent that it can evade even a robust payload-based detector like

PAYL [32]. Finally, we have performed experiments using a commercial malware detector

to scan various binary malware and their text counterparts. Although the detector

successfully catches all binary malware, no alarm was raised for the text. Therefore, we

conclude that the threat of text malware is real, and we can ignore them only at our own

peril.

ASCII worm, a worm whose body consists of entirely text data, is an example of a

text malware. While we focus on detection of ASCII worms, we note that the detection

techniques developed by us will be equally applicable for any text malware, not just

ASCII worms. Therefore, throughout this chapter, we will mostly be using the term “text

malware” rather than just ASCII worm.

In this chapter, we analyze the potentials and limitations of text malware, and

formulate detection techniques that exploit those inherent limitations. We introduce a

novel text-malware detection method that examines the maximum executable length

(MEL) of the byte stream arriving at a server which runs protocols expecting text input.

MEL measures the number of instructions on the longest error-free execution path in the

disassembled input. Because of the inherent randomness in the disassembled instructions,
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a benign stream of text is very likely to cause an error during runtime and thus not likely

to have a long error-free execution path.

The concept of MEL was originally introduced in Abstract Payload Execution

(APE) [67] for detecting binary worms. It raises an alarm when the MEL measured from

the input stream is greater than a threshold value. However, we will demonstrate through

analysis and experiments that APE, as well as other binary detectors, are not suitable

for detecting text malware. Not only is it extremely slow due to an excessive amount of

branch instructions in text input, but also its MEL measurement is incorrect without

taking the text-specific properties into consideration. We further show that, even for

binary worms, APE may no longer be effective because malicious binary code can be made

very compact with such a small MEL that will overlap with the MEL range of benign

input. On the other hand, as one of our contributions, we observe that it is very hard to

make text malware compact due to the unavailability of critical instructions in the text

domain.

We make two major contributions in this chapter. First, as the existing MEL-based

detectors, in their current form, are unsuitable for text malware, we must explore new

text-specific properties that characterize more precisely the structural limitations of the

instructions in the text domain, which will in turn constrain how the text malware can be

constructed. By exploiting the limitations and constraints of the text malware, we design

DAWN (Detecting ASCII Worms in Networks), a novel MEL-based method for detecting

not only ASCII worms but any text malware. It is fast, reliable and accurate. Second, how

big should the MEL threshold be for raising alarms? In the past, the MEL threshold used

to separate benign data and worms is obtained empirically. It does not explain whether

there is a mathematical foundation behind the method, i.e. whether it is possible for a

benign instruction stream to have an MEL higher than a given threshold, and if so, with

what probability. We develop a probabilistic model of the MEL theory. We show how the

MEL threshold can be calculated from the input character frequencies (instead of from
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some training data [67, 2] that may be biased), and how we can control the detection

sensitivity.

The rest of the chapter is organized as follows. Section 3.1 gives an overview of

the text malware. Section 3.2 looks into the limitations of text malware and devises

an MEL-based detection method exploiting those limitations. Section 3.3 derives the

underlying probabilistic model for the MEL method. Section 3.4 describes the design and

implementation of our text malware detector. Section 3.5 evaluates our detector through

experiments. Section 3.6 provides a comparison of our work with others. Section 3.7

explores text malware in non-Intel architectures. Section 3.8 concludes with discussions on

the limitations and robustness of our detector.

3.1 Inside the Text Malware

In this section, we begin with definitions and terminologies, then discuss the opcode

availability in the text domain, and finally present the typical construction of a text

malware. Our discussions are made in the context of the Intel 32-bit architecture. We will

explore the possibility of text malware in non-Intel architectures in Section 3.7.

3.1.1 Definitions and Terminologies

We use the following definitions throughout this paper.

• Text data: byte stream consisting of only keyboard-enterable characters, or in
other words, printable ASCII characters (0x20 through 0x7E). A malware whose
instructions consist of only bytes in the ASCII domain is called a text malware.
Throughout this paper, the terms “text” and “ASCII” will be used interchangeably.

• Binary data: byte stream consisting of text as well as non-text characters. A
malware whose instructions contain bytes outside of the ASCII domain is called a
binary malware.

• Valid (or invalid) instruction: an instruction that will not (or will) cause the
running process to abort by raising an error during its execution.

• MEL (Maximum Executable Length): length of the longest sequence of
consecutively-executable valid instructions in an instruction stream. To elaborate,
suppose we are given n bytes. We begin the disassembly from the i-th byte and use
a count ci to record the number of instructions that we can execute before an error
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(i.e., invalid instruction) occurs. We repeat the procedure for i = 1, 2, ..., n, and the
MEL is be given as max{ci, 1 ≤ i ≤ n}.

3.1.2 Opcode Availability for Text Malware in Intel Architecture

Most malware needs to make system calls, for example, when they open sockets to

communicate with their masters or trying to propagate in case of worms. However, the

opcodes required for those system-level functions are not available in text. The only Intel

opcodes and instruction prefixes available in the text domain are:

• Dual-operand register/memory manipulation or comparison opcodes: sub, xor, and,
inc, imul and cmp

• Single-operand register manipulation opcodes: inc, dec

• Stack-manipulation opcodes: push, pop, and popa

• Jump opcodes: jo, jno, jb, jae, je, jne, jbe, ja, js, jns, jp, jnp, jnge, jnl and jng

• I/O operation opcodes: insb, insd, outsb and outsd

• Miscellaneous opcodes: aaa, daa, das, bound and arpl

• Operand and Segment override prefixes: cs, ds, es, fs, gs, ss, a16 and o16

While many critical instructions for system calls, I/O operations, computations and other

types of data manipulation are not in the text domain, we observe that, using the text

opcodes intelligently, one can simulate other non-available opcodes. For example, although

the opcode move is not available, one can easily simulate move eax, ebx by doing push ebx

followed by pop eax. Moreover, as we will show next, we can dynamically create binary

instructions once text-based malware sneaks into a computer system and gets a chance to

be executed.

3.1.3 Construction of Text-based Malware

We use an ASCII worm to showcase the text-based malware. Suppose the ASCII

worm passes through an ASCII filter to reach an email server. It exploits a buffer-overflow

vulnerability on the execution stack of a running program and subsequently gains

the control for execution. Since the opcodes for system-level instructions, which are
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Figure 3-1. Creation of a binary worm on stack from text code

essential for a potent worm, are absent in the text domain, the only way to make them

available is for the text worm to create them on the fly, preferably on the stack where the

buffer-overflow attack has just transferred the CPU execution from the exploited program

to the worm.

The method [56] for the text worm to generate binary instructions is illustrated in

Figure 3-1. Denote the binary instructions to be generated as B = b1b2...bn. Let ai be the

text code segment that creates the binary word bi. To give an example, starting with a

word of four arbitrary text characters, a sequence of inc or dec instructions can produce a

word of any value, though occasionally we can use xor and sub to do it more intelligently.

We exploit the property that the Instruction Pointer IP and Stack Pointer SP move in

opposite directions during the execution of stack-growth (push) instructions – IP increases

while SP decreases, as shown in Figure 3-1. The code of the text worm is arranged in the

order of an, an−1, ..., a1. During execution, an generates bn and pushes it on the stack,

then an−1 generates bn−1 and pushes it on the stack, ..., and finally a1 generates b1 and

pushes it on the stack. The stack pointer must be appropriately set such that b1 locates

right next to a1, which means that after executing a1, the control will automatically pass

on to the created binary instructions that begin from b1. Hence, typical text malware
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looks like Ianan−1...a3a2a1, where I denotes some initialization code which performs

bootstrapping such as setting the stack pointer to a proper position.

In this dissertation, we refer to the process of turning text malware into binary

code as decryption. The malware itself must carry a decrypter, a cleartext ASCII

instruction sequence that performs the decryption. In many cases, the whole malware

is a decrypter, as shown in Figure 3-1. The reason for having such a long “hardcoded”

O(n)-size decrypter for generating an n-word binary code will be apparent in Section 3.2.2.

3.2 Detection Strategy for Text Malware

In this section, we first show that the existing malware detectors are not adequately

suited for detecting text malware. We then argue that MEL can serve as a differentiator

between benign text and malicious text. Finally, we show that the MEL method, while

applicable to text malware, can no longer apply to binary malware.

3.2.1 Limitation of Existing Binary Detectors

Since text is a subset of binary, one may be tempted to assume that binary

malware detectors would be equally effective in detecting text malware. However, as

we demonstrate through several research malware detectors as well as commercial ones,

that assumption is not true.

Disassembly-based Detectors: Nearly a third of the instructions available in

text are branch (jump) instructions. This high frequency of branch instructions is one

reason why the disassembly-based binary malware detectors do not work well for text

input. Since every branch forks an execution path into two directions, having too many

of them increases the number of execution paths to be searched exponentially. So,

unless some text-specific criterion is used to prune this search space, detectors may take

excessively long time to run for text input. SigFree [73], which uses disassembly-based

techniques, reported that it usually does not process text input due to performance

degradation. This finding is corroborated by the observation that when we emulated
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another disassembly-based detector APE [67] for text input (see table 3-2 in Section 3.6),

the runtime was hours in many cases, clearly unacceptable for a malware detector.

Frequency-based Detectors: Detectors that rely on the statistical properties of

the traffic to decide whether it is malicious are not foolproof against text malware either,

as Koleshnikov et al [32] showed how an ASCII worm could easily evade a powerful and

robust detector like PAYL [72].

Commercial Detector: We passed the text malware used in our experiments to the

commercial malware detector McAfee, and no alarm was raised.

Summarizing the above discussion, we need a new detection strategy that can be

efficiently applied to text input and will differentiate malicious text from benign text.

Our strategy is based on the following observation: text malware has a high probability of

having a high MEL, while benign text tends to have low MEL.

3.2.2 Text-Based Malware Has High MEL

Below are the two primary reasons why a text-based malware is likely to have a high

MEL.

Opcode Unavailability: In order to be potent, a malware must perform certain

actions, such as making system calls, which require opcodes that are unavailable in text

data. Therefore, we see that text malware are constrained to generate these instructions

dynamically. Since a binary malware usually has many such non-text instructions,

dynamic generation of them entails long stretch of valid text instructions, which means

high MEL.

Difficulty in Encryption: There are two difficulties associated with encrypting

binary in text (and decrypting text back to binary). First, we observe that since the

text domain is a proper subset of the binary domain, we cannot have a one-to-one

correspondence between the two. Therefore, if we are encrypting one byte of binary data

into text, the size of the encrypted output will be definitely more than one byte, which

means not only the size of the encrypted payload will increase but also the decryption
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logic will be more complex, thus resulting in a much larger decrypter. Second, in order

to have a small decrypter routine, one needs to use a jump instruction with a negative

displacement to “go back” to the beginning of the decrypter so that the same routine can

repeatedly executed for decrypting different encrypted bytes. However, since all text bytes

have 0 in their most significant bit (MSB), one cannot have a negative displacement in

text – which means that all jumps in text instruction stream are in the forward direction.

This precludes the possibility of having a small decrypter – for a n-word encrypted

payload, one must have O(n) decrypter blocks where each decrypter block will decrypt one

individual word. Thus, we posit that text decrypters are large in size, and accordingly a

text malware that employs encryption has a high MEL. While it is theoretically possible

to overcome these difficulties (by generating the negative displacement dynamically or by

using multi-level encryption), that would most likely make the decrypter more complicated

and thus increase its size and MEL. We will discuss the multilevel encryption issue in

greater detail in Section 3.8.

3.2.3 Benign Text Tend to Have Smaller MEL

A high MEL implies the presence of a long valid (error-free) instruction sequence.

Therefore, if invalid (error-raising) instructions are dispersed abundantly in an instruction

stream, the chances of having a high MEL is minimal. It transpires that the preceding is

true for normal text stream – such invalid instructions do occur frequently in the benign

text data due to the following reasons:

Prevalence of Privileged Instructions: The characters ‘l ’, ‘m’, ‘n’ and ‘o’, which

occur frequently in text [45], correspond to privileged I/O instructions that cannot be

invoked from any user-level application without generating an error. Benign text data may

have these instructions, whereas malware will never have them in its execution path.

Illegal Memory Access: Text instruction streams are very prone to segmentation fault

due to attempts to access out-of-bound memory. This is because in Intel architecture,

approximately two-third of all dual-operand instructions available in text (xor, and, sub,
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and cmp) involve memory access. To see why, we note that unlike other architectures

like VAX, Intel architecture does not allow two-operand instructions where both the

source and destination operands are memory; however, it does allow register-register,

register-immediate and register-memory instructions. Now, in order to have a register-register

instruction in Intel architecture, the ModR/M byte of the instruction must have 1 in

its Most Significant Bit, which is not possible in text. Therefore, for all two-operand

instructions involving a ModR/M byte, one operand must come from memory for text

instructions. This implies that with text, a significant proportion of the instructions

involves memory access. With such abundance of memory-accessing instructions, while

accessing the memory, a violation can happen in the following ways:

• If a register used for addressing the memory is uninitialized and thus contains an
arbitrary value, then there is a significant probability that upon execution the
memory addressed would be out-of-bounds, thereby causing errors.

• Considering that text domain includes all the possible segment override prefixes, and
characters denoting those prefixes (‘d ’, ‘e’, ‘.’, ‘6’, ‘&’ and ‘>’) are frequent, there
is a high possibility that a benign stream will have a Segment Selector prefix to the
instruction that will cause it to access arbitrary memory segment and thus cause
errors.

• When the memory address is explicitly stated, i.e. no register is used to point to
a memory area, it can potentially create problems. This is because nowadays it is
a common practice to randomize the starting addresses of user stacks and static
libraries [4], and such explicit memory addresses might be out-of-bound for the
program.

Thus, in a random (benign) text stream, such memory-accessing-error events are frequent.

3.2.4 Using MEL as Detection Strategy

Based on the discussion above, it is evident that unlike benign text, a text malware

has a high probability of having a high MEL. Therefore, a threshold on the MEL can be

used to determine whether a text stream is most likely malicious or benign. However, it

should be pointed out that our contribution not limited to this rather straightforward

approach of checking against an MEL threshold during pseudo-execution (which has

appeared in previous works [67, 2] for classical binary worms), but rather 1) the discovery
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of new text-specific techniques for identifying invalid instructions in order to prune

the number of possible execution paths to be explored and demonstrating how adverse

the detection results can be if we do not use those techniques, and 2) providing the

probabilistic model of the MEL theory, which enables us to calculate the MEL threshold

mathematically rather than empirically, and predict what would be the false positive rate

for a user-specified MEL threshold.

We also show that the MEL method, though used for detecting binary worms

previously, cannot be used any more. This is because binary malware does not suffer from

the same encryption difficulties as the text malware does. Without any constraint on

encryption, it is fairly easy for the binary malware to use a very short decrypter, which

will result in a low MEL similar to random (benign) binary stream, thereby making the

malicious traffic virtually indistinguishable from the benign, from an MEL-based detection

purpose. Therefore, it is rather surprising that the MEL method was ever successfully

used for detecting binary worm, as in APE [67] and Stride [2]. The reason those detection

methods succeeded is because those schemes exploited a special property of the binary

worms, viz. the fact that binary worms were accompanied by a NOP sled. Those schemes

were directed not towards detecting the actual payload (which could be encrypted and

thus have a small MEL) but towards detecting the worm’s sled (a long sequence of

unencrypted valid instructions, and thus having a high MEL). Unfortunately, according a

recent survey [20], NOP sleds are almost never used nowadays, probably because the stack

addresses today can vary by millions of bytes, and having a sled that long is improbable.

Nowadays, most of the worms rather use the “register spring” method that involves

no sled [20]. Thus, MEL-based methods (including APE or Stride) are not suitable for

today’s binary worms any more.

3.3 Probabilistic Analysis of MEL

In this section, we answer this question: given a sequence of n instructions with each

instruction having a probability p of generating an error during execution, what is the
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distribution of the longest error-free execution path (MEL)? We elaborate below why

deriving the distribution of MEL is important.

We use the detection strategy that, if an incoming instruction stream contains a

contiguously valid instruction sequence longer than a certain threshold τ , then it contains

a malware with a certain false-positive probability α (which is the chance for a benign

stream to have a contiguously valid instruction stream of length more than τ purely by

accident). It is intuitive to see that the larger the value of τ is, the smaller the value of

α will be. Unfortunately, if we aim at driving α close to 0 in order to avoid false alarms

altogether, τ will be very large, which may lead to false negatives (the case that real

malware is not detected). Therefore, it is important to characterize the trade-off between

false positive and false negative by deriving the mathematical relationship between α and

τ . Such a formula will allow the user to select a specific combination of the two values

in order to achieve certain desirable performance. While it is possible to estimate the

relationship between α and τ experimentally through a training data set, such data can be

biased, not representing the general case. In this section we take a probabilistic approach

that correlates τ with α using the character frequency distribution of text input.

3.3.1 Description of the Model for MEL

In our probabilistic analysis, we use Bernoulli trials to model this problem. We start

with the assumption that the instructions in a normal input stream occur randomly

and independently (this assumption is verified in Section 3.3.3). Let Iv denote a valid

instruction, Iinv an invalid instruction, and p the probability for an arbitrary instruction

disassembled from a normal stream to be invalid. Consequently, the probability for an

instruction to be valid is (1−p). Let n be the number of instructions in an input stream

and N be the number of invalid instructions in the stream. It is easy to see that there

are N+1 contiguously valid instruction sequences, each containing zero or more Ivs and

terminating with an Iinv. The instruction sequence after the last Iinv does not have

the terminating Iinv. For example, with n = 17 and N = 5, the following instruction
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stream, IvIvIinv IvIvIvIvIinv IvIvIvIinv IvIvIinv Iinv Iv, contains 6 such sequences

(instructions in the same sequence are under the same bar), where the longest valid

instruction sequence is IvIvIvIvIinv (MEL=5). Now, if we use the term Xi to denote

the length of each of these N+1 valid instruction sequences, then the MEL is given by

Xmax = max{X1, X2, ..., XN+1}. Each Xi follows Geometric distribution with parameter

p. Although
∑N+1

0 Xi = n, the Xis can be assumed to be independent (effect of this

approximation will be discussed in Section 3.3.3). Below we derive Prob[Xmax ≤ x],

∀x ∈ [0..n], which is the cumulative density function of Xmax (or the MEL).

First, we derive the conditional probability when the number of invalid instructions is

fixed at N = k, for a specific number k (we would generalize it later).

Prob[Xmax ≤ x | N = k]

= Prob [max(X1, X2, X3, ...., Xk+1) ≤ x]

= Prob [(X1 ≤ x) and (X2 ≤ x) ...and (Xk+1 ≤ x) ]

= Prob (X1 ≤ x)× ...× Prob (Xk+1 ≤ x)

= [1− (1− p)x]× [1− (1− p)x]...× [1− (1− p)x]

= [1− (1− p)x]k+1

We stress that the probability calculated above is conditional on a specific value of N .

The actual value of N may vary from 0 to n. Since N denotes the number of invalid

instructions occurring among n instructions (with each of the n instructions having a

probability p of being invalid), it follows the Binomial distribution with parameters (n, p).
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Thus, Prob[Xmax ≤ x] over all possible values of N is

Prob[Xmax ≤ x]

=
n∑

k=0

Prob[N = k]× Prob[Xmax ≤ x | N = k]

=
n∑

k=0

(n
N)pk(1− p)n−k × [1− (1− p)x]k+1

= (1− (1− p)x)[1− p(1− p)x]n

The Probability Mass Function (PMF ) for MEL is Prob[Xmax = x] = Prob[Xmax ≤
x]−Prob[Xmax ≤ x− 1] = (1− (1− p)x)[1− p(1− p)x]n− (1− (1− p)x−1)[1− p(1− p)x−1]n.
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Figure 3-2. Juxtaposition of the PMF s for the MEL from the probabilistic model and
from the Monte-Carlo simulation by varying n and p. A near-perfect match
can be observed in almost all the cases.

3.3.2 Automatic Derivation of Threshold τ

We now derive the formal relation between τ and α. The resulting formula allows us

to automatically derive the threshold value τ under the constraint that the false-positive

probability is bounded by a given value of α.

False positive happens when Xmax is greater than the MEL threshold τ . Thus, the

false-positive probability must be α = Prob[Xmax > τ ] = 1 − Prob[Xmax ≤ τ ] =

1 − (1 − (1 − p)τ )[1 − p(1 − p)τ ]n. We can approximate it as α = 1 − [1 − p(1 − p)τ ]n

since (1 − (1 − p)τ ) ≈ 1. Thus, we obtain τ = log(1−(1−α)
1
n )−log p

log(1−p)
. This formula implies
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that given n and p, we can calculate the MEL threshold τ corresponding to any allowable

false-positive rate α chosen by the user. How to determine the values of n and p will be

discussed in Section 3.5.2.

To verify that the above approximation has insignificant impact on the value of τ , we

compare the values of τ obtained using the formula with or without the approximation.

For example, when α = 1%, n = 1540 and p = 0.227 (the parameters used in our

experiments), τ = 40.61 with the approximation and 40.62 without (difference of 0.02%).

Other reasonable parameter settings also show that the approximation induces only small

error in the computation.

Based on the above analysis, if we use the derived τ as threshold, the false-positive

probability will be bounded by α. This is very important, since it gives us the flexibility to

set the detection sensitivity of an MEL-based detector.

3.3.3 Verification of the MEL Model

In our model, we assume that valid and invalid instructions occur independently in

the benign text. If we can show that the validity of an instruction is independent of the

validity of the instruction prior to that, then by induction it can be shown that occurrence

of any valid or invalid instruction in an instruction stream is an independent event. To

prove that, we conduct the Pearson’s χ2 test with the null hypothesis H0 : in a pair of

contiguous instructions < I1, I2 >, the validity of I2 is independent of the validity of I1. To

verify this, we construct below the 2 × 2 contingency table of frequencies as follows. First

we disassemble the benign text data used for our testing. Then, considering all possible

contiguous pairs of instructions, we count the total number of cases for each of the 4

possible validity combinations and tabulate the results under the “observed” column. The

rightmost columns under “expected” indicate the expected numbers as per Pearson’s χ2

test. As we observe, the values are very close; and the corresponding p-value (0.1) is not

statistically significant to reject H0.
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Observed Expected
Valid I2 Invalid I2 Valid I2 Invalid I2

Valid I1 8960 2797 8922 2835
Invalid I1 2797 938 2835 900

x yjump

i

Invalid instruction Valid instruction stream

ii ii i1 4b32a

l12 34l

Figure 3-3. Effect of jump instructions

The other assumption in our model is that we do not enforce the condition that
∑N+1

0 Xi = n and rather assume Xis occur independently. Is it evident that as n

increases, the effect of this constraint becomes less pronounced. To verify this, we run

Monte-Carlo simulation for the PMF (Xmax) for different values of n and p. There, we

toss a coin (with probability of head p) n times and calculate the MEL by taking the

maximum distances between two heads that are separated by only tails and no heads

in between. As heads are equivalent of invalid instructions, the maximum inter-head

distance represents the MEL. The same experiment is run for thousands of rounds to

obtain the distribution of MEL. Finally, we juxtapose the output PMF for the MEL from

the Monte-Carlo simulation with the PMF generated by our probabilistic calculation in

Figure 3-2. We observe a near-perfect match in all cases (especially with larger n), which

vindicates our probabilistic model.

We also get one very important intuition from Figure 3-2. We see that if p decreases,

it will require a higher threshold τ to keep the same false positive rate of α. However,

higher threshold will mean that a lot of malware will also not get detected. Thus, to have

a low value of false negative (in addition to a fixed low value of false positive α), we must

find ways to increase p. This is why finding more ways to invalidate instructions in text

streams is important.
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3.3.4 Handling Jump Instructions in the Model

One minor issue with our probabilistic model is that it does not quite capture the

effect of the jump instructions. However, as we will show below, the anomaly introduced

by the jumps are minimal.

In our model, we had implicitly assumed that if instruction ib is executed right

after instruction ia, then ia and ib must be contiguous in the original instruction stream.

However, if ia happens to be a jump instruction with ib being the jump target, then we

can be fairly certain that ia and ib will not be immediate neighbors in the disassembled

instruction stream. This phenomenon is illustrated in Fig. 3-3, where solid dots represents

invalid instructions (i1, i2, i3 and i4), and the straight line segments between the solid

dots indicate stream of valid instructions. The length of a line segment (l12 and l34 in

Fig. 3-3) indicates the number of valid instructions within that segment. Since we have

observed that invalid instructions can be assumed to occur independently with probability

of p, the length of the individual line segments is a random variable following Geometric

distribution, with mean of 1
p
. Therefore, E[l12] = E[l34] = 1

p
. Now, suppose during

runtime first x number of valid instructions are executed with the last one being the jump

instruction ia, and then another y number of valid instructions are executed, starting with

the jump target instruction ib and ending with the invalid instruction i4. Let’s assume ia

is located within the line segment between invalid instructions i1 and i2; and ib is located

within the line segment between invalid instructions i3 and i4. Thus, x+y will be the

total number of instructions in a possible execution path. Now, if the expected value of

x+y is any different from 1
p
, which is the expected value of such an execution path in our

original model, then we have a problem. To illustrate the point, if ia and ib happen to be

closer to i1 and i4 than i2 and i3 respectively, then the value of x+y will be significantly

smaller than 1
p
. Conversely, if ia and ib are closer to i2 and i3 than i1 and i4 respectively,

then the value of x+y will be significantly larger than 1
p
. However, since we are discussing

a probabilistic event, a single instance of a large or small value does not matter – what
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we are interested is studying whether having a jump instruction introduces a bias in the

system by altering the expected value.

We investigate this problem in the following way. Given that a jump instruction

occurs during the execution of a valid instruction stream, the location for the jump

instruction is random, i.e. it can happen anywhere in that instruction stream. Pictorially,

the location of jump instruction ia is random between i1 and i2 in Fig. 3-3. Extending

the same logic for the location of the jump target, we find that the location of ib is also

random between i3 and i4. Therefore, x and y can be perceived as two random variables,

having the ranges of values between 1 and l12 for x and between 1 and l34 for y. Therefore,

each of the random variables x and y will follow a discrete uniform distribution, with the

following probability distribution (conditional on l12 and l34):

Prob[x = k] = 1
l12

∀ k = 1...l12, and

Prob[y = k] = 1
l34

∀ k = 1...l34 .

Thus, conditional on the given values of l12 and l34,

E[x] = l12
2

and E[y] = l34
2

.

Since the displacement in a jump instruction is completely arbitrary, the position of

ia within the range [i1, i2] does not affect the position of ib within the range [i3, i4]. Thus,

the random variables x and y are independently distributed. Therefore, the expected

number of consecutively-executed valid instructions involving a jump instruction =

E[x + y] = E[x] + E[y] = l12
2

+ l34
2

conditional on the lengths of the line segments being

l12 and l34. When we remove the condition and calculate the unconditional expected value,

E[x + y] = E[ l12
2

+ l34
2

] =
1
p

2
+

1
p

2
= 1

p
, which is the same value of the expected number of

valid instructions executed between two invalid instructions in our original model without

considering the jump instructions.

Therefore, we observe that having a jump instruction among a stream of valid

instructions does not affect the distance between the invalid instructions in a probabilistic

sense. This implies that the MEL from our model, which originally did not account for the
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jump instructions, is affected by it only in a very minor way. The rationale behind this

inference is as follows. Due to presence of a jump instruction, the only parameter that is

directly affected is n, since a jump essentially discards the instructions located between the

jump instruction and the jump target, thereby lowering n. With a smaller n, the threshold

τ corresponding to an error rate α would be marginally smaller than the original scheme.

Therefore, 100% of the alerts that are generated by our model without considering the

jump would have also been generated by a model that considers it, which means the false

positive rate is not affected. The only downside is that now we will be missing a few alerts

that should have been raised, which means the false negative value would increase slightly.

However, as we know from the experiences of anti-malware product vendors, false positive

is a much bigger problem than false negative, since the benign traffic volume dwarfs the

malicious. Therefore, we argue that our model is not significantly affected by the presence

of jump instructions.

3.4 Implementation of DAWN

This section describes DAWN, the detection strategy for ASCII worms. Briefly,

DAWN operates in two main stages: instruction disassembly and instruction sequence

analysis. First it disassembles the ASCII input from every possible position, and attempts

to see if any such disassembly could potentially lead to a malicious code by performing

pseudo-execution of every possible path (details of this “pseudo-execution” would be

provided later). If it detects a long sequence of valid instructions (longer than a certain

threshold), an alarm is raised. The individual steps are delineated in more detail in the

next two subsections, followed by the experimental results.

3.4.1 Step 1: Instruction Disassembly

Since it is not possible to predict the entry point of the worm in the input stream, the

input (say of length n bytes) needs to be disassembled from all possible n entry points. It

has been shown [9] that due to the self-adjusting nature of the Intel instructions, if one

starts interpreting the same instruction stream from two adjoining bytes, the instruction
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Figure 3-4. How DAWN works

boundaries of the two instruction sequences tend to get aligned within 6 instructions (max

78 bytes) with a very high probability. Thus, for every entry point we need to disassemble

only an average of 6 instruction before we can re-use the instruction sequence that has

already been disassembled. Therefore, although the disassembly is technically a O(n2)

process, it is linear from a practical standpoint.

3.4.2 Step 2: Instruction Sequence Analysis

The main purpose of this stage is to ascertain how long an instruction sequence

(which may start anywhere within the text data) may execute without generating an error.

The error may result either from using a privileged instruction, or from a memory access

violation. As DAWN proceeds with the pseudo-execution of the instruction sequence,

it keeps track of which registers have been initialized properly. When an uninitialized

register is used to address memory (as source or destination), it is considered to be the

end of that sequence. For a control flow bifurcation (like jump), DAWN recursively

considers both the possible routes (jump target as well as the fall-through instructions)

and chooses the longest path between the two. It should be noted that as there are only

forward jumps in text data, there is no chance of DAWN “looping around” in the code

endlessly. If the length of the longest executable instruction sequence exceeds a certain

threshold (considering all n possible entry points), then an alarm is raised.

The sketch of the detection algorithm implementing the above ideas is given below.

54



Algorithm 1 DetecttextMalware (printable ASCII stream A)

1: D = disassembleInstructionsFromEveryEntryPoint(A);
2: for startPoint s = 1 to size(A) do
3: v ⇐ 0; // max length of valid instructions till now
4: Π ⇐ ∅; // set of properly populated registers
5: RecursiveDetect(D, s, v, Π);
6: if v > threshold then
7: Raise Worm Alert;
8: end if
9: end for

Algorithm 2 RecursiveDetect(disassembled instructions D, entry point s, max valid
length v, populated register set Π)

1: is ⇐ D[s]; // Instruction starting at byte s
2: snext ⇐ s + length(is); // location of the next instruction
3: if is is truncated then
4: return;
5: end if
6: v ⇐ v + 1; // Increase the MEL counter
7: if is is a privileged instruction or accesses memory with an inappropriate segment override

prefix then
8: return;
9: else if is is a single-register or register→stack instruction (e.g. inc, dec, push) then

10: RecursiveDetect(D, snext, v, Π);
11: else if is is a immediate→register or stack→register instruction (e.g. pop, popa) then
12: Π ⇐ Π ∪ (destination registers); // Initialization
13: RecursiveDetect(D, snext, v, Π);
14: else if is is a register–memory operand instruction (e.g. xor) then
15: Σ ⇐ memory-accessing registers;
16: if Σ 6⊆ Π then
17: return;
18: else
19: Π ⇐ Π ∪ (destination registers); // Initialization
20: RecursiveDetect(D, snext, v, Π);
21: end if
22: else if is is control-flow instruction (e.g. jne, jae etc.) then
23: vtarget ⇐ vfallthrough ⇐ v;
24: Πtarget ⇐ Πfallthrough ⇐ Π;
25: RecursiveDetect(D, starget, vtarget, Πtarget);
26: RecursiveDetect(D, sfallthrough, vfallthrough, Πfallthrough);
27: v ⇐ max(vtarget, vfallthrough); // Set Π accordingly
28: end if
29: return;
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3.5 Evaluation

We evaluate the effectiveness of our MEL theory in the following steps: (i) Creating

the test data, (ii) Determining the appropriate threshold from the created test data using

the MEL theory, (iii) Running the detection algorithm (DAWN [41]) with the threshold

determined in the previous step, and observing the false positive and false negative rates.

The tests were run on an Intel(R) Pentium-IV 2.40 GHz CPU with 1 GB of RAM in a

Linux machine.

3.5.1 Creation of the Test Data

For creating the text malware, the frameworks provided by Rix [56] and Eller [26]

were used to convert multiple binary buffer overflow programs (from [3]) into their text

counterparts and more than one hundred text worms were created in that way. The

effectiveness of each text malware was tested by actually running the vulnerable program

and then by observing the spawning of the shell. To check whether a text malware

detector is at all needed, McAfee antivirus program was run on both the binary and text

shellcodes and it raised alarms for the binary cases only. For creating the benign dataset,

approximately 500 KB of real web traffic from our departmental network were collected

using Ethereal. After stripping off the headers, 100 cases, each containing approximately

4K text characters, were selected to serve as the benign data.

3.5.2 Determining MEL Threshold τ

Since we can express the threshold τ as a function of the false-positive probability

α with parameters p (probability of an invalid instruction) and n (total number of

instructions), we need to first calculate the values of these parameters (p and n) for our

test data. For the calculations, we use only the following two entities: 1) the input size C

(in number of characters), and 2) the character frequency table (indicating the probability

of occurrence for each character), which can either be pre-set (from experience) or can

be obtained by a linear sweep of the input character stream in case no pre-set data exists

(like our test condition). We do not need to disassemble any data for determining p or n.

56



 0

 20

 40

 60

 80

 100

 120

 0  0.1  0.2  0.3  0.4  0.5  0.6

M
E

L 
T

hr
es

ho
ld

 τ

Value of p (probability of an invalid instruction)

Combination of (p,τ) for Maintaining Same False Positive Rate

Min allowable value of τ and
Max allowable value of p
to ensure no false positive

Max allowable value of τ and
Min allowable value of p
to ensure no false negative

big gap
between

worm and benign

ISO-ERROR LINE

Figure 3-5. Correlation between τ and p for maintaining same error (false positive) rate
α = 1%.

Determining n : We know that the total number of instructions n = C
Avg Instr size (bytes)

.

The average length of an instruction is given by E[length of instruction] = E[length of

prefix chain] + E[length of actual instruction]. By actual instruction, we denote the

rest of the instruction after the prefix chain, starting with the instruction opcode and

including ModR/M, Immediate, Displacement, SIB, etc. Now, if z denotes the probability

that a character is one of the instruction-prefix characters (z = 0.16 in our case), then

E[length of prefix chain] =
∑∞

i=0 i× Prob[length(prefix chain) = i] = z
(1−z)

= 0.19.

Similarly, E[length of actual instruction] =
∑

i length[instr(i)]× Prob[instr(i)], where

instr(i) represents an actual text instruction. In our case, E[length of actual instruction]

was found to be 2.4. Thus, E[length of instruction] turns out to be 0.19 + 2.4 ≈ 2.6 bytes

per instruction. Since C = 4K in our case, n = C

E [instruction size]
= 4000

2.6
≈ 1540.

Determining p: We obtain p by adding the probability of I/O instructions and

wrong-Segment-override memory-accessing instructions (which are 18.5% and 4.2%

according to the frequency distribution of our test data). We disregard the probability

of illegal memory access due to unpopulated memory-addressing register, as it requires

evaluation of prior instructions and hence it cannot be determined standalone whether

it will cause an abort or not. We also take the conservative approach of not using the
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possible error due to explicit memory address, as the register spring technique exposes the

usage of static addresses in Windows [20] for some cases. Thus, p turns out to be 0.185 +

0.042 = 0.227 in our case.

Determining the threshold τ : We set the false positive rate at α = 1%. For this

α, we calculate the corresponding threshold τ = log(1−(1−0.01)
1

1540 )−log 0.227
log(1−0.227)

= 40 for our

calculated experimental parameters n = 1540 and p = 0.227.

3.5.3 Experimental Results

In our experiments, the MEL threshold of 40 catches all the malicious cases and not

a single benign case gets misclassified as malicious, thus yielding zero false positive and

zero false negative rates. To interpret the result even further, we take the MEL from each

benign as well as malicious input data, and construct the overall MEL frequency charts

(equivalent of PMF of MEL). We compare the frequency distribution of the MEL for

benign and malicious test data in Figure 3-6. For the benign data, the average MEL is

near 20, and max MEL is 40 (same as τ), which matches our expectations very well. On

the other hand, for the malicious data, the minimum MEL is 120, thereby marking a clear

differentiator. Also, if we connect the frequency points for benign, we observe that it forms

into a shape somewhat similar to the PMF curves in Figure 3-2, which shows that our

model is indeed mimicking the actual behavior. Also, we observe from Figure 3-5 that the

gap between the false positive boundary (p value of 0.227 corresponding to MEL of 40)

and false negative boundary (p value of 0.073 corresponding to MEL of 120) is quite large,

which means even if the estimated p changed by a small margin, we would still have been

able to distinguish the malware from the benign data. Also, the average instruction length

from our actual experiment (2.65) was found to be very close to our expected value (2.6)

assuming character and instruction independence.
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3.6 Comparing Our Work with Others

Since our detection mechanism is completely payload-based, we only compare our

work with similar schemes. We contrast our method with 1) Abstract Payload Execution

(APE [67]), and 2) SigFree [73].

3.6.1 Contrasting with APE

While our work generally follows the direction shown by APE [67] that introduced the

concept of MEL, there are a number of significant differences:

• APE did not provide any mathematical foundation of the underlying model, which we

do achieve here. As a result, any MEL thresholds in APE is obtained experimentally,

while in our case the threshold is calculated automatically by the model – there is no

“parameter tuning”.

• APE runs on random samples of data, while we examine the full content.

• Unlike our malware detection strategy, APE is not a malware detector but a worm

detector. It worked for worms because previously worms used to have a sled, a feature

that is almost obsoleted now [20]. As a result, APE’s effectiveness is severely dwindled

today.
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• Although text malware do have large MELs, we found that APE, in its proposed form,

is not effective for detecting them either. This is because APE, which was designed

for binary worms, did not exploit the text-specific properties. The definition of invalid

instruction there is narrower than ours; APE considered an instruction invalid only when

it is either incorrect or has a memory operand accessing an illegal address. This is a

special case of our definition; we introduce new ways to invalidate more instructions

in text (like I/O instructions). Moreover, the APE paper [67] did not present specific

methods to determine which instructions are valid and which are invalid.

To elaborate the last point, we implemented an APE-mimicking algorithm (calling it

APE-L) that did not exploit the text-specific constraints discovered by us, and compared

its detection sensitivity and runtime with DAWN’s. The reason for us implementing it

is the unavailability of an updated and working implementation of APE. As seen from

the detection sensitivity comparison charts in table 3-1 and in figures 3-6 and 3-7, the

range of MEL for malicious and benign is distinct for DAWN but overlapping for APE-L,

which means the APE would not be suitable for differentiating malicious text from benign.

The results of the comparison showed clearly that APE is ineffective for text. Also, as

mentioned earlier, the high frequency of jump instructions in ASCII data causes the

number of possible execution paths to increase exponentially. So, unless the ASCII-specific

criteria is used to invalidate instructions to prune this search space, detectors may take

very large time to run for ASCII data. This finding is corroborated by the observation

that compared to DAWN, APE-L runs much slower for ASCII (table 3-2), to the extent

that for some cases APE-L does not even terminate for hours.

Table 3-1. Comparison of DAWN and APE-L for detection sensitivity

Sensitivity MEL Avg MEL Range
DAWN APE-L DAWN APE-L

Benign 22.5 73.7 13− 46 25− 359
Malicious 138.1 152.9 117− 327 132− 353
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Table 3-2. Comparison of performance (runtime) for DAWN and APE-L

Performance Runtime Avg Runtime Range
DAWN APE-L DAWN APE-L

Benign 0.58s 22.0s 0− 1s 0− 3hr
Malicious 0.23s 0.3s 0− 1s 0− 2s

3.6.2 Contrasting with SigFree

SigFree [73] is a zero-day buffer-overflow detector that detects the worm by counting

the length of only the useful instructions in an instruction sequence, while our approach

counts all executable instructions, irrespective of whether they are useful or not. While

SigFree claims to have the capability to catch ASCII worms, it incurs significant

computational overhead in order to examine the ASCII traffic, as a result of which it

usually bypasses the ASCII traffic to enhance performance. On the other hand, in our

case, processing the ASCII stream is very fast. Finally, one of the criteria for measuring

the usefulness of an instruction in SigFree is that it must not have any data anomaly, as

for example by checking if the sources have been properly populated or not. However,

we show in the following example that it may be possible to make SigFree think that the

data anomalies have happened while actually none happened. One of the data anomalies

that SigFree reports are undefine-reference, which happens when a variable, which is not

yet defined (i.e., not populated properly), is referenced (used as source) again. SigFree

posits that the state of an undefined variable remains undefined when its value is reset

with an undefined value. However, we show that even by using the undefined variable as

a source, one can properly define, i.e., initialize a variable. The following example would

make it clear. Suppose the register variable eax initially contains junk value, which implies

eax is in undefined state. Now if we do and eax, 0x20202020, followed by and eax,

0x40404040, according to SigFree eax will still remain in undefined-reference state since

the source register referenced in this case, eax, was in undefined state. However, the two

instructions mentioned above actually sets eax to zero irrespective of its previous content,

which means it is possible to reach a defined (initialized) state even with an undefined
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reference. In DAWN, we overcome this flaw by taking the conservative approach that

any undefine-reference is also a potentially defined state, thus increasing the detection

probability.

3.7 Text Malware in Other Architectures

In Section 3.1, we discussed the constraints and construction of a text malware in

Intel 32-bit architecture (IA-32). We observed that one of the requirements for having text

instructions is that the most significant bit (bit 7) of every byte in the instruction stream

must be 0, using the notation that the eight bits of a byte are labeled as bit 0 through

bit 7 (from the least significant to the most significant). Also, since the ASCII characters

0x00 through 0x1E are also unprintable, a printable character byte must have the bit 5

and/or bit 6 set. We get one important insight from these constraints: the shorter the

size of the instruction, the more the possibility of finding instructions that are completely

text. This is because if an instruction is x bytes long, then each of the x bytes must

individually be text in order to make the whole instruction text, a requirement which is

often difficult to meet. The advantage of IA-32 being a CISC (complex instruction set

computers) architecture is that a significant number of instructions are only a byte or

a few bytes long, and it is easy to find text instructions among those short instructions.

However, when we investigate the RISC (reduced instruction set computers) architectures,

we observe that each instruction there has a fixed, relatively longer width (mostly 4 bytes

for 32-bit architectures). We suspect that with such comparatively longer instructions, it

might be difficult to have adequate number of text instructions required to create a text

malware. In this section, we explore two such RISC architectures (MIPS and SPARC) and

discover evidences that corroborate our suspicion.

3.7.1 MIPS Architecture

A MIPS instruction is 4 bytes long (for MIPS version IV [52]). Fig. 3-8 depicts the 3

different families of instructions in MIPS (Register type, Immediate type and Jump type).
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opcode (6)      rs (5)       rt (5)          rd (5)       sa (5)   function (6)

opcode (6)      rs (5)       rt (5)                 immediate (16)

opcode (6)                    target instruction index (26)

31           26 25        21

Register

Immediate
Jump

20       16 15        11 10        6 5               0

constraint 0   not 0 0   not 00   not 0 0   not 0

 byte              byte              byte                �byte 

Figure 3-8. Decoding MIPS Instructions into different fields (with field lengths), along
with text constraints and byte boundaries.

It also shows the requirements for the instruction to be text. The implications of this

constraint are as follows:

• Opcode: In order to remain text, bit 31 must be 0 while at least one of bit 29 or bit

30 must be set. This rules out most of the available instructions, since the opcode is

zero for most instructions (further decoding into different instructions is carried out by

examining the function bits).

• Source register rs: Since this field crosses over any byte-boundaries, to remain text,

bit 23 must be 0, and at least one of bits 21 and 22 must be 1. The last constraint

eliminates those instructions that mandate a zeroed-out rs field, e.g. LUI.

• Target register rt: There are no restrictions imposed on this field.

• Destination register rd: To remain text, bit 15 must be 0, and bit 14 and/or bit

13 must be set. Therefore, only registers 4 through 15 are usable (thus excluding stack

pointer, frame pointer, global area pointer, return address pointer etc.).

• Shift amount sa and function: Bit 7 of sa must be zero, and either the least

significant bit for the sa field, or the most significant bit of the function field must be set

(or both of them).

• Immediate: Since bits 13 and/or 14 must set (also the case for bits 5 and 6), no

immediate value less than 213 + 25 can be used.

• Target instruction index: Again, due to similar reasoning for the immediate field, no

address index value less than 221 + 213 + 25 can be used.
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After eliminating those instructions that do not satisfy the text constraints mentioned

above, the only instructions that remain are ADDI, ADDIU, SLT, SLTIU, ANDI, ORI,

XORI, LUI, BEQL, BNEL, BLEZL, BGTZL, COPz and JALX. Notably absent is

SYSCALL, which is a must for any malware. While any binary byte can be recreated

on the stack at runtime (just like IA-32), here we are constrained to do so using text

instructions only. Since MIPS is a load-store architecture, the only way to modify the

memory is through the store commands such as SB, SH, SW, SD, SWL, SWR, SDL,

SDR, SC, SCD, SWCz, SDCz, SWXC1 and SDXC1, none of which are available in

text. Therefore, we argue that unless future revisions of MIPS allow text-based STORE

instructions, it will be very tricky to have a text shellcode in MIPS.

3.7.2 SPARC Architecture

SPARC is also a CISC architecture with fixed 32-bit wide instructions. According to

SPARC V9 architecture manual [74], there are primarily 4 formats of instructions, based

on the value of the “op” field (bits 30 and 31):

• Format 1 (op = 1): CALL instructions, with 30-bit displacement.

• Format 2 (op = 0): SETHI and branches (Bicc, BPcc, BPr, FBfcc, FBPfcc).

• Format 3 (op = 2 or 3): Arithmetic, Logical, MOVr, MEMBAR, Load, and Store.

• Format 4 (op = 2): MOVcc, FMOVr, FMOVcc, and Tcc.

We recall that similar to MIPS, in order for a SPARC instruction to be text, bits

7, 15, 23 and 31 must be unset, while at least one of the bits in each of the following bit

combinations must be set: (5,6), (13,14), (21,22) and (29,30). Since the field op spans bits

30 and 31, instructions belonging to Format 3 and 4 categories are immediately ruled out

since there the bit 31 must be set. Thus, effectively it leaves us with only CALL, SETHI

and branch instructions, none of which can modify the memory. While CALL instructions

can potentially divert the execution flow, we doubt whether that alone would suffice for an

effective shellcode.
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3.8 Limitations and Conclusions

In this section we discuss some of the limitations of our detection strategy. We

reiterate the basic principle of our detection method: 1) A text malware must self-mutate

to generate potent binary opcodes, 2) this mutation requires a significant number of

memory-writing instructions, 3) due to difficulties in encryption (including unavailability

of loops in text and lack of one-to-one correspondence between text and binary domains)

the size of a decrypter is relatively big for text malware, 4) due to randomness property,

benign text data does not have such a long error-free executable instruction sequence, and

5) the length of the maximal valid instruction sequence can thus be used to differentiate

between benign and malicious text data. We have already mentioned that generating

loops dynamically makes the decrypter complicated and thus longer. We discuss in

detail a possible argument against the other encryption difficulty (lack of one-to-one

correspondence) below.

We have argued that the absence of one-to-one correspondence between text and

binary makes the task of decryption more complex and thus causes the decrypter to

be large with high MEL. However, one may overcome this obstacle by using multilevel

encryption (Russian doll architecture) in the following manner. First, convert the binary

malware into text, and then encrypt this text malware in such a way that the output is

yet again text. We observe that in the second step, we are doing encryption within the

same text domain, which signals the possibility of having a one-to-one correspondence. On

the surface, this approach appears to have merit since 1) the final encrypted text data will

show very little trend of a text malware, and 2) because of the one-to-one correspondence,

one may be able to use simple decryption schemes, which means a short decrypter. While

it is impossible to consider all possible encryption methods, we put forth our rebuttal

to this argument by demonstrating the case of using xor, which is usually a favorite

choice for encryption. First of all, we observe that there is no single decryption key (a

text byte) with the property that xor-ing it with any other text byte will still yield text
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data. This is because the text data (0x20–0x7E) occupies a somewhat odd slot in the

original ASCII table, and xor-ing two characters from text data often yields a result that

is not text. As shown in Figure 3-9, after dividing the 95-char text domain into three

nearly equal-sized parts (viz. 0x20–0x3F, 0x40–0x5F, and 0x60–0x7E), if we xor any two

bytes from the same part, then the output will belong to the non-text domain 0x00-0x1F.

This means that, in order to use xor directly, we cannot use a constant key for all of the

text. Consequently, the decryption logic will have to be more complex too, leading to a

not-so-small decrypter.

We emphasize that while we offer a novel way to
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0x60 -

+
+

++ +

+
Non-Text

Non-Text

Text

Text Text

0x3F 0x7E
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Figure 3-9. Encryption

difficulties in

using XOR

for text

differentiate between benign and malicious text traffic, this

means that we have merely made the task of an attacker

significantly harder. As per our limited experiment, the

difference between the maximum length of the valid instruction

sequence between benign and malicious traffic is currently

significantly large. To the best of our knowledge, no text

malware employing encryption to this date has been able to

come up with a decrypter smaller than our current threshold.

However, as security is a cat-and-mouse game, in future we will invariably see such

malware, and we must strive to find more exploits to counter that.

We would like to reiterate that while our approach is similar to some other existing

MEL-based schemes [67, 73, 2], a fundamental difference exists. In our detection scheme

the MEL threshold is obtained purely from the statistical properties of text traffic, while

for the rest it is obtained experimentally from the MEL of the benign data.

3.9 Contributions

We have analyzed the Maximum Executable Length method and laid mathematical

foundation to this theory. Although the MEL method have been used by others, we

are the first ones to show why it works. We have shown that such theory can be used
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to detect malware in the text domain but no longer in the binary domain. We have

incorporated our MEL model into a text malware detector that is easily deployable,

signature-free, requires no parameter tuning, has user-configurable detection sensitivity,

and is extremely robust.
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CHAPTER 4
PROPAGATION MODELING OF THE PERMUTATION-SCANNING WORM

Worms have huge damage potential due to their ability to infect millions of computers

in a very short period of time [42]. In order to counter that threat, we need to look into

their content (for signatures) as well as propagation pattern (for Internet-scale behavior)

[6, 53, 58, 37, 8, 38]. The propagation characteristics of a worm shows what kind of

network traffic will be generated by that worm and how fast the response time must

be for countermeasures. Therefore, in order to understand (and possibly counter) the

damage potential of worms, it is very important to characterize their overall propagation

properties.

Although modeling worm propagation has been an active research area [63, 80, 7,

75, 78], one might question the practical importance of such work if it is possible to

obtain fairly good approximation of the worm’s propagation characteristics by running

a simulator for a sufficient number of times and taking the average. However, there are

reasons why simulations may not always be able to produce the intended results. First,

it often takes a long time, 16 hours in our case on a Intel Xeon 2.80GHz processor for

400M hosts that are estimated to be in today’s IPv4 space, to simulate a single run

of worm propagation for one set of worm/network parameters. To learn the average

behavior, many such runs need to be performed, and the whole simulation process has

to be redone for any parameter change, e.g., for a different population size of vulnerable

hosts or a different scanning speed of infected hosts. Second, the simulation overhead can

be prohibitively high in some cases. Suppose we want to simulate a worm that exploits

a commonly used Windows service on today’s Internet. It means that the vulnerable

population size could be in the order of several hundred millions as Windows machines

predominate in the Internet. If there are 300M such computers, they will entail 300M

records in the simulation, one for each vulnerable host. Even if each record is one integer

(keeping its address alone), it will require a memory of 1.2 GB. Now, if we want to study
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the impact of migration from IPv4 to IPv6 on worm propagation, a full-scale simulation of

scanning the address space of size 2128 will be computationally infeasible. In comparison,

numerical computation based on a mathematical model takes little time to produce the

accurate propagation curves. Third, simulation results themselves do not always give

the mathematical insight that a formal model provides. One may guess upon the impact

of various parameters on worm propagation based on extensive simulations (which may

take enormous time), but such guesses can never be as precise and comprehensive as an

analytical model, which tells exactly why and by how much a parameter change will affect

the outcome.

Traditionally, most modeling work [63, 80, 7, 75] concentrates on the relatively simple

random-scanning worms, which scan the Internet either randomly or with bias towards

local addresses in order to reach all vulnerable hosts. This strategy leaves a large footprint

on the Internet (which reveals the worm’s presence), and different infected hosts may

end up scanning the same address repeatedly. In recent years, worm technologies have

advanced rapidly to address these problems. By enabling close coordination among all

infected hosts, the permutation-scanning worms (introduced in the seminal paper [63] by

Staniford et al.) minimize the overall traffic volume for scanning the Internet through a

divide-and-conquer approach. There, each active infected host is responsible for scanning

a subset of all addresses, and this subset may vary over time. Such a cooperation strategy

empowers the worm with the ability to propagate either much faster, or alternatively,

much stealthier (if the infected hosts scan at lower rates). Warhol worms, which are

similar to permutation-scanning worms with larger hitslists, have been shown using

simulations to be able to infect the whole Internet in a matter of minutes [63]. However,

understanding these potent worms through mathematical modeling has remained a

challenge to date.

In this work, we propose a mathematical model that precisely characterizes the

propagation patterns of the permutation-scanning worms. The analytical framework
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captures the interactions among all infected hosts by a series of inter-dependent differential

equations, which together describe the overall behavior of the worm. We then integrate

these differential equations to obtain the closed-form solution for worm propagation. We

use simulations to verify the numerical results from the model, and show how the model

can be used to assess the impact of various worm/network parameters on the propagation

of permutation-scanning worms. We also investigate the impact of dynamic network

conditions on the correctness of the model, considering network congestion, bandwidth

variability, Internet delay, host crash and patch.

In this work, we propose a mathematical model that precisely characterizes the

propagation patterns of the permutation-scanning worms. The analytical framework

captures the interactions among all infected hosts by a series of inter-dependent differential

equations, which together describe the overall behavior of the worm. We then integrate

these differential equations to obtain the closed-form solution for worm propagation. We

use simulations to verify the numerical results from the model, and show how the model

can be used to assess the impact of various worm/network parameters on the propagation

of permutation-scanning worms. We also investigate the impact of dynamic network

conditions on the correctness of the model, considering network congestion, bandwidth

variability, Internet delay, host crash and patch.

The rest of this chapter is organized as follows. Section 4.1 describes the permutation-scanning

worms. Section 4.2 introduces several important concepts underlying our mathematical

model. Sections 4.3 and 4.4 present the exact propagation models for the basic permutation-scanning

worm and its general extension, respectively. Section 4.5 derives the closed-form solution.

Section 4.6 and Section 4.7 discuss how different worm/network parameters and real-life

network constraints will affect the worm propagation, respectively. Section 4.8 draws the

conclusion.
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4.1 Anatomy of Permutation-Scanning Worms

We first describe the divide-and-conquer nature of the permutation-scanning worms.

We then explain the reason for address permutation and discuss the stealthy potential of

such worms.

4.1.1 Divide-and-Conquer

To avoid repeatedly scanning the same addresses, the infected hosts may collaborate

by dividing the IPv4 address ring into disjoint sections, each of which will be scanned by

one host. Each initially infected host starts “walking” along the address ring clockwise

from its own location and sequentially scans the traversed addresses. Whenever it infects

a host, it continues walking and scanning the addresses after that host, while the newly

infected host performs a jump, i.e., chooses a random location on the ring and starts to

walk and sequentially scan addresses clockwise after that location. The reason for this

jumping action is that if the newly infected host instead started scanning sequentially after

its own address, then those addresses would get scanned by both this host and its infector

– a needless duplication of the same work. Now, if the scan performed by a host h1 hits an

already infected host h2, h1 knows that addresses after h2 must have already been scanned

by another infected host that infected h2, or by h2 itself in case h2 was one of the initially

infected hosts to begin with. In either case, it is unproductive for h1 to continue scanning

addresses after h1. Therefore, h1 jumps to a random location on the ring and starts to

scan addresses clockwise after that location. An infected host retires (stops scanning) after

hitting a certain number of already-infected hosts.

An alternative to the above random-jump approach is to assign each infected host an

exclusive section of the address ring for scanning. As a host sequentially scans its section,

when it infects another host, it assigns half of the remaining unscanned addresses to the

latter and adjusts its section boundary accordingly. When a host reaches the end of its

section, it retires. The problem with this approach is that it is not fault-tolerant. If one

infected host is blocked out or somehow crashes, it may leave many addresses in its section
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unscanned. Random jumps by infected hosts before they retire (as described previously)

help solving this problem by providing redundancy, and this work will focus on such

worms only.

4.1.2 Permutation

While the above divide-and-conquer method reduces the chance of scanning the same

address again and again, it has a serious weakness. Since the IP addresses scanned by an

infected host are contiguous, it is susceptible to be identified by address-scan detectors

or other IDSs that look for worms performing local subnet scanning. To counter this,

Staniford et al [63] shows that a worm can permute the IP address space into a virtual

one (called the permutation ring) through encryption with a key. The divide-and-conquer

method is then applied on this permutation ring. While each infected host logically goes

through contiguous addresses on the permutation ring, it actually scans the IP addresses

that the permuted addresses are decrypted to, which cannot be easily picked up by

address-scan detectors because those IP addresses are pseudo-random and distributed all

over the Internet.

4.1.3 Stealth

Fast propagation and stealth are two conflicting goals that the worm designers strive

to balance. To spread fast, infected hosts should scan at high rates, which however makes

them easier to be detected [53, 58, 42]. To be stealthy, they have to act as normal as

possible by scanning the Internet at a controlled low rate, which is a worm parameter that

can be set before release. A stealthy worm can be more harmful. A fast worm generates

headline news, such as Slammer [42] that caused widespread network congestion across

Asia, Europe and Americas. However, such a worm is more likely to be detected quickly

and attract defense resources for its elimination. A stealthy worm propagates slower but

may stay undetected for a long time, potentially doing more harm.
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4.1.4 Hitlist

The initial part of worm propagation is most time-consuming, as only a few infected

hosts perform scanning in a vast address space. Once the number of infected reaches

a critical mass, the rate of new infections goes up drastically. To improve the initial

scanning speed of a stealthy worm, one can use a hitlist as proposed in [63], which is a

pre-compiled list of target addresses that are very likely to be vulnerable, e.g., a list of

hosts with port 80 open for a worm targeting at a certain type of web servers. During the

hitlist-infection phase, the very first infected host scans the IP addresses in the hitlist, and

whenever it infects one, it gives away half of the remaining hitlist to the newly infected

host so that together they can infect all hosts in the original hitlist quicker. This process

repeats, and as a result, if v out of the S addresses in the hitlist turn out to be vulnerable

hosts, all those hosts will get infected in O( S
vr

log2 v) time, where r is the scanning rate.

Even for a modestly big hitlist, this time is miniscule compared to the time it will take to

infect the rest of the vulnerable hosts outside the hitlist. To illustrate with an example,

suppose there are about 1M vulnerable hosts in IPv4 and a worm starts with a hitlist of

S = 10K hosts, with approximately v = 5K of them actually being vulnerable. If the

scanning rate r is 1000 addresses/sec, then the time taken to infect the initial 5K hosts in

the hitlist will be approximately 0.025 second, which can arguably be ignored compared

to the time the worm will take to infect the rest of the vulnerable hosts in the Internet.

Thus, to keep the model simple, if the hitlist contains v vulnerable hosts, we assume that

all v of them are infected at time t=0.

4.2 Scanzone and Classification of Vulnerable Hosts

We introduce the concept of scanzone and classify vulnerable hosts into different

categories, which lays the foundation for our analysis in the next section.

4.2.1 Terminology and Notations

We classify infected hosts into two categories: (1) active infected hosts, which are

actively scanning for vulnerable hosts, and (2) retired infected hosts, which have stopped
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scanning. When the context makes it clear, we omit “infected” from the above terms.

Other terms are defined as follows:

• Jump: When an infected host chooses a random location on the permutation ring
to perform its sequential scan along the ring, we say that the host jumps (to that
location).

• Old infection: When an active host hits a vulnerable host h that was infected
previously, we denote the event (as well as host h) as an old infection.

• New infection: When an active host hits a vulnerable host h that was not
previously infected, we denote the event (as well as host h) as a new infection.

• k-Jump worm: A permutation-scanning worm is called a k-jump worm if an active
host, upon hitting an old infection, jumps to a new location on the permutation
ring to resume scanning, but it will retire when hitting its (k+1)th old infection.
When a vulnerable host not in the hitlist becomes a new infection, it jumps to a
random location on the ring to begin its scan. Subsequently this host can make k
other jumps after hitting old infections on the ring. For a vulnerable host in the
hitlist, it begins scanning from its own location and then it can make k jumps. To
summarize, irrespective of whether it was in the hitlist or not, a host in a k-jump
worm is allowed to jump for its first k old infections; but when it hits its (k+1)th old
infection, it retires.

• 0-Jump worm: A permutation-scanning worm is called a 0-jump worm if an active
host retires upon hitting its very first old infection. It is a special case of k-jump
worm with k=0. A vulnerable host not in the hitlist can make one jump when it
becomes a new infection itself, but subsequently when it hits an old infection, it will
retire immediately.

4.2.2 Scanzone of an Active Infected Host

As an active infected host h scans the addresses along the permutation ring, it leaves

behind a contiguous segment of scanned addresses. This contiguous segment, called the

scanzone of host h, contains the addresses that h has scanned since its last jump or time 0

if h has not jumped yet; it may contain more addresses if scanzone merge happens, which

will be discussed shortly. The scanzones of all active hosts cover all addresses scanned

so far. The address of each infected host belongs to a scanzone because it is a scanned

address. The front end of a scanzone is the address that h is currently scanning; the back

end refers to the address at the other end of the scanzone, which is the first address that
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Figure 4-2. Classification of vulnerable hosts for a permutation-scanning worm

h scans after its last jump. Evidently all vulnerable hosts in a scanzone must have been

infected. Among all infected hosts in a scanzone, the one that is closest to the back end

is called the tail of the scanzone, and the one that is closest to the front end is called the

head of the scanzone. The portion of a scanzone between the tail and the head is referred

to as the covered area (portrayed as in Fig. 4-1) of the scanzone. A scanzone

may not have a tail (or head) if the active infected host has not hit any vulnerable host
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Figure 4-3. Class transition diagram of a 0-jump worm. Here, “new” or “old” indicates the
event of a new or old infection. Similarly, “ineffective” or “effective” indicates
whether the newly infected host, after the random jump, lands inside a covered
area or not.

since its last jump, and it may not have any covered area if it does not have at least two

infected hosts in it.

As h scans more and more addresses, the front end advances to expand the scanzone.

But when h hits an old infection hold (which must belong to the scanzone of some active

infected host h1), h surrenders its scanzone by merging it to h1’s scanzone. Then h jumps

to a random location to create its new scanzone afresh, or retires if hold is the (k+1)th

old infection that it hits. Therefore, the back end of a scanzone may also change if the

front end of another scanzone catches up its tail and causes a merge. Merges create larger

scanzones. Eventually, all scanzones will be merged into one when all active hosts retire.

Only active hosts have scanzones (uninfected or retired hosts do not). We stress that an

infected host does not need to know its scanzone; it is an abstract concept used in our

mathematical modeling only. The scanzones are shown as arcs on the permutation ring in

Fig. 4-1, which also illustrates other concepts to be defined in this section.

4.2.3 Classification of Vulnerable Hosts

In our model, we define classes u, i, a, s, x, y, α for vulnerable hosts that are

uninfected, infected, active, retired, effective, ineffective, and nascent, respectively, and
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we deliberately make the above class notations the same as the corresponding variables in

our later propagation model for the sizes of these classes. Fig. 4-2 shows the containment

relationship among different classes.

While other classes are self-explaining, we focus on classifying the active hosts, class

a, into subcategories, class x and class y, based on whether an active node’s scanning is

effective or not, i.e., whether it has the potential to generate new infection before hitting

an old one (note that since the size of the ring is finite, every active host will eventually

hit an old infection).

• Ineffective hosts (class y): An active infected host is considered ineffective if it
is impossible for the host to generate any new infection in future before hitting an
old infection. An active host that jumps into a covered area to begin its scanning is
evidently ineffective since its first hit will always be an old infection.

• Effective hosts (class x): An active infected host is considered effective if it can
potentially generate a new infection in future before it hits an old one. When an
infected host jumps to a point outside of any covered area and starts scanning from
that point on, it can potentially generate new infections, and thus called effective.
The effective hosts are branded as class x. This class is further subdivided as follows:

– Nascent hosts (class α): The effective hosts that are yet to infect any
vulnerable host in their current scanzones (which, obviously, have no head or
tails) are termed as nascent (class α). An active host becomes nascent after it
takes a jump and lands outside any covered area. Note that after the jump the
host starts with a fresh scanzone.

– Non-nascent hosts: Once a nascent host hits a new infection, it becomes
a non-nascent effective host; and the host it just infected becomes the tail of
its scanzone. Also, each of the initially infected hosts starts as a non-nascent
effective host because its scanzone has a tail from the very beginning (the active
host itself).

We observe that every infected host in the address space belongs to the scanzone of

a non-nascent effective host. This is true at the beginning as each of the initially infected

hosts belongs to its own scanzone. When a non-α effective host h1 infects another host

hnew, the address hnew becomes part of h1’s scanzone. When h1 retires by hitting hold (tail

of a non-α effective host h2’s scanzone), h1’s scanzone merges with h2’s scanzone, and the

infections made in h1’s scanzone now become part of h2’s scanzone. Continuing this way,
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every infected host remains part of the scanzone of a non-nascent effective host until the

last active host retires. It should be noted that the scanzones of nascent or ineffective

hosts do not contain any infected hosts.

Fig. 4-3 gives the class transition diagram for a 0-jump worm. A vulnerable host

becomes infected when it is scanned by another infected host. When it jumps, it may

be either effective or ineffective, depending on whether it jumps into a covered area or

not. An effective host begins as a nascent one and becomes non-nascent once it infects

another host. An active host retires upon hitting an old infection. Fig. 4-1 also provides

illustration for transitions among different classes.

4.3 Modeling the Propagation of 0-Jump Worms

In this section, we derive a series of differential equations that together form the

propagation model of 0-jump worms. We extend it for k-jump worms in the next section.

4.3.1 Important Quantities in Modeling

The propagation model of a worm reflects the fractions of vulnerable hosts that are

infected, active and retired over time. A scan message that does not hit any vulnerable

host does not change these numbers. Thus, modeling should only be based on the event of

a scan message hitting a vulnerable host. When that event happens, all aforesaid numbers

change. We derive the model by analyzing the precise amounts by which they change. To

model a 0-jump worm mathematically, we have to compute the following quantities:

Q1: Between time t and t+dt (for an infinitesimally small dt), how many vulnerable hosts
will an active host hit with its scan messages?

Q2: When an effective host hits a vulnerable host h, what is the probability that h is an
old infection, and what is the probability that h is a new infection? Note that an
ineffective host, by definition, never hits a new infection.

Q3: After a newly infected host jumps, what is the probability for it to be ineffective,
and what is the probability for it to be effective?
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Table 4-1. Basic notations used for propagation modeling.

N Size of the address space
V Total number of vulnerable hosts

v
Number of initially infected hosts (same as the number of vulnerable hosts in a
hitlist)

φ v
V

, the fraction of vulnerable hosts that are initially infected
r Rate at which an infected host scans the address space
u(t) Fraction of vulnerable hosts that are uninfected at time t

i(t) Fraction of vulnerable hosts that are infected at time t

a(t) Fraction of vulnerable hosts that are actively scanning at time t

x(t)
Fraction of vulnerable hosts that are actively scanning at time t and have a
non-zero probability of finding new infections

y(t)
Fraction of vulnerable hosts that are actively scanning at time t and have a zero
probability of finding new infections

α(t)
Fraction of vulnerable hosts that are actively scanning at time t with a a non-zero
probability of finding new infections but are yet to hit any infection

s(t) Fraction of vulnerable hosts that have retired from scanning

4.3.2 Determining the Quantities Using Probabilistic Approach

Before we delve into deriving the aforesaid quantities mathematically, first we

summarize the notations that we would use in this chapter (as well as in chapter 5 in

Table 4-1 for quick reference.

As evident from Table 4-1, we use u(t), i(t), a(t), s(t), x(t), y(t) and α(t) to denote

the fractions of vulnerable host population that are uninfected, infected, active, retired,

effective, ineffective and nascent at time t, respectively. From Fig. 4-2, it is easy to see

that u(t) + i(t) = 1, i(t) = a(t) + s(t), and a(t) = x(t) + y(t).

Answer for Q1: Let fhit be the number of vulnerable hosts that an active host is

expected to hit during a period of dt after time t. Since vulnerable hosts are uniformly

distributed on the permuted address space due to randomization of the permutation

process, every address on the permutation ring has a probability of V
N

to be a vulnerable

host. An active host scans r × dt addresses during dt period. Hence, we have fhit =

r × dt × V
N

. Note that the vulnerable hosts that are hit may include both new and old

infections.
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Answer for Q2: When an effective host hits a vulnerable host, let fnew(t) (fold(t))

denote the probability for the vulnerable host to be a new (old) infection. We observe that

an effective host can hit only two types of vulnerable hosts: 1) those that are uninfected,

and 2) infected ones that are the tails of scanzones for non-α effective hosts. Recall that

scanzones of nascent or ineffective hosts do not have tails. At time t, there are V (1 − i(t))

uninfected vulnerable hosts (possible new infections) and V (x(t)− α(t)) tails (possible old

infections). Hence, the chance for hitting a new infection is fnew(t) = V (1−i(t))
V (1−i(t))+V (x(t)−α(t))

=

(1−i(t))
(1−i(t))+(x(t)−α(t))

, and fold(t) = 1− fnew = (x(t)−α(t))
(1−i(t))+(x(t)−α(t))

.

Answer for Q3: After a newly infected host jumps to a random location to begin

its scanning, let fineff(t) (feff(t)) be the probability for the host to be ineffective

(effective). Since a host becomes ineffective when it jumps into a covered area, fineff (t)

must be equal to the fraction of the permutation ring that all covered areas together

represent. Because vulnerable hosts are distributed randomly on the ring, it must also be

equal to the fraction of vulnerable hosts that are located in the covered areas, excluding

tails because, if we use the number of vulnerable hosts in a covered area to represent its

length (in a statistical sense), we cannot count both head and tail that delimits the two

ends of the area (a scanzone with a single infection can be thought of having a covered

area of length 0). All infected hosts, V i(t) of them, are located in the covered areas, and

there are V (x(t)− α(t)) tails because every non-nascent effective host has a scanzone with

a tail by definition. Therefore, fineff (t) = V i(t)−V (x(t)−α(t))
V

, and feff (t) = 1− fineff (t).

4.3.3 Propagation Model

We now derive how i(t), a(t), s(t), x(t), y(t) and α(t) change over time t. Below

we compute the amounts, di(t), da(t), ds(t), dx(t), dy(t) and dα(t), by which they

change respectively over an infinitesimally small dt after time t. This will give us a set of

differential equations that together characterize the propagation of 0-jump worms.

• di(t): This, when multiplied by V , represents the total number of new infections
generated during dt. Only effective (class x) hosts can hit new infections. The
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number of vulnerable hosts hit by effective hosts over dt is V x(t) fhit, and
each of them has a probability of fnew(t) to be a new infection. Hence di(t) =
x(t) fhit fnew(t) .

• dx(t): Each of the x(t)fhitfnew(t)V new infections has a probability of feff (t)
to be effective. This adds x(t)fhitfnew(t)V feff (t) new effective hosts after dt. On
the other hand, effective hosts together hit x(t) fhit fold(t)V old infections during
dt, each causing an effective host (that hits the old infection) to retire. Combining
the above two numbers and representing the gross change in fraction, we have
dx(t) = x(t) fhit fnew(t) feff (t)− x(t) fhit fold(t).

• dα(t): Each nascent host (which is effective by definition) is no longer nascent once
it hits any vulnerable host. Each of its r × dt scan messages has a V

N
probability

of hitting a vulnerable host. Hence, the probability for a nascent host to become
non-nascent over dt is r × dt × V

N
= fhit because, as dt approaches to zero, the

joint probabilities for two or more hits are negligible. This reduces the number of
nascent hosts by α(t)V fhit. On the other hand, since all new effective hosts created
during dt start as nascent, we have x(t)V fhit fnew(t) feff (t) new nascent hosts.
Combining these two numbers and representing the gross change in fraction, we have
dα(t) = x(t) fhit fnew(t) feff (t)− α(t) fhit.

• dy(t): Recall that whenever a host jumps into a covered area, it becomes ineffective.
For a 0-jump worm, only the newly infected hosts make a jump and thus only
they may increase y(t). There are x(t)V fhitfnew(t) new infections, and each has a
probability of fineff (t) to become ineffective. On the other hand, when an existing
ineffective host hits a vulnerable host, it retires since ineffective hosts can hit old
infections only. Combining these two factors and representing the gross change in
fraction, we have dy(t) = x(t)fhitfnew(t)fineff (t)− y(t)fhit.

• ds(t): Whenever an effective host hits an old infection, or an ineffective host
hits any vulnerable host (which must be an old infection), it retires. Within time
dt, there are x(t)V fhitfold(t) + y(t)V fhit newly retired hosts, and thus ds(t) =
x(t)fhitfold(t) + y(t)fhit.
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From the above analysis, we have

fhit = r × dt× V

N
(4–1)

fold(t) =
x(t)− α(t)

1− i(t) + x(t)− α(t)
(4–2)

fnew(t) =
1− i(t)

1− i(t) + x(t)− α(t)
= 1− fold(t) (4–3)

fineff (t) = i(t)− (x(t)− α(t)) (4–4)

feff (t) = 1− i(t) + x(t)− α(t) = 1− fineff (t) (4–5)

di(t) = x(t) fhit fnew(t) (4–6)

dx(t) = x(t) fhit fnew(t) feff (t)− x(t) fhit fold(t) (4–7)

dα(t) = x(t) fhit fnew(t) feff (t)− α(t) fhit (4–8)

dy(t) = x(t) fhit fnew(t) fineff (t)− y(t) fhit (4–9)

ds(t) = x(t) fhit fold(t) + y(t)fhit (4–10)

da(t) = dx(t) + dy(t). (4–11)

The boundary condition to these set of equations are: i(0) = a(0) = x(0) = v
V

, and

α(0) = s(0) = y(0) = 0, where v is the number of vulnerable hosts in the hitlist.

4.3.4 Verification of Our Model

We developed a packet-level simulator for permutation worms whose propagation

strategies are described in Section 4.1.2. The simulator is implemented in C++ with

proper encapsulation, i.e., a host object inside the simulator is not aware of the large

picture of the network, and instead it can only see its own private variables, including its

IP address, the state of its local random-number generator, the last address scanned, and

the response to a scan message, i.e., new infection or not. The controller object of the

worm simulator performs the initial infection, and does the high-level counting of infected,

active and retired hosts at the end of each time tick. Each vulnerable-host object uses the

same encryption/decryption key but has a different seed for the random number generator

used for calculating the random location from which the host, after being infected, will
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Figure 4-4. Propagation curves for a 0-jump worm (model vs. simulated). The “Model”
curves show the percentages of vulnerable hosts that are infected, active, and
retired over time, respectively. These curves for i(t), a(t) and s(t) are
numerically computed from the analytical model in (4–1)-(4–11). The
“Simulation” curves are plotted using the averaged data collected from the
packet-level simulator; the 99% confidence intervals are also plotted for
selected data points. As expected, the curves from the model and the curves
from the simulator completely overlap, which verifies the correctness of the
model.

begin its scanning. The simulation stops when all infected hosts retire. Fig. 4-4 compares

the propagation curves produced by the simulator with those generated by the analytical

model for a 0-jump worm; the two sets of curves are nearly indistinguishable.

The simulation parameters are given as follows: The size of the vulnerable population

is V = 213. The hitlist contains v = 100 vulnerable hosts. The size of the address space

is N = 223; it will take prohibitively long time if N is chosen to be 232. To produce

propagation curves in any of the figures in the dissertation, we simulate worm propagation

for 1000 times under different random seeds, and then take the average. We normalize the

time tick to be 1
r
. Namely, an infected host sends one scan message per tick. This allows

the same propagation curves to be used for characterizing worm propagation under any

scanning rate. Hosts with variable scanning rates will be investigated in in Section 4.7.
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Worm propagation happens among end hosts. It is not necessary to explicitly

simulate the network topology. Because we are particularly interested in stealthy

worms that scan at a low rate (e.g., one scan message every few seconds), we assume

that the time tick — which is the inverse of scan rate — is larger than the Internet

end-to-end delay (typically in tens or hundreds of milliseconds). In this case, infection

will be completed within the current time tick, and the impact of the propagation

delay of scan messages will be very small on the infection curve, which describes the

percentage of vulnerable hosts that are infected over time. As we will further discuss

in Section 4.7, even when the Internet end-to-end delay is larger than the time tick, its

impact on worm propagation is still small and quantifiable. We will also address other

practical considerations, such as host patch and crash, network congestion and bandwidth

variability, in Section 4.7.

4.4 Extending the Model to k-Jump Worms

In this section, we demonstrate the flexibility of our analytical model by extending it

for the k-jump worms. Modeling the propagation of k-jump worms is important as it will

lead to a better understanding of the Warhol worm, which can infect the whole of Internet

in a matter of minutes [63]. Warhol worms and Permutation-scanning k-jump worms with

large hitlists share similar propagation characteristics.

4.4.1 Further Classification of Active Hosts for k-Jump Worms

For a 0-jump worm, at any time t, none of the a(t) active hosts has hit any old

infection. However, for a k-jump worm, any active host (class x, α or y) could have hit

anywhere between 0 to k old infections. While the terms x(t), α(t) and y(t) continue to

denote the fractions of all vulnerable hosts that are effective (class x), nascent (class α)

and ineffective (class y) respectively at time t, for a k-jump worm, each of those classes is

further subdivided into k+1 subclasses depending on how many old infections they have

already hit (between 0 and k). For example, class x is subdivided into classes x0, x1, x2

. . . xk−1, xk such that x(t) =
∑k

j=0 xj(t), and similar notations are used for class α and y.
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Figure 4-5. State diagram of a k-jump worm with k=2. In the diagram, we assign each
active host a layer number, which indicates the number of old infections hit by
the host. Once the host hits its k+1th old infections, it retires immediately.

For example, the total number of nascent hosts that have hit 2 old infections till time t are

denoted by α2(t).

Fig. 4-5 shows the state diagram that depicts how an active host moves from one

subclass to another until it is retired. Each active host is assigned a layer number, which

indicates the number of old infections hit by the host. An active host having already

hit j old infections are referred to as j-layer hosts. When a j-layer host hits another old

infection, it moves to layer j + 1 or to the retired class if j = k.

We observe that the quantities, fold(t), fnew(t), feff (t) and fineff (t) (defined in

Section 4.3.2), stay the same for both 0-jump worms and k-jump worms. The analysis

that produces the formulas for their calculation can be applied to both 0-jump worms and

k-jump worms.

4.4.2 Interaction among Scanning Hosts at Different Layers

The state transitions in Fig. 4-5 between subclasses at different layers are explained

below.
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• An active infected host never changes its layer by hitting a new infection. This is
because the layer of a host indicates how many old infections the active host has hit
till that time, and hitting a new infection does not change that. However, when it
hits an old infection, it takes a jump, moves to the next layer and becomes either
nascent or ineffective depending on whether it jumps into a covered area or not.
However, if it was already at the k-layer, then it retires after hitting its (k+1)th old
infection.

• Active hosts at any layer can hit a new infection. Therefore, when calculating
change in x0(t), α0(t) and y0(t), we must consider the new infections caused by
effective hosts at all k+1 layers.

• The number of active hosts at any layer, except for layer 0, will be changed only by
the activity of the hosts at the same or previous layer. The number of hosts at a
layer increases when hosts in the previous layer hit old infections and consequently
move to this layer. Similarly, it decreases when hosts in this layer hit old infections
and move to the next layer. Therefore, the derivative of the number of j-layer hosts,
for 1 < j ≤ k, depends only on the numbers of hosts in layer j and layer j−1.

4.4.3 Propagation Model for k-Jump Worms

Below we present the equations that model the propagation of k-jump worms. For the

purpose of brevity, all symbols used in the formulas are function of time t, except for fhit,

V and N , which are independent of time. For example, fnew denotes fnew(t), dαj denotes

dαj(t), and so on. We omit the equations for fhit, fold(t), fnew(t), feff (t) and fineff (t)

since they are the same as (4–1)-(4–5). The differential equations for k-jump worms are

dxj(t) =





if j = 0, x(t)fhitfnew(t)feff (t)− xj(t)fhitfold(t);

if 0 < j ≤ k, xj−1(t)fhitfold(t)feff (t)− xj(t)fhitfold(t)

+ yj−1(t) fhit feff (t)

(4–12)

dαj(t) =





if j = 0, x(t)fhit fnew(t) feff (t)− αj(t) fhit ;

if 0 < j ≤ k, xj−1(t)fhit fold(t) feff (t)− αj(t) fhit

+ yj−1(t) fhit feff (t)

(4–13)

dyj(t) =





if j = 0, x(t)fhit fnew(t) fineff (t)− yj(t) fhit ;

if 0 < j ≤ k, xj−1(t)fhitfold(t)fineff (t)− yj(t)fhit

+ yj−1(t) fhit fineff (t)

(4–14)
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Figure 4-6. Propagation curves for k-jump worms (model vs. simulated). The “Model”
curves show the percentages of vulnerable hosts that are infected, active, and
retired over time, respectively. These curves for i(t), a(t) and s(t) are
numerically computed from the analytical model in (4–12)-(4–20). The
“Simulation” curves are plotted using the averaged data collected from the
packet-level simulator. As expected, for k = 1, 2, 4, and 8, the curves from the
model and the curves from the simulator completely overlap, which verifies the
correctness of our model for k-jump worms.

dx(t) =
∑k

j=0 dxj(t) (4–15)

dy(t) =
∑k

j=0 dyj(t) (4–16)

dα(t) =
∑k

j=0 dαj(t) (4–17)

di(t) = x(t) fhit fnew(t) (4–18)

da(t) = dx(t) + dy(t) (4–19)

ds(t) = xk(t)fhit fold(t) + yk(t)fhit. (4–20)

The boundary conditions at time t = 0 are i(0) = a(0) = x(0) = x0(0) = v
V

. All the

other quantities (s(0), x1(0) . . . xk(0), α(0), α0(0) . . . αk(0), y(0), y0(0) . . . yk(0)) are zeroes.
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4.4.4 Verification of the Correctness of the Model

For different values of k, we compare the result numerically computed from the

model with the result collected from the packet-level simulator in Fig. 4-6, using the

same experimental setup as described in Section 4.3.4. In all cases, the model and the

simulation produce the same propagation curves.

4.5 Closed-Form Solution for the 0-Jump Worm

In this section, we transform the set of equations in (4–1)-(4–11) to three simple

differential equations that can be further integrated into the closed-form formulas for the

numbers of infected, active and retired hosts over time.

First we establish a functional relation between i(t) and x(t). Recall that i(t) is the

fraction of the vulnerable host population that is infected at time t and x(t) is the fraction

of the vulnerable host population that is actively scanning and can potentially generate

new infections – more precisely, these so-called effective hosts are currently scanning

addresses outside of any covered area. By definition, i(t) = x(t) + y(t) + s(t). The infected

hosts include effective hosts, ineffective hosts and retired hosts.

We define a current position for each infected host. For an effective or ineffective host,

its current position is the address it is scanning. For a retired host, its current position is

the address it has scanned last before retirement. Interestingly, the current positions of

all infected hosts are distributed along the permutation ring uniformly at random. That

is because, right after infection, a host jumps to a location that is independently and

randomly selected. As long as all infected hosts begin their scanning at independently

random locations, their current positions will always be uncorrelated and statistically

distributed along the ring uniformly at random.

By definition, the current position of an effective host will be outside of any covered

area, and the current position of an ineffective or retired host will be in a covered area.

Due to the random distribution of the current positions of all infected hosts, the fraction

of infected hosts being effective is equal to the fraction of the permutation ring that is
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outside of the covered areas, which is simply feff (t). From Section 4.3.2, we know that

feff (t) = 1 − fineff (t) and fineff (t) equals the fraction of the ring that all covered areas

together represent. Summarizing the above analysis, we have

x(t) = i(t) feff (t) (4–21)

By plugging the above equation into (4–1)-(4–11), it can be easily verified that this

equation is consistent with others in the model.

Applying (4–21), (4–1), (4–3) and (4–5) to (4–6), we have the following differential

equation.

di(t)

dt
=

rV

N
× i(t)× (

1− i(t)
)

(4–22)

Applying (4–7) and (4–9) to (4–11), we have

da(t) = x(t)fhitfnew(t)− x(t)fhitfold(t)− y(t)fhit

Because y(t) = a(t)− x(t) by definition and fold(t) = 1− fnew(t), we have

da(t) = 2x(t)fhitfnew(t)− a(t)fhit

Applying (4–21), (4–1), (4–3) and (4–5), we have

da(t)

dt
=

rV

N
×

(
2 i(t)× (

1− i(t)
)− a(t)

)
(4–23)

Because s(t) = i(t) − a(t) by definition, ds(t)
dt

= di(t)
dt
− da(t)

dt
. From (4–22) and (4–23), we

have

ds(t)

dt
=

rV

N
×

(
a(t)− i(t)× (

1− i(t)
))

(4–24)

Let φ = v
V

, which is the fraction of the vulnerable host population that is initially

infected at time t = 0. Integrating (4–22), (4–23) and (4–24), we have the following

close-form solution.
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Figure 4-7. Comparison of the infection rates and the total scanning volumes for different
k-jump worms. The left plot shows the infection curves, i(t), for a k-jump
worm under different k values. The right plot shows the active curves, a(t), for
a k-jump worm under different k values. Recall that a(t) is the percentage of
vulnerable hosts that are actively scanning at time t. The total amount of
scanning traffic, called the scanning volume, is defined as the area under the
active curve. From the left plot, we see that the infection speed improves when
k increases. However, the rate of improvement diminishes quickly when k is
greater than 1. On the other hand, from the right plot, the scanning volume
increases significantly when k increases.

i(t) =
φe

rV
N

t

1− φ + φe
rV
N

t
(4–25)

a(t) =
2(1− φ)

φe
rV
N

t

{
1− φ

1− φ + φe
rV
N

t
− 1 + φ + ln(1− φ + φe

rV
N

t) +
φ2

2(1−φ)

}
(4–26)

s(t) =
φe

rV
N

t

1−φ+ φe
rV
N

t
− 2(1−φ)

φe
rV
N

t

{
1− φ

1−φ + φe
rV
N

t

−1 + φ + ln(1−φ+ φe
rV
N

t) +
φ2

2(1−φ)

}
(4–27)

4.6 Usage of the Analytical Model

In this section, we first describe the benefits of having an analytical model when

comparing with a simulator. We then analyze our model to see what impact each

worm/network parameter (such as network size, vulnerable population size, hitlist size

and scanning rate) will have on the worm propagation.
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4.6.1 Analytical Modeling or Simulation?

Properly simulating the worm propagation on the Internet at the packet level is very

difficult due to its sheer scale. Even for a rather simplified version of the Internet, without

an analytical model one will need to take the average of multiple runs of a simulator in

order to get acceptably reliable propagation curves. And since each run could potentially

take a long time for realistic values of N and V , the whole process could take an enormous

amount of time. For an imagined attack targeting at the Windows system, it took 16

hours on an Intel Xeon 2.8 GHz processor with 4GB RAM to run a single round of a

simulation involving around 400M potentially vulnerable windows hosts on IPv4 for one

set of worm/network parameters. In order to run the same simulation for IPv6 (N = 2128),

it is easy to see that the runtime will be astronomical. On the contrary, a single run of

the numerical simulation based on the analytical model takes just seconds and gives us

the provably correct results. Moreover, it can handle extremely large address spaces and

vulnerable host populations. For any worm/network parameter change, new propagation

curves can be re-computed in little time for comparison.

While arguments can be made for doing a scaled-down simulation and then scaling

up the results, such simulations are often not fully accurate and suffer from stochastic

fluctuations and other problems [75]. Moreover, such simulations cannot predict with

confidence what precise effect each worm/network parameter will have on the overall

outcome, and for what reason. In comparison, an analytical model can tell exactly why

and by how much will a parameter affect the outcome.

4.6.2 Impact of the Worm/Network Parameters on a Worm’s Propagation

Below we analyze the exact effect of each worm/network parameter on the worm

propagation.

• Effect of Address Space Size (N): For either 0-jump worms or k-jump worms,
the only term in the model that is directly affected by N is fhit = r × dt × V

N
in

(4–1). Since all the incremental terms (such as di(t), da(t) and ds(t)) are direct
multiples of fhit, the first derivatives of the propagation curves for infected, active
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and retired hosts are inversely proportional to N . The first derivative characterizes
the rate of change over time. Therefore, as the size of the address space increases,
a worm propagates inverse-proportionally slower. If the address space is doubled, it
will take the worm double the amount of time to infect all vulnerable hosts. This
gives a reason for transition to IPv6.

• Effect of Vulnerable Host Population Size (V ): For either 0-jump worms
or k-jump worms, the only term in the model that is affected by V is fhit =
r×dt× V

N
. Again because the incremental terms (such as di(t), da(t) and ds(t)) are

direct multiples of fhit, the first derivatives of the propagation curves for infected,
active and retired hosts are proportional to V . As V increases, a worm propagates
proportionally faster. If V is doubled, it takes the worm half the amount of time to
infect all vulnerable hosts.

• Effect of Hitlist Size (v): The size of the hitlist is controlled by the worm
designer. As per our observations from the analytical model, a higher v simply
shifts the infection curve, i(t), to the left on the time axis with i(0) = v

V
. From the

infection curve in Fig. 4-4, we see that there is a slow start phase where i(t) increases
slowly before it transitions into a rapid growth phase. A larger hitlist will shorten
the initial slow start phase and may significantly reduce the overall propagation
time.

• Effect of Scanning Rate (r): Again, for either 0-jump worms or k-jump worms,
the only term in the model that is affected by r is fhit = r × dt × V

N
. Since the

incremental terms (such as di(t), da(t) and ds(t)) are direct multiples of fhit, the
first derivatives of the propagation curves for infected, active and retired hosts are
inversely proportional to r. Thus, if the scanning rate is doubled, the time it takes a
worm to infect the vulnerable host population will be halved.

• Effect of Varying k for a k-jump Worm: We make an important observation
from Fig. 4-7, where the infection speed and the scanning volume of a k-jump worm
are presented for different k values. The scanning volume is defined as the total
scanning traffic generated by all active hosts since time t = 0. We see that, by
increasing k, the slope of the infection curve in the left plot is somewhat steeper, but
for k > 1, the incremental gain becomes negligible. On the other hand, with a higher
k, the onset of retirement for active hosts happens at a increasingly later time, which
means larger scanning volume, as shown in the right plot. We observe that, for
k ≥ 8, almost all infected hosts are active at the time when all vulnerable hosts have
been infected, producing a big network footprint for worm detection. Therefore, it
makes little sense to deploy a k-jump worm with a high value of k.
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4.7 Practical Considerations

In this section, we consider our model under real-world considerations, including

congestion and bandwidth variability, patching and host crash, as well as delay of scan

messages.

4.7.1 Congestion and Bandwidth Variability

If for stealth reason the worm sets a small scanning rate r such as 100 per minute,

most infected hosts are likely to have the bandwidth of delivering 100 SYN packets

per minute, and our model will be accurate if the deviation caused by Internet delay is

negligible. However, if the worm sets its scanning rate r to be 10,000 per second, then

the actual scanning rates of infected hosts may vary due to network congestion. We

believe a worm that causes network congestion is not a good worm because it loses stealth

(unless its sole purpose is to create headlines by service disruption, which is rarely the case

nowdays [59]).

Congestion also happens naturally in the network without worm activity due to

the bandwidth limitation and the demand on the routers. As long as the Internet is

able to deliver the low scanning rate of most infected hosts, our model can predict the

propagation behavior of low-rate stealthy worms. However, we realize that whatever

be the reason – processing power of infected host, available bandwidth for the user,

congestion of the network – the final result is that on the Internet scale, different hosts

are in effect scanning at different rates. Therefore, if we can somehow extend our model

to accommodate variable scanning rates from different hosts, we are effectively capturing

the real network situation arising out of the reasons mentioned above. Since our model

can handle only a fixed scanning rate, we posited that by using average scanning rate, our

model should be able to still approximate the variable scanning rate scenario. With that

goal in mind, we simulated two worms, one having a fixed rate, r = 5 per time tick for all

infected hosts, and the other having variable rates with the Gaussian distribution and a

mean value of 5 per time tick. Fig. 4-8 shows that the infection curves of the two worms
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Figure 4-8. Comparison of propagation curves for worms with variable-rate and fixed-rate
of scanning. The simulation parameters used are N = 223, V = 213 and
v = 100. The value of r is a constant 5 scans per time tick for the fixed-rate
scanning worm, and the other having variable rates with the Gaussian
distribution and a mean value of 5 per time tick.

are very close. Similar results are observed for other variable rate distributions. Therefore,

the model is able to approximate the propagation of worms by using average scanning

rate. Therefore, we argue that our model is indeed able to approximate the propagation of

worms in real-life scenarios by using the average scanning rate.

4.7.2 Patching and Host Crash

Once a vulnerable host is infected and starts scanning, it may be removed from the

vulnerable host population due to multiple reasons. First, upon infection the host may

simply crash. Second, the host may be patched by the system administrator after some

time. Third, due to scanning activity, an infected host may come under suspicion of the

network administrator and resultingly taken off the network or quarantined. We show that

our model can be extended to handle the removal of vulnerable hosts.

We introduce a few additional terms in our model to account for the removal of

hosts. Let pq denote the probability of a host being removed each time it scans, and q(t)

denote the number of vulnerable hosts that are removed from the system by time t. As
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hosts are removed, the vulnerable population also changes; we use V (t) for the number

of vulnerable hosts at time t. It is evident that V (t) + q(t) = V (0) for all t. However,

under this “removal” scheme the meaning of i(t) becomes unclear as some hosts that were

infected can later be disinfected. To clear this confusion, we introduce a third new term

called iever(t) to denote the fraction of original vulnerable host population (V (0)) that

were ever infected during the whole propagation, while i(t) denotes the fraction of V (t)

that are infected. Since V (t) is not a constant, we rather plot iever(t).

With these new terms, we rewrite the propagation equations of a 0-jump worm by

considering host removal:

fhit(t) = r × dt× V (t)

N
(4–28)

fold(t) =
x(t)− α(t)

1− i(t) + x(t)− α(t)
(4–29)

fnew(t) =
1− i(t)

1− i(t) + x(t)− α(t)
= 1− fold(t) (4–30)

fineff (t) = i(t)− (x(t)− α(t)) (4–31)

feff (t) = 1− i(t) + x(t)− α(t) = 1− fineff (t) (4–32)

dx(t) = x(t)fhit(t)fnew(t)feff (t)− x(t)fhit(t)fold(t)− x(t)pq (4–33)

dα(t) = x(t)fhit(t)fnew(t)feff (t)− α(t)fhit(t)− α(t)pq (4–34)

dy(t) = x(t) fhit(t) fnew(t) fineff (t)− y(t) fhit(t)− y(t)pq (4–35)

ds(t) = x(t) fhit(t) fold(t) + y(t)fhit(t) (4–36)

da(t) = dx(t) + dy(t) (4–37)

dq(t) = x(t)pq + y(t)pq (4–38)

di(t) = x(t) fhit(t) fnew(t)− dq(t) (4–39)

diever(t) = di(t) + dq(t) (4–40)

dV (t) = −dq(t) (4–41)
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Figure 4-9. Comparison of propagation curves for a 0-Jump worm with removal of hosts
(due to patching, quarantining, disconnection, crash, etc.). We use the
following parameters: N = 223, V (0) = 213, r = 1 per time tick, and
pq = 0.00005. The result from the model displays a reasonable match to the
results from the simulation for up to 90% infection.

The boundary condition to these set of equations are i(0) = a(0) = x(0) = v
V (0)

, and

α(0) = s(0) = y(0) = 0.

4.7.3 Internet Delay

When deriving the propagation model, we implicitly assume that each scan message

instantaneously reaches the address being scanned. In reality, the worm will propagate

slower due to end-to-end delay of the Internet. Hence, the model in (4–25) gives an upper

bound on the worm’s propagation speed.

In case of a new infection using TCP, it takes one round trip to exchange SYN

(which is the scan message) and SYN/ACK, and then it takes a number of round trips

to transmit ACK and attack packets. For example, if the worm code is 3k long and each

TCP segment is 512 bytes, then under TCP’s slow start it takes three round trips to

complete the infection. Internet’s round trip delay rarely exceeds one second [16]. Let

D be a time period that upper-bounds the delay of most infections. Since worm code is

typically short (in order to fit in the call stack without causing the program to crash when

buffer-overflow attack is used), D is expected to be no more than several seconds.
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The larger the infection delay is, the slower the worm propagates. Hence, if we

artificially set the delay of all infections to the upper bound D (ignoring the rare cases

whose delay exceeds D), we have a lower bound on the worm propagation speed. It can be

shown that this lower bound is simply the infection curve (4–25) shifted to the left by D.

Combining both the lower bound and the upper bound, we have the following inequality

for the actual value of i(t) after Internet delay is considered. For t ≥ D,

φe
rV
N

(t−D)

1− φ + φe
rV
N

(t−D)
≤ i(t) ≤ φe

rV
N

t

1− φ + φe
rV
N

t
(4–42)

If a worm wants to stay undetected, it will choose a low scanning rate for better

stealthiness (smaller footprint on the Internet) even when that means lower propagation

speed and longer propagation time. Many known worms take hours or tens of minutes

to infect the Internet. For these worms, a maximum deviation of several seconds by

the model from the reality is relatively small with respect to the much longer overall

propagation time. Note that our goal here is not to determine the actual value of D.

Instead, we argue that the predictive power of our model is relevant in reality when the

Internet delay is small comparing with the worm propagation time.

4.8 Contributions

In this work, we have successfully modeled the propagation characteristics of different

varieties of permutation-scanning worms. We have first derived the precise propagation

model for 0-jump worms, and then extended it for the general k-jump worms. We have

also been able to derive the closed-form solution for the 0-jump worms. To verify the

correctness of the model, we have compared the results from our model with those

obtained from the simulation, and showed that they match perfectly. We have analyzed

the model to demonstrate how each worm/network parameter will affect the worm’s

propagation behavior. Finally, although our analytical model was originally conceived by

assuming ideal network conditions, we have showed that it can very well be extended to
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real-life scenarios with the consideration of variable host bandwidth, network congestion,

Internet delay, host crash and patching.
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CHAPTER 5
WORM DESIGN: THE IMPACT OF PSEUDO-RANDOMNESS AND THE OPTIMAL

SCANNING STRATEGY

Modeling the propagation of Internet worms has been a very interesting and

challenging research area [63, 22, 80, 7, 78, 40]. In the past two decades, worms evolved

not only in their actions launched upon their victims but also in their propagation

strategies. Knowing the propagation strategy of a worm is important because it allows

network administrators and researchers to have a bird’s-eye view on the dynamics of the

worm’s spread across the Internet, which in turn helps them understand how fast any

defense protocol must react to contain or eradicate the worm.

Random scanning and its variants [66, 13, 54, 69, 27, 21, 46, 70] are the prevalent

method of worm propagation on the Internet. The classical epidemic model has long been

established as the tool for characterizing the propagation properties of random-scanning

worms [63, 22]. Borrowed from the epidemiology theory, this model assumes that addresses

to be scanned are selected independently at random and that every random address has

an equal probability of being vulnerable to the worm. However, these assumptions are

not true in reality. We observe that real worms use pseudo-random number generators

to decide which addresses to be scanned. For example, the following recursive formula,

xn = 214013 × xn−1 + 2531011 mod 232 was used by Slammer [42] and Witty [35] worms

to produce addresses (albeit with bugs in implementation and logic). It is a full-cycle

linear congruential generator. With an arbitrary seed x0, it will produce numbers from a

deterministic cycle where each possible number of 32 bits will appear exactly once. Pseudo

randomness, however, breaks the underlying assumptions of the epidemic model. The

numbers generated are not independent, and our analysis will show that a portion of the

worm’s scanning activity has zero probability of discovering any new infection. Moreover,

this portion grows over time. It raises a serious question. Is the epidemic model correct

for real worms that perform pseudo-random scanning? To answer this question decisively,
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we must incorporate the property of pseudo randomness in the mathematical modeling

process, which has not been done in the literature.

Pseudo randomness has another profound impact on worm propagation. Random-scanning

worms have a serious weakness: They do not know when the whole address space has been

fully scanned (so that they can stop); each address may be scanned again and again. This

weakness leads to unnecessarily high volume of scanning traffic, hurting the stealthiness

of the worms. Self-stopping technologies have been investigated for the infected hosts

to retire from scanning based on a variety of heuristics [39], among which permutation

scanning appears to be the best candidate for ensuring that the whole address space is

scanned and all vulnerable hosts are infected before the worm stops scanning [63]. In the

work, we observe that pseudo randomness (a natural feature of ordinary random number

generators) can also be exploited to enable an orderly retirement of unproductive infected

hosts. We show that, with a full-cycle random number generator and a termination

condition, all existing random-scanning worms can be easily turned into the new full-cycle

worms that will terminate after covering the entire address space. What makes this work

unique is that we derive an accurate, closed-form, and easy-to-interpret mathematical

model that is the first of its kind to characterize the propagation of a self-stopping worm.

The detailed propagation model enables us to gain a number of interesting insights into

the full-cycle worms (as well as the permutation worms).

First, to our surprise, pseudo randomness does not slow down a worm’s propagation

even though it causes a portion of the scanning activity to have zero probability of finding

new infection. Using a termination condition to retire unproductive infected hosts from

scanning, full-cycle worms are stealthier, and remarkably, they achieve stealthiness for free

without any sacrifice in their propagation speed. They share identical infection curves with

ideal random-scanning worms.

Second, the total volume of scan traffic by a full-cycle worm is within a factor of 1.5

from the optimal – which is to scan each address once and only once. (In comparison, a
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random-scanning worm will scan each address many times without stopping even after all

vulnerable hosts are infected). Also, the maximum number of infected hosts that perform

scanning simultaneously (i.e., the peak scanning traffic) is about 43% of the vulnerable

population. Interestingly, this number is largely independent of the size of the vulnerable

population and the number of the initially infected hosts (which is related to the size

of hitlist [63]). Hence, even though the total volume of scan traffic is sub-optimal, the

maximum instantaneous scan intensity of a full-cycle worm remains 43% that of a classical

random-scanning worm. Even though the duration at maximum scan intensity can be very

brief, this result still points out a future direction for defense systems to detect stealthy

full-cycle worms — by monitoring the dynamics of instantaneous scan intensity.

Third, based on the model, we conclude that the rate-limit techniques [77, 62, 6]

designed against random-scanning worms will perform just as well when they are applied

against full-cycle worms. However, the defense techniques targeting at the scanning

volume will be less effective.

Fourth, with a simpler design, we show the functional equivalence of full-cycle worms

and permutation worms [63], which means our mathematical model for the former and

the insights it brings can also be applied to the latter. This is a significant advance over

the prior model of permutation worms [40], which consists of a series of inter-dependent

differential equations (without any closed-form solution) that are hard to interpret and

gain insight from.

We perform simulations to verify our analytical results. We also investigate the

applicability of our model under real-world conditions by considering Internet delay and

congestion. We show that the model can serve as a reasonably accurate approximation for

the propagation of real worms, particularly the stealthy ones that scan at low rates.

The rest of this chapter is organized as follows. Section 5.1 designs full-cycle worms.

Section 5.2 describes the criteria we use to characterize the stealthiness of a worm.
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Section 5.3 presents the propagation model for full-cycle worms. Section 5.4 analyzes the

stealth properties of full-cycle worms. Section 5.6 draws the conclusion.

5.1 Pseudo Randomness and Full-Cycle Worms

We first argue the necessity for incorporating pseudo randomness into the modeling

of real worms. We then describe a significant yet easy-to-implement enhancement of these

worms, which is enabled by pseudo randomness, allowing the worms to greatly reduce

their overall scan traffic and improve stealthiness.

5.1.1 Is the Classical Worm Model Correct?

The epidemic model of infectious diseases has been widely used to characterize

worm propagation [63, 22] because most known Internet worms are thought to perform

random-scanning (there are exceptions though, like localized subnet scanning, topological

scanning etc.). Before we challenge its randomness assumption, we give a brief review

below.

Each host infected by a random-scanning worm scans the Internet by repeatedly

picking a random address and probing the address to see if the host on that address

is vulnerable to a certain attack. If so, it compromises the host by exploiting the

vulnerability. As more hosts are infected, their combined rate of scanning increases

until all vulnerable hosts are infected.

Using the same notations described in Table 4-1, the classical model for random-scanning

worms can be derived as follows. At time t, the number of infected hosts is i(t)V , and the

number of vulnerable but uninfected hosts is (1 − i(t))V . After an infinitesimally small

period dt, i(t) changes by di(t). During that time, the number of scan messages made by

all infected hosts is

n(t) = i(t)V rdt. (5–1)

The probability for one scan message to hit an uninfected vulnerable host is

p(t) = (1− i(t))V/N. (5–2)
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The number of newly infected hosts, V di(t), is equal to n(t)× p(t), because the probability

of multiple scan messages hitting the same host is negligible when dt → 0. This leads to

the following differential equation:

di(t)

dt
= r

V

N
i(t)(1− i(t)) (5–3)

Other more sophisticated models take network congestion, dormant state of infected

hosts, and localized scanning strategy into consideration [80, 7]. However, as will be

discussed in the next section, localized scanning can make a worm more vulnerable to

detection, especially when done from outside.

The epidemic model assumes that random addresses selected by infected hosts

are independent of each other. It further assumes that each scan message has an equal

probability of finding a new infection. However, real worms use pseudo-random number

generators to produce addresses for scanning. These addresses are not truly random – they

are related through the formula of the generator. It leads to an interesting consequence:

Some scan messages will have zero probability of finding new infection, which we will

explain below.

We first review the prevalent mechanism behind the popular random number

generators [48, 31]. It generates numbers deterministically from a large cycle of numbers

arranged in a pseudo-random order (which is designed to pass most of the statistical

tests for randomness). The caller supplies an arbitrary seed, which determines the

initial position on the cycle to draw the first number. For subsequent numbers, the

generator simply walks (say, clockwise) on the cycle. If the cycle contains one and only

one occurrence for each number in range [0..N), it is called a full-cycle random number

generator, where N should be 232 to generate IP addresses. One example of a full-cycle

generator is xn = 214013× xn−1 + 2531011 mod 232, used by Slammer and Witty. Another

example is given in Appendix A.
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All infected hosts scan along the same pseudo-random cycle, starting from different

positions due to different seeds. We have the following observation: Once an infected

host scans an address that has already been scanned by another infected host, all

subsequent addresses that it scans must have been scanned by the latter. This observation

is illustrated in Fig. 5-1, where hosts a and b are infected, a begins its scan at address

u, and b begins at address v. They scan the addresses (clockwise along the cycle) that

are returned by a random number generator. After a reaches v, since each subsequent

address on the cycle has already been scanned by b, host a’s scan messages will have zero

probability of finding new infection, violating the assumption on which the classical worm

model is based.

With a broken assumption, is the epidemic model still right? If the cycle of the

random number generator is so huge that the scanning segments of different infected hosts

do not overlap (e.g., in Fig. 5-1, if the worm activity dies down before host a reaches

v), then Eq (5–3) remains a valid model for the worms. However, the impact of pseudo

randomness becomes significant in modeling when a full-cycle generator of size 232 is used.

As we will discuss next, future worms will have good reasons to adopt such full-cycle

generators (as Slammer did, though with faulty implementation).

5.1.2 Will Pseudo Randomness Make Worms More Powerful?

Random-scanning worms have a serious weakness. The infected hosts do not know

when they should stop scanning. They may repetitively probe the same address again

and again. After most vulnerable hosts are infected, while the rate of new infections slows

down considerably, the scanning activity of all infected hosts is however reaching its peak,

leaving a large footprint on the Internet and making its presence obvious.

Pseudo randomness not only makes it harder for us to derive the propagation model

of Internet worms, but also gives them the potential of being far more efficient than they

are today. We show that, using a full-cycle random number generator and a termination

condition, all Internet worms that perform random-scanning can be easily modified to
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Figure 5-1. Infected hosts scanning during the propagation of a full-cycle worm. Each
infected host (a,b), scans a continuous segment of addresses on the cycle.
When a’s segment reaches b’s, the addresses that a will scan have already been
covered by b.

solve their weakness. The design is simple: The initially infected hosts that start the worm

propagation use their own addresses as the seeds for the full-cycle generator, and each

subsequently infected host selects an arbitrary seed. An infected host scans the sequence

of addresses produced by the generator. It stops scanning (retires) when it reaches a host

that has already been infected. After the infected host stops scanning, it is called a retired

host; before that, it is called an active host. These improved worms are called full-cycle

worms.

The above design is efficient: It allows an infected host to retire when its scanning

effort will not find new infection. Refer to Fig. 5-1. After a reaches v, it scans the

addresses that have been scanned by b. Even though its effort is no longer productive,

a has no way to know until it reaches an infected host c, which will tell a to retire. By

retiring at the earliest feasible moment, a avoids sending scan messages to addresses after

c. It is easy to see that each infected host will eventually retire because it walks along the

cycle and, in the worst case when there is no other infected host, it will come back to itself

(and thus know that it should retire).

There are many questions to be answered. How efficient are full-cycle worms exactly?

Will they propagate faster or slower than today’s random-scanning worms? How hard is

it to detect them? More specifically, what is their footprint on the Internet, in terms of

the total scan volume and the maximum combined rate of scanning by all active hosts?
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Will the existing defense techniques for random-scanning worms remain effective against

full-cycle worms? Before we answer these questions, we briefly discuss on two important

metrics for measuring worm performance: propagation speed and stealthiness.

5.2 Propagation Speed and Stealthiness

Good worm design must achieve balance between propagation speed and stealthiness.

Higher speed and better stealthiness are two conflicting goals. If every infected host scans

at its highest possible rate, the worm’s propagation speed is maximized. But this makes

the worm’s presence obvious. For example, the SQLSlammer worm [13] in 2003 caused

widespread network congestion across Asia, Europe and the Americas. Its aggressiveness

produced headline news, but was not instrumental to its own survival as enormous

resources were committed immediately to clean up the worm. The potential harm that

a worm can do is decided not by the headlines it generates, but by its longevity. A slow

spreading worm that takes a month to silently infect the Internet and stay undetected

for a year can do much more harm than a worm that infects the Internet in a day but is

wiped out in the next few days. For a malicious worm, generally speaking, stealth is more

important than propagation speed. Hence, a worm may artificially configure its scanning

rate to a certain low value in order to evade detection.

Propagation speed can be measured based on the infection curve i(t). Stealthiness of

a worm can be measured based on the impact of its scanning traffic on the Internet. Three

metrics are gross footprint, maximum instantaneous footprint, and footprint concentration,

which capture the total amount, the temporal intensity, and the spatial intensity of the

scanning traffic, respectively.

• Gross footprint: The total volume of scanning traffic over the entire course of
worm propagation.

• Maximum instantaneous footprint: The maximum combined rate of scanning
by all infected hosts at any time instant.

• Footprint concentration: Determined by the distribution of scanning traffic (from
one or all infected hosts) over the destination subnets.
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The footprint concentration is high when the scan traffic from an infected host

is mostly directed to a single subnet (i.e., localized scanning), which makes the host

susceptible to be identified by address-scan detectors or other IDSs that look for worms

doing subnet scanning. The concentration is low when the scan traffic is distributed

uniformly at random over the entire address space, which is what the random-scanning

worms do. But random-scanning worms are not stealthy because of its large gross

footprint and maximum instantaneous footprint. In the next section, we will show why

full-cycle worms can do better.

5.3 Propagation Model of Full-Cycle Worms

In this section, we derive the closed-form solution for the infection curve i(t) of a

full-cycle worm, which is the fraction of vulnerable hosts that are infected at time t. In

the next section, we will derive the closed-form solution for other worm propagation

parameters.

5.3.1 Modeling

We show that the infection curve i(t) of a full-cycle worm is identical to that of a

random-scanning worm. Let v be the initial number of infected hosts at time t = 0 before

scanning begins; a hitlist [63] may be used to increase the value of v. These infected hosts

are randomly located in the full cycle, where the addresses in [0..232 − 1] are arranged in a

pseudo-random order. Assume they begin from their own locations (using their locations

as seeds) and scan along the full cycle. There are (V−v) vulnerable hosts randomly placed

in the full cycle. Other than the v initially infected ones, the probability for an arbitrary

address to be vulnerable is

p0 =
V − v

N − v
(5–4)

It is true that the vulnerable hosts are not distributed uniformly at random in the IPv4

address ring. But we are working on the pseudo-random full cycle of addresses, on which

the vulnerable hosts are randomly distributed.
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Figure 5-2. Different stages of an infected host for a full-cycle worm. An active host a is
either effective or ineffective. It retires when reaching an infected host.

By time t, the combined scanning effort of all infected hosts has discovered and then

infected i(t)V−v vulnerable hosts. Due to random placement of vulnerable hosts, the same

proportion of the (N−v) addresses (which exclude the v initially infected ones) is expected

to have been scanned in order to discover those hosts. Hence, the fraction f(t) of the full

cycle that has been scanned by time t is

f(t) =

i(t)V−v
V−v

× (N − v) + v

N
(5–5)

Here we treat the initially infected hosts as having been scanned.

As illustrated in Fig. 5-2, when an active host a is scanning addresses that have

not been scanned yet (such as [u, v]), it is called an effective host. When a is scanning

addresses that have already been scanned (such as [v, c]), it is called an ineffective host.

An ineffective host will become a retired host once it hits an infected host (c in this

example). Let x(t) be the fraction of vulnerable hosts that are effective at time t. It is

worth noting that the defition of effective hosts here is slightly different from that in the

modeling of Permutation-scanning worm. For the Permutation-scanning worms, a host is

ineffective if its starting scanning address falls within a covered area. For full-cycle, a host

is ineffective if its scanning address has been scanned before.

Because there are x(t)V effective hosts at time t, all addressed having been scanned

by them will form x(t)V non-overlapping segments. For example, in Fig. 5-3, b and c
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Figure 5-3. Classification of active hosts for a full-cycle worm. Hosts b and c are effective,
whereas host a is ineffective because it is scanning addresses that have been
scanned by b. There are two non-overlapping segments, [u,w] and [y, z].

are effective hosts, and there are two non-overlap segments. Host a is ineffective; its

segment is merged with b’s into a single bigger segment [u,w]. The combined size of all

non-overlapping segments is f(t)N . Excluding the starting address, all other addresses of

a segment form the interior of the segment. For example, the interior of [u,w] is (u,w].

The combined size of the interior of all segments is f(t)N − x(t)V .

It is easy to see that, whenever the first address scanned by an infected host falls in

the interior of a segment, there must be an effective host turned ineffective. For example,

in Fig. 5-3, as host a’s segment merges with host b’s segment into a single non-overlapping

one [u,w], the first address scanned by b, which is v, becomes an address in the interior

of segment [u,w], and at the mean time one effective host (a in this example) becomes

ineffective.

Now, because the first addresses scanned by i(t)V infected hosts are randomly placed

in the full cycle, the chance for each of them to be in the interior of some non-overlapping

segment is f(t)N−x(t)V
N

, which is the fraction of the full cycle that the interior of all

non-overlapping segments occupies. The number of infected hosts having turned ineffective

is (i(t)− x(t))V . Hence, we have

(i(t)− x(t))V =
f(t)N − x(t)V

N
i(t)V

x(t) =
(1− f(t))N

N − i(t)V
i(t)

(5–6)
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During an indefinitely small period dt after time t, the number of scan messages sent by

all effective hosts is

n′(t) = x(t)V r(t)dt =
(1− f(t))N

N − i(t)V
i(t)V rdt (5–7)

Each scan message extends a segment by one additional address. There are two possibilities

for this address. Case 1: it is located in the gap between two non-overlapping segments;

Case 2: it is not located in the gap, i.e., it is the first address of the next segment on the

cycle. The combined size of all gaps between non-overlapping segments is (1 − f(t))N ,

and we have known that the number of non-overlapping segments is x(t)V . The

probability for Case 1 is (1−f(t))N
(1−f(t))N+x(t)V

, and since the address is not scanned before,

the conditional probability for the host on the address to be a new infection is p0 in (5–4).

The probability for Case 2 is x(t)V
(1−f(t))N+x(t)V

, and the conditional probability for the address

(which has been scanned before) to be a new infection is zero.

Combining the above analysis, the probability for a scan message from an effective

host to make a new infection is

p′(t) =
(1− f(t))N

(1− f(t))N + x(t)V
× p0 +

x(t)V
(1− f(t))N + x(t)V

× 0

=
V − v

N − v
× N − i(t)V

N

(5–8)

During the period dt, the number of newly infected hosts, V di(t), is equal to n′(t) ·
p′(t). Applying (5–7), (5–8) and (5–5) to the equation V di(t) = n′(t) · p′(t), we have

di(t) =
rV

N
i(t)(1− i(t))dt

It can be rewritten as the following differential equation.

di(t)

dt
=

rV

N
i(t)(1− i(t)) (5–9)

It is the same as (5–3), the propagation model for ideal random-scanning worms!

Because the propagation of all these worms will respond to the change in r in the same

way, rate-limit techniques [77, 6] that were designed to slow down random-scanning worms
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or containment techniques [62] based on worm’s scanning rate will work equally well for

full-cycle worms.

Solving the equation, we have

i(t) =
er V

N
(t−t0)

1 + er V
N

(t−t0)
(5–10)

Since i(0) = v/V , applying it to (5–10), we have t0 = − N
rV

ln v
V−v

. Eq. (5–10) can be

written as

i(t) =
er V

N
(t+ N

rV
ln v

V−v
)

1 + er V
N

(t+ N
rV

ln v
V−v

)
(5–11)

From (5–11), the time it takes for a percentage α (≥ v/V ) of all vulnerable hosts to

be infected is

t(α) =
N

r · V (ln
α

1− α
− ln

v

V − v
) (5–12)

5.3.2 Explanation

It may look surprising that the propagation model of a full-cycle worm is identical

to that of an ideal random scanning worm even though over time the full-cycle worm

commits a smaller number of infected hosts to scan the Internet. We give an intuitive

explanation on why this happens.

The instantaneous increase in the number of infections, V di(t), is the product of two

factors: the number of scan messages during dt and the probability for each scan message

to generate a new infection, where the former is n(t) defined in (5–1) for random-scanning

worms and n′(t) defined in (5–7) for full-cycle worms, while the latter is p(t) defined in

(5–2) for random-scanning worms and p′(t) defined in (5–8) for full-cycle worms.

On one hand, by allowing more and more infected hosts to retire, full-cycle worms

achieve stealth at the expense of fewer scan messages, which can be shown by comparing

(5–7) and (5–1). This has a negative impact on its propagation speed.

On the other hand, random-scanning worms send scan messages to arbitrary

addresses, including those that have already been scanned, which leads to lower probability
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Figure 5-4. Comparison of infection curves between random-scanning,
permutation-scanning and full-cycle worms. The “Model” curve is computed
from (5–11). The other three curves are plotted using data collected from
packet-level simulation programs that simulate worm’s actual scanning
behavior. These curves for “Random Scanning” worm, “Full Cycle” worm and
”Permutation” worm (to be discussed in Section 5.3.4) are the average of 1,000
simulation runs. The 99% confidence interval for the curve of “Full Cycle” is
plotted; the confidence intervals for “Random Scanning” and “Permutation”
are comparable. All four curves in the figure completely overlap. We stress
that data points calculated from (5–11) agree with data points independently
collected from programs.

for each scan message to find a new infection. Full-cycle worms send scan messages mostly

to addresses that have not been scanned, which means higher probability of finding new

infections. This is evident by comparing (5–8) and (5–2), and it has a positive impact on

the propagation speed of full-cycle worms.

Based on our mathematical calculation, interestingly, the negative impact and the

positive impact exactly cancel out each other. Consequently, these worms all have the

same propagation model.

5.3.3 Simulation Verification

As explained in Fig. 5-4, our simulations confirm that full-cycle worms propagate at

the same speed as ideal random-scanning worms. The simulation parameters are given as

follows: The size of the vulnerable population is V = 213. The size of the address space

is N = 223 (it will take prohibitively long time if N is chosen to be 232). To produce an
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infection curve in any of the figures in the dissertation, we simulate worm propagation

for 1000 times under different random seeds, and then take the average. We normalize

the time tick to be 1
r
; hence, an infected host sends one scan message per tick. Therefore,

the same infection curves can be used for all scanning rates. For full-cycle or permutation

worms, the simulation stops when all infected hosts retire. For random-scanning worms,

we set a timer for the simulation to stop. For further details of the simulator, please refer

to Section 4.3.4.

5.3.4 Equivalence to Permutation Worm

A permutation worm [63] maps the IP address space to a permuted space by an

encryption algorithm. The corresponding decryption algorithm will map the permuted

space back to the original IP space. Starting from a random location, each infected host

scans continuous addresses in the permuted space. A permuted address is first decrypted

to an address in the IP space, to which the scan packet will be actually sent.

Full-cycle worms are functionally equivalent to the permutation worm in the sense

that it permutes the IP address space directly via the random number generator (which is

needed in most known worms), instead of using encryption. Such equivalence is confirmed

by our simulation (Fig. 5-4). Essentially it means that all existing random-scanning worms

can be easily modified to be as powerful as permutation worms simply by using a full-cycle

random number generator and incorporating a termination condition. Moreover, they have

the advantage of avoiding the need to carry a decryption routine that would increase the

length of the worm code substantially and make it more susceptible to detection [67].

When an active host of a full-cycle worm scans an already infected host, instead of

letting it retire immediately, we may modify the worm and allow the host to jump to a

new random location in the cycle for its new scan target and resume its scanning from

there. The host will retire after a certain number of jumps. We performed simulations to

evaluate how jumps affect propagation speed and scanning traffic volume. Our simulation

results are identical to results shown in Fig. 4-7 for permutation worm, which shows that
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jumps by infected hosts only modestly increase the propagation speed of a full-cycle worm,

at the cost of considerable increase in the scanning traffic volume, hurting stealthiness.

5.4 Stealthiness of Full-Cycle Worms

In this section, we derive the closed-form solutions for x(t), a(t) and s(t), which are

the fractions of vulnerable hosts that are effective, active and retired, respectively. Based

on these solutions, we know the number of effective hosts x(t)V , the number of active

hosts a(t)V , and the number of retired hosts s(t)V over time.

The results will help us assess the stealthiness of full-cycle worms. For example, we

learn that irrespective of v, the maximum instantaneous footprint of these worms, which is

the largest instantaneous scanning rate by all infected hosts (i.e., maxt{a(t)V r}), is about

43% of the value for random-scanning worms. We also learn that the gross footprint of

full-cycle worms is within a factor of 1.5 from the optimal.

5.4.1 Number of Effective Hosts over Time

Applying (5–5) and (5–10) to (5–6), we have the closed-form solution for x(t).

x(t) =
(1−

i(t)V−v
V−v

×(N−v)+v

N )N
N − i(t)V

× er V
N

(t+ N
r·V ln v

V−v
)

1 + er V
N

(t+ N
r·V ln v

V−v
)

(5–13)

Recall that the number of effective hosts is x(t)V . Eq (5–13) is hard to interpret. We

perform approximation below. Suppose v ¿ V (and obviously, v ¿ N). Eq (5–5) can be

simplified to

f(t) ≈ i(t). (5–14)

Applying it to (5–6), we have

x(t) ≈ (1− i(t))N

N − i(t)V )
i(t). (5–15)

Suppose V ¿ N , which is likely to hold as the number of hosts vulnerable to a particular

worm normally accounts for a small portion of the whole Internet address space. The

above equation can be further simplified to

x(t) ≈ (1− i(t))i(t). (5–16)
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Figure 5-5. Simulation results on full-cycle worm propagation

It follows that

max
t

x(t) ≈ 1

4
(5–17)

The maximum value of x(t) is reached at approximately the time when i(t) = 1 − i(t) =

1
2
, namely, when half of the vulnerable hosts are infected, which is confirmed by our

simulation results in Fig. 5-5 ( see Section 5.3.3 for simulation setup). By (5–12), that

time is

t(
1

2
) =

N

rV
(ln(V − v)− ln v) ≈ N ln V

rV
(5–18)

5.4.2 Number of Active Hosts

We have already obtained the closed-form solution for i(t) in (5–11). Below we obtain

the closed-form solution for a(t). Once a(t) is known, by i(t) = a(t) + s(t), we also get the

closed-form solution for s(t).

Throughout this and next subsection, we use the notation φ = v
V

= i(0) = a(0) =

fraction of vulnerable host population already infected at time 0. Using this φ in (5–11),

we can rewrite the closed form for i(t) as

i(t) =
φe

rV
N

t

1− φ + φe
rV
N

t
(5–19)
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Since each active host has V
N

chance for hitting a vulnerable host for each scan message,

in time dt the expected number of hits on vulnerable hosts, including both previously

uninfected and previously infected, is a(t)V × r × dt × V
N

. We note that when an active

host hits a previously uninfected host, it adds to the overall infection count i(t). Since

i(t) changes by di(t) within time dt, the total number of hits on previously uninfected

vulnerable hosts must be di(t). On the other hand, when an active host hits an already

infected host, it retires and thereby adds to the s(t) count. Since s(t) changes by ds(t)

within time dt, the total number of hits on previously uninfected vulnerable hosts must

be ds(t). Thus, we get a(t)V × r × dt × V
N

= total number of hits = di(t) + ds(t). In

other words, ds(t) = a(t)V × r × dt × V
N
− di(t). Since da(t) = di(t) − ds(t), we also get

da(t) = 2di(t)− a(t)V × r × dt× V
N

. Plugging back di(t) = r × dt× V
N

i(t)(1− i(t)), we get

the final propagation equations:

di(t)

dt
=

rV

N
× i(t)× (1− i(t)) (5–20)

da(t)

dt
=

rV

N
× (2 i(t)× (1− i(t))− a(t)) (5–21)

ds(t)

dt
=

rV

N
× (a(t)− i(t)× (1− i(t))) (5–22)

Applying (5–19) to (5–21), we have

da(t)

dt
=

rV

N
×

(
2(1− φ)φe

rV
N

t

(1− φ + φe
rV
N

t)2
− a(t)

)
(5–23)

Solving the above equation for a(t) using the boundary condition of a(0) = φ, and based

on i(t) = a(t) + s(t), we have the following closed forms for infected, active and retired
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fraction of vulnerable hosts at time t:

i(t) =
φe

rV
N

t

1− φ + φe
rV
N

t
(5–24)

a(t) =
2(1− φ)

φe
rV
N

t

{
1− φ

1− φ + φe
rV
N

t
− 1 + φ

+ ln(1− φ + φe
rV
N

t) +
φ2

2(1−φ)

}
(5–25)

s(t) =
φe

rV
N

t

1−φ+ φe
rV
N

t
− 2(1−φ)

φe
rV
N

t

{
1− φ

1−φ + φe
rV
N

t

−1 + φ + ln(1−φ+ φe
rV
N

t) +
φ2

2(1−φ)

}
(5–26)

We observe that the differential equations 5–20 through 5–22 are the same as

equations 4–22 through 4–24, respectively. Therefore, it comes as no surprise that

closed-form solutions (equations 5–24 through 5–26) are the same as equations 4–25

through 4–27, respectively.

5.4.3 Maximum Instantaneous Footprint (Peak Scanning Traffic)

The maximum instantaneous footprint is defined as the maximum combined rate of

scanning by all infected hosts at any time instant. For a random-scanning worm, it is V r,

which happens when all V vulnerable hosts are infected. For a full-cycle worm, because

of retirement, it is maxt{a(t)V r}. Therefore, the maximum instantaneous footprint is

determined by the maximum value of a(t) over time t. We will show that maxt{a(t)} is

around 43% for φ from 0.01% up to 30%.

a(t) reaches its maximum value when da(t)
dt

= 0. Setting the right-hand side of (5–21)

to zero, we have

max
t

a(t) = 2 i(t)(1− i(t)) (5–27)

Applying (4–25), we have

max
t

a(t) =
2(1− φ)φe

rV
N

t

(1− φ + φe
rV
N

t)2
(5–28)
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Since a(t) is given by (4–26), we observe that, at time t where the maximum value of a(t)

is reached, the following is true,

max
t

a(t) =
2RY

(R+Y )2
=

2R

Y

{ R

R+Y
−R + ln(R + Y ) +

φ2

2R

}

where R = 1 − φ and Y = φe
rV
N

t for simplification. Let g = Y
R

= φe
rV
N

t

1−φ
. Then,

maxt a(t) = 2g
(1+g)2

. Substituting Y = gR into the above equation and simplifying, we get

the following:

g2

(1 + g)2
=

1

1 + g
−R + ln(R) + ln(1 + g) +

φ2

2R

Bringing all the g-terms to the left-hand side, and replacing R = 1− φ back, we have

g2

(1 + g)2
+

g

1 + g
− ln(1 + g) = ∆(φ) (5–29)

where ∆(φ) = φ + ln(1−φ) + φ2

2(1−φ)
. Using Taylor series expansion, ∆(φ) = φ3

6
+ φ4

4
+ 3φ5

10
+

φ6

3
+ ...

Now, if ∆(φ) in (5–29) were to be a constant, then it would be seen immediately

that only a constant value of g can satisfy that equation. In that case, maxt a(t) = 2g
(1+g)2

would again be a constant. To test our hypothesis that the value of ∆(φ) is indeed almost

a constant, we take different values of φ and see how the values of ∆(φ), g and maxt a(t)

change along with it. The results are shown in the following table.

Table 5-1. Effect of hitlist size on the scanning peak.

φ ∆(φ) g maxt a(t)
0.01 % 0.000000 2.162580 43.2 %
0.1 % 0.000000 2.162580 43.2 %

1 % 0.000000 2.162580 43.2 %
2 % 0.000001 2.162570 43.2 %
5 % 0.000022 2.162300 43.2 %

10 % 0.000195 2.160130 43.2 %
20 % 0.001856 2.139130 43.4 %
30 % 0.007611 2.064960 43.9 %

118



 0

 20

 40

 60

 80

 100

 0  5000  10000  15000  20000

%
 v

ul
ne

ra
bl

e 
ho

st
 p

op
ul

at
io

n

Time tick

Initially infected = 1% of V

Infected

Retired

Active

Max Active = 43%

Simulation Infected
Simulation Active   
Simulation Retired 

Model Infected
Model Active   
Model Retired 

 0

 20

 40

 60

 80

 100

 0  5000  10000  15000  20000

%
 v

ul
ne

ra
bl

e 
ho

st
 p

op
ul

at
io

n

Time tick

Initially infected = 10% of V

Infected

Retired

Active

Max Active = 43%

Simulation Infected
Simulation Active   
Simulation Retired 

Model Infected
Model Active   
Model Retired 

 0

 20

 40

 60

 80

 100

 0  5000  10000  15000  20000

%
 v

ul
ne

ra
bl

e 
ho

st
 p

op
ul

at
io

n

Time tick

Initially infected = 20% of V

Infected

Retired

Active

Max Active = 43%

Simulation Infected
Simulation Active   
Simulation Retired 

Model Infected
Model Active   
Model Retired 

 0

 20

 40

 60

 80

 100

 0  5000  10000  15000  20000

%
 v

ul
ne

ra
bl

e 
ho

st
 p

op
ul

at
io

n

Time tick

Initially infected = 30% of V

Infected

Retired

Active

Max Active = 43%

Simulation Infected
Simulation Active   
Simulation Retired 

Model Infected
Model Active   
Model Retired 

Figure 5-6. Propagation patterns for the full-cycle worm with different φ. In all the cases,
the peak scanning volume is reached when around 43% of the vulnerable
population are actively scanning. Also, in all cases, the results from our worm
simulator matches the result from the model with amazing precision (the two
sets of curves cannot be distinguished unless viewed at a very high
magnification (around 64X).

In all cases ∆(φ) is almost 0, which is understandable since ∆(φ) = Θ(φ3) as seen

above. Therefore, we can say that for reasonable values of initially infected host ratio φ,

maxt a(t) is reached around 43%. We verify this fact by both simulation and model output

in Figure 5-6.

5.4.4 Gross Footprint

The total number of scan messages by effective hosts is N . The expected number of

addresses scanned by an ineffective host is N
2V

. Each infected host will become ineffective

for once. Therefore, the expected number of addresses scanned by all ineffective hosts

over time is N
2V

V = N
2
. The gross footprint of a full-cycle (or permutation) worm, defined

as the overall scan volume, is thus N + N
2

= 3
2
N . Hence, each address is scanned 1.5
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times on average. In comparison, because existing random-scanning worms do not have

a termination condition, their gross footprint is not bounded. Hence the worm defense

techniques targeting at high scan volume of random-scanning worms will be less effective

when applied against full-cycle worms.

5.5 Quest for the Optimal Strategy

The virulence of a worm is indicated by how quickly, resiliently and stealthily it

can comprise the entire vulnerable host population, and it is dependent on the scanning

strategy chosen by the worm. Before we delve into the search for an optimal scanning

strategy, it is to be noted that we use the word “optimal” in a rather loose and subjective

way rather than maximizing some objective function. The reason for this choice is the

absence of any universally accepted standard for measuring the effectiveness of a scanning

strategy. Nevertheless, we observe that a worm employing an optimal scanning strategy

must have the following characteristics:

• Infection speed: The worm should be able to infect the entire vulnerable host
population as quickly as possible. Pictorially, the slope of the infection curve (plot of
i(t) over time) should be as steep as possible.

• Stealth: It should not have a high network footprint. In other words, the area
under the active curve (plot of a(t) over time) should be as less as possible.

• Fault tolerance: Even if a portion of the infected host population are removed or
patched, the worm should still be able to infect the entire vulnerable population.

We show that the scanning strategy used by the full-cycle worm meets all three

of the criteria above. First, we observe that it has the identical infection speed as the

random-scanning worm. However, for a random-scanning worm, all the infected hosts are

scanning at the same time, which means that the infection curve and the active curve

are one and the same. On the other hand, for a full-cycle worm, irrespective of the hitlist

size, the active curve reaches a scanning peak around 43% of the vulnerable population

size and then drops towards zero. In comparison with the random-scanning worm, this

ensures a much smaller network footprint, which has been estimated as 3
2
N . While a
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full-cycle worms scans each address 1.5 times on the average, there is no such bound

for existing random-scanning worms without a termination condition. Thus, full-cycle

worms are significantly more stealthy than ordinary random-scanning worms. Finally,

since the propagation strategy in full-cycle worm allows random jumps, even if an active

hosts is removed from the vulnerable pool, some other host will eventually make a jump

in the vicinity of the address that was last scanned by the original host, and complete

the unfinished scanning work. This way, the full-cycle worm enjoys good fault tolerance

property. In essence, since the full-cycle worm possesses all the three desired properties

described above, we conclude that it is optimal.

5.6 Contributions

This is the first work that studies the impact of pseudo randomness on Internet worm

propagation. We give a closed-form solution to the modeling problem of full-cycle (and

permutation) worms. The analytical results provide a number of interesting insights into

these worms. Notably, while allowing infected hosts to retire, these worms’ infection curve

is identical to that of random-scanning worms, even through they send much less scan

messages. We formally analyze the stealthiness of full-cycle worms in terms of maximum

instantaneous footprint and gross footprint. Finally, we show that a full-cycle worm enjoys

the properties desired by an optimal scanning strategy.
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CHAPTER 6
CONCLUSIONS

Our study undertook three important problems: worm detection, worm propagation

modeling, and worm design. First, we devised a fast and reliable detection mechanism

for the ASCII worms and verified its efficiency through experiments. We also derived

the statistical model of the maximum executable length (MEL) scheme underlying

our detection mechanism, which serves as the foundation of not only our detection

mechanism but also several other similar MEL-based detection mechanisms that set the

MEL threshold experimentally. Our mathematical model also established the relation

between the MEL threshold and the false positive error probability, which means our

analysis makes it possible to tune the detection sensitivity of any MEL-based scheme.

We also derived the propagation model for the permutation-scanning worm, and

through extensive simulations, have shown that the analytical model is accurate. We

have extended our model for permutation-scanning worms employing multiple jumps, and

obtained perfect match between the output of the mathematical model and the worm

simulations.

Finally, we examined the role of pseudo-randomness in the propagation for worms

using a random number generator and discovered the flaws in the derivation of the

classical epidemic model, which till date has served as the universally accepted model for

propagation of random-scanning worms. At the same time, we have also discovered that

we can exploit this pseudo-randomness to our favor. By using a specific pseudo-random

number generator and incorporating a termination criterion, we have shown that existing

random scanning worms can be made significantly stealthier without losing any infection

speed, thereby making this particular scanning strategy a very efficient one.

Overall, our work focused on highlighting the damage potential of worms, and

showed novel ways to detect them. It also provided accurate analytical propagation model

122



for worms. This can help network security personnel to better understand the worms’

spreading behavior, and design containment techniques and other countermeasures.
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